Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 99, pp. 1-8. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

EXISTENCE OF INFINITELY MANY PERIODIC SOLUTIONS FOR SECOND-ORDER NONAUTONOMOUS HAMILTONIAN SYSTEMS

WEN GUAN, DA-BIN WANG

Abstract

By using minimax methods and critical point theory, we obtain infinitely many periodic solutions for a second-order nonautonomous Hamiltonian systems, when the gradient of potential energy does not exceed linear growth.

1. Introduction and main results

Consider the second-order Hamiltonian system

$$
\begin{gather*}
\ddot{u}(t)+\nabla F(t, u(t))=0, \quad \text { a.e. } t \in[0, T] \\
u(0)-u(T)=\dot{u}(0)-\dot{u}(T)=0 \tag{1.1}
\end{gather*}
$$

Where $T>0$ and $F:[0, T] \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ satisfies the following assumption:
(A1) $F(t, x)$ is measurable in t for every $x \in \mathbb{R}^{N}$, continuously differentiable in x for a.e. $t \in[0, T]$, and there exist $a \in C\left(\mathbb{R}^{+}, \mathbb{R}^{+}\right), b \in L^{1}\left([0, T], \mathbb{R}^{+}\right)$such that

$$
|F(t, x)| \leq a(|x|) b(t),|\nabla F(t, x)| \leq a(|x|) b(t)
$$

for all $x \in \mathbb{R}^{N}$ and a.e. $t \in[0, T]$.
The existence of periodic solutions for problem (1.1) was obtained in $[1,3,5,6,8,9$, $10,11,12,13,14,15,16,18,19,21,22,23$ with many solvability conditions by using the least action principle and the minimax methods, such as the coercive type potential condition [3], the convex type potential condition [8], the periodic type potential conditions [18], the even type potential condition [6], the subquadratic potential condition in Rabinowitz's sense 11], the bounded nonlinearity condition (see $[9]$), the subadditive condition (see 12$]$), the sublinear nonlinearity condition (see $[5,14]$), and the linear nonlinearity condition (see $10,16,22,23]$).

In particular, when the nonlinearity $\nabla F(t, x)$ is bounded; that is, there exists $g(t) \in L^{1}\left([0, T], \mathbb{R}^{+}\right)$such that $|\nabla F(t, x)| \leq g(t)$ for all $x \in \mathbb{R}^{N}$ and a.e. $t \in[0, T]$, and that

$$
\int_{0}^{T} F(t, x) d t \rightarrow \pm \infty \quad \text { as }|x| \rightarrow \infty
$$

[^0]Mawhin and Willem [9] proved that problem (1.1) has at least one periodic solution. Han and Tang 5, 14 generalized these results to the sublinear case:

$$
\begin{equation*}
|\nabla F(t, x)| \leq f(t)|x|^{\alpha}+g(t) \quad \text { for all } x \in \mathbb{R}^{N} \text { and a.e. } t \in[0, T] \tag{1.2}
\end{equation*}
$$

with

$$
\begin{equation*}
|x|^{-2 \alpha} \int_{0}^{T} F(t, x) d t \rightarrow \pm \infty \quad \text { as }|x| \rightarrow \infty \tag{1.3}
\end{equation*}
$$

where $f(t), g(t) \in L^{1}\left([0, T], \mathbb{R}^{+}\right)$and $\alpha \in[0,1)$.
Subsequently, when $\alpha=1$ Zhao and Wu ,22, 23, and Meng and Tang 10,16 proved the existence of periodic solutions for problem 1.1), i.e. $\nabla F(t, x)$ does not exceed linear growth:

$$
\begin{equation*}
|\nabla F(t, x)| \leq f(t)|x|+g(t) \quad \text { for all } x \in \mathbb{R}^{N} \text { and a.e. } t \in[0, T] \tag{1.4}
\end{equation*}
$$

where $f(t), g(t) \in L^{1}\left([0, T], \mathbb{R}^{+}\right)$.
On the other hand, there are large number of papers that deals with multiplicity results for this problem. In particular, infinitely many solutions for (1.1) are obtained in $[2,20,24]$ when the nonlinearity $F(t, x)$ have symmetry. Since the symmetry assumption on the nonlinearity F has play an important role in $2,21,24$, many authors have paid much attention to weak the symmetry condition and some existence results on periodic solutions have been obtained without any symmetry condition $4,7,17,25$. Especially, Zhang and Tang [25] obtained infinitely many periodic solutions for (1.1) when (1.2) holds and F has a suitable oscillating behaviour at infinity:

