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EXISTENCE OF INFINITELY MANY PERIODIC SOLUTIONS
FOR SECOND-ORDER NONAUTONOMOUS HAMILTONIAN
SYSTEMS

WEN GUAN, DA-BIN WANG

ABSTRACT. By using minimax methods and critical point theory, we obtain
infinitely many periodic solutions for a second-order nonautonomous Hamil-
tonian systems, when the gradient of potential energy does not exceed linear
growth.

1. INTRODUCTION AND MAIN RESULTS

Consider the second-order Hamiltonian system
i(t) + VF(t,u(t) =0, ae. te][0,T],
u(0) —u(T) = u(0) —a(T) =0.
Where T' > 0 and F : [0, 7] x RY — R satisfies the following assumption:

(A1) F(t,z) is measurable in t for every x € R, continuously differentiable in
x for a.e. t € [0,T], and there exist « € C(R*,R*), b € L1([0,T],R") such
that

(1.1)

[F'(t,2)] < a(lz)b(t), [VE(E )| < allz])b(?)
for all x € RY and a.e. ¢t € [0,7].

The existence of periodic solutions for problem was obtained in [11[3}|5L/6}8} 9,
10,(11}/12,|13}(144/15,|16}(18L/19,{21]/2223] with many solvability conditions by using
the least action principle and the minimax methods, such as the coercive type
potential condition [3], the convex type potential condition [§], the periodic type
potential conditions [18], the even type potential condition [6], the subquadratic
potential condition in Rabinowitz’s sense [11], the bounded nonlinearity condition
(see 9]), the subadditive condition (see [12]), the sublinear nonlinearity condition
(see [bL[14]), and the linear nonlinearity condition (see [10}/16}/22,/23]).

In particular, when the nonlinearity VF(¢,z) is bounded; that is, there exists
g(t) € L1([0,T),R*) such that [VE(t,z)| < g(t) for all x € RN and a.e. t € [0,T],
and that

T
/ F(t,z)dt — oo as |z| — oo,
0
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Mawhin and Willem [9] proved that problem (1.1)) has at least one periodic solution.
Han and Tang [5|14] generalized these results to the sublinear case:

IVF(t,2)| < f(t)|z|* + g(t) for all z € RN and a.e. t € [0,T] (1.2)
with
T
|x|72°‘/ F(t,z)dt — oo as |x| — oo, (1.3)
0

where f(t),g(t) € L'([0,T],R") and a € [0, 1).

Subsequently, when o = 1 Zhao and Wu [22,23], and Meng and Tang [10}/16]
proved the existence of periodic solutions for problem (L.1)), i.e. VF(¢,) does not
exceed linear growth:

IVF(t,z)| < f(t)|z| + g(t) for all z € RN and a.e. t € [0,T], (1.4)

where £(t), g(t) € L}([0, T], R).

On the other hand, there are large number of papers that deals with multiplic-
ity results for this problem. In particular, infinitely many solutions for are
obtained in [2,[20,[24] when the nonlinearity F'(¢,z) have symmetry. Since the sym-
metry assumption on the nonlinearity F' has play an important role in [2}21[24],
many authors have paid much attention to weak the symmetry condition and some
existence results on periodic solutions have been obtained without any symmetry
condition [41/7,[17/25]. Especially, Zhang and Tang |25] obtained infinitely many pe-
riodic solutions for when holds and F' has a suitable oscillating behaviour
at infinity:

T
limsup  inf |x|72°‘/ F(t,z)dt = 400,
—r 0

r—+4oo TERN |z|

T

liminf  sup |x\_2a/ F(t,z)dt = —o0,
R—=+00 4eRN |z|=R 0

where a € [0,1).

Motivated by the results mentioned above, especially by ideas in [10},16,22/23/[25],
in this article, by using the minimax methods in critical point theory, we obtain
infinitely many periodic solutions for .

