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MULTIPLE SOLUTIONS FOR QUASILINEAR ELLIPTIC
EQUATIONS WITH SIGN-CHANGING POTENTIAL

RUIMENG WANG, KUN WANG, KAIMIN TENG

Abstract. In this article, we study the quasilinear elliptic equation

−∆pu− (∆pu2)u + V (x)|u|p−2u = g(x, u), x ∈ RN ,

where the potential V (x) and the nonlinearity g(x, u) are allowed to be sign-

changing. Under some suitable assumptions on V and g, we obtain the multi-

plicity of solutions by using minimax methods.

1. Introduction

In this article, we are concerned with the multiplicity of nontrivial solutions for
the quasilinear elliptic equation

−∆pu− (∆pu
2)u+ V (x)|u|p−2u = g(x, u), x ∈ RN , (1.1)

where ∆pu := div(|∇u|p−2∇u) is the p-Laplacian operator with 2 ≤ p < N , N ≥ 3,
V ∈ C(RN ) and g ∈ C(RN × R) satisfy superlinear growth at infinity.

In recent years, there has been increasingly interest in the study of the quasilinear
Schrödinger equation

−∆u−∆(u2)u+ V (x)u = g(x, u), x ∈ RN . (1.2)

Such equations are related to the existence of solitary wave solutions for quasilinear
Schrödinger equations

i∂tψ = −∆ψ +W (x)ψ − g(x, |ψ|2)ψ − κ∆[ρ(|ψ|2)]ρ′(|ψ|2)ψ, (1.3)

where ψ : R × RN → C, W (x) is a given potential, κ is a real constant and
ρ, g are real functions. Quasilinear Schrödinger equations of the type (1.3) with
κ > 0 arise in various branches of mathematical physics and have been derived as
models of several physical phenomena, such as superfluid film equations in plasma
physics [11] and the fluid mechanics in condensed matter theory [5, 12, 19, 23, 17]
and so on. The related Schrödinger equations for κ = 0 have been extensively
studied (see e.g. [4, 10, 9] and their references therein) in the last few decades. For
κ > 0, the existence of a positive ground state solution has been proved in [18] by
using a constrained minimization argument, which gives a solution of (1.2) with
an unknown Lagrange multiplier λ in front of nonlinear term. In [14], the authors
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establish the existence of ground states of soliton type solutions by a minimization
argument. In [15], by a change of variables the quasilinear problem was transformed
to a semilinear one and Orlicz space framework was used as the working space, and
they were able to prove the existence of positive solutions of (1.2) by the mountain-
pass theorem. The same method of change of variables was used recently also in [8],
but the usual Sobolev space H1(RN ) framework was used as the working space and
they studied different class of nonlinearities. In [16], it was established the existence
of both one-sign and nodal ground states of soliton type solutions by the Nehari
method. In [27], where the potential V (x) and g is allowed to be sign-changing, g
is of superlinear growth at infinity in u, the author obtain the existence of infinitely
many nontrivial solutions by using dual approach and symmetric mountain pass
theorem.

Recently, there has been a lot of results on existence and multiplicity for problem
(1.1). The existence of nontrivial weak solutions of (1.1) has been proved in [21] by
using minimax methods and method of Changes of variable, where V is a positive
continuous potential bounded away from zero. In [2], the authors use variational
method together with the Lusternick-Schnirelmann category theory to get the ex-
istence and multiplicity of nontrivial weak solutions, where V is also a positive
continuous potential bounded away from zero. In [1], the authors established the
multiplicity of positive weak solutions through using minimax methods, where the
potential V is of form V (x) = λA(x) + 1 and A(x) is a nonnegative continuous
function. The other related results can be seen in [3] and the references therein.

In the above mentioned paper, the potential V is always assumed to be positive
or vanish at infinity except [27]. In the present paper we shall consider problem (1.1)
with non-constant and sign-changing potential. We will investigate the existence
of at least two solutions and the existence of infinitely many nontrivial solutions
of (1.1) through using the Ekeland’s variational principle, variant mountain pass
theorem and symmetric mountain pass theorem. Our main results improve the
corresponding theorems in [27] in some sense.