$$
\begin{aligned}
& \limsup _{r \rightarrow+\infty} \inf _{x \in \mathbb{R}^{N},|x|=r}|x|^{-2 \alpha} \int_{0}^{T} F(t, x) d t=+\infty \\
& \liminf _{R \rightarrow+\infty} \sup _{x \in \mathbb{R}^{N},|x|=R}|x|^{-2 \alpha} \int_{0}^{T} F(t, x) d t=-\infty
\end{aligned}
$$

where $\alpha \in[0,1)$.
Motivated by the results mentioned above, especially by ideas in $10.16 \mid 2223.25]$, in this article, by using the minimax methods in critical point theory, we obtain infinitely many periodic solutions for (1.1).

Let H_{T}^{1} be a Hilbert space $H_{T}^{1}=\left\{u:[0, T] \rightarrow \mathbb{R}^{N}: u\right.$ is absolutely continuous, $u(0)=u(T)$ and $\left.\dot{u} \in L^{2}([0, T], \mathbb{R})\right\}$, with the norm

$$
\begin{equation*}
\|u\|=\left(\int_{0}^{T}|u(t)|^{2} d t+\int_{0}^{T}|\dot{u}(t)|^{2} d t\right)^{1 / 2} \tag{1.5}
\end{equation*}
$$

for $u \in H_{T}^{1}$. Let

$$
\begin{equation*}
J(u)=\frac{1}{2} \int_{0}^{T}|\dot{u}(t)|^{2} d t-\int_{0}^{T} F(t, u(t)) d t \tag{1.6}
\end{equation*}
$$

It is well known that the function J is continuously differentiable and weakly lower semicontinuous on H_{T}^{1} and the solutions of (1.1) correspond to the critical points of J (see $\sqrt{9]}$). Our main result is the following theorem.

Theorem 1.1. Suppose that (A1) and (1.4) with $\int_{0}^{T} f(t) d t<\frac{3}{T}$ hold and

$$
\begin{equation*}
\limsup _{r \rightarrow+\infty} \inf _{x \in \mathbb{R}^{N},|x|=r} \int_{0}^{T} F(t, x) d t=+\infty \tag{1.7}
\end{equation*}
$$

$$
\begin{equation*}
\liminf _{R \rightarrow+\infty} \sup _{x \in \mathbb{R}^{N},|x|=R}|x|^{-2} \int_{0}^{T} F(t, x) d t<-\frac{3 T^{2}}{2 \pi^{2}\left(12-T \int_{0}^{T} f(t) d t\right)} \int_{0}^{T} f^{2}(t) d t . \tag{1.8}
\end{equation*}
$$

Then
(i) There exists a sequence of periodic solutions $\left\{u_{n}\right\}$ which are minimax type critical points of functional J, and $J\left(u_{n}\right) \rightarrow+\infty$ as $n \rightarrow \infty$;
(ii) There exists another sequence of periodic solutions $\left\{u_{m}^{*}\right\}$ which are local minimum points of functional J, and $J\left(u_{m}^{*}\right) \rightarrow-\infty$ as $m \rightarrow \infty$.

Remark 1.2.

(i) As in 25, in this paper we do not assume any symmetry condition on nonlinearity;
(ii) Our main result in this paper extends main result in 25 corresponding to $\alpha=1$.

2. Proof of main results

For $u \in H_{T}^{1}$, let

$$
\begin{equation*}
\bar{u}=\frac{1}{T} \int_{0}^{T} u(t) d t, \widetilde{u}(t)=u(t)-\bar{u} . \tag{2.1}
\end{equation*}
$$

The following inequalities are well known (see 9$]$):

$$
\begin{gathered}
\|\tilde{u}\|_{\infty}^{2} \leq \frac{T}{12}\|\dot{u}\|_{L^{2}}^{2} \quad \text { (Sobolev's inequality) } \\
\|\tilde{u}\|_{L^{2}}^{2} \leq \frac{T^{2}}{4 \pi^{2}}\|\dot{u}\|_{L^{2}}^{2} \quad \text { (Wirtinger's inequality). }
\end{gathered}
$$