Let H} be a Hilbert space Hy = {u : [0, 7] — RY : u is absolutely continuous,
u(0) = u(T) and @ € L*([0,T],R)}, with the norm

ol = ([ tutorars [ i)

1 (7 T
T = / la(t) 2t — / Pt u(t))dt. (1.6)
0 0
It is well known that the function J is continuously differentiable and weakly lower
semicontinuous on H} and the solutions of (1.1)) correspond to the critical points
of J (see [9]). Our main result is the following theorem.

1/2
th) : (1.5)

for u € Hk. Let

Theorem 1.1. Suppose that (A1) and (1.4)) with fOT f(t)dt < 2 hold and

T
limsup  inf / F(t,z)dt = o0, (1.7)
0

r—+oo T¢ERN |z|=r
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T 372 T
liminf  sup |m|_2/ F(t,z)dt < — 7 / fA(t)dt. (1.8)
R—=+00 4eRN |2|=R 0 2n2(12 =T [, f(t)dt) Jo

Then

(i) There exists a sequence of periodic solutions {u,} which are minimaz type
critical points of functional J, and J(u,) — +00 as n — oo;

(ii) There exists another sequence of periodic solutions {uk,} which are local
minimum points of functional J, and J(uk,) — —o0 as m — oo.

Remark 1.2.

(i) As in [25], in this paper we do not assume any symmetry condition on nonlin-
earity;

(ii) Our main result in this paper extends main result in [25] corresponding to o = 1.

2. PROOF OF MAIN RESULTS

For u € Hp, let
/ t)dt, u(t) = u(t) — . (2.1)
The following inequalities are well known (see [9]):

T
a2, < 12Hu||L2 (Sobolev’s inequality),

T2
)32 < m”u“%z (Wirtinger’s inequality).

For the sake of convenience, we denote

= (/Tf2(t)dt)1/2, Mg/on(t)dt, MS/OTg(t)dt,

Lemma 2.1. Suppose that fo t)dt < 3/T and . hold, then

J(u) — +o00 as |jul| — oo in H}, (2.2)
where HY = {u € HL. | @ = 0} be the subspace of H}L.
Proof. From and Sobolev’s inequality, for all u in ﬁ% we have

J(u) ;/T |u(t)|2dt—/TF(t,u(t))dt
/ Iﬁ—/fhbwt/ g(®)lu()ldt
3 [ aora g [ soa -k [ oo

T
1/2
> Sl — sl [ o~ ()il [ oty

=f——/f (1) ) )32 — Callilz»

vV

By Wirtinger’s inequality, the norm [ul| = ( fo a( |2dt) is an equivalent
norm on HL. So, J(u) — 400 as |lul| — oo in HL. O
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Lemma 2.2. Suppose that (1.7) holds. Then there exists positive real sequence
{an} such that

lim a, = +o0, lim sup  J(u) = —o0.
n—oo N0 yeRN |u|=an

The above lemma follows from (1.7)).

Lemma 2.3. Suppose that fo t)dt < T, and (1.8) hold. Then there exists
positive real sequence {by,} such that

lim b, =400, lim inf J(u)= +oo,
m—oo m—oo uGHbm

where Hy,, = {u € RN : |u| = b,,} @ H}E.
Proof. By (1.§]), we can choose an a > 3T?%/(127% — 2T M) such that

T
liminf  sup |a:|72/ F(t,z)dt < —ng.
0

r—+oo z€RN ||z|=r

For any u € Hy,,, let u=u+ u, where [t| = b,,, u € I;T% So, we have

T
\/O F(t,u(t)) — F(t,u)dt|
T 1
= | / / (VF(t, 7+ st(t), i(t)) ds dt|

//f )@+ su(t)]|u(t |dsdt+// (t)|dsdt
gé sto) (1 + 5 M))Mﬂﬁ+A o))t
([ o) ([ mora)” L [ roas . [ o

i~ My, - -
= My fallfil = + == [al% + Ms |l

< ol + S MR 4+ Y222+ Ms il
2
< (L TM2
8am?
for all u € Hbm. Hence we have
1 T T T
J(u):§/0 \ﬂ(t)|2dt—/0 [F(t,u(t))—F(t,a)]dt—/o F(t,u)dt