For stating our main result, we make the following assumptions on the potential
function V (x)

(A1) V ∈ C(RN ) and infx∈RN V (x) > −∞, and there exists a constant d0 > 0
such that

lim
|y|→∞

meas({x ∈ RN : |x− y| ≤ d0, V (x) ≤M}) = 0, ∀M > 0.

Inspired by [13, 27], we can find a constant V0 > 0 such that V (x) = V (x) +V0 ≥ 1
for all x ∈ RN , and let g(x, u) = g(x, u) + V0|u|p−2u, for all (x, u) ∈ RN ×R. Then
it is easy to show the following Lemma.

Lemma 1.1. Equation (1.1) is equivalent to the problem

−∆pu− (∆pu
2)u+ V (x)|u|p−2u = g(x, u), x ∈ RN . (1.4)

In what follows, we impose some assumptions on g and its primitive G(x, t) =∫ t
0
g(x, s)ds as follows:

(A2) g ∈ C(RN × R,R) and there exist constant C > 0 and 2p < q < 2p∗ such
that

|g(x, u)| ≤ C(|u|p−1 + |u|q−1), ∀(x, u) ∈ RN × R;



EJDE-2016/10 SIGN-CHANGING POTENTIAL 3

(A3) lim|u|→∞G(x, u)/|u|2p = +∞ uniformly in x ∈ RN , and there exists r0 > 0,
τ < p and C0 such that inf G(x, u) ≥ C0|u|τ > 0, for all (x, u) ∈ RN × R,
|u| ≥ r0;

(A4) G̃(x, u) = 1
2pug(x, u)−G(x, u) ≥ 0, There exist C1 and σ > 2N

N+p such that(
G(x, u)

)σ
≤ C1|u|pσG̃(x, u) for all (x, u) ∈ RN × R, |u| ≥ r0;

(A5) There exist µ > 2p and C2 > 0 such that µG(x, u) ≤ ug(x, u) + C2|u|p, for
all (x, u) ∈ RN × R;

(A6) There exist µ > 2p and r1 > 0 such that µG(x, u) ≤ ug(x, u), for all
(x, u) ∈ RN × R with |u| ≥ r1;

(A7) lim|u|→0
G(x,u)
|u|p = 0 uniformly in x ∈ RN ;

(A8) g(x,−u) = −g(x, u) for all (x, u) ∈ RN × R.

Remark 1.2. It follows from (A3) and (A4) that

G̃(x, u) ≥ 1
C1

(G(x, u)
|u|p

)σ
→∞ (1.5)

uniformly for x ∈ RN as |u| → ∞.

Now, we state our main results.

Theorem 1.3. Suppose that conditions (A1)–(A4) are satisfied. Then (1.1) pos-
sesses at least two solutions.

Theorem 1.4. Suppose that conditions (A1)–(A3), (A5) are satisfied. Then (1.1)
possesses at least two solutions.

From (A2) and (A6), it is easy to verified that (A5) holds. Thus we have the
following corollary.

Corollary 1.5. Suppose that conditions (A1)–(A3), (A6) are satisfied. Then (1.1)
possesses at least two solutions.

If we add the hypothesis (A8), we can obtain the infinitely many solutions for
problem (1.1).

Theorem 1.6. Assume that (A1)–(A4), (A8) are satisfied. Then (1.1) possesses
infinitely many nontrivial solutions.

Theorem 1.7. Assume that (A1)–(A3), (A5), (A7), (A8) are satisfied. Then (1.1)
possesses infinitely many nontrivial solutions.

Corollary 1.8. Assume that (A1)–(A3), (A6)–(A8) are satisfied. Then (1.1) pos-
sesses infinitely many nontrivial solutions.

Remark 1.9. If we use the following assumption instead of (A2):
(A2’) g ∈ C(RN × R,R) and there exist constant C3 > 0, p < r ≤ 2p and

2p < q < 2p∗ such that

|g(x, u)| ≤ C3(|u|r−1 + |u|q−1), ∀(x, u) ∈ RN × R.

Then the assumption (A7) is not needed. Thus we can get the similar results as
Theorem 1.3–1.7. Here we omit their statements.
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2. Variational setting and preliminary results

As usual, for 1 ≤ s ≤ +∞, we let

‖u‖s = (
∫

RN
|u(x)|s)1/s, u ∈ Ls(RN ).