For the sake of convenience, we denote

$$
M_{1}=\left(\int_{0}^{T} f^{2}(t) d t\right)^{1 / 2}, \quad M_{2}=\int_{0}^{T} f(t) d t, \quad M_{3}=\int_{0}^{T} g(t) d t
$$

Lemma 2.1. Suppose that $\int_{0}^{T} f(t) d t<3 / T$ and (1.4) hold, then

$$
\begin{equation*}
J(u) \rightarrow+\infty \quad \text { as }\|u\| \rightarrow \infty \text { in } \widetilde{H}_{T}^{1}, \tag{2.2}
\end{equation*}
$$

where $\widetilde{H}_{T}^{1}=\left\{u \in H_{T}^{1} \mid \bar{u}=0\right\}$ be the subspace of H_{T}^{1}.
Proof. From (1.4) and Sobolev's inequality, for all u in \widetilde{H}_{T}^{1} we have

$$
\begin{aligned}
J(u) & =\frac{1}{2} \int_{0}^{T}|\dot{u}(t)|^{2} d t-\int_{0}^{T} F(t, u(t)) d t \\
& \geq \frac{1}{2} \int_{0}^{T}|\dot{u}(t)|^{2} d t-\int_{0}^{T} f(t)|u(t)|^{2} d t-\int_{0}^{T} g(t)|u(t)| d t \\
& \geq \frac{1}{2} \int_{0}^{T}|\dot{u}(t)|^{2} d t-\|\widetilde{u}\|_{\infty}^{2} \int_{0}^{T} f(t) d t-\|\widetilde{u}\|_{\infty} \int_{0}^{T} g(t) d t \\
& \geq \frac{1}{2}\|\dot{u}\|_{L^{2}}^{2}-\frac{T}{12}\|\dot{u}\|_{L^{2}}^{2} \int_{0}^{T} f(t) d t-\left(\frac{T}{12}\right)^{1 / 2}\|\dot{u}\|_{L^{2}} \int_{0}^{T} g(t) d t \\
& =\left(\frac{1}{2}-\frac{T}{12} \int_{0}^{T} f(t) d t\right)\|\dot{u}\|_{L^{2}}^{2}-C_{1}\|\dot{u}\|_{L^{2}} .
\end{aligned}
$$

By Wirtinger's inequality, the norm $\|u\|=\left(\int_{0}^{T}|\dot{u}(t)|^{2} d t\right)^{1 / 2}$ is an equivalent norm on \widetilde{H}_{T}^{1}. So, $J(u) \rightarrow+\infty$ as $\|u\| \rightarrow \infty$ in \widetilde{H}_{T}^{1}.

Lemma 2.2. Suppose that 1.7 holds. Then there exists positive real sequence $\left\{a_{n}\right\}$ such that

$$
\lim _{n \rightarrow \infty} a_{n}=+\infty, \quad \lim _{n \rightarrow \infty} \sup _{u \in \mathbb{R}^{N},|u|=a_{n}} J(u)=-\infty
$$

The above lemma follows from 1.7 .
Lemma 2.3. Suppose that $\int_{0}^{T} f(t) d t<\frac{3}{T}$, 1.4 and 1.8 hold. Then there exists positive real sequence $\left\{b_{m}\right\}$ such that

$$
\lim _{m \rightarrow \infty} b_{m}=+\infty, \quad \lim _{m \rightarrow \infty} \inf _{u \in H_{b_{m}}} J(u)=+\infty
$$

where $H_{b_{m}}=\left\{u \in \mathbb{R}^{\mathbb{N}}:|u|=b_{m}\right\} \bigoplus \widetilde{H}_{T}^{1}$.
Proof. By 1.8), we can choose an $a>3 T^{2} /\left(12 \pi^{2}-\pi^{2} T M_{2}\right)$ such that

$$
\liminf _{r \rightarrow+\infty} \sup _{x \in \mathbb{R}^{N},|x|=r}|x|^{-2} \int_{0}^{T} F(t, x) d t<-\frac{a}{2} M_{1}^{2}
$$

