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NONHOMOGENEOUS ELLIPTIC EQUATIONS INVOLVING
CRITICAL SOBOLEV EXPONENT AND WEIGHT

MOHAMMED BOUCHEKIF, ALI RIMOUCHE

Abstract. In this article we consider the problem

− div
`
p(x)∇u

´
= |u|2

∗−2u+ λf in Ω

u = 0 on ∂Ω

where Ω is a bounded domain in RN , We study the relationship between the

behavior of p near its minima on the existence of solutions.

1. Introduction and statement of main results

In this article we study the existence of solutions to the problem

−div
(
p(x)∇u

)
= |u|2

∗−2u+ λf in Ω
u = 0 on ∂Ω,

(1.1)

where Ω is a smooth bounded domain of RN , N ≥ 3, f belongs to H−1 =
W−1,2(Ω) \ {0}, p ∈ H1(Ω) ∩ C(Ω̄) is a positive function, λ is a real parameter
and 2∗ = 2N

N−2 is the critical Sobolev exponent for the embedding of H1
0 (Ω) into

L2∗(Ω).
For a constant function p, problem (1.1) has been studied by many authors, in

particular by Tarantello [8]. Using Ekeland’s variational principle and minimax
principles, she proved the existence of at least one solution of (1.1) with λ = 1
when f ∈ H−1 and satisfies∫

Ω

fu dx ≤ KN

(∫
Ω

|∇u|2
)(N+2)/4

for
∫

Ω

|u|2
∗

= 1,

with

KN =
4

N − 2
(
N − 2
N + 2

)(N+2)/4.

Moreover when the above inequality is strict, she showed the existence of at least
a second solution. These solutions are nonnegative when f is nonnegative.
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The following problem has been considered by several authors,

−div(p(x)∇u) = |u|2
∗−2u+ λu in Ω

u > 0 in Ω
u = 0 on ∂Ω .

(1.2)

We quote in particular the celebrate paper by Brezis and Nirenberg [4], and that
of Hadiji and Yazidi [6]. In [4], the authors studied the case when p is constant.

To our knowledge, the case where p is not constant has been considered in [6]
and [7]. The authors in [6] showed that the existence of solutions depending on
a parameter λ, N , and the behavior of p near its minima. More explicitly: when
p ∈ H1(Ω) ∩ C(Ω̄) satisfies

p(x) = p0 + βk|x− a|k + |x− a|kθ(x) in B(a, τ), (1.3)

where k, βk, τ are positive constants, and θ tends to 0 when x approaches a, with
a ∈ p−1({p0}) ∩ Ω, p0 = minx∈Ω p(x), and B(a, τ) denotes the ball with center 0
and radius τ , when 0 < k ≤ 2, and p satisfies the condition

kβk ≤
∇p(x).(x− a)
|x− a|k

a.e x ∈ Ω. (1.4)

On the one hand, they obtained the existence of solutions to (1.2) if one of the
following conditions is satisfied:

(i) N ≥ 4, k > 2 and λ ∈ ]0, λ1(p)[;
(ii) N ≥ 4, k = 2 and λ ∈ ]γ̃(N), λ1(p)[;

(iii) N = 3, k ≥ 2 and λ ∈ ]γ(k), λ1(p)[;
(iv) N ≥ 3, 0 < k < 2 and p satisfies (1.4), λ ∈]λ∗, λ1(p)[;

where

γ̃(N) =
(N − 2)N(N + 2)

4(N − 1)
β2,

γ(k) is a positive constant depending on k, and λ∗ ∈ [β̃k N
2

4 , λ1(p)[, with β̃k =
βk min[(diam Ω)k−2, 1].

On the other hand, non-existence results are given in the following cases:

(a) N ≥ 3, k > 0 and λ ≤ δ(p).
(b) N ≥ 3, k > 0 and λ ≥ λ1(p).

