Electronic Journal of Differential Equations, Vol. 2016 (2016), No. 08, pp. 1-12. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

NONHOMOGENEOUS ELLIPTIC EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENT AND WEIGHT

MOHAMMED BOUCHEKIF, ALI RIMOUCHE

Abstract. In this article we consider the problem

$$
\begin{gathered}
-\operatorname{div}(p(x) \nabla u)=|u|^{2^{*}-2} u+\lambda f \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

where Ω is a bounded domain in \mathbb{R}^{N}, We study the relationship between the behavior of p near its minima on the existence of solutions.

1. Introduction and statement of main results

In this article we study the existence of solutions to the problem

$$
\begin{gather*}
-\operatorname{div}(p(x) \nabla u)=|u|^{2^{*}-2} u+\lambda f \quad \text { in } \Omega \tag{1.1}\\
u=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

where Ω is a smooth bounded domain of $\mathbb{R}^{N}, N \geq 3, f$ belongs to $H^{-1}=$ $W^{-1,2}(\Omega) \backslash\{0\}, p \in H^{1}(\Omega) \cap C(\bar{\Omega})$ is a positive function, λ is a real parameter and $2^{*}=\frac{2 N}{N-2}$ is the critical Sobolev exponent for the embedding of $H_{0}^{1}(\Omega)$ into $L^{2^{*}}(\Omega)$.

For a constant function p, problem (1.1) has been studied by many authors, in particular by Tarantello [8]. Using Ekeland's variational principle and minimax principles, she proved the existence of at least one solution of with $\lambda=1$ when $f \in H^{-1}$ and satisfies

$$
\int_{\Omega} f u d x \leq K_{N}\left(\int_{\Omega}|\nabla u|^{2}\right)^{(N+2) / 4} \quad \text { for } \int_{\Omega}|u|^{2^{*}}=1
$$

with

$$
K_{N}=\frac{4}{N-2}\left(\frac{N-2}{N+2}\right)^{(N+2) / 4}
$$

Moreover when the above inequality is strict, she showed the existence of at least a second solution. These solutions are nonnegative when f is nonnegative.

[^0]The following problem has been considered by several authors,

$$
\begin{gather*}
-\operatorname{div}(p(x) \nabla u)=|u|^{2^{*}-2} u+\lambda u \quad \text { in } \Omega \\
u>0 \quad \text { in } \Omega \tag{1.2}\\
u=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

We quote in particular the celebrate paper by Brezis and Nirenberg [4, and that of Hadiji and Yazidi [6]. In [4], the authors studied the case when p is constant.

To our knowledge, the case where p is not constant has been considered in [6] and [7]. The authors in [6] showed that the existence of solutions depending on a parameter λ, N, and the behavior of p near its minima. More explicitly: when $p \in H^{1}(\Omega) \cap C(\bar{\Omega})$ satisfies

$$
\begin{equation*}
p(x)=p_{0}+\beta_{k}|x-a|^{k}+|x-a|^{k} \theta(x) \text { in } B(a, \tau), \tag{1.3}
\end{equation*}
$$

where k, β_{k}, τ are positive constants, and θ tends to 0 when x approaches a, with $a \in p^{-1}\left(\left\{p_{0}\right\}\right) \cap \Omega, p_{0}=\min _{x \in \bar{\Omega}} p(x)$, and $B(a, \tau)$ denotes the ball with center 0 and radius τ, when $0<k \leq 2$, and p satisfies the condition

$$
\begin{equation*}
k \beta_{k} \leq \frac{\nabla p(x) .(x-a)}{|x-a|^{k}} \quad \text { a.e } x \in \Omega \tag{1.4}
\end{equation*}
$$

On the one hand, they obtained the existence of solutions to 1.2 if one of the following conditions is satisfied:
(i) $N \geq 4, k>2$ and $\lambda \in] 0, \lambda_{1}(p)[$;
(ii) $N \geq 4, k=2$ and $\lambda \in] \tilde{\gamma}(N), \lambda_{1}(p)[$;
(iii) $N=3, k \geq 2$ and $\lambda \in] \gamma(k), \lambda_{1}(p)[$;
(iv) $N \geq 3,0<k<2$ and p satisfies (1.4), $\lambda \in] \lambda^{*}, \lambda_{1}(p)[$;
where

$$
\tilde{\gamma}(N)=\frac{(N-2) N(N+2)}{4(N-1)} \beta_{2}
$$

$\gamma(k)$ is a positive constant depending on k, and $\lambda^{*} \in\left[\tilde{\beta}_{k} \frac{N^{2}}{4}, \lambda_{1}(p)\left[\right.\right.$, with $\tilde{\beta}_{k}=$ $\beta_{k} \min \left[(\operatorname{diam} \Omega)^{k-2}, 1\right]$.

On the other hand, non-existence results are given in the following cases:
(a) $N \geq 3, k>0$ and $\lambda \leq \delta(p)$.
(b) $N \geq 3, k>0$ and $\lambda \geq \lambda_{1}(p)$.

We denote by $\lambda_{1}(p)$ the first eigenvalue of $(-\operatorname{div}(p \nabla), H$.$) and$

$$
\delta(p)=\frac{1}{2} \inf _{u \in H_{0}^{1}(\Omega) \backslash\{0\}} \frac{\int_{\Omega} \nabla p(x)(x-a)|\nabla u|^{2} d x}{\int_{\Omega}|u|^{2} d x} .
$$

Then we formulate the question: What happens in 1.1) when p is not necessarily a constant function? A response to this question is given in Theorem 1.5 below.

Notation. S is the best Sobolev constant for the embedding from $H_{0}^{1}(\Omega)$ to $L^{2^{*}}(\Omega)$. $\|\cdot\|$ is the norm of $H_{0}^{1}(\Omega)$ induced by the product $(u, v)=\int_{\Omega} \nabla u \nabla v d x .\|\cdot\|_{-1}$ and $|\cdot|_{p}=\left(\int_{\Omega}|\cdot|^{p} d x\right)^{1 / p}$ are the norms in H^{-1} and $L^{p}(\Omega)$ for $1 \leq p<\infty$ respectively. We denote the space $H_{0}^{1}(\Omega)$ by H and the integral $\int_{\Omega} u d x$ by $\int u . \omega_{N}$ is the area of the sphere \mathbb{S}^{N-1} in \mathbb{R}^{N}.

