
Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 99, pp. 1–8.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu

EXISTENCE OF INFINITELY MANY PERIODIC SOLUTIONS
FOR SECOND-ORDER NONAUTONOMOUS HAMILTONIAN

SYSTEMS

WEN GUAN, DA-BIN WANG

Abstract. By using minimax methods and critical point theory, we obtain

infinitely many periodic solutions for a second-order nonautonomous Hamil-

tonian systems, when the gradient of potential energy does not exceed linear
growth.

1. Introduction and main results

Consider the second-order Hamiltonian system
ü(t) +∇F (t, u(t)) = 0, a.e. t ∈ [0, T ],

u(0)− u(T ) = u̇(0)− u̇(T ) = 0 .
(1.1)

Where T > 0 and F : [0, T ]× RN → R satisfies the following assumption:
(A1) F (t, x) is measurable in t for every x ∈ RN , continuously differentiable in

x for a.e. t ∈ [0, T ], and there exist a ∈ C(R+,R+), b ∈ L1([0, T ],R+) such
that

|F (t, x)| ≤ a(|x|)b(t), |∇F (t, x)| ≤ a(|x|)b(t)
for all x ∈ RN and a.e. t ∈ [0, T ].

The existence of periodic solutions for problem (1.1) was obtained in [1,3,5,6,8,9,
10, 11, 12, 13, 14, 15, 16, 18, 19, 21, 22, 23] with many solvability conditions by using
the least action principle and the minimax methods, such as the coercive type
potential condition [3], the convex type potential condition [8], the periodic type
potential conditions [18], the even type potential condition [6], the subquadratic
potential condition in Rabinowitz’s sense [11], the bounded nonlinearity condition
(see [9]), the subadditive condition (see [12]), the sublinear nonlinearity condition
(see [5, 14]), and the linear nonlinearity condition (see [10,16,22,23]).

In particular, when the nonlinearity ∇F (t, x) is bounded; that is, there exists
g(t) ∈ L1([0, T ],R+) such that |∇F (t, x)| ≤ g(t) for all x ∈ RN and a.e. t ∈ [0, T ],
and that ∫ T

0

F (t, x)dt→ ±∞ as |x| → ∞,
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Mawhin and Willem [9] proved that problem (1.1) has at least one periodic solution.
Han and Tang [5, 14] generalized these results to the sublinear case:

|∇F (t, x)| ≤ f(t)|x|α + g(t) for all x ∈ RN and a.e. t ∈ [0, T ] (1.2)

with

|x|−2α

∫ T

0

F (t, x)dt→ ±∞ as |x| → ∞, (1.3)

where f(t), g(t) ∈ L1([0, T ],R+) and α ∈ [0, 1).
Subsequently, when α = 1 Zhao and Wu [22, 23], and Meng and Tang [10, 16]

proved the existence of periodic solutions for problem (1.1), i.e. ∇F (t, x) does not
exceed linear growth:

|∇F (t, x)| ≤ f(t)|x|+ g(t) for all x ∈ RN and a.e. t ∈ [0, T ], (1.4)

where f(t), g(t) ∈ L1([0, T ],R+).
On the other hand, there are large number of papers that deals with multiplic-

ity results for this problem. In particular, infinitely many solutions for (1.1) are
obtained in [2,20,24] when the nonlinearity F (t, x) have symmetry. Since the sym-
metry assumption on the nonlinearity F has play an important role in [2, 21, 24],
many authors have paid much attention to weak the symmetry condition and some
existence results on periodic solutions have been obtained without any symmetry
condition [4,7,17,25]. Especially, Zhang and Tang [25] obtained infinitely many pe-
riodic solutions for (1.1) when (1.2) holds and F has a suitable oscillating behaviour
at infinity:

lim sup
r→+∞

inf
x∈RN ,|x|=r

|x|−2α

∫ T

0

F (t, x)dt = +∞,

lim inf
R→+∞

sup
x∈RN ,|x|=R

|x|−2α

∫ T

0

F (t, x)dt = −∞,

where α ∈ [0, 1).
Motivated by the results mentioned above, especially by ideas in [10,16,22,23,25],

in this article, by using the minimax methods in critical point theory, we obtain
infinitely many periodic solutions for (1.1).

Let H1
T be a Hilbert space H1

T =
{
u : [0, T ] → RN : u is absolutely continuous,

u(0) = u(T ) and u̇ ∈ L2([0, T ],R)
}

, with the norm

‖u‖ =
(∫ T

0

|u(t)|2dt+
∫ T

0

|u̇(t)|2dt
)1/2

, (1.5)

for u ∈ H1
T . Let

J(u) =
1
2

∫ T

0

|u̇(t)|2dt−
∫ T

0

F (t, u(t))dt. (1.6)

It is well known that the function J is continuously differentiable and weakly lower
semicontinuous on H1

T and the solutions of (1.1) correspond to the critical points
of J (see [9]). Our main result is the following theorem.