We denote by λ1(p) the first eigenvalue of (−div(p∇.), H) and

δ(p) =
1
2

inf
u∈H1

0 (Ω)\{0}

∫
Ω
∇p(x)(x− a)|∇u|2dx∫

Ω
|u|2dx

.

Then we formulate the question: What happens in (1.1) when p is not necessarily
a constant function? A response to this question is given in Theorem 1.5 below.

Notation. S is the best Sobolev constant for the embedding fromH1
0 (Ω) to L2∗(Ω).

‖ · ‖ is the norm of H1
0 (Ω) induced by the product (u, v) =

∫
Ω
∇u∇v dx. ‖ · ‖−1 and

| · |p = (
∫

Ω
|.|pdx)1/p are the norms in H−1 and Lp(Ω) for 1 ≤ p <∞ respectively.

We denote the space H1
0 (Ω) by H and the integral

∫
Ω
u dx by

∫
u. ωN is the area

of the sphere SN−1 in RN .
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Let E = {u ∈ H :
∫

Ω
f̃(x)u(x)dx > 0} and

α(p) :=
1
2

inf
u∈E

∫
Ω
p̂(x)|∇u(x)|2dx∫
Ω
f̃(x)u(x)dx

,

with

f̃(x) := ∇f(x).(x− a) +
N + 2

2
f(x), p̂(x) = ∇p(x).(x− a).

Put

Λ0 := KN
p

1/2
0

‖f‖−1
(S(p))N/4, Al = (N − 2)2

∫
RN

|x|l+2

(1 + |x|2)N
,

B =
∫

RN

1
(1 + |x|2)N

, D := w0(a)
∫

RN
(1 + |x|2)(N+2)/2,

(1.5)

where l ≥ 0 and

S(p) := inf
u∈H\{0}

∫
Ω
p(x)|∇u|2

|u|22∗
.

Definition 1.1. We say that u is a ground state solution of (1.1) if Jλ(u) =
min{Jλ(v) : v is a solution of (1.1)}. Here Jλ is the energy functional associate
with (1.1).

Remark 1.2. By the Ekeland variational principle [5] we can prove that for λ ∈
(0,Λ0) there exists a ground state solution to (1.1) which will be denoted by w0.
The proof is similar to that in [8].

Remark 1.3. Noting that if u is a solution of the problem (1.1), then −u is also a
solution of the problem (1.1) with −λ instead of λ. Without loss of generality, we
restrict our study to the case λ ≥ 0.

Our main results read as follows.

Theorem 1.4. Suppose that Ω is a star shaped domain with respect to a and p
satisfies (1.3). Then there is no solution of problem (1.1) in E for all 0 ≤ λ ≤ α(p).

Theorem 1.5. Let p ∈ H1(Ω) ∩ C(Ω̄) such that p0 > 0 and p satisfies (1.3) then,
for 0 < λ < Λ0

2 , problem (1.1) admits at least two solutions in one of the following
condition:

(i) k > N−2
2 ,

(ii) β(N−2)/2 >
2D

A(N−2)/2
(A0
B )(6−N)/4.

This article is organized as follows: in the forthcoming section, we give some
preliminaries. Section 3 and 4 present the proofs of our main results.

2. Preliminaries

A function u in H is said to be a weak solution of (1.1) if u satisfies∫
(p∇u∇v − |u|2

∗−2uv − λfv) = 0 for all v ∈ H.

It is well known that the nontrivial solutions of (1.1) are equivalent to the non zero
critical points of the energy functional

Jλ(u) =
1
2

∫
p|∇u|2 − 1

2∗

∫
|u|2

∗
− λ

∫
fu . (2.1)
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We know that Jλ is not bounded from below on H, but it is on a natural manifold
called Nehari manifold, which is defined by

Nλ = {u ∈ H \ {0} : 〈J ′λ(u), u〉 = 0}.