Let $E=\left\{u \in H: \int_{\Omega} \tilde{f}(x) u(x) d x>0\right\}$ and

$$
\alpha(p):=\frac{1}{2} \inf _{u \in E} \frac{\int_{\Omega} \hat{p}(x)|\nabla u(x)|^{2} d x}{\int_{\Omega} \tilde{f}(x) u(x) d x}
$$

with

$$
\tilde{f}(x):=\nabla f(x) \cdot(x-a)+\frac{N+2}{2} f(x), \quad \hat{p}(x)=\nabla p(x) \cdot(x-a)
$$

Put

$$
\begin{align*}
\Lambda_{0} & :=K_{N} \frac{p_{0}^{1 / 2}}{\|f\|_{-1}}(S(p))^{N / 4}, \quad A_{l}=(N-2)^{2} \int_{\mathbb{R}^{N}} \frac{|x|^{l+2}}{\left(1+|x|^{2}\right)^{N}} \tag{1.5}\\
B & =\int_{\mathbb{R}^{N}} \frac{1}{\left(1+|x|^{2}\right)^{N}}, \quad D:=w_{0}(a) \int_{\mathbb{R}^{N}}\left(1+|x|^{2}\right)^{(N+2) / 2}
\end{align*}
$$

where $l \geq 0$ and

$$
S(p):=\inf _{u \in H \backslash\{0\}} \frac{\int_{\Omega} p(x)|\nabla u|^{2}}{|u|_{2^{*}}^{2}}
$$

Definition 1.1. We say that u is a ground state solution of 1.1) if $J_{\lambda}(u)=$ $\min \left\{J_{\lambda}(v): v\right.$ is a solution of $\left.(1.1)\right\}$. Here J_{λ} is the energy functional associate with (1.1).

Remark 1.2. By the Ekeland variational principle [5] we can prove that for $\lambda \in$ $\left(0, \Lambda_{0}\right)$ there exists a ground state solution to 1.1 which will be denoted by w_{0}. The proof is similar to that in [8].

Remark 1.3. Noting that if u is a solution of the problem 1.1), then $-u$ is also a solution of the problem 1.1 with $-\lambda$ instead of λ. Without loss of generality, we restrict our study to the case $\lambda \geq 0$.

Our main results read as follows.
Theorem 1.4. Suppose that Ω is a star shaped domain with respect to a and p satisfies (1.3). Then there is no solution of problem (1.1) in E for all $0 \leq \lambda \leq \alpha(p)$.
Theorem 1.5. Let $p \in H^{1}(\Omega) \cap C(\bar{\Omega})$ such that $p_{0}>0$ and p satisfies (1.3) then, for $0<\lambda<\frac{\Lambda_{0}}{2}$, problem (1.1) admits at least two solutions in one of the following condition:
(i) $k>\frac{N-2}{2}$,
(ii) $\beta_{(N-2) / 2}>\frac{2 D}{A_{(N-2) / 2}}\left(\frac{A_{0}}{B}\right)^{(6-N) / 4}$.

This article is organized as follows: in the forthcoming section, we give some preliminaries. Section 3 and 4 present the proofs of our main results.

2. Preliminaries

A function u in H is said to be a weak solution of 1.1 if u satisfies

$$
\int\left(p \nabla u \nabla v-|u|^{2^{*}-2} u v-\lambda f v\right)=0 \quad \text { for all } v \in H
$$

It is well known that the nontrivial solutions of 1.1 are equivalent to the non zero critical points of the energy functional

$$
\begin{equation*}
J_{\lambda}(u)=\frac{1}{2} \int p|\nabla u|^{2}-\frac{1}{2^{*}} \int|u|^{2^{*}}-\lambda \int f u \tag{2.1}
\end{equation*}
$$

We know that J_{λ} is not bounded from below on H, but it is on a natural manifold called Nehari manifold, which is defined by

$$
\mathcal{N}_{\lambda}=\left\{u \in H \backslash\{0\}:\left\langle J_{\lambda}^{\prime}(u), u\right\rangle=0\right\} .
$$

Therefore, for $u \in \mathcal{N}_{\lambda}$, we obtain

$$
\begin{equation*}
J_{\lambda}(u)=\frac{1}{N} \int p|\nabla u|^{2}-\lambda \frac{N+2}{2 N} \int f u \tag{2.2}
\end{equation*}
$$

or

$$
\begin{equation*}
J_{\lambda}(u)=-\frac{1}{2} \int p|\nabla u|^{2}+\frac{N+2}{2 N} \int|u|^{2^{*}} . \tag{2.3}
\end{equation*}
$$

It is known that the constant S is achieved by the family of functions

$$
\begin{equation*}
U_{\varepsilon}(x)=\frac{\varepsilon^{(N-2) / 2}}{\left(\varepsilon^{2}+|x|^{2}\right)^{(N-2) / 2}} \quad \varepsilon>0, \quad x \in \mathbb{R}^{N} \tag{2.4}
\end{equation*}
$$

For $a \in \Omega$, we define $U_{\varepsilon, a}(x)=U_{\varepsilon}(x-a)$ and $u_{\varepsilon, a}(x)=\xi_{a}(x) U_{\varepsilon, a}(x)$, where

$$
\begin{equation*}
\xi_{a} \in C_{0}^{\infty}(\Omega) \text { with } \xi_{a} \geq 0 \text { and } \xi_{a}=1 \text { in a neighborhood of } a \tag{2.5}
\end{equation*}
$$

We start with the following lemmas given without proofs and based essentially on [8].

Lemma 2.1. The functional J_{λ} is coercive and bounded from below on \mathcal{N}_{λ}.
Set

$$
\begin{equation*}
\Psi_{\lambda}(u)=\left\langle J_{\lambda}^{\prime}(u), u\right\rangle \tag{2.6}
\end{equation*}
$$

For $u \in \mathcal{N}_{\lambda}$, we obtain

$$
\begin{align*}
\left\langle\Psi_{\lambda}^{\prime}(u), u\right\rangle & =\int p|\nabla u|^{2}-\left(2^{*}-1\right) \int|u|^{2^{*}} \tag{2.7}\\
& =\left(2-2^{*}\right) \int p|\nabla u|^{2}-\lambda\left(1-2^{*}\right) \int f u \tag{2.8}
\end{align*}
$$

So it is natural to split \mathcal{N}_{λ} into three subsets corresponding to local maxima, local minima and points of inflection defined respectively by

$$
\begin{gathered}
\mathcal{N}_{\lambda}^{+}=\left\{u \in \mathcal{N}_{\lambda}:\left\langle\Psi_{\lambda}^{\prime}(u), u\right\rangle>0\right\}, \quad \mathcal{N}_{\lambda}^{-}=\left\{u \in \mathcal{N}_{\lambda}:\left\langle\Psi_{\lambda}^{\prime}(u), u\right\rangle<0\right\} \\
\mathcal{N}_{\lambda}^{0}=\left\{u \in \mathcal{N}_{\lambda}:\left\langle\Psi_{\lambda}^{\prime}(u), u\right\rangle=0\right\}
\end{gathered}
$$

Lemma 2.2. Suppose that u_{0} is a local minimizer of J_{λ} on \mathcal{N}_{λ}. Then if $u_{0} \notin \mathcal{N}_{\lambda}^{0}$, we have $J_{\lambda}^{\prime}\left(u_{0}\right)=0$ in H^{-1}.