For any $u \in H_{b_{m}}$, let $u=\bar{u}+\widetilde{u}$, where $|\bar{u}|=b_{m}, \widetilde{u} \in \widetilde{H}_{T}^{1}$. So, we have

$$
\begin{aligned}
& \left|\int_{0}^{T} F(t, u(t))-F(t, \bar{u}) d t\right| \\
& =\mid \int_{0}^{T} \int_{0}^{1}(\nabla F(t, \bar{u}+s \widetilde{u}(t), \widetilde{u}(t)) d s d t \mid \\
& \leq \int_{0}^{T} \int_{0}^{1} f(t)|\bar{u}+s \widetilde{u}(t)||\widetilde{u}(t)| d s d t+\int_{0}^{T} \int_{0}^{1} g(t)|\widetilde{u}(t)| d s d t \\
& \leq \int_{0}^{T} f(t)\left(|\bar{u}|+\frac{1}{2}|\widetilde{u}(t)|\right)|\widetilde{u}(t)| d t+\int_{0}^{T} g(t)|\widetilde{u}(t)| d t \\
& \leq|\bar{u}|\left(\int_{0}^{T} f^{2}(t) d t\right)^{1 / 2}\left(\int_{0}^{T}|\widetilde{u}(t)|^{2} d t\right)^{1 / 2}+\frac{1}{2}\|\widetilde{u}\|_{\infty}^{2} \int_{0}^{T} f(t) d t+\|\widetilde{u}\|_{\infty} \int_{0}^{T} g(t) d t \\
& =M_{1}|\bar{u}|\|\widetilde{u}\|_{L^{2}}+\frac{M_{2}}{2}\|\widetilde{u}\|_{\infty}^{2}+M_{3}\|\widetilde{u}\|_{\infty} \\
& \leq \frac{1}{2 a}\|\widetilde{u}\|_{L^{2}}^{2}+\frac{a}{2} M_{1}^{2}|\bar{u}|^{2}+\frac{M_{2}}{2}\left\|\widetilde{u}^{2}\right\|_{\infty}+M_{3}\|\widetilde{u}\|_{\infty} \\
& \leq\left(\frac{T^{2}}{8 a \pi^{2}}+\frac{T M_{2}}{24}\right)\|\dot{u}\|_{L^{2}}^{2}+\frac{a}{2} M_{1}^{2}|\bar{u}|^{2}+\left(\frac{T}{12}\right)^{1 / 2} M_{3}\|\dot{u}\|_{L^{2}}
\end{aligned}
$$

for all $u \in H_{b_{m}}$. Hence we have

$$
\begin{aligned}
J(u) & =\frac{1}{2} \int_{0}^{T}|\dot{u}(t)|^{2} d t-\int_{0}^{T}[F(t, u(t))-F(t, \bar{u})] d t-\int_{0}^{T} F(t, \bar{u}) d t \\
& \geq\left(\frac{1}{2}-\frac{T^{2}}{8 a \pi^{2}}-\frac{T M_{2}}{24}\right)\|\dot{u}\|_{L^{2}}^{2}-\left(\frac{T}{12}\right)^{1 / 2} M_{3}\|\dot{u}\|_{L^{2}} \\
& -|\bar{u}|^{2}\left(|\bar{u}|^{-2} \int_{0}^{T} F(t, \bar{u}) d t+\frac{a}{2} M_{1}^{2}\right)
\end{aligned}
$$

for all $u \in H_{b_{m}}$. As $\left(|\bar{u}|^{2}+\|\dot{u}\|_{L^{2}}\right)^{\frac{1}{2}} \rightarrow \infty$ if and only if $\|u\| \rightarrow \infty$, then the Lemma follows from 1.8 and the above inequality.

Now prove our main result.

Proof of Theorem 1.1. Let $B_{a_{n}}$ be a ball in \mathbb{R}^{N} with radius a_{n}. Then we define a family of maps

$$
\Gamma_{n}=\left\{\gamma \in C\left(B_{a_{n}}, H_{T}^{1}\right):\left.\gamma\right|_{\partial B_{a_{n}}}=\left.I d\right|_{\partial B_{a_{n}}}\right\}
$$

and corresponding minimax values

$$
c_{n}=\inf _{\gamma \in \Gamma_{n}} \max _{x \in B_{a_{n}}} J(\gamma(x))
$$

It is easy to see that each γ intersects the hyperplane \widetilde{H}_{T}^{1}, i.e., for any $\gamma \in \Gamma_{n}$, $\gamma\left(B a_{n}\right) \cap \widetilde{H}_{T}^{1} \neq \emptyset$.