Therefore, for u ∈ Nλ, we obtain

Jλ(u) =
1
N

∫
p|∇u|2 − λN + 2

2N

∫
fu, (2.2)

or

Jλ(u) = −1
2

∫
p|∇u|2 +

N + 2
2N

∫
|u|2

∗
. (2.3)

It is known that the constant S is achieved by the family of functions

Uε(x) =
ε(N−2)/2

(ε2 + |x|2)(N−2)/2
ε > 0, x ∈ RN , (2.4)

For a ∈ Ω, we define Uε,a(x) = Uε(x− a) and uε,a(x) = ξa(x)Uε,a(x), where

ξa ∈ C∞0 (Ω) with ξa ≥ 0 and ξa = 1 in a neighborhood of a. (2.5)

We start with the following lemmas given without proofs and based essentially
on [8].

Lemma 2.1. The functional Jλ is coercive and bounded from below on Nλ.

Set
Ψλ(u) = 〈J ′λ(u), u〉. (2.6)

For u ∈ Nλ, we obtain

〈Ψ′λ(u), u〉 =
∫
p|∇u|2 − (2∗ − 1)

∫
|u|2

∗
(2.7)

= (2− 2∗)
∫
p|∇u|2 − λ(1− 2∗)

∫
fu. (2.8)

So it is natural to split Nλ into three subsets corresponding to local maxima,
local minima and points of inflection defined respectively by

N+
λ = {u ∈ Nλ : 〈Ψ′λ(u), u〉 > 0}, N−λ = {u ∈ Nλ : 〈Ψ′λ(u), u〉 < 0},

N 0
λ = {u ∈ Nλ : 〈Ψ′λ(u), u〉 = 0}.

Lemma 2.2. Suppose that u0 is a local minimizer of Jλ on Nλ. Then if u0 /∈ N 0
λ ,

we have J ′λ(u0) = 0 in H−1.

Lemma 2.3. For each λ ∈ (0,Λ0) we have N 0
λ = ∅.

By Lemma 2.3, we have Nλ = N+
λ ∪N

−
λ for all λ ∈ (0,Λ0). For u ∈ H \ {0}, let

tm = tmax(u) :=
( ∫

p|∇u|2

(2∗ − 1)
∫
|u|2∗

)(N−2)/4

.

Lemma 2.4. Suppose that λ ∈ (0,Λ0) and u ∈ H \ {0}, then
(i) If

∫
fu ≤ 0, then there exists an unique t+ = t+(u) > tm such that t+u ∈ N−λ

and
Jλ(t+u) = sup

t≥tm
Jλ(tu).
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(ii) If
∫
fu > 0, then there exist unique t− = t−(u), t+ = t+(u) such that

0 < t− < tm < t+, t−u ∈ N+
λ , t+u ∈ N−λ and

Jλ(t+u) = sup
t≥tm

Jλ(tu); Jλ(t−u) = inf
0≤t≤t+

Jλ(tu).

Thus we put

c = inf
u∈Nλ

Jλ(u), c+ = inf
u∈N+

λ

Jλ(u), c− = inf
u∈N−

λ

Jλ(u).

Lemma 2.5. (i) If λ ∈ (0,Λ0), then c ≤ c+ < 0.
(ii) If λ ∈ (0, Λ0

2 ), then c− > 0.

3. Nonexistence result

Some properties of α(p).

Proposition 3.1. (1) Assume that p ∈ C1(Ω) and there exists b ∈ Ω such that
∇p(b)(b− a) < 0 and f ∈ C1 in a neighborhood of b. Then α(p) = −∞.

(2) If p ∈ C1(Ω) satisfying (1.3) with k > 2 and ∇p(x)(x− a) ≥ 0 for all x ∈ Ω
and f ∈ C1 in a neighborhood of a and f(a) 6= 0, then α(p) = 0 for all N ≥ 3.