Lemma 2.3. For each $\lambda \in\left(0, \Lambda_{0}\right)$ we have $\mathcal{N}_{\lambda}^{0}=\emptyset$.
By Lemma 2.3 , we have $\mathcal{N}_{\lambda}=\mathcal{N}_{\lambda}^{+} \cup \mathcal{N}_{\lambda}^{-}$for all $\lambda \in\left(0, \Lambda_{0}\right)$. For $u \in H \backslash\{0\}$, let

$$
t_{m}=t_{\max }(u):=\left(\frac{\int p|\nabla u|^{2}}{\left(2^{*}-1\right) \int|u|^{2^{*}}}\right)^{(N-2) / 4}
$$

Lemma 2.4. Suppose that $\lambda \in\left(0, \Lambda_{0}\right)$ and $u \in H \backslash\{0\}$, then
(i) If $\int f u \leq 0$, then there exists an unique $t^{+}=t^{+}(u)>t_{m}$ such that $t^{+} u \in \mathcal{N}_{\lambda}^{-}$ and

$$
J_{\lambda}\left(t^{+} u\right)=\sup _{t \geq t_{m}} J_{\lambda}(t u)
$$

(ii) If $\int f u>0$, then there exist unique $t^{-}=t^{-}(u), t^{+}=t^{+}(u)$ such that $0<t^{-}<t_{m}<t^{+}, t^{-} u \in \mathcal{N}_{\lambda}^{+}, t^{+} u \in \mathcal{N}_{\lambda}^{-}$and

$$
J_{\lambda}\left(t^{+} u\right)=\sup _{t \geq t_{m}} J_{\lambda}(t u) ; \quad J_{\lambda}\left(t^{-} u\right)=\inf _{0 \leq t \leq t^{+}} J_{\lambda}(t u)
$$

Thus we put

$$
c=\inf _{u \in \mathcal{N}_{\lambda}} J_{\lambda}(u), \quad c^{+}=\inf _{u \in \mathcal{N}_{\lambda}^{+}} J_{\lambda}(u), \quad c^{-}=\inf _{u \in \mathcal{N}_{\lambda}^{-}} J_{\lambda}(u)
$$

Lemma 2.5. (i) If $\lambda \in\left(0, \Lambda_{0}\right)$, then $c \leq c^{+}<0$.
(ii) If $\lambda \in\left(0, \frac{\Lambda_{0}}{2}\right)$, then $c^{-}>0$.

3. Nonexistence result

Some properties of $\alpha(p)$.

Proposition 3.1. (1) Assume that $p \in C^{1}(\Omega)$ and there exists $b \in \Omega$ such that $\nabla p(b)(b-a)<0$ and $f \in C^{1}$ in a neighborhood of b. Then $\alpha(p)=-\infty$.
(2) If $p \in C^{1}(\Omega)$ satisfying 1.3) with $k>2$ and $\nabla p(x)(x-a) \geq 0$ for all $x \in \Omega$ and $f \in C^{1}$ in a neighborhood of a and $f(a) \neq 0$, then $\alpha(p)=0$ for all $N \geq 3$.
(3) If $p \in H^{1}(\Omega) \cap C(\bar{\Omega})$ and $\nabla p(x)(x-a) \geq 0$ a.e $x \in \Omega$, then $\alpha(p) \geq 0$.

Proof. (1) Set $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ such that

$$
0 \leq \varphi \leq 1, \quad \varphi(x)= \begin{cases}1 & \text { if } x \in B(0 ; r) \tag{3.1}\\ 0 & \text { if } x \notin B(0 ; 2 r)\end{cases}
$$

where $0<r<1$.
Set $\varphi_{j}(x)=\operatorname{sgn}[\tilde{f}(x)] \varphi(j(x-b))$ for $j \in \mathbb{N}^{*}$. We have

$$
\alpha(p) \leq \frac{1}{2} \frac{\int_{B\left(b, \frac{2 r}{j}\right)} \hat{p}(x)\left|\nabla \varphi_{j}(x)\right|^{2}}{\int_{B\left(b, \frac{2 r}{j}\right)} \tilde{f}(x) \varphi_{j}(x)}
$$

Using the change of variable $y=j(x-b)$ and applying the dominated convergence theorem, we obtain

$$
\alpha(p) \leq \frac{j^{2}}{2}\left[\frac{\hat{p}(b) \int_{B(0,2 r)}|\nabla \varphi(y)|^{2}}{|\tilde{f}(b)| \int_{B(0,2 r)} \varphi(y)}+o(1)\right]
$$

letting $j \rightarrow \infty$, we obtain the desired result.
(2) Since $p \in C^{1}(\Omega)$ in a neighborhood V of a, we write

$$
\begin{equation*}
p(x)=p_{0}+\beta_{k}|x-a|^{k}+\theta_{1}(x) \tag{3.2}
\end{equation*}
$$

where $\theta_{1} \in C^{1}(V)$ such that

$$
\begin{equation*}
\lim _{x \rightarrow a} \frac{\theta_{1}(x)}{|x-a|^{k}}=0 \tag{3.3}
\end{equation*}
$$

Thus, we deduce that there exists $0<r<1$, such that

$$
\begin{equation*}
\theta_{1}(x) \leq|x-a|^{k}, \quad \text { for all } x \in B(a, 2 r) \tag{3.4}
\end{equation*}
$$

Let $\psi_{j}(x)=\operatorname{sgn}[\tilde{f}(x)] \varphi(j(x-a)), \varphi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ defined as in 3.1), we have

$$
0 \leq \alpha(p) \leq \frac{1}{2} \frac{\int \nabla p(x) \cdot(x-a)\left|\nabla \psi_{j}(x)\right|^{2}}{\int \tilde{f}(x) \psi_{j}(x)}
$$