1 T  TM oo
Z(g*m* 242)H ||L2*(ﬁ) M|l g2

T
- |a|2(|n|*2/ F(t,ﬂ)dH—ng)
0

for all w € Hy,,. As (|ul> + [|&]|z2)* — oo if and only if ||u|| — oo, then the Lemma
follows from (|1.8)) and the above inequality. O

T 1/2 .
)2 Mg il 2

Sl + SM2El + (5

Now prove our main result.
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Proof of Theorem[I.]. Let B,, be a ball in RY with radius a,. Then we define a
family of maps

Fn - {rY S C(Baanjl“) : FY|BBQ" = Id’@Ban}
and corresponding minimax values

. = inf J .
on = mf max (v(2))

It is easy to see that each 7 intersects the hyperplane f[}, i.e., for any v € T'y,,
v(Ban) N Hy # 0.

By Lemma the functional J is coercive on Hr. So, there is a constant M
such that

max J(y(z)) > inf J(u) > M.

x€Ba,, ueHL

Hence
cn > inf J(u) > M.

ueHL

By Lemma for all large value of n,

> J(u).
oL,

For such n, there exists a sequence {v;} in I';, such that

max J(yk(x)) — cn, k — o0.

rEBa,,

Applying |9, Theorem 4.3 and Corollary 4.3], we know there exists a sequence {uvy}
in H} such that

J(vk) — cn, dist(vg, Y& (Ba,)) — 0, J (vg) — 0, (2.3)

as k — oo. If we can show {v;} is bounded, then there is a subsequence, which is
still be denote by {vj} such that

vp — U, weakly in H%,
vk — U, uniformly in C([0, T], RY).
Hence

(J' (v) — J' (un), vk — up) — 0,
/T(VF(tmk) — VF(t,up),vg — uy)dt — 0
as k — oo. Moreover? it is easy to see that
(J'(vk) = I (un), vk — up)
— ([t — tin %2 — /OT(VF(t,vk) SV ), v, — ),

$0 ||Uk — tn||32 — 0 as k — co. Then, it is not difficult to obtain |jvy, — v,|| — 0 as
k — 00. So, we have

J/(un) - klim J/(U’f) =0, J(u,) = klim J(vg) = cn.

Thus, u, is critical point and ¢, is critical value of functional J.
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Now, let us show the sequence {v;} is bounded in H}.. By (2.3)), for any large
enough k, we have

en < max J(ye(x)) <en+1, (2.4)

and we can find wy, € v, (B, ) such that ||v, —wg| < 1.
Fix n, by Lemma we can choose a large enough m such that

bm > a, and inf  >e¢,+1.
’IJ,GHbm
This implies v(B,, ) cannot intersect the hyperplane H, , for each k.

Let wy, = W, + Wy, where Wy, € RY and wy, € HY. Then we have |[wy| < by, for
each k. Also, by Sobolev’s inequality and (1.4)), it is obvious that

cp+1
T T
> 3w =5 [l — [ )

1T , T , T
3| P = [ romoPe— [ gl

Y

Y]

T T T
3 | @R =2 [ folm + @ - [ ol + @)

Y

1 T . 2 ~ 112 T . |2 ’

- dt — dt — d

5 | i Pa =il [ wa—2ml [ o
T T

@l [ gttt =l [ oo

V

1 T r r
> Sl = Glin®l3 [ roa—2ml [ o

— 2 1/2 w 2 ! — |w !
(=) "2 e (8)]|. / g(t)dt — [ / o(t)dt

. T\1/2 .