(3) If p ∈ H1(Ω) ∩ C(Ω̄) and ∇p(x)(x− a) ≥ 0 a.e x ∈ Ω, then α(p) ≥ 0.

Proof. (1) Set ϕ ∈ C∞0 (RN ) such that

0 ≤ ϕ ≤ 1, ϕ(x) =

{
1 if x ∈ B(0; r)
0 if x /∈ B(0; 2r),

(3.1)

where 0 < r < 1.
Set ϕj(x) = sgn[f̃(x)]ϕ(j(x− b)) for j ∈ N∗. We have

α(p) ≤ 1
2

∫
B(b, 2rj )

p̂(x)|∇ϕj(x)|2∫
B(b, 2rj )

f̃(x)ϕj(x)
.

Using the change of variable y = j(x− b) and applying the dominated convergence
theorem, we obtain

α(p) ≤ j2

2

[ p̂(b) ∫
B(0,2r)

|∇ϕ(y)|2

|f̃(b)|
∫
B(0,2r)

ϕ(y)
+ o(1)

]
,

letting j →∞, we obtain the desired result.
(2) Since p ∈ C1(Ω) in a neighborhood V of a, we write

p(x) = p0 + βk|x− a|k + θ1(x), (3.2)

where θ1 ∈ C1(V ) such that

lim
x→a

θ1(x)
|x− a|k

= 0. (3.3)

Thus, we deduce that there exists 0 < r < 1, such that

θ1(x) ≤ |x− a|k, for all x ∈ B(a, 2r). (3.4)

Let ψj(x) = sgn[f̃(x)]ϕ(j(x− a)), ϕ ∈ C∞0 (RN ) defined as in (3.1), we have

0 ≤ α(p) ≤ 1
2

∫
∇p(x).(x− a)|∇ψj(x)|2∫

f̃(x)ψj(x)
.
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Using (3.2), we obtain

0 ≤ α(p) ≤ kβk
2

∫
B(a, 2rj )

|x− a|k|∇ψj(x)|2∫
B(a, 2rj )

f̃(x)ψj(x)
+

1
2

∫
B(a, 2rj )

∇θ1(x).(x− a)|∇ψj(x)|2∫
B(a, 2rj )

f̃(x)ψj(x)
.

Using the change of variable y = j(x−a), and integrating by parts the second term
of the right hand side, we obtain

0 ≤ α(p) ≤ kβk
2jk−2

∫
B(0,2r)

|y|k|∇ϕ(y)|2∫
B(0,2r)

|f̃(yj + a)|ϕ(y)
+
j

2

∫
B(0,2r)

θ1(yj + a)div(y|∇ϕ(y)|2)∫
B(0,2r)

|f̃(yj + a)|ϕ(y)
.

Using (3.4) and applying the dominated convergence theorem, we obtain

0 ≤ α(p) ≤ kβk
(N + 2)jk−2

∫
B(0,2r)

|y|k|∇ϕ(y)|2

|f(a)|
∫
B(0,2r)

ϕ(y)

+
1

(N + 2)jk−1

∫
B0,2r)

|y|kdiv(y|∇ϕ(y)|2)

|f(a)|
∫
B(0,2r)

ϕ(y)
+ o(1).

Therefore, for k > 2 we deduce that α(p) = 0, which completes the proof. �

Proof of Theorem 1.4. Suppose that u is a solution of (1.1). We multiply (1.1)
by ∇u(x).(x− a) and integrate over Ω, we obtain∫

|u|2
∗−1∇u(x).(x− a) = −N − 2

2

∫
|u(x)|2

∗
, (3.5)

λ

∫
f(x)∇u(x).(x− a) = −λ

∫
(∇f(x).(x− a) +Nf(x))u(x), (3.6)

−
∫

div(p(x)∇u(x))∇u(x).(x− a)

= −N − 2
2

∫
p(x)|∇u(x)|2 − 1

2

∫
∇p(x).(x− a)|∇u(x)|2

− 1
2

∫
∂Ω

p(x)(x− a).ν|∂u
∂ν
|2.