We denote C, Ci (i = 0, 1, 2, · · · ) as the various positive constants throughout this
paper. Throughout this section, we make the following assumption on V instead
of (A1):

(A1’) V ∈ C(RN ,R), and infx∈RN V (x) > 0, and there exists a constant d0 > 0
such that

lim
|y|→∞

meas({x ∈ RN : |x− y| ≤ d0, V (x) ≤M}) = 0, ∀M > 0.

Let
E := {u ∈W 1,p(RN ,R) :

∫
RN

V (x)|u|pdx <∞},

which is endowed with the norm

‖u‖E =
(∫

RN
(|∇u|p + V (x)|u|p) dx

)1/p

.

Under assumption (A1’), the embedding E ↪→ Ls(RN ) is continuous for s ∈
[p, p∗), and E ↪→ Lsloc(RN ) is compact for s ∈ [p, p∗), i.e., there are constants
as > 0 such that

‖u‖s ≤ as‖u‖E , ∀u ∈ E, s ∈ [p, p∗).
Furthermore, under assumption (A1’), we have the following compactness embed-
ding lemma due to [7, 6, 26].

Lemma 2.1. Under assumption (A1’), the embedding from E into Ls(RN ) is com-
pact for p ≤ s < p∗.

The energy functional J : E → R formally can be given by

J(u) =
1
p

∫
RN
|∇u|pdx+

2p−1

p

∫
RN
|∇u|p|u|pdx+

1
p

∫
RN

V (x)|u|pdx

−
∫

RN
G(x, u)dx

=
1
p

∫
RN

(1 + 2p−1|u|p)|∇u|pdx+
1
p

∫
RN

V (x)|u|pdx−
∫

RN
G(x, u)dx.

Since the integral
∫

RN |∇u|
p|u|pdx may be infinity, J is not well defined in general

in E. To overcome this difficulty, we apply an argument developed by [15]. We
make the change of variables by v = f−1(u), where f is defined by

f ′(t) =
1

[1 + 2p−1|f(t)|p]1/p
, t ∈ [0,∞),

and
f(−t) = −f(t), t ∈ (−∞, 0].

Some properties of the function f are listed as follows.

Lemma 2.2. Concerning the function f(t) and its derivative satisfy the following
properties:

(1) f is uniquely defined, C2 and invertible;
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(2) |f ′(t)| ≤ 1 for all t ∈ R;
(3) |f(t)| ≤ |t| for all t ∈ R;
(4) f(t)

t → 1 as t→ 0;
(5) f(t)√

t
→ a > 0 as t→ +∞;

(6) f(t)
2 ≤ tf

′(t) ≤ f(t) for all t > 0;

(7) f2(t)
2 ≤ tf ′(t)f(t) ≤ f2(t) for all t ∈ R;

(8) |f(t)| ≤ 2
1
2p |t| 12 for all t ∈ R;

(9) there exists a positive constant C4 such that

|f(t)| ≥

{
C4|t|, |t| ≤ 1,
C4|t|

1
2 , |t| ≥ 1;

(10)

f2(st) ≤

{
sf2(t), 0 ≤ s ≤ 1,
s2f2(t), s ≥ 1;

(11) |f(t)f ′(t)| ≤ 1

2
p−1
p

.

Proof. We only prove properties (10). Since the function (f2)′′ > 0, in [0,+∞),
and therefore item f2 is strictly convex,

f2((1− s)0 + st) ≤ (1− s)f2(0) + sf2(t) = sf2(t).