Using (3.2), we obtain

$$
0 \leq \alpha(p) \leq \frac{k \beta_{k}}{2} \frac{\int_{B\left(a, \frac{2 r}{j}\right)}|x-a|^{k}\left|\nabla \psi_{j}(x)\right|^{2}}{\int_{B\left(a, \frac{2 r}{j}\right)} \tilde{f}(x) \psi_{j}(x)}+\frac{1}{2} \frac{\int_{B\left(a, \frac{2 r}{j}\right)} \nabla \theta_{1}(x) \cdot(x-a)\left|\nabla \psi_{j}(x)\right|^{2}}{\int_{B\left(a, \frac{2 r}{j}\right)} \tilde{f}(x) \psi_{j}(x)}
$$

Using the change of variable $y=j(x-a)$, and integrating by parts the second term of the right hand side, we obtain

$$
0 \leq \alpha(p) \leq \frac{k \beta_{k}}{2 j^{k-2}} \frac{\int_{B(0,2 r)}|y|^{k}|\nabla \varphi(y)|^{2}}{\int_{B(0,2 r)}\left|\tilde{f}\left(\frac{y}{j}+a\right)\right| \varphi(y)}+\frac{j}{2} \frac{\int_{B(0,2 r)} \theta_{1}\left(\frac{y}{j}+a\right) \operatorname{div}\left(y|\nabla \varphi(y)|^{2}\right)}{\int_{B(0,2 r)}\left|\tilde{f}\left(\frac{y}{j}+a\right)\right| \varphi(y)} .
$$

Using (3.4) and applying the dominated convergence theorem, we obtain

$$
\begin{aligned}
0 \leq \alpha(p) \leq & \frac{k \beta_{k}}{(N+2) j^{k-2}} \frac{\int_{B(0,2 r)}|y|^{k}|\nabla \varphi(y)|^{2}}{|f(a)| \int_{B(0,2 r)} \varphi(y)} \\
& +\frac{1}{(N+2) j^{k-1}} \frac{\int_{B 0,2 r)}|y|^{k} d i v\left(y|\nabla \varphi(y)|^{2}\right)}{|f(a)| \int_{B(0,2 r)} \varphi(y)}+o(1)
\end{aligned}
$$

Therefore, for $k>2$ we deduce that $\alpha(p)=0$, which completes the proof.
Proof of Theorem 1.4. Suppose that u is a solution of (1.1). We multiply 1.1) by $\nabla u(x) .(x-a)$ and integrate over Ω, we obtain

$$
\begin{gather*}
\int|u|^{2^{*}-1} \nabla u(x) \cdot(x-a)=-\frac{N-2}{2} \int|u(x)|^{2^{*}} \tag{3.5}\\
\lambda \int f(x) \nabla u(x) \cdot(x-a)=-\lambda \int(\nabla f(x) \cdot(x-a)+N f(x)) u(x), \tag{3.6}\\
-\int \operatorname{div}(p(x) \nabla u(x)) \nabla u(x) \cdot(x-a) \\
=-\frac{N-2}{2} \int p(x)|\nabla u(x)|^{2}-\frac{1}{2} \int \nabla p(x) \cdot(x-a)|\nabla u(x)|^{2} \tag{3.7}\\
-\frac{1}{2} \int_{\partial \Omega} p(x)(x-a) \cdot \nu\left|\frac{\partial u}{\partial \nu}\right|^{2}
\end{gather*}
$$

Combining (3.5), 3.6) and (3.7), we obtain

$$
\begin{align*}
& -\frac{N-2}{2} \int p(x)|\nabla u(x)|^{2}-\frac{1}{2} \int \nabla p(x) \cdot(x-a)|\nabla u(x)|^{2} \\
& -\frac{1}{2} \int_{\partial \Omega} p(x)(x-a) \cdot \nu\left|\frac{\partial u}{\partial \nu}\right|^{2} \tag{3.8}\\
& =-\frac{N-2}{2} \int|u(x)|^{2^{*}}-\lambda \int(\nabla f(x) \cdot(x-a)+N f(x)) u(x) .
\end{align*}
$$

Multiplying (1.1) by $\frac{N-2}{2} u$ and integrating by parts, we obtain

$$
\begin{equation*}
\frac{N-2}{2} \int p(x)|\nabla u(x)|^{2}=\frac{N-2}{2} \int|u(x)|^{2^{*}}+\lambda \frac{N-2}{2} \int f(x) u(x) \tag{3.9}
\end{equation*}
$$

From 3.8 and (3.9), we obtain

$$
-\frac{1}{2} \int \nabla p(x) \cdot(x-a)|\nabla u(x)|^{2}-\frac{1}{2} \int_{\partial \Omega} p(x)(x-a) \cdot \nu\left|\frac{\partial u}{\partial \nu}\right|^{2}+\lambda \int \tilde{f}(x) u(x)=0 .
$$

Then

$$
\begin{equation*}
\lambda>\frac{1}{2} \frac{\int \nabla p(x) \cdot(x-a)|\nabla u(x)|^{2}}{\int \tilde{f}(x) u(x)} \geq \alpha(p) \tag{3.10}
\end{equation*}
$$

Hence the desired result is obtained.

4. Existence of solutions

We begin by proving that

$$
\begin{equation*}
\inf _{u \in \mathcal{N}_{\lambda}^{-}} J_{\lambda}(u)=c^{-}<c+\frac{1}{N}\left(p_{0} S\right)^{N / 2} \tag{4.1}
\end{equation*}
$$

By some estimates in Brezis and Nirenberg [3, we have

$$
\begin{align*}
\left|w_{0}+R u_{\varepsilon, a}\right|_{2^{*}}^{2^{*}}= & \left|w_{0}\right|_{2^{*}}^{2^{*}}+R^{2^{*}}\left|u_{\varepsilon, a}\right|_{2^{*}}^{2^{*}}+2^{*} R \int\left|w_{0}\right|^{2^{*}-2} w_{0} u_{\varepsilon, a} \\
& +2^{*} R^{2^{*}-1} \int u_{\varepsilon, a}^{2^{*}-1} w_{0}+o\left(\varepsilon^{(N-2) / 2}\right) \tag{4.2}
\end{align*}
$$

Put

$$
\begin{gather*}
\left|\nabla u_{\varepsilon, a}\right|_{2}^{2}=A_{0}+O\left(\varepsilon^{N-2}\right), \quad\left|u_{\varepsilon, a}\right|_{2^{*}}^{2^{*}}=B+O\left(\varepsilon^{N}\right) \tag{4.3}\\
S=S(1)=A_{0} B^{-2 / 2^{*}} \tag{4.4}
\end{gather*}
$$