By Lemma 2.1, the functional J is coercive on \widetilde{H}_{T}^{1}. So, there is a constant M such that

$$
\max _{x \in B_{a_{n}}} J(\gamma(x)) \geq \inf _{u \in \widetilde{H}_{T}^{1}} J(u) \geq M
$$

Hence

$$
c_{n} \geq \inf _{u \in \widetilde{H}_{T}^{1}} J(u) \geq M
$$

By Lemma 2.2, for all large value of n,

$$
c_{n}>\max _{u \in \partial B_{a_{n}}} J(u)
$$

For such n, there exists a sequence $\left\{\gamma_{k}\right\}$ in Γ_{n} such that

$$
\max _{x \in B_{a_{n}}} J\left(\gamma_{k}(x)\right) \rightarrow c_{n}, k \rightarrow \infty
$$

Applying [9, Theorem 4.3 and Corollary 4.3], we know there exists a sequence $\left\{v_{k}\right\}$ in H_{T}^{1} such that

$$
\begin{equation*}
J\left(v_{k}\right) \rightarrow c_{n}, \operatorname{dist}\left(v_{k}, \gamma_{k}\left(B_{a_{n}}\right)\right) \rightarrow 0, J^{\prime}\left(v_{k}\right) \rightarrow 0 \tag{2.3}
\end{equation*}
$$

as $k \rightarrow \infty$. If we can show $\left\{v_{k}\right\}$ is bounded, then there is a subsequence, which is still be denote by $\left\{v_{k}\right\}$ such that

$$
\begin{gathered}
v_{k} \rightharpoonup u_{n} \quad \text { weakly in } H_{T}^{1} \\
v_{k} \rightarrow u_{n} \quad \text { uniformly in } C\left([0, T], \mathbb{R}^{N}\right)
\end{gathered}
$$

Hence

$$
\begin{gathered}
\left\langle J^{\prime}\left(v_{k}\right)-J^{\prime}\left(u_{n}\right), v_{k}-u_{n}\right\rangle \rightarrow 0 \\
\int_{0}^{T}\left(\nabla F\left(t, v_{k}\right)-\nabla F\left(t, u_{n}\right), v_{k}-u_{n}\right) d t \rightarrow 0
\end{gathered}
$$

as $k \rightarrow \infty$. Moreover, it is easy to see that

$$
\begin{aligned}
& \left\langle J^{\prime}\left(v_{k}\right)-J^{\prime}\left(u_{n}\right), v_{k}-u_{n}\right\rangle \\
& =\left\|\dot{v_{k}}-\dot{u_{n}}\right\|_{L^{2}}^{2}-\int_{0}^{T}\left(\nabla F\left(t, v_{k}\right)-\nabla F\left(t, u_{n}\right), v_{k}-u_{n}\right) d t
\end{aligned}
$$

so $\left\|\dot{v_{k}}-\dot{u_{n}}\right\|_{L^{2}}^{2} \rightarrow 0$ as $k \rightarrow \infty$. Then, it is not difficult to obtain $\left\|v_{k}-v_{n}\right\| \rightarrow 0$ as $k \rightarrow \infty$. So, we have

$$
J^{\prime}\left(u_{n}\right)=\lim _{k \rightarrow \infty} J^{\prime}\left(v_{k}\right)=0, \quad J\left(u_{n}\right)=\lim _{k \rightarrow \infty} J\left(v_{k}\right)=c_{n}
$$

Thus, u_{n} is critical point and c_{n} is critical value of functional J.

Now, let us show the sequence $\left\{v_{k}\right\}$ is bounded in H_{T}^{1}. By 2.3), for any large enough k, we have

$$
\begin{equation*}
c_{n} \leq \max _{x \in B_{a_{n}}} J\left(\gamma_{k}(x)\right) \leq c_{n}+1 \tag{2.4}
\end{equation*}
$$

and we can find $w_{k} \in \gamma_{k}\left(B_{a_{n}}\right)$ such that $\left\|v_{k}-w_{k}\right\| \leq 1$.
Fix n, by Lemma 2.3, we can choose a large enough m such that