Theorem 1.1. Suppose that (A1) and (1.4) with
∫ T

0
f(t)dt < 3

T hold and

lim sup
r→+∞

inf
x∈RN ,|x|=r

∫ T

0

F (t, x)dt = +∞, (1.7)
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lim inf
R→+∞

sup
x∈RN ,|x|=R

|x|−2

∫ T

0

F (t, x)dt < − 3T 2

2π2(12− T
∫ T

0
f(t)dt)

∫ T

0

f2(t)dt. (1.8)

Then
(i) There exists a sequence of periodic solutions {un} which are minimax type

critical points of functional J , and J(un)→ +∞ as n→∞;
(ii) There exists another sequence of periodic solutions {u∗m} which are local

minimum points of functional J , and J(u∗m)→ −∞ as m→∞.

Remark 1.2.
(i) As in [25], in this paper we do not assume any symmetry condition on nonlin-
earity;

(ii) Our main result in this paper extends main result in [25] corresponding to α = 1.

2. Proof of main results

For u ∈ H1
T , let

u =
1
T

∫ T

0

u(t)dt, ũ(t) = u(t)− u. (2.1)

The following inequalities are well known (see [9]):

‖ũ‖2∞ ≤
T

12
‖u̇‖2L2 (Sobolev’s inequality),

‖ũ‖2L2 ≤
T 2

4π2
‖u̇‖2L2 (Wirtinger’s inequality).

For the sake of convenience, we denote

M1 =
(∫ T

0

f2(t)dt
)1/2

, M2 =
∫ T

0

f(t)dt, M3 =
∫ T

0

g(t)dt.

Lemma 2.1. Suppose that
∫ T

0
f(t)dt < 3/T and (1.4) hold, then

J(u)→ +∞ as ‖u‖ → ∞ in H̃1
T , (2.2)

where H̃1
T = {u ∈ H1

T | u = 0} be the subspace of H1
T .

Proof. From (1.4) and Sobolev’s inequality, for all u in H̃1
T we have

J(u) =
1
2

∫ T

0

|u̇(t)|2dt−
∫ T

0

F (t, u(t))dt

≥ 1
2

∫ T

0

|u̇(t)|2dt−
∫ T

0

f(t)|u(t)|2dt−
∫ T

0

g(t)|u(t)|dt

≥ 1
2

∫ T

0

|u̇(t)|2dt− ‖ũ‖2∞
∫ T

0

f(t)dt− ‖ũ‖∞
∫ T

0

g(t)dt

≥ 1
2
‖u̇‖2L2 −

T

12
‖u̇‖2L2

∫ T

0

f(t)dt−
( T

12
)1/2‖u̇‖L2

∫ T

0

g(t)dt

=
(1

2
− T

12

∫ T

0

f(t)dt
)
‖u̇‖2L2 − C1‖u̇‖L2 .

By Wirtinger’s inequality, the norm ‖u‖ =
( ∫ T

0
|u̇(t)|2dt

)1/2 is an equivalent
norm on H̃1

T . So, J(u)→ +∞ as ‖u‖ → ∞ in H̃1
T . �
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Lemma 2.2. Suppose that (1.7) holds. Then there exists positive real sequence
{an} such that

lim
n→∞

an = +∞, lim
n→∞

sup
u∈RN ,|u|=an

J(u) = −∞ .

The above lemma follows from (1.7).

Lemma 2.3. Suppose that
∫ T

0
f(t)dt < 3

T , (1.4) and (1.8) hold. Then there exists
positive real sequence {bm} such that

lim
m→∞

bm = +∞, lim
m→∞

inf
u∈Hbm

J(u) = +∞,

where Hbm = {u ∈ RN : |u| = bm}
⊕
H̃1
T .

Proof. By (1.8), we can choose an a > 3T 2/(12π2 − π2TM2) such that

lim inf
r→+∞

sup
x∈RN ,|x|=r

|x|−2

∫ T

0

F (t, x)dt < −a
2
M2

1 .