My) i (#)l32 = (35)"° Mallun (D)]]22 = Co
As ([a|? + ||| z,)*/? is an equivalent norm in H1, it follows that wy(¢) is bounded.
Hence, wy, is bounded. Also, {vx} is bounded in Hi..

From the previous discussion we know that accumulation point u,, of {v;} is a
critical point and ¢, is critical value of J.

If we choose large enough n such that a, > by, then y(B,,) intersects the
hyperplane Hy,, for any v € I'y,.

It follows that

> inf .
max J(v(@) = dnf J(u)

From this inequality and Lemma we obtain lim, . ¢, = +00. Result (i) of
Theorem [[1]is obtained.

Next we prove (ii). For fixed m, define the subset P, of H} by

P,={ue€H::u=u+1,[ul <bm,tc Hr} (2.5)
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For u € P,,, we have

T T
J(w) %/0 |u(t)|2dt—/0 Pt u(t))dt

1 (7 . T T
= 5/0 |“(t>|2dt*/0 f<t)lu(t)\2dtf/O g(t)|u(t)|dt

1 T

5/0 |u(t)|2dt—2/0 f(t)[lﬂ(t)|2+\ﬂ(t)IQ]dt—/0 g@®[[a®)] + [u(t)])dt

Y

V

1 ) T ) T B T
> )3 — )3 / F(t)dt — 2fa(o)? / f(t)dt

B (%)1/2”u(t)||[’2/(; g(t)dt—m(t”/o g(t)dt

1 T . T :
(5= M)l — (5) " Malli()] 2= — C

(2.6)
Then J is bounded below on P,,.
Let

Hm = uler}ﬂfm J(“)v

and {ux} be a minimizing sequence in P,,; that is,
J(ug) — pm  as k — oo.

By (2.6)), {ux} is bounded in Hf.. Then there is a subsequence, which is still be
denoted by {u}, such that

up, — u’, weakly in Hr.

Since P, is a convex closed subset of Hr., u}, € Pp,. As J is weakly lower semi-
continuous, we have

o = lim T(ug) > J ().
k—oo

Since u), € P, b = J(ul,).

If we can show w), is in the interior of P,, then u} is a local minimum of
functional J. In fact, let ), = @, + u},. From Lemmas and we see
[@?,| # by, for large m, which means that u, is in the interior of P,.

Since wy, is a minimum of J on F,,, we have

J(uy) = inf J(u) < sup J(u).
u m ‘ulzb,m
It follows from Lemma, that J(uk,) — —oo as m — oo. Therefore, the proof is
complete. 0

REFERENCES

[1] Nurbek Aizmahin, Tianqging An; The existence of periodic solutions of non-autonomous
second-order Hamiltonian systems, Nonlinear Analysis, 74 (2011), 4862-4867.

[2] F. Antonacci, P. Magrone; Second order nonautonomous systems with symmetric potential
changing sign, Rendiconti di Matematica e delle sue Applicazionsi, 18 (1988), 367-379.

[3] M. S. Berger, M. Schechter; On the solvability of semilinear gradient operator equations, Adv.
Math., 25 (1977), 97-132.

[4] F. Faraci, R. Livrea; Infinitely many periodic solutions for a second-order nonautonomous
system, Nonlinear Anal., 54 (2003), 417-429.



(5]

(6]
(7]
(8]

WEN GUAN, DA-BIN WANG EJDE-2015/99

Z. Q. Han; 27-Periodic solutions to n-Duffing systems, Nonlinear Analysis and Its Aplications
(Deited by D. J. Guo), Beijing: Beijng Scientific and Technical Publisher, 1994, 182-191. (in
Chinese)

Y. M. Long; Nonlinear oscillations for classical Hamiltonian systems with bi-even sub-
quadratic potentials, Nonlinear Anal., 24 (1995), 1665-1671.