In order to prove f2(st) ≤ s2f2(t), when s ≥ 1. We notice that, since f ′′ ≤ 0 in
[0,+∞), we have that f ′ is non-increasing in this interval. For any t ≥ 0 fixed
we consider the function h(s) := f(st) − sf(t) defined for s ≥ 1. We have that
h′(s) := tf ′(st)− f(t) ≤ tf ′(t)− f(t) ≤ 0, by (f6). Since h(1) = 0 we consider that
h(s) ≤ 0 for any s ≥ 1; that is, f(st) ≤ sf(t) for any t ≥ 0 and s ≥ 1. Thus the
proof is complete. �

By the change of variables, from J(u) we can define the following functional

I(v) =
1
p

∫
RN

(|∇v|p + V (x)|f(v)|p)dx−
∫

RN
G(x, f(v))dx, (2.1)

which is well defined on the space E. From (A2), we have

G(x, u) ≤ C(|u|p + |u|q), for all (x, u) ∈ RN × R.
By standard arguments, it is easy to show that I ∈ C1(E,R), and

〈I ′(v), w〉 =
∫

RN
|∇v|p−2∇v∇wdx+

∫
RN

V (x)|f(v)|p−2f(v)f ′(v)wdx

−
∫

RN
g(x, f(v))f ′(v)wdx,

(2.2)

for any w ∈ E. Moreover, the critical points of I are the weak solutions of the
following equation

−∆pv + V (x)|f(v)|p−2f(v)f ′(v) = g(x, f(v))f ′(v).

We also observe that if v is a critical point of the functional I, then u = f(v) is a
critical point of the functional J , i.e. u = f(v) is a solution of problem (1.4).

Next, we present the relationship between the norm ‖u‖E in E and
∫

RN (|∇u|p+
V (x)|f(u)|p)dx.
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Proposition 2.3. There exist two constants C5 > 0 and ρ > 0 such that∫
RN

(|∇u|p + V (x)|f(u)|p)dx ≥ C5‖u‖pE , ∀ u ∈ {u ∈ E : ‖u‖E ≤ ρ}.

Proof. Suppose by contradiction, there exists a sequence {un} ⊂ E verifying un 6=
0, for all n ∈ N and ‖un‖E → 0, such that∫

RN

( |∇un|p
‖un‖pE

+ V (x)
|f(un)|p

‖un‖pE

)
dx→ 0. (2.3)

Set vn = un/‖un‖E , then ‖vn‖E = 1, passing to a subsequence, by Lemma 2.1, we
may assume that vn ⇀ v in E, vn → v in Ls(RN ) for s ∈ [p, p∗), vn → v a.e RN .
Therefore, (2.3) implies that∫

RN
|∇vn|pdx→ 0,

∫
RN

V (x)
|f(un)|p

‖un‖pE
dx→ 0,

∫
RN

V (x)|vn|pdx→ 1. (2.4)

Similar to the idea in [25], we assert that for each ε > 0, there exists C6 > 0
independent of n such that meas(Ωn) < ε, where Ωn := {x ∈ RN : |un(x)| ≥ C6}.
Otherwise, there is an ε0 > 0 and a subsequence {unk} of {un} such that for any
positive integer k,

meas({x ∈ RN : |unk(x)| ≥ k}) ≥ ε0 > 0.

Set Ωnk := {x ∈ RN : |unk(x)| ≥ k}. By (3) and (9) of Lemma 2.2, we have

‖unk‖
p
E ≥

∫
RN

V (x)|unk |pdx ≥
∫

RN
V (x)|f(unk)|pdx

≥
∫

Ωnk

V (x)|f(unk)|pdx ≥ C6k
p
2 ε0,

which implies a contradiction. Hence the assertion is true.
On the one hand, by the absolutely continuity of Lebesgue integral, there exists

δ > 0 such that when A ⊂ RN with meas (A) < δ, we have∫
A

V (x)|vn(x)|pdx < 1
p
.

Hence, we can find a constant C7 > 0 such that meas (Ωn) < δ. Thus we infer
that ∫

Ωn

V (x)|vn(x)|p dx ≤ 1
p
. (2.5)

On the other hand, when |un(x)| ≤ C6, by (9) and (10) of Lemma 2.2, we have∫
RN\Ωn

V (x)|vn|pdx =
∫

RN\Ωn
V (x)

|un|p

‖un‖pE
dx ≤ C7

∫
RN\Ωn

V (x)
|f(un)|p

‖un‖pE
dx→ 0.