(3.7)

Combining (3.5), (3.6) and (3.7), we obtain

− N − 2
2

∫
p(x)|∇u(x)|2 − 1

2

∫
∇p(x).(x− a)|∇u(x)|2

− 1
2

∫
∂Ω

p(x)(x− a).ν|∂u
∂ν
|2

= −N − 2
2

∫
|u(x)|2

∗
− λ

∫
(∇f(x).(x− a) +Nf(x))u(x).

(3.8)

Multiplying (1.1) by N−2
2 u and integrating by parts, we obtain

N − 2
2

∫
p(x)|∇u(x)|2 =

N − 2
2

∫
|u(x)|2

∗
+ λ

N − 2
2

∫
f(x)u(x). (3.9)

From (3.8) and (3.9), we obtain

−1
2

∫
∇p(x).(x− a)|∇u(x)|2 − 1

2

∫
∂Ω

p(x)(x− a).ν|∂u
∂ν
|2 + λ

∫
f̃(x)u(x) = 0.
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Then

λ >
1
2

∫
∇p(x).(x− a)|∇u(x)|2∫

f̃(x)u(x)
≥ α(p). (3.10)

Hence the desired result is obtained.

4. Existence of solutions

We begin by proving that

inf
u∈N−

λ

Jλ(u) = c− < c+
1
N

(p0S)N/2. (4.1)

By some estimates in Brezis and Nirenberg [3], we have

|w0 +Ruε,a|2
∗

2∗ = |w0|2
∗

2∗ +R2∗ |uε,a|2
∗

2∗ + 2∗R
∫
|w0|2

∗−2w0uε,a

+ 2∗R2∗−1

∫
u2∗−1
ε,a w0 + o(ε(N−2)/2),

(4.2)

Put

|∇uε,a|22 = A0 +O(εN−2), |uε,a|2
∗

2∗ = B +O(εN ), (4.3)

S = S(1) = A0B
−2/2∗ . (4.4)

Lemma 4.1. Let p ∈ H1(Ω) ∩ C(Ω̄) satisfying (1.3) Then we have estimate∫
p(x)|∇uε,a(x)|2

≤


p0A0 +O(εN−2) if N − 2 < k,

p0A0 +Akε
k + o(εk) if N − 2 > k,

p0A0 + (N−2)2

2 (βN−2 +M)ωNεN−2| ln ε|+ o(εN−2| ln ε|) if N − 2 = k,

where M is a positive constant.

Proof. by calculations,

ε2−N
∫
p(x)|∇uε,a(x)|2

=
∫

p(x)|∇ξa(x)|2

(ε2 + |x− a|2)N−2
+ (N − 2)2

∫
p(x)|ξa(x)|2|x− a|2

(ε2 + |x− a|2)N

− (N − 2)
∫
p(x)∇ξ2

a(x)(x− a)
(ε2 + |x− a|2)N−1

.

Suppose that ξa ≡ 1 in B(a, r) with r > 0 small enough. So, we obtain

ε2−N
∫
p(x)|∇uε,a(x)|2

=
∫

Ω\B(a,r)

p(x)|∇ξa(x)|2

(ε2 + |x− a|2)N−2
+ (N − 2)2

∫
p(x)|ξa(x)|2|x− a|2

(ε2 + |x− a|2)N

− 2(N − 2)
∫

Ω\B(a,r)

p(x)ξa(x)∇ξa(x)(x− a)
(ε2 + |x− a|2)N−1

.
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Applying the dominated convergence theorem,∫
p(x)|∇uε,a(x)|2 = (N − 2)2εN−2

∫
p(x)|ξa(x)|2|x− a|2

(ε2 + |x− a|2)N
+O(εN−2).