Lemma 4.1. Let $p \in H^{1}(\Omega) \cap C(\bar{\Omega})$ satisfying (1.3) Then we have estimate

$$
\begin{aligned}
& \int p(x)\left|\nabla u_{\varepsilon, a}(x)\right|^{2} \\
& \leq \begin{cases}p_{0} A_{0}+O\left(\varepsilon^{N-2}\right) & \text { if } N-2<k, \\
p_{0} A_{0}+A_{k} \varepsilon^{k}+o\left(\varepsilon^{k}\right) & \text { if } N-2>k, \\
p_{0} A_{0}+\frac{(N-2)^{2}}{2}\left(\beta_{N-2}+M\right) \omega_{N} \varepsilon^{N-2}|\ln \varepsilon|+o\left(\varepsilon^{N-2}|\ln \varepsilon|\right) & \text { if } N-2=k,\end{cases}
\end{aligned}
$$

where M is a positive constant.
Proof. by calculations,

$$
\begin{aligned}
& \varepsilon^{2-N} \int p(x)\left|\nabla u_{\varepsilon, a}(x)\right|^{2} \\
& =\int \frac{p(x)\left|\nabla \xi_{a}(x)\right|^{2}}{\left(\varepsilon^{2}+|x-a|^{2}\right)^{N-2}}+(N-2)^{2} \int \frac{p(x)\left|\xi_{a}(x)\right|^{2}|x-a|^{2}}{\left(\varepsilon^{2}+|x-a|^{2}\right)^{N}} \\
& \quad-(N-2) \int \frac{p(x) \nabla \xi_{a}^{2}(x)(x-a)}{\left(\varepsilon^{2}+|x-a|^{2}\right)^{N-1}}
\end{aligned}
$$

Suppose that $\xi_{a} \equiv 1$ in $B(a, r)$ with $r>0$ small enough. So, we obtain

$$
\begin{aligned}
& \varepsilon^{2-N} \int p(x)\left|\nabla u_{\varepsilon, a}(x)\right|^{2} \\
& =\int_{\Omega \backslash B(a, r)} \frac{p(x)\left|\nabla \xi_{a}(x)\right|^{2}}{\left(\varepsilon^{2}+|x-a|^{2}\right)^{N-2}}+(N-2)^{2} \int \frac{p(x)\left|\xi_{a}(x)\right|^{2}|x-a|^{2}}{\left(\varepsilon^{2}+|x-a|^{2}\right)^{N}} \\
& \quad-2(N-2) \int_{\Omega \backslash B(a, r)} \frac{p(x) \xi_{a}(x) \nabla \xi_{a}(x)(x-a)}{\left(\varepsilon^{2}+|x-a|^{2}\right)^{N-1}} .
\end{aligned}
$$

Applying the dominated convergence theorem,

$$
\int p(x)\left|\nabla u_{\varepsilon, a}(x)\right|^{2}=(N-2)^{2} \varepsilon^{N-2} \int \frac{p(x)\left|\xi_{a}(x)\right|^{2}|x-a|^{2}}{\left(\varepsilon^{2}+|x-a|^{2}\right)^{N}}+O\left(\varepsilon^{N-2}\right)
$$

Using expression (1.3), we obtain

$$
\begin{aligned}
& \varepsilon^{2-N}(N-2)^{-2} \int p(x)\left|\nabla u_{\varepsilon, a}(x)\right|^{2} \\
& =\int_{B(a, \tau)} \frac{p_{0}|x-a|^{2}+\beta_{k}|x-a|^{k+2}+\theta(x)|x-a|^{k+2}}{\left(\varepsilon^{2}+|x-a|^{2}\right)^{N}} \\
& \quad+\int_{\Omega \backslash B(a, \tau)} \frac{p(x)\left|\xi_{a}(x)\right|^{2}|x-a|^{2}}{\left(\varepsilon^{2}+|x-a|^{2}\right)^{N}}+O\left(\varepsilon^{N-2}\right) .
\end{aligned}
$$

Using again the definition of ξ_{a}, and applying the dominated convergence theorem, we obtain

$$
\begin{aligned}
& \varepsilon^{2-N}(N-2)^{-2} \int p(x)\left|\nabla u_{\varepsilon, a}(x)\right|^{2} \\
& = \\
& p_{0} \int_{\mathbb{R}^{N}} \frac{|x-a|^{2}}{\left(\varepsilon^{2}+|x-a|^{2}\right)^{N}}+\beta_{k} \int_{B(a, \tau)} \frac{|x-a|^{k+2}}{\left(\varepsilon^{2}+|x-a|^{2}\right)^{N}} \\
& \quad+\int_{B(a, \tau)} \frac{\theta(x)|x-a|^{k+2}}{\left(\varepsilon^{2}+|x-a|^{2}\right)^{N}}+O\left(\varepsilon^{N-2}\right)
\end{aligned}
$$

We distinguish three cases:
Case 1. If $k<N-2$,

$$
\begin{aligned}
& \varepsilon^{2-N}(N-2)^{-2} \int p(x)\left|\nabla u_{\varepsilon, a}(x)\right|^{2} \\
& =p_{0} \int_{\mathbb{R}^{N}} \frac{|x-a|^{2}}{\left(\varepsilon^{2}+|x-a|^{2}\right)^{N}}+\int_{B(a, \tau)} \frac{\theta(x)|x-a|^{k+2}}{\left(\varepsilon^{2}+|x-a|^{2}\right)^{N}} \\
& \quad+\left[\int_{\mathbb{R}^{N}} \frac{\beta_{k}|x-a|^{k+2}}{\left(\varepsilon^{2}+|x-a|^{2}\right)^{N}}-\int_{\mathbb{R}^{N} \backslash B(a, \tau)} \frac{\beta_{k}|x-a|^{k+2}}{\left(\varepsilon^{2}+|x-a|^{2}\right)^{N}}\right]+O\left(\varepsilon^{N-2}\right)
\end{aligned}
$$

Using the change of variable $y=\varepsilon^{-1}(x-a)$ and applying the dominated convergence theorem, we obtain

$$
\begin{aligned}
& (N-2)^{-2} \int p(x)\left|\nabla u_{\varepsilon, a}(x)\right|^{2} \\
& =p_{0} B_{0}+\varepsilon^{k} \int_{\mathbb{R}^{N}} \frac{\beta_{k}|y|^{k+2}}{\left(1+|y|^{2}\right)^{N}}+\varepsilon^{k} \int_{\mathbb{R}^{N}} \frac{\theta(a+\varepsilon y)|y|^{k+2}}{\left(1+|y|^{2}\right)^{N}} \chi_{B\left(0, \frac{\tau}{\varepsilon}\right)}+o\left(\varepsilon^{k}\right)
\end{aligned}
$$