(2.6)
Combining (2.5) and (2.6), we have∫

RN
V (x)|vn(x)|p =

∫
RN\Ωn

V (x)|vn(x)|p +
∫

Ωn

V (x)|vn(x)|p ≤ 1
p

+ o(1),

which implies that 1 ≤ 1
p , a contradiction. The proof is complete. �
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Proposition 2.4. For any sequence {un} ⊂ E satisfying∫
RN

(|∇un|p + V (x)|f(un)|p)dx ≤ C8,

there exists a constant C9 > 0 such that∫
RN

(|∇un|p + V (x)|f(un)|p)dx ≥ C9‖un‖pE , ∀n ∈ N.

Proof. We argue by conradiction, so there exists a subsequence {unk} of {un} such
that ∫

RN

( |∇unk |p
‖unk‖

p
E

+ V (x)
|f(unk)|p

‖unk‖
p
E

)
dx→ 0 as k →∞.

The rest of the proof is similar to Proposition 2.3, we can deduce the conclusion. �

At the end of this section, we recall the variant mountain pass theorem and
symmetric mountain pass theorem which are used to prove our main result.

Theorem 2.5 ([22]). Let E be a real Banach space with its dual space E∗, and
suppose that I ∈ C1(E,R) satisfies

max{I(0), I(e)} ≤ µ < η ≤ inf
‖u‖=ρ

I(u),

for some ρ > 0 and e ∈ E with ‖e‖ > ρ. Let c ≥ η be characterized by

c = inf
γ∈Γ

max
0≤τ≤1

I(γ(τ)),

where Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = e} is the set of continuous paths
joining 0 and e, then there exists a sequence {un} ⊂ E such that

I(un)→ c ≥ η and (1 + ‖un‖)‖I ′(un)‖E∗ → 0, as n→∞. (2.7)

A sequence {vn} ⊂ E is said to be a Cerami sequence (simply (C)c) if I(vn)→ c
and (1 + ‖vn‖E)I ′(vn) → 0, I is said to satisfy the (C)c condition if any (C)c
sequence has a convergent subsequence.

Theorem 2.6 ([20]). Let E be an infinite dimensional Banach space, E = Y ⊕Z,
where Y is finite dimensional. If ϕ ∈ C1(E,R) satisfies (C)c-condition for all
c > 0, and

(1) ϕ(0) = 0, ϕ(−u) = ϕ(u) for all u ∈ E;
(2) there exist constants ρ, α such that ϕ|∂Bρ ∩ Z ≥ α;
(3) for any finite dimensional subspace Ẽ ⊂ E, there is R = R(Ẽ) > 0 such

that ϕ(u) ≤ 0 on Ẽ \BR.

Then ϕ possesses an unbounded sequence of critical values.

3. (C)c condition

In this section, we will prove the bondedness of (C)c sequence and then show
that bounded (C)c sequence is strongly convergence in E.

Lemma 3.1. Any bounded (C)c sequence of I possesses a convergence subsequence
in E.
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Proof. Assume that {vn} ⊂ E is a bounded sequence satisfying

I(vn)→ c and (1 + ‖vn‖E)I ′(vn)→ 0. (3.1)

Going if necessary to a subsequence, we can assume that vn ⇀ v in E. By Lemma
2.1, vn → v in Ls(RN ) for all p ≤ s < p∗ and vn → v a.e. on RN . First, we claim
that there exists C10 > 0 such that∫

RN
|∇(vn − v)|p + V (x)

(
|f(vn)|p−2f(vn)f ′(vn)

− |f(v)|p−2f(v)f ′(v)
)

(vn − v)dx

≥
∫

RN
(|∇vn|p−1 − |∇v|p−1)∇(vn − v) + V (x)

(
|f(vn)|p−2f(vn)f ′(vn)

− |f(v)|p−2f(v)f ′(v)
)

(vn − v)dx

≥ C10‖vn − v‖pE .

(3.2)

Indeed, we may assume that vn 6= v. Set

wn =
vn − v
‖vn − v‖E

, hn =
|f(vn)|p−2f(vn)f ′(vn)− |f(v)|p−2f(v)f ′(v)

|vn − v|p−1
.

We argue by contradiction and assume that∫
RN
|∇wn|p + V (x)hn(x)wpndx→ 0.