Using expression (1.3), we obtain

ε2−N (N − 2)−2

∫
p(x)|∇uε,a(x)|2

=
∫
B(a,τ)

p0|x− a|2 + βk|x− a|k+2 + θ(x)|x− a|k+2

(ε2 + |x− a|2)N

+
∫

Ω\B(a,τ)

p(x)|ξa(x)|2|x− a|2

(ε2 + |x− a|2)N
+O(εN−2).

Using again the definition of ξa, and applying the dominated convergence theorem,
we obtain

ε2−N (N − 2)−2

∫
p(x)|∇uε,a(x)|2

= p0

∫
RN

|x− a|2

(ε2 + |x− a|2)N
+ βk

∫
B(a,τ)

|x− a|k+2

(ε2 + |x− a|2)N

+
∫
B(a,τ)

θ(x)|x− a|k+2

(ε2 + |x− a|2)N
+O(εN−2).

We distinguish three cases:
Case 1. If k < N − 2,

ε2−N (N − 2)−2

∫
p(x)|∇uε,a(x)|2

= p0

∫
RN

|x− a|2

(ε2 + |x− a|2)N
+
∫
B(a,τ)

θ(x)|x− a|k+2

(ε2 + |x− a|2)N

+
[ ∫

RN

βk|x− a|k+2

(ε2 + |x− a|2)N
−
∫

RN\B(a,τ)

βk|x− a|k+2

(ε2 + |x− a|2)N
]

+O(εN−2)

Using the change of variable y = ε−1(x−a) and applying the dominated convergence
theorem, we obtain

(N − 2)−2

∫
p(x)|∇uε,a(x)|2

= p0B0 + εk
∫

RN

βk|y|k+2

(1 + |y|2)N
+ εk

∫
RN

θ(a+ εy)|y|k+2

(1 + |y|2)N
χB(0, τε ) + o(εk).

Since θ(x) tends to 0 when x tends to a, this gives us∫
p(x)|∇uε,a(x)|2 = p0A0 + βkAkε

k + o(εk).

Case 2. If k > N − 2,∫
p(x)|∇uε,a(x)|2 = p0A0 + (N − 2)2εN−2

[ ∫
B(a,τ)

(βk + θ(x))|x− a|k+2

(ε2 + |x− a|2)N

−
∫
B(a,τ)\Ω

(βk + θ(x))|x− a|k+2

(ε2 + |x− a|2)N
]
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+ (N − 2)2εN−2

∫
B(a,τ)

θ(x)|x− a|k+2

(ε2 + |x− a|2)N
+O(εN−2).

By the change of variable y = x− a, we obtain∫
p(x)|∇uε,a(x)|2 = p0A0 + (N − 2)2εN−2

∫
B(0,τ)

(βk + θ(a+ y))|y|k+2

(ε2 + |y|2)N

+ (N − 2)2εN−2

∫
B(a,τ)

θ(a+ y)|y|k+2

(ε+ |y|2)N
+O(εN−2).

Put M := max
x∈Ω̄

θ(x) where θ(x) is given by (1.3). Then∫
p(x)|∇uε,a(x)|2

= p0A0 + εN−2(N − 2)2(βk +M)
∫
B(0,τ)

|y|k+2

(ε2 + |y|2)N
dy +O(εN−2).

Applying the dominated convergence theorem,∫
p(x)|∇uε,a(x)|2 = p0A0 +O(εN−2).

Case 3. If k = N − 2, following the same previous steps, we obtain∫
p(x)|∇uε,a(x)|2

= p0A0 + (N − 2)2εN−2

∫
B(a,τ)

θ(x)|x− a|k+2

(ε2 + |x− a|2)N

+ (N − 2)2εN−2
[ ∫

B(a,τ)

βN−2|x− a|N

(ε2 + |x− a|2)N
−
∫
B(a,τ)\Ω

βN−2|x− a|N

(ε2 + |x− a|2)N
]

+O(εN−2).