Since $\theta(x)$ tends to 0 when x tends to a, this gives us

$$
\int p(x)\left|\nabla u_{\varepsilon, a}(x)\right|^{2}=p_{0} A_{0}+\beta_{k} A_{k} \varepsilon^{k}+o\left(\varepsilon^{k}\right)
$$

Case 2. If $k>N-2$,

$$
\begin{aligned}
\int p(x)\left|\nabla u_{\varepsilon, a}(x)\right|^{2}= & p_{0} A_{0}+(N-2)^{2} \varepsilon^{N-2}\left[\int_{B(a, \tau)} \frac{\left(\beta_{k}+\theta(x)\right)|x-a|^{k+2}}{\left(\varepsilon^{2}+|x-a|^{2}\right)^{N}}\right. \\
& \left.-\int_{B(a, \tau) \backslash \Omega} \frac{\left(\beta_{k}+\theta(x)\right)|x-a|^{k+2}}{\left(\varepsilon^{2}+|x-a|^{2}\right)^{N}}\right]
\end{aligned}
$$

$$
+(N-2)^{2} \varepsilon^{N-2} \int_{B(a, \tau)} \frac{\theta(x)|x-a|^{k+2}}{\left(\varepsilon^{2}+|x-a|^{2}\right)^{N}}+O\left(\varepsilon^{N-2}\right)
$$

By the change of variable $y=x-a$, we obtain

$$
\begin{aligned}
\int p(x)\left|\nabla u_{\varepsilon, a}(x)\right|^{2}= & p_{0} A_{0}+(N-2)^{2} \varepsilon^{N-2} \int_{B(0, \tau)} \frac{\left(\beta_{k}+\theta(a+y)\right)|y|^{k+2}}{\left(\varepsilon^{2}+|y|^{2}\right)^{N}} \\
& +(N-2)^{2} \varepsilon^{N-2} \int_{B(a, \tau)} \frac{\theta(a+y)|y|^{k+2}}{\left(\varepsilon+|y|^{2}\right)^{N}}+O\left(\varepsilon^{N-2}\right) .
\end{aligned}
$$

Put $M:=\max _{x \in \bar{\Omega}} \theta(x)$ where $\theta(x)$ is given by (1.3). Then

$$
\begin{aligned}
& \int p(x)\left|\nabla u_{\varepsilon, a}(x)\right|^{2} \\
& =p_{0} A_{0}+\varepsilon^{N-2}(N-2)^{2}\left(\beta_{k}+M\right) \int_{B(0, \tau)} \frac{|y|^{k+2}}{\left(\varepsilon^{2}+|y|^{2}\right)^{N}} d y+O\left(\varepsilon^{N-2}\right)
\end{aligned}
$$

Applying the dominated convergence theorem,

$$
\int p(x)\left|\nabla u_{\varepsilon, a}(x)\right|^{2}=p_{0} A_{0}+O\left(\varepsilon^{N-2}\right)
$$

Case 3. If $k=N-2$, following the same previous steps, we obtain

$$
\begin{aligned}
& \int p(x)\left|\nabla u_{\varepsilon, a}(x)\right|^{2} \\
& =p_{0} A_{0}+(N-2)^{2} \varepsilon^{N-2} \int_{B(a, \tau)} \frac{\theta(x)|x-a|^{k+2}}{\left(\varepsilon^{2}+|x-a|^{2}\right)^{N}} \\
& \quad+(N-2)^{2} \varepsilon^{N-2}\left[\int_{B(a, \tau)} \frac{\beta_{N-2}|x-a|^{N}}{\left(\varepsilon^{2}+|x-a|^{2}\right)^{N}}-\int_{B(a, \tau) \backslash \Omega} \frac{\beta_{N-2}|x-a|^{N}}{\left(\varepsilon^{2}+|x-a|^{2}\right)^{N}}\right] \\
& \quad+O\left(\varepsilon^{N-2}\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \int p(x)\left|\nabla u_{\varepsilon, a}(x)\right|^{2} \\
& =p_{0} A_{0}+(N-2)^{2} \varepsilon^{N-2} \int_{B(a, \tau)} \frac{\left(\beta_{N-2}+\theta(x)\right)|x-a|^{N}}{\left(\varepsilon^{2}+|x-a|^{2}\right)^{N}} \\
& \quad+(N-2)^{2} \varepsilon^{N-2} \int_{B(a, \tau)} \frac{\theta(x)|x-a|^{k+2}}{\left(\varepsilon^{2}+|x-a|^{2}\right)^{N}}+O\left(\varepsilon^{N-2}\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \int p(x)\left|\nabla u_{\varepsilon, a}(x)\right|^{2} \\
& \leq p_{0} A_{0}+(N-2)^{2} \varepsilon^{N-2}\left(\beta_{N-2}+M\right) \int_{B(a, \tau)} \frac{|x-a|^{N}}{\left(\varepsilon^{2}+|x-a|^{2}\right)^{N}}+O\left(\varepsilon^{N-2}\right)
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
\varepsilon^{N-2} \int_{B(a, \tau)} \frac{|x-a|^{N}}{\left(\varepsilon^{2}+|x-a|^{2}\right)^{N}} & =\omega_{N} \varepsilon^{N-2} \int_{0}^{\tau} \frac{r^{2 N-1}}{\left(\varepsilon^{2}+r^{2}\right)^{N}} d r+O\left(\varepsilon^{N-2}\right) \\
& =\frac{1}{2 N} \omega_{N} \varepsilon^{N-2} \int_{0}^{\tau} \frac{\left(\left(\varepsilon^{2}+r^{2}\right)^{N}\right)^{\prime}}{\left(\varepsilon^{2}+r^{2}\right)^{N}} d r+O\left(\varepsilon^{N-2}\right)
\end{aligned}
$$

and

$$
\begin{equation*}
\varepsilon^{N-2} \int_{B(a, \tau)} \frac{|x-a|^{N}}{\left(\varepsilon^{2}+|x-a|^{2}\right)^{N}}=\frac{1}{2} \omega_{N} \varepsilon^{N-2}|\ln \varepsilon|+o\left(\varepsilon^{N-2}|\ln \varepsilon|\right) \tag{4.5}
\end{equation*}
$$

Therefore,

$$
\int p(x)\left|\nabla u_{\varepsilon, a}(x)\right|^{2} \leq p_{0} A_{0}+\frac{(N-2)^{2}}{2}\left(\beta_{N-2}+M\right) \omega_{N} \varepsilon^{N-2}|\ln \varepsilon|+o\left(\varepsilon^{N-2}|\ln \varepsilon|\right)
$$

Knowing that $w_{0} \neq 0$, we set $\Omega^{\prime} \subset \Omega$ as a set of positive measure such that $w_{0}>0$ on Ω^{\prime}. Suppose that $a \in \Omega^{\prime}$ (otherwise replace w_{0} by $-w_{0}$ and f by $-f$).