$$
b_{m}>a_{n} \quad \text { and } \quad \inf _{u \in H_{b_{m}}}>c_{n}+1
$$

This implies $\gamma\left(B_{a_{n}}\right)$ cannot intersect the hyperplane $H_{b_{m}}$ for each k.
Let $w_{k}=\bar{w}_{k}+\widetilde{w}_{k}$, where $\bar{w}_{k} \in \mathbb{R}^{N}$ and $\widetilde{w}_{k} \in \widetilde{H}_{T}^{1}$. Then we have $\left|\bar{w}_{k}\right|<b_{m}$ for each k. Also, by Sobolev's inequality and (1.4), it is obvious that

$$
\begin{aligned}
& c_{n}+1 \\
& \geq J\left(w_{k}\right)=\frac{1}{2} \int_{0}^{T}\left|\dot{w}_{k}(t)\right|^{2} d t-\int_{0}^{T} F\left(t, w_{k}(t)\right) d t \\
& \geq \frac{1}{2} \int_{0}^{T}\left|\dot{w}_{k}(t)\right|^{2} d t-\int_{0}^{T} f(t)\left|w_{k}(t)\right|^{2} d t-\int_{0}^{T} g(t)\left|w_{k}(t)\right| d t \\
& \geq \frac{1}{2} \int_{0}^{T}\left|\dot{w}_{k}(t)\right|^{2} d t-2 \int_{0}^{T} f(t)\left[\left|\bar{w}_{k}\right|^{2}+\left|\widetilde{w}_{k}(t)\right|^{2}\right] d t-\int_{0}^{T} g(t)\left[\left|\bar{w}_{k}\right|+\left|\widetilde{w}_{k}(t)\right|\right] d t \\
& \geq \frac{1}{2} \int_{0}^{T}\left|\dot{w}_{k}(t)\right|^{2} d t-2\left\|\widetilde{w}_{k}\right\|_{\infty}^{2} \int_{0}^{T} f(t) d t-2\left|\bar{w}_{k}\right|^{2} \int_{0}^{T} f(t) d t \\
&-\left\|\widetilde{w}_{k}\right\|_{\infty} \int_{0}^{T} g(t) d t-\left|\bar{w}_{k}\right| \int_{0}^{T} g(t) d t \\
& \geq \frac{1}{2}\left\|\dot{w}_{k}(t)\right\|_{L^{2}}^{2}-\frac{T}{6}\left\|\dot{w}_{k}(t)\right\|_{L^{2}}^{2} \int_{0}^{T} f(t) d t-2\left|\bar{w}_{k}\right|^{2} \int_{0}^{T} f(t) d t \\
&-\left(\frac{T}{12}\right)^{1 / 2}\left\|\dot{w}_{k}(t)\right\|_{L^{2}} \int_{0}^{T} g(t) d t-\left|\bar{w}_{k}\right| \int_{0}^{T} g(t) d t \\
&=\left(\frac{1}{2}-\frac{T}{6} M_{2}\right)\left\|\dot{w}_{k}(t)\right\|_{L^{2}}^{2}-\left(\frac{T}{12}\right)^{1 / 2} M_{3}\left\|\dot{w}_{k}(t)\right\|_{L^{2}}-C_{2}
\end{aligned}
$$

As $\left(|\bar{u}|^{2}+\|\dot{u}\|_{L_{2}}\right)^{1 / 2}$ is an equivalent norm in H_{T}^{1}, it follows that $\widetilde{w}_{k}(t)$ is bounded. Hence, w_{k} is bounded. Also, $\left\{v_{k}\right\}$ is bounded in H_{T}^{1}.

From the previous discussion we know that accumulation point u_{n} of $\left\{v_{k}\right\}$ is a critical point and c_{n} is critical value of J.

If we choose large enough n such that $a_{n}>b_{m}$, then $\gamma\left(B_{a_{n}}\right)$ intersects the hyperplane $H_{b_{m}}$ for any $\gamma \in \Gamma_{n}$.

It follows that

$$
\max _{x \in B_{a_{n}}} J(\gamma(x)) \geq \inf _{u \in H_{b_{m}}} J(u)
$$

From this inequality and Lemma 2.3 we obtain $\lim _{n \rightarrow \infty} c_{n}=+\infty$. Result (i) of Theorem 1.1 is obtained.