For any u ∈ Hbm
, let u = u+ ũ, where |u| = bm, ũ ∈ H̃1

T . So, we have∣∣ ∫ T

0

F (t, u(t))− F (t, u)dt
∣∣

=
∣∣ ∫ T

0

∫ 1

0

(∇F (t, u+ sũ(t), ũ(t)) ds dt
∣∣

≤
∫ T

0

∫ 1

0

f(t)|u+ sũ(t)||ũ(t)| ds dt+
∫ T

0

∫ 1

0

g(t)|ũ(t)| ds dt

≤
∫ T

0

f(t)
(
|u|+ 1

2
|ũ(t)|

)
|ũ(t)|dt+

∫ T

0

g(t)|ũ(t)|dt

≤ |u|
(∫ T

0

f2(t)dt
)1/2(∫ T

0

|ũ(t)|2dt
)1/2

+
1
2
‖ũ‖2∞

∫ T

0

f(t)dt+ ‖ũ‖∞
∫ T

0

g(t)dt

= M1|u|‖ũ‖L2 +
M2

2
‖ũ‖2∞ +M3‖ũ‖∞

≤ 1
2a
‖ũ‖2L2 +

a

2
M2

1 |u|2 +
M2

2
‖ũ2‖∞ +M3‖ũ‖∞

≤
( T 2

8aπ2
+
TM2

24
)
‖u̇‖2L2 +

a

2
M2

1 |u|2 +
( T

12
)1/2

M3‖u̇‖L2

for all u ∈ Hbm . Hence we have

J(u) =
1
2

∫ T

0

|u̇(t)|2dt−
∫ T

0

[F (t, u(t))− F (t, u)]dt−
∫ T

0

F (t, u)dt

≥
(1

2
− T 2

8aπ2
− TM2

24
)
‖u̇‖2L2 −

( T
12
)1/2

M3‖u̇‖L2

− |u|2
(
|u|−2

∫ T

0

F (t, u)dt+
a

2
M2

1

)
for all u ∈ Hbm

. As
(
|u|2 + ‖u̇‖L2

) 1
2 →∞ if and only if ‖u‖ → ∞, then the Lemma

follows from (1.8) and the above inequality. �

Now prove our main result.
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Proof of Theorem 1.1. Let Ban
be a ball in RN with radius an. Then we define a

family of maps

Γn = {γ ∈ C(Ban
, H1

T ) : γ
∣∣
∂Ban

= Id
∣∣
∂Ban

}

and corresponding minimax values

cn = inf
γ∈Γn

max
x∈Ban

J(γ(x)).

It is easy to see that each γ intersects the hyperplane H̃1
T , i.e., for any γ ∈ Γn,

γ(Ban) ∩ H̃1
T 6= ∅.

By Lemma 2.1, the functional J is coercive on H̃1
T . So, there is a constant M

such that
max
x∈Ban

J(γ(x)) ≥ inf
u∈ eH1

T

J(u) ≥M.

Hence
cn ≥ inf

u∈ eH1
T

J(u) ≥M.

By Lemma 2.2, for all large value of n,

cn > max
u∈∂Ban

J(u).

For such n, there exists a sequence {γk} in Γn such that

max
x∈Ban

J(γk(x))→ cn, k →∞.

Applying [9, Theorem 4.3 and Corollary 4.3], we know there exists a sequence {vk}
in H1

T such that

J(vk)→ cn,dist(vk, γk(Ban
))→ 0, J ′(vk)→ 0, (2.3)

as k → ∞. If we can show {vk} is bounded, then there is a subsequence, which is
still be denote by {vk} such that

vk ⇀ un weakly in H1
T ,

vk → un uniformly in C([0, T ],RN ).

Hence

〈J ′(vk)− J ′(un), vk − un〉 → 0,∫ T

0

(∇F (t, vk)−∇F (t, un), vk − un)dt→ 0

as k →∞. Moreover, it is easy to see that

〈J ′(vk)− J ′(un), vk − un〉

= ‖v̇k − u̇n‖2L2 −
∫ T

0

(∇F (t, vk)−∇F (t, un), vk − un)dt,

so ‖v̇k − u̇n‖2L2 → 0 as k →∞. Then, it is not difficult to obtain ‖vk − vn‖ → 0 as
k →∞. So, we have

J ′(un) = lim
k→∞

J ′(vk) = 0, J(un) = lim
k→∞

J(vk) = cn.

Thus, un is critical point and cn is critical value of functional J .
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Now, let us show the sequence {vk} is bounded in H1
T . By (2.3), for any large

enough k, we have

cn ≤ max
x∈Ban

J(γk(x)) ≤ cn + 1, (2.4)

and we can find wk ∈ γk(Ban) such that ‖vk − wk‖ ≤ 1.
Fix n, by Lemma 2.3, we can choose a large enough m such that

bm > an and inf
u∈Hbm

> cn + 1.