Lemma 4.2. For each $R>0$ and $2 k>N-2$, there exists $\varepsilon_{0}=\varepsilon_{0}(R, a)>0$ such that

$$
J_{\lambda}\left(w_{0}+R u_{\varepsilon, a}\right)<c+\frac{1}{N}\left(p_{0} S\right)^{N / 2}, \quad \text { for all } 0<\varepsilon<\varepsilon_{0}
$$

Proof. We have

$$
\begin{aligned}
J_{\lambda}\left(w_{0}+R u_{\varepsilon, a}\right)= & \frac{1}{2} \int p\left|\nabla w_{0}\right|^{2}+R \int p \nabla w_{0} \nabla u_{\varepsilon, a}+\frac{R^{2}}{2} \int p\left|\nabla u_{\varepsilon, a}\right|^{2} \\
& -\frac{1}{2^{*}} \int\left|w_{0}+R u_{\varepsilon, a}\right|^{2^{*}}-\lambda \int f w_{0}-\lambda R \int f u_{\varepsilon, a}
\end{aligned}
$$

Using (4.2, 4.3 and the fact that w_{0} satisfies 1.1, we obtain

$$
\begin{aligned}
& J_{\lambda}\left(w_{0}+R u_{\varepsilon, a}\right) \\
& \leq c+\frac{R^{2}}{2} \int p\left|\nabla u_{\varepsilon, a}\right|^{2}-\frac{R^{2^{*}}}{2^{*}} A-R^{2^{*}-1} \int u_{\varepsilon, a}^{2^{*}-1} w_{0}+o\left(\varepsilon^{(N-2) / 2}\right) .
\end{aligned}
$$

Taking $w=0$ the extension of w_{0} by 0 outside of Ω, it follows that

$$
\begin{aligned}
\int u_{\varepsilon, a}^{2^{*}-1} w_{0} & =\int_{\mathbb{R}^{N}} w(x) \xi_{a}(x) \frac{\varepsilon^{(N+2) / 2}}{\left(\varepsilon^{2}+|x-a|^{2}\right)^{(N+2) / 2}} \\
& =\varepsilon^{(N-2) / 2} \int_{\mathbb{R}^{N}} w(x) \xi_{a}(x) \frac{1}{\varepsilon^{N}} \psi\left(\frac{x}{\varepsilon}\right)
\end{aligned}
$$

where $\psi(x)=\left(1+|x|^{2}\right)^{(N+2) / 2} \in L^{1}\left(\mathbb{R}^{N}\right)$. We deduce that

$$
\int_{\mathbb{R}^{N}} w(x) \xi_{a}(x) \frac{1}{\varepsilon^{N}} \psi\left(\frac{x}{\varepsilon}\right) \rightarrow D \quad \text { as } \varepsilon \rightarrow 0
$$

Then

$$
\int u_{\varepsilon, a}^{2^{*}-1} w_{0}=\varepsilon^{(N-2) / 2} D+o\left(\varepsilon^{(N-2) / 2}\right) .
$$

Consequently

$$
\begin{align*}
& J_{\lambda}\left(w_{0}+R u_{\varepsilon, a}\right) \\
& \leq c+\frac{R^{2}}{2} \int p\left|\nabla u_{\varepsilon, a}\right|^{2}-\frac{R^{2^{*}}}{2^{*}} B-R^{2^{*}-1} \varepsilon^{(N-2) / 2} D+o\left(\varepsilon^{(N-2) / 2}\right) \tag{4.6}
\end{align*}
$$

Replacing $\int p\left|\nabla u_{\varepsilon, a}\right|^{2}$ by its value in 4.6, we obtain

$$
J_{\lambda}\left(w_{0}+R u_{\varepsilon, a}\right)
$$

$$
\leq \begin{cases}c+\frac{R^{2}}{2} p_{0} A_{0}-\frac{R^{2^{*}}}{2^{*}} B-\varepsilon^{(N-2) / 2} D R^{2^{*}-1}+o\left(\varepsilon^{(N-2) / 2}\right) & \text { if } k>\frac{N-2}{2} \\ c+\frac{R^{2}}{2} p_{0} A_{0}-\frac{R^{2^{*}}}{2^{*}} B+\beta_{k} A_{k} \varepsilon^{k}+o\left(\varepsilon^{k}\right) & \text { if } k<\frac{N-2}{2} \\ c+\frac{R^{2}}{2} p_{0} A_{0}-\frac{R^{2^{*}}}{2^{*}} B-\varepsilon^{(N-2) / 2}\left(\frac{R^{2}}{2} \beta_{(N-2) / 2} A_{(N-2) / 2}\right. & \\ \left.-D R^{2^{*}-1}\right)+o\left(\varepsilon^{(N-2) / 2}\right) & \text { if } k=\frac{N-2}{2}\end{cases}
$$

Using that the function $R \mapsto \Phi(R)=\frac{R^{2}}{2} B-\frac{R^{2^{*}}}{2^{*}} A_{0}$ attains its maximum $\frac{1}{N}\left(p_{0} S\right)^{N / 2}$ at the point $R_{1}:=\left(\frac{A_{0}}{B}\right)^{(N-2) / 4}$, we obtain

$$
\begin{aligned}
& J_{\lambda}\left(w_{0}+R u_{\varepsilon, a}\right) \\
& \leq \begin{cases}c+\frac{1}{N}\left(p_{0} S\right)^{N / 2}-\varepsilon^{(N-2) / 2} D R_{1}^{2^{*}-1}+o\left(\varepsilon^{(N-2) / 2}\right) & \text { if } k>\frac{N-2}{2} \\
c+\frac{1}{N}\left(p_{0} S\right)^{N / 2}+A_{k} \varepsilon^{k}+o\left(\varepsilon^{k}\right) & \text { if } k<\frac{N-2}{2} \\
c+\frac{1}{N}\left(p_{0} S\right)^{N / 2}-\varepsilon^{(N-2) / 2}\left(\frac{R_{1}^{2}}{2} \beta_{(N-2) / 2} A_{(N-2) / 2}\right. \\
\left.-D R_{1}^{2^{*}-1}\right)+o\left(\varepsilon^{(N-2) / 2}\right) & \text { if } k=\frac{N-2}{2}\end{cases}
\end{aligned}
$$

So for $\varepsilon_{0}=\varepsilon_{0}(R, a)>0$ small enough, $k>\frac{N-2}{2}$ or $k=\frac{N-2}{2}$ and

$$
\beta_{(N-2) / 2}>\frac{2 D R_{1}^{2^{*}-3}}{B_{(N-2) / 2}},
$$

we conclude that

$$
\begin{equation*}
J_{\lambda}\left(w_{0}+R u_{\varepsilon, a}\right)<c+\frac{1}{N}\left(p_{0} S\right)^{N / 2} \tag{4.7}
\end{equation*}
$$

for all $0<\varepsilon<\varepsilon_{0}$.
Proposition 4.3. Let $\left\{u_{n}\right\} \subset \mathcal{N}_{\lambda}^{-}$be a minimizing sequence such that:
(a) $J_{\lambda}\left(u_{n}\right) \rightarrow c^{-}$and
(b) $\left\|J_{\lambda}^{\prime}\left(u_{n}\right)\right\|_{-1} \rightarrow 0$.