Since
d

dt

(
|f(t)|p−2f(t)f ′(t)

)
= |f(t)|p−2|f ′(t)|2

[
p− 1− 2p−1|f(t)|p

1 + 2p−1|f(t)|p
]
> 0,

so, |f(t)|p−2f(t)f ′(t) is strictly increasing and for each C11 > 0 there is δ1 > 0 such
that

d

dt

(
|f(t)|p−2f(t)f ′(t)

)
≥ δ1 as |t| ≤ C11.

From this, we can see that hn(x) is positive. Hence∫
RN
|∇wn|pdx→ 0,

∫
RN

V (x)hn(x)wpndx→ 0,
∫

RN
V (x)|wn|pdx→ 1.

By a similar argument as Proposition 2.3, we can conclude a contradiction.
On the other hand, by (2), (3), (8) and (11) of Lemma 2.6, (A2) and the definition

of the f ′(t), we have∣∣ ∫
RN

(
g(x, f(vn))f ′(vn)− g(x, f(v))f ′(v)

)
(vn − v)dx

∣∣
≤
(∫

RN
|g(x, f(vn))f ′(vn)|+

∫
RN
|g(x, f(v))f ′(v)|

)
|vn − v|dx

≤
∫

RN
C12

(
|f(vn)|p−1 + |f(vn)|q−1

)
|f ′(vn)||vn − v|dx

+
∫

RN
C12

(
|f(v)|p−1 + |f(v)|q−1

)
|f ′(v)||vn − v|dx

≤
∫

RN
C12

(
|f(vn)|p−1|f ′(vn)|+ |f(vn)|q−1|f ′(vn)|

)
|vn − v|dx
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+
∫

RN
C12

(
|f(v)|p−1|f ′(v)|+ |f(v)|q−1|f ′(v)|

)
|vn − v|dx

≤
∫

RN
C12

(
|f(vn)|p−1 +

|f(vn)|q−1

[1 + 2p−1|f(vn)|p]1/p
)
|vn − v|dx

+
∫

RN
C12

(
|f(v)|p−1 +

|f(v)|q−1

[1 + 2p−1|f(v)|p]1/p
)
|vn − v|dx

≤
∫

RN
C12

(
|f(vn)|p−1 + |f(vn)|q−2 + |f(v)|p−1 + |f(v)|q−2

)
|vn − v|dx

≤
∫

RN
C12

(
|vn|p−1 + |vn|

q
2−1 + |v|p−1 + |v|

q
2−1
)
|vn − v|dx

≤ C12

(
(‖vn‖p−1

p + ‖v‖p−1
p )‖vn − v‖p

)
+ C12

(
(‖vn‖

q−2
2
q
2

+ ‖v‖
q−2
2
q
2

)‖vn − v‖ q2
)

= o(1).

Therefore, by (3.2) and the above inequality, we have

o(1) = 〈I ′(vn)− I ′(v), vn − v〉

=
∫

RN

[
|∇(vn − v)|p + V (x)

(
|f(vn)|p−2f(vn)f ′(vn)

− |f(v)|p−2f(v)f ′(v)
)

(vn − v)
]
dx

−
∫

RN

(
g(x, f(vn))f ′(vn)− g(x, f(v))f ′(v)

)
(vn − v)dx

≥ C13‖vn − v‖pE + o(1),

which implies that ‖vn − v‖E → 0 as n→∞. The proof is complete. �

Lemma 3.2. Suppose that (A1’), (A2)-(A4) are satisfied. Then any (C)c sequence
of I is bounded in E.

Proof. Let {vn} ⊂ E be such that

I(vn)→ c and (1 + ‖vn‖E)I ′(vn)→ 0. (3.3)

Thus, there is a constant C14 > 0 such that

I(vn)− 1
2p
〈I ′(vn), vn〉 ≤ C14. (3.4)

Firstly, we prove that there exists C15 > 0 independent of n such that∫
RN

(
|∇vn|p + V (x)|f(vn)|p

)
dx ≤ C15. (3.5)

Suppose by contradiction that

‖vn‖p0 :=
∫

RN

(
|∇vn|p + V (x)|f(vn)|p

)
dx→∞ as n→∞.