Next we prove (ii). For fixed m, define the subset P_{m} of H_{T}^{1} by

$$
\begin{equation*}
P_{m}=\left\{u \in H_{T}^{1}: u=\bar{u}+\widetilde{u},|\bar{u}| \leq b_{m}, \widetilde{u} \in \widetilde{H}_{T}^{1}\right\} \tag{2.5}
\end{equation*}
$$

For $u \in P_{m}$, we have

$$
\begin{align*}
J(u)= & \frac{1}{2} \int_{0}^{T}|\dot{u}(t)|^{2} d t-\int_{0}^{T} F(t, u(t)) d t \\
\geq & \frac{1}{2} \int_{0}^{T}|\dot{u}(t)|^{2} d t-\int_{0}^{T} f(t)|u(t)|^{2} d t-\int_{0}^{T} g(t)|u(t)| d t \\
\geq & \frac{1}{2} \int_{0}^{T}|\dot{u}(t)|^{2} d t-2 \int_{0}^{T} f(t)\left[|\bar{u}(t)|^{2}+|\widetilde{u}(t)|^{2}\right] d t-\int_{0}^{T} g(t)[|\bar{u}(t)|+|\widetilde{u}(t)|] d t \\
\geq & \frac{1}{2}\|\dot{u}(t)\|_{L^{2}}^{2}-\frac{T}{6}\|\dot{u}(t)\|_{L^{2}}^{2} \int_{0}^{T} f(t) d t-2|\bar{u}(t)|^{2} \int_{0}^{T} f(t) d t \\
& -\left(\frac{T}{12}\right)^{1 / 2}\|\dot{u}(t)\|_{L^{2}} \int_{0}^{T} g(t) d t-|\bar{u}(t)| \int_{0}^{T} g(t) d t \\
= & \left(\frac{1}{2}-\frac{T}{6} M_{2}\right)\|\dot{u}(t)\|_{L^{2}}^{2}-\left(\frac{T}{12}\right)^{1 / 2} M_{3}\|\dot{u}(t)\|_{L^{2}}-C_{3} \tag{2.6}
\end{align*}
$$

Then J is bounded below on P_{m}.
Let

$$
\mu_{m}=\inf _{u \in P_{m}} J(u)
$$

and $\left\{u_{k}\right\}$ be a minimizing sequence in P_{m}; that is,

$$
J\left(u_{k}\right) \rightarrow \mu_{m} \quad \text { as } k \rightarrow \infty
$$

By (2.6), $\left\{u_{k}\right\}$ is bounded in H_{T}^{1}. Then there is a subsequence, which is still be denoted by $\left\{u_{k}\right\}$, such that

$$
u_{k} \rightharpoonup u_{m}^{*} \text { weakly in } H_{T}^{1} .
$$

Since P_{m} is a convex closed subset of $H_{T}^{1}, u_{m}^{*} \in P_{m}$. As J is weakly lower semicontinuous, we have

$$
\mu_{m}=\lim _{k \rightarrow \infty} J\left(u_{k}\right) \geq J\left(u_{m}^{*}\right)
$$

Since $u_{m}^{*} \in P_{m}, \mu_{m}=J\left(u_{m}^{*}\right)$.
If we can show u_{m}^{*} is in the interior of P_{m}, then u_{m}^{*} is a local minimum of functional J. In fact, let $u_{m}^{*}=\bar{u}_{m}^{*}+\widetilde{u}_{m}^{*}$. From Lemmas 2.2 and 2.3 , we see $\left|\bar{u}_{m}^{*}\right| \neq b_{m}$ for large m, which means that u_{m}^{*} is in the interior of P_{m}.

Since u_{m}^{*} is a minimum of J on P_{m}, we have

$$
J\left(u_{m}^{*}\right)=\inf _{u \in P_{m}} J(u) \leq \sup _{|u|=b_{m}} J(u)
$$

It follows from Lemma 2.2 that $J\left(u_{m}^{*}\right) \rightarrow-\infty$ as $m \rightarrow \infty$. Therefore, the proof is complete.