This implies γ(Ban
) cannot intersect the hyperplane Hbm

for each k.
Let wk = wk + w̃k, where wk ∈ RN and w̃k ∈ H̃1

T . Then we have |wk| < bm for
each k. Also, by Sobolev’s inequality and (1.4), it is obvious that

cn + 1

≥ J(wk) =
1
2

∫ T

0

|ẇk(t)|2dt−
∫ T

0

F (t, wk(t))dt

≥ 1
2

∫ T

0

|ẇk(t)|2dt−
∫ T

0

f(t)|wk(t)|2dt−
∫ T

0

g(t)|wk(t)|dt

≥ 1
2

∫ T

0

|ẇk(t)|2dt− 2
∫ T

0

f(t)[|wk|2 + |w̃k(t)|2]dt−
∫ T

0

g(t)[|wk|+ |w̃k(t)|]dt

≥ 1
2

∫ T

0

|ẇk(t)|2dt− 2‖w̃k‖2∞
∫ T

0

f(t)dt− 2|wk|2
∫ T

0

f(t)dt

− ‖w̃k‖∞
∫ T

0

g(t)dt− |wk|
∫ T

0

g(t)dt

≥ 1
2
‖ẇk(t)‖2L2 −

T

6
‖ẇk(t)‖2L2

∫ T

0

f(t)dt− 2|wk|2
∫ T

0

f(t)dt

−
( T

12
)1/2‖ẇk(t)‖L2

∫ T

0

g(t)dt− |wk|
∫ T

0

g(t)dt

=
(1

2
− T

6
M2

)
‖ẇk(t)‖2L2 −

( T
12
)1/2

M3‖ẇk(t)‖L2 − C2

As (|u|2 + ‖u̇‖L2)1/2 is an equivalent norm in H1
T , it follows that w̃k(t) is bounded.

Hence, wk is bounded. Also, {vk} is bounded in H1
T .

From the previous discussion we know that accumulation point un of {vk} is a
critical point and cn is critical value of J .

If we choose large enough n such that an > bm, then γ(Ban) intersects the
hyperplane Hbm for any γ ∈ Γn.

It follows that

max
x∈Ban

J(γ(x)) ≥ inf
u∈Hbm

J(u).

From this inequality and Lemma 2.3 we obtain limn→∞ cn = +∞. Result (i) of
Theorem 1.1 is obtained.

Next we prove (ii). For fixed m, define the subset Pm of H1
T by

Pm = {u ∈ H1
T : u = u+ ũ, |u| ≤ bm, ũ ∈ H̃1

T }. (2.5)



EJDE-2015/99 EXISTENCE OF INFINITELY MANY PERIODIC SOLUTIONS 7

For u ∈ Pm, we have

J(u) =
1
2

∫ T

0

|u̇(t)|2dt−
∫ T

0

F (t, u(t))dt

≥ 1
2

∫ T

0

|u̇(t)|2dt−
∫ T

0

f(t)|u(t)|2dt−
∫ T

0

g(t)|u(t)|dt

≥ 1
2

∫ T

0

|u̇(t)|2dt− 2
∫ T

0

f(t)[|u(t)|2 + |ũ(t)|2]dt−
∫ T

0

g(t)[|u(t)|+ |ũ(t)|]dt

≥ 1
2
‖u̇(t)‖2L2 −

T

6
‖u̇(t)‖2L2

∫ T

0

f(t)dt− 2|u(t)|2
∫ T

0

f(t)dt

−
( T

12
)1/2‖u̇(t)‖L2

∫ T

0

g(t)dt− |u(t)|
∫ T

0

g(t)dt

=
(1

2
− T

6
M2

)
‖u̇(t)‖2L2 −

( T
12
)1/2

M3‖u̇(t)‖L2 − C3

(2.6)
Then J is bounded below on Pm.

Let
µm = inf

u∈Pm

J(u),

and {uk} be a minimizing sequence in Pm; that is,

J(uk)→ µm as k →∞.
By (2.6), {uk} is bounded in H1

T . Then there is a subsequence, which is still be
denoted by {uk}, such that

uk ⇀ u∗m weakly in H1
T .

Since Pm is a convex closed subset of H1
T , u∗m ∈ Pm. As J is weakly lower semi-

continuous, we have
µm = lim

k→∞
J(uk) ≥ J(u∗m).

Since u∗m ∈ Pm, µm = J(u∗m).
If we can show u∗m is in the interior of Pm, then u∗m is a local minimum of

functional J . In fact, let u∗m = u∗m + ũ∗m. From Lemmas 2.2 and 2.3, we see
|u∗m| 6= bm for large m, which means that u∗m is in the interior of Pm.

Since u∗m is a minimum of J on Pm, we have

J(u∗m) = inf
u∈Pm

J(u) ≤ sup
|u|=bm

J(u).

It follows from Lemma 2.2 that J(u∗m) → −∞ as m → ∞. Therefore, the proof is
complete. �
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