Then for all $\lambda \in\left(0, \Lambda_{0} / 2\right),\left\{u_{n}\right\}$ admits a subsequence that converges strongly to a point w_{1} in H such that $w_{1} \in \mathcal{N}_{\lambda}^{-}$and $J_{\lambda}\left(w_{1}\right)=c^{-}$.
Proof. Let $u \in H$ be such that $\|u\|=1$. Then

$$
t^{+}(u) u \in \mathcal{N}_{\lambda}^{-} \quad \text { and } \quad J_{\lambda}\left(t^{+}(u) u\right)=\max _{t \geq t_{m}} J_{\lambda}(t u)
$$

The uniqueness of $t^{+}(u)$ and its extremal property give that $u \mapsto t^{+}(u)$ is a continuous function. We put

$$
\begin{gathered}
U_{1}=\left\{u=0 \text { or } u \in H \backslash\{0\}:\|u\|<t^{+}\left(\frac{u}{\|u\|}\right)\right\}, \\
U_{2}=\left\{u \in H \backslash\{0\}:\|u\|>t^{+}\left(\frac{u}{\|u\|}\right)\right\} .
\end{gathered}
$$

Then $H \backslash \mathcal{N}_{\lambda}^{-}=U_{1} \cup U_{2}$ and $\mathcal{N}_{\lambda}^{+} \subset U_{1}$. In particular $w_{0} \in U_{1}$.
As in [8], there exists $R_{0}>0$ and $\varepsilon>0$ such that $w_{0}+R_{0} u_{\varepsilon, a} \in U_{2}$. We put

$$
\mathcal{F}=\left\{h:[0,1] \rightarrow H \text { continuous, } h(0)=w_{0} \text { and } h(1)=w_{0}+R_{0} u_{\varepsilon, a}\right\} .
$$

It is clear that $h:[0,1] \rightarrow H$ with $h(t)=w_{0}+t R_{0} u_{\varepsilon, a}$ belongs to \mathcal{F}. Thus by Lemma 4.2 we conclude that

$$
\begin{equation*}
c_{0}=\inf _{h \in \mathcal{F}} \max _{t \in[0,1]} J_{\lambda}(h(t))<c+\frac{1}{N}\left(p_{0} S\right)^{N / 2} \tag{4.8}
\end{equation*}
$$

Since $h(0) \in U_{1}, h(1) \in U_{2}$ and h is continuous, there exists $\left.t_{0} \in\right] 0,1[$ such that $h\left(t_{0}\right) \in \mathcal{N}_{\lambda}^{-}$Hence

$$
\begin{equation*}
c_{0} \geq c^{-}=\inf _{u \in \mathcal{N}_{\lambda}^{-}} J_{\lambda}(u) \tag{4.9}
\end{equation*}
$$

Applying again the Ekeland variational principle, we obtain a minimizing sequence $\left(u_{n}\right) \subset \mathcal{N}_{\lambda}^{-}$such that (a) $J_{\lambda}\left(u_{n}\right) \rightarrow c^{-}$and (b) $\left\|J_{\lambda}^{\prime}\left(u_{n}\right)\right\|_{-1} \rightarrow 0$. Thus, we obtain a subsequence $\left(u_{n}\right)$ such that

$$
u_{n} \rightarrow w_{1} \text { strongly in } H
$$

This implies that w_{1} is a critical point for $J_{\lambda}, w_{1} \in \mathcal{N}_{\lambda}^{-}$and $J_{\lambda}\left(w_{1}\right)=c^{-}$.
Proof of Theorem 1.5. From the facts that $w_{0} \in \mathcal{N}_{\lambda}^{+}, w_{1} \in \mathcal{N}_{\lambda}^{-}$and $\mathcal{N}_{\lambda}^{+} \cap \mathcal{N}_{\lambda}^{-}=\emptyset$ for $\lambda \in\left(0, \frac{\Lambda_{0}}{2}\right)$, we deduce that problem (1.1) admits at least two distinct solutions in H.

References

[1] A. Ambrosetti, P. H. Rabinowitz; Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.
[2] H. Brezis, E. Lieb; A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.
[3] H. Brezis, L. Nirenberg; A minimization problem with critical exponent and non zero data, in "symmetry in nature", Scuola Norm. Sup. Pisa, (1989) 129-140.
[4] H. Brezis, L. Nirenberg; Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent, Comm. Pure Appl. Math., 36 (1983), 437-477.
[5] I. Ekeland; On the variational principle, J. Math. Anal. Appl., 47 (1974), 324-353.
[6] R. Hadiji, H. Yazidi; Problem with critical Sobolev exponent and with weight, Chinese Ann. Math, Series B, 3 (2007), 327-352.
[7] A. Rimouche; Problème elliptique avec exposant critique de Sobolev et poids, Magister, Université de Tlemcen (2012).
[8] G. Tarantello; On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non linéaire, 9 (1992), 281-304.

Mohammed Bouchekif
Laboratoire Systèmes Dynamiques et Applications, Faculté des Sciences, Université de Tlemcen BP 119 Tlemcen 13000, Algérie

E-mail address: m_bouchekif@yahoo.fr
Ali Rimouche (corresponding author)
Laboratoire Systèmes Dynamiques et Applications, Faculté des Sciences, Université de Tlemcen BP 119 Tlemcen 13000, Algérie

E-mail address: ali.rimouche@mail.univ-tlemcen.dz

[^0]: 2010 Mathematics Subject Classification. 35J20, 35J25, 35J60.
 Key words and phrases. Critical Sobolev exponent; Nehari manifold; variational principle.
 © 2016 Texas State University.
 Submitted June 30, 2015. Published January 6, 2016.