S. W. Ma, Y. X. Zhang; Existence of infinitely many periodic solutions for ordinary p-
Laplacian systems, J. Math. Anal. Appl., 351 (2009), 469-479.

J. Mawhin; Semi-coercive monotone variational problems, Acad. Roy. Belg. Bull. Cl. Sci.,73
(1987), 118-130.

[9] J. Mawhin, M. Willem; Critical Point Theory and Hamiltonian Systems, Springer-Verlag,

New York, 1989.

[10] Q. Meng, X. H. Tang; Solutions of a second-order Hamiltonian sysytem with periodic bound-

ary conditions, Comm. Pure Appl. Anal., 9 (2010), 1053-1067.

[11] P. H. Rabinowitz; On subharmonic solutions of Hamiltonian systems, Comm. Pure Appl.

Math., 33 (1980), 609-633.

[12] C. L. Tang; Periodic solutions of nonautonomous second order systems with - quasisubadditive

potential, J. Math. Anal. Appl., 189 (1995), 671-675.

[13] C. L. Tang; Periodic solutions of nonautonomous second order systems, J. Math. Anal. Appl.,

202 (1996), 465-469.

[14] C. L. Tang; Periodic solutions of nonautonomous second order systems with sublinear non-

linearity, Proc. Amer. Math. Soc., 126 (1998), 3263-3270.

[15] C. L. Tang, X. P. Wu; Periodic solutions for second order systems with not uniformly coercive

potentia, J. Math. Anal. Appl., 259, (2001) 386-397.

[16] X. H. Tang, Q. Meng; Solutions of a second-order Hamiltonian system with periodic boundary

conditions, Nonlinear Analysis: Real World Applications, 11 (2010), 3722-3733.

[17] Z. L. Tao, C. L. Tang; Periodic and subharmonic solutions of second-order Hamiltonian

systems, J. Math. Anal. Appl., 293 (2004), 435-445.

(18] M. Willem; Oscillations forces de systmes hamiltoniens, in: Public. Smin. Analyse Non

Linaire, Univ. Besancon, 1981.

[19] X. Wu; Saddle point characterization and multiplicity of periodic solutions of nonautonomous

second order systems, Nonlinear Anal., 58 (2004), 899-907.

[20] X. P. Wu, C. L. Tang; Periodic solutions of a class of nonautonomous second order systems,

J. Math. Anal. Appl., 236 (1999), 227-235.

[21] X.P. Wu, C. L. Tang; Periodic solutions of nonautonomous second-order Hamiltonian systems

with even-typed potentials, Nonlinear Anal., 55 (2003), 759-769.

[22] F. Zhao, X. Wu; Periodic solutions for a class of non-autonomous second order systems, J.

Math. Anal. Appl., 296 (2004), 422-434.

[23] F. Zhao, X. Wu; Existence and multiplicity of periodic solution for non-autonomous secon-

dorder systems with linear nonlinearity, Nonlinear Anal., 60 (2005), 325-335.

[24] W. M. Zou, S. J. Li; Infinitely many solutions for Hamiltonian systems, Journal of Differential

Equations, 186 (2002), 141-164.

[25] P. Zhang, C. L. Tang; Infinitely many periodic solutions for nonautonomous sublinear second-

order Hamiltonian systems, Abstract and Applied Analysis, Volume 2010, Article ID 620438,
10 pages.

WEN GUAN

DEPARTMENT OF APPLIED MATHEMATICS, LANZHOU UNIVERSITY OF TECHNOLOGY, LANZHOU,

GA

NSU 730050, CHINA
E-mail address: mathguanw@163.com

DA-BIN WANG (CORRESPONDING AUTHOR)

DEPARTMENT OF APPLIED MATHEMATICS, LANZHOU UNIVERSITY OF TECHNOLOGY, LANZHOU,

GA

NsU 730050, CHINA
E-mail address: wangdb96@163. com



	1. Introduction and main results
	2. Proof of main results
	References