References

[1] Nurbek Aizmahin, Tianqing An; The existence of periodic solutions of non-autonomous second-order Hamiltonian systems, Nonlinear Analysis, 74 (2011), 4862-4867.
[2] F. Antonacci, P. Magrone; Second order nonautonomous systems with symmetric potential changing sign, Rendiconti di Matematica e delle sue Applicazioni, 18 (1988), 367-379.
[3] M. S. Berger, M. Schechter; On the solvability of semilinear gradient operator equations, Adv. Math., 25 (1977), 97-132.
[4] F. Faraci, R. Livrea; Infinitely many periodic solutions for a second-order nonautonomous system, Nonlinear Anal., 54 (2003), 417-429.
[5] Z. Q. Han; 2π-Periodic solutions to n-Duffing systems, Nonlinear Analysis and Its Aplications (Deited by D. J. Guo), Beijing: Beijng Scientific and Technical Publisher, 1994, 182-191. (in Chinese)
[6] Y. M. Long; Nonlinear oscillations for classical Hamiltonian systems with bi-even subquadratic potentials, Nonlinear Anal., 24 (1995), 1665-1671.
[7] S. W. Ma, Y. X. Zhang; Existence of infinitely many periodic solutions for ordinary pLaplacian systems, J. Math. Anal. Appl., 351 (2009), 469-479.
[8] J. Mawhin; Semi-coercive monotone variational problems, Acad. Roy. Belg. Bull. Cl. Sci.,73 (1987), 118-130.
[9] J. Mawhin, M. Willem; Critical Point Theory and Hamiltonian Systems, Springer-Verlag, New York, 1989.
[10] Q. Meng, X. H. Tang; Solutions of a second-order Hamiltonian sysytem with periodic boundary conditions, Comm. Pure Appl. Anal., 9 (2010), 1053-1067.
[11] P. H. Rabinowitz; On subharmonic solutions of Hamiltonian systems, Comm. Pure Appl. Math., 33 (1980), 609-633.
[12] C. L. Tang; Periodic solutions of nonautonomous second order systems with - quasisubadditive potential, J. Math. Anal. Appl., 189 (1995), 671-675.
[13] C. L. Tang; Periodic solutions of nonautonomous second order systems, J. Math. Anal. Appl., 202 (1996), 465-469.
[14] C. L. Tang; Periodic solutions of nonautonomous second order systems with sublinear nonlinearity, Proc. Amer. Math. Soc., 126 (1998), 3263-3270.
[15] C. L. Tang, X. P. Wu; Periodic solutions for second order systems with not uniformly coercive potentia, J. Math. Anal. Appl., 259, (2001) 386-397.
[16] X. H. Tang, Q. Meng; Solutions of a second-order Hamiltonian system with periodic boundary conditions, Nonlinear Analysis: Real World Applications, 11 (2010), 3722-3733.
[17] Z. L. Tao, C. L. Tang; Periodic and subharmonic solutions of second-order Hamiltonian systems, J. Math. Anal. Appl., 293 (2004), 435-445.
[18] M. Willem; Oscillations forces de systmes hamiltoniens, in: Public. Smin. Analyse Non Linaire, Univ. Besancon, 1981.
[19] X. Wu; Saddle point characterization and multiplicity of periodic solutions of nonautonomous second order systems, Nonlinear Anal., 58 (2004), 899-907.
[20] X. P. Wu, C. L. Tang; Periodic solutions of a class of nonautonomous second order systems, J. Math. Anal. Appl., 236 (1999), 227-235.
[21] X. P. Wu, C. L. Tang; Periodic solutions of nonautonomous second-order Hamiltonian systems with even-typed potentials, Nonlinear Anal., 55 (2003), 759-769.
[22] F. Zhao, X. Wu; Periodic solutions for a class of non-autonomous second order systems, J. Math. Anal. Appl., 296 (2004), 422-434.
[23] F. Zhao, X. Wu; Existence and multiplicity of periodic solution for non-autonomous secondorder systems with linear nonlinearity, Nonlinear Anal., 60 (2005), 325-335.
[24] W. M. Zou, S. J. Li; Infinitely many solutions for Hamiltonian systems, Journal of Differential Equations, 186 (2002), 141-164.
[25] P. Zhang, C. L. Tang; Infinitely many periodic solutions for nonautonomous sublinear secondorder Hamiltonian systems, Abstract and Applied Analysis, Volume 2010, Article ID 620438, 10 pages.

Wen Guan
Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu 730050, China

E-mail address: mathguanw@163.com
Da-Bin Wang (corresponding author)
Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu 730050, China

E-mail address: wangdb96@163.com

[^0]: 2000 Mathematics Subject Classification. 34C25, 58E50.
 Key words and phrases. Periodic solutions; Minimax methods; linear; Hamiltonian system; critical point.
 (C) 2015 Texas State University - San Marcos.

 Submitted November 11, 2014. Published April 14, 2015.