Therefore, ∫
p(x)|∇uε,a(x)|2

= p0A0 + (N − 2)2εN−2

∫
B(a,τ)

(βN−2 + θ(x))|x− a|N

(ε2 + |x− a|2)N

+ (N − 2)2εN−2

∫
B(a,τ)

θ(x)|x− a|k+2

(ε2 + |x− a|2)N
+O(εN−2).

Then∫
p(x)|∇uε,a(x)|2

≤ p0A0 + (N − 2)2εN−2(βN−2 +M)
∫
B(a,τ)

|x− a|N

(ε2 + |x− a|2)N
+O(εN−2).

On the other hand

εN−2

∫
B(a,τ)

|x− a|N

(ε2 + |x− a|2)N
= ωNε

N−2

∫ τ

0

r2N−1

(ε2 + r2)N
dr +O(εN−2)

=
1

2N
ωNε

N−2

∫ τ

0

((ε2 + r2)N )′

(ε2 + r2)N
dr +O(εN−2),
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and

εN−2

∫
B(a,τ)

|x− a|N

(ε2 + |x− a|2)N
=

1
2
ωNε

N−2| ln ε|+ o(εN−2| ln ε|), (4.5)

Therefore,∫
p(x)|∇uε,a(x)|2 ≤ p0A0 +

(N − 2)2

2
(βN−2 +M)ωNεN−2| ln ε|+ o(εN−2| ln ε|).

�

Knowing that w0 6= 0, we set Ω′ ⊂ Ω as a set of positive measure such that
w0 > 0 on Ω′. Suppose that a ∈ Ω′ (otherwise replace w0 by −w0 and f by −f).

Lemma 4.2. For each R > 0 and 2k > N − 2, there exists ε0 = ε0(R, a) > 0 such
that

Jλ(w0 +Ruε,a) < c+
1
N

(p0S)N/2, for all 0 < ε < ε0.

Proof. We have

Jλ(w0 +Ruε,a) =
1
2

∫
p|∇w0|2 +R

∫
p∇w0∇uε,a +

R2

2

∫
p|∇uε,a|2

− 1
2∗

∫
|w0 +Ruε,a|2

∗
− λ

∫
fw0 − λR

∫
fuε,a.

Using (4.2), (4.3) and the fact that w0 satisfies (1.1), we obtain

Jλ(w0 +Ruε,a)

≤ c+
R2

2

∫
p|∇uε,a|2 −

R2∗

2∗
A−R2∗−1

∫
u2∗−1
ε,a w0 + o

(
ε(N−2)/2

)
.

Taking w = 0 the extension of w0 by 0 outside of Ω, it follows that∫
u2∗−1
ε,a w0 =

∫
RN

w(x)ξa(x)
ε(N+2)/2

(ε2 + |x− a|2)(N+2)/2

= ε(N−2)/2

∫
RN

w(x)ξa(x)
1
εN

ψ(
x

ε
)

where ψ(x) = (1 + |x|2)(N+2)/2 ∈ L1(RN ). We deduce that∫
RN

w(x)ξa(x)
1
εN

ψ(
x

ε
)→ D as ε→ 0 .

Then ∫
u2∗−1
ε,a w0 = ε(N−2)/2D + o(ε(N−2)/2).

Consequently

Jλ(w0 +Ruε,a)

≤ c+
R2

2

∫
p|∇uε,a|2 −

R2∗

2∗
B −R2∗−1ε(N−2)/2D + o

(
ε(N−2)/2

)
.

(4.6)

Replacing
∫
p|∇uε,a|2 by its value in (4.6), we obtain

Jλ(w0 +Ruε,a)
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≤



c+ R2

2 p0A0 − R2∗

2∗ B − ε
(N−2)/2DR2∗−1 + o(ε(N−2)/2) if k > N−2

2 ,

c+ R2

2 p0A0 − R2∗

2∗ B + βkAkε
k + o(εk) if k < N−2

2 ,

c+ R2

2 p0A0 − R2∗

2∗ B − ε
(N−2)/2

(
R2

2 β(N−2)/2A(N−2)/2

−DR2∗−1
)

+ o(ε(N−2)/2) if k = N−2
2 .

Using that the function R 7→ Φ(R) = R2

2 B−
R2∗

2∗ A0 attains its maximum 1
N (p0S)N/2

at the point R1 := (A0
B )(N−2)/4, we obtain

Jλ(w0 +Ruε,a)

≤



c+ 1
N (p0S)N/2 − ε(N−2)/2DR2∗−1

1 + o(ε(N−2)/2) if k > N−2
2 ,

c+ 1
N (p0S)N/2 +Akε

k + o(εk) if k < N−2
2 ,

c+ 1
N (p0S)N/2 − ε(N−2)/2

(
R2

1
2 β(N−2)/2A(N−2)/2

−DR2∗−1
1

)
+ o(ε(N−2)/2) if k = N−2

2 .

So for ε0 = ε0(R, a) > 0 small enough, k > N−2
2 or k = N−2

2 and

β(N−2)/2 >
2DR2∗−3

1

B(N−2)/2
,

we conclude that
Jλ(w0 +Ruε,a) < c+

1
N

(p0S)N/2, (4.7)

for all 0 < ε < ε0. �

Proposition 4.3. Let {un} ⊂ N−λ be a minimizing sequence such that:
(a) Jλ(un)→ c− and
(b) ‖J ′λ(un)‖−1 → 0.

Then for all λ ∈ (0,Λ0/2), {un} admits a subsequence that converges strongly to a
point w1 in H such that w1 ∈ N−λ and Jλ(w1) = c−.

Proof. Let u ∈ H be such that ‖u‖ = 1. Then

t+(u)u ∈ N−λ and Jλ(t+(u)u) = max
t≥tm

Jλ(tu).

The uniqueness of t+(u) and its extremal property give that u 7→ t+(u) is a con-
tinuous function. We put

U1 = {u = 0 or u ∈ H \ {0} : ‖u‖ < t+(
u

‖u‖
)},

U2 = {u ∈ H \ {0} : ‖u‖ > t+(
u

‖u‖
)}.

Then H \ N−λ = U1 ∪ U2 and N+
λ ⊂ U1. In particular w0 ∈ U1.

As in [8], there exists R0 > 0 and ε > 0 such that w0 +R0uε,a ∈ U2. We put

F = {h : [0, 1]→ H continuous, h(0) = w0 and h(1) = w0 +R0uε,a}.
It is clear that h : [0, 1] → H with h(t) = w0 + tR0uε,a belongs to F . Thus by

Lemma 4.2, we conclude that

c0 = inf
h∈F

max
t∈[0,1]

Jλ(h(t)) < c+
1
N

(p0S)N/2. (4.8)
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Since h(0) ∈ U1, h(1) ∈ U2 and h is continuous, there exists t0 ∈]0, 1[ such that
h(t0) ∈ N−λ Hence

c0 ≥ c− = inf
u∈N−

λ

Jλ(u). (4.9)

Applying again the Ekeland variational principle, we obtain a minimizing sequence
(un) ⊂ N−λ such that (a) Jλ(un)→ c− and (b) ‖J ′λ(un)‖−1 → 0. Thus, we obtain
a subsequence (un) such that

un → w1 strongly in H.

This implies that w1 is a critical point for Jλ, w1 ∈ N−λ and Jλ(w1) = c−. �

Proof of Theorem 1.5. From the facts that w0 ∈ N+
λ , w1 ∈ N−λ and N+

λ ∩N
−
λ = ∅

for λ ∈ (0, Λ0
2 ), we deduce that problem (1.1) admits at least two distinct solutions

in H. �
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Mohammed Bouchekif
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