Setting f̃(vn) := f(vn)/‖vn‖0, then ‖f̃(vn)‖E ≤ 1. Passing to a subsequence, we
may assume that f̃(vn) ⇀ w in E, f̃(vn) → w in Ls(RN ), p ≤ s < p∗, and
f̃(vn)→ w a.e. RN . It follows from (3.3) that

lim
n→∞

∫
RN

|G(x, f(vn))|
‖vn‖p0

dx ≥ 1
p
. (3.6)
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Let ϕn = f(vn)/f ′(vn), by (3.4), we have

C14 ≥ I(vn)− 1
2p
〈I ′(vn), ϕn〉

=
1
2p

∫
RN
|∇vn|p|f ′(vn)|pdx+

1
2p

∫
RN

V (x)|f(vn)|pdx

+
∫

RN

1
2p
g(x, f(vn))f(vn)dx−

∫
RN

G(x, f(vn))dx,

which implies

C14 ≥
∫

RN
G̃(x, f(vn))dx. (3.7)

Set

h(r) := inf{G̃(x, f(vn)) : x ∈ RN , |f(vn)| ≥ r} r ≥ 0.

By (1.5), h(r) → ∞ as r → ∞. For 0 ≤ a < b, let Ωn(a, b) = {x ∈ RN : a ≤
|f(vn(x))| < b}. Hence, it follows from (3.7) that

C14 ≥
∫

Ωn(0,r)

G̃(x, f(vn)) +
∫

Ωn(r,+∞)

G̃(x, f(vn))

≥
∫

Ωn(0,r)

G̃(x, f(vn)) + h(r) meas(Ωn(r,+∞)),

which implies that meas(Ωn(r,+∞))→ 0 as r →∞ uniformly in n. Thus, for any
s ∈ [p, 2p∗), by (8) of Lemma 2.2, Hölder inequality and Sobolev embedding, we
have ∫

Ωn(r,+∞)

f̃s(vn)dx

≤
(∫

Ωn(r,+∞)

f̃2p∗(vn)dx
) s

2p∗
(

meas(Ωn(r,+∞))
) 2p∗−s

2p∗

≤ C16

‖vn‖s0

(∫
Ωn(r,+∞)

|∇f2(vn)|p
) s

2p
(

meas(Ωn(r,+∞))
) 2p∗−s

2p∗

≤ C17

‖vn‖s0

(∫
Ωn(r,+∞)

|∇vn|p
) s

2p
(

meas(Ωn(r,+∞))
) 2p∗−s

2p∗

≤ C17‖vn‖
− s2
0

(
meas(Ωn(r,+∞))

) 2p∗−s
2p∗ → 0,

(3.8)

as r →∞ uniformly in n.
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If w = 0, then f̃(vn) = f(vn)
‖vn‖0 → 0 in Ls(RN ), p ≤ s < p∗. For any 0 < ε < 1

4p ,
there exist large r1, N0 ∈ N such that∫

Ωn(0,r1)

|G(x, f(vn))|
|f(vn)|p

|f̃(vn)|pdx

≤
∫

Ωn(0,r1)

C18|f(vn)|p + C19|f(vn)|q

|f(vn)|p
|f̃(vn)|pdx

≤ (C18 + C19r
q−p
1 )

∫
Ωn(0,r1)

|f̃(vn)|pdx

≤ (C18 + C19r
q−p
1 )

∫
RN
|f̃(vn)|pdx < ε,

(3.9)

for all n > N0. Set σ′ = σ
σ−1 . Since σ > 2N

N+p , so pσ′ ∈ (p, 2p∗). Hence, it follows
from (A4) and (3.7) that∫

Ωn(r1,+∞)

|G(x, f(vn))|
|f(vn)|p

|f̃(vn)|pdx

≤
(∫

Ωn(r1,+∞)

(
|G(x, f(vn))|
|f(vn)|p

)σdx
)1/σ(∫

Ωn(r1,+∞)

|f̃(vn)|pσ
′
dx
)1/σ′

≤ C1/σ
20

(∫
Ωn(r1,+∞)

G̃(x, f(vn)dx
)1/σ(∫

Ωn(r1,+∞)

|f̃(vn)|pσ
′
dx
)1/σ′

≤ C21

(∫
Ωn(r1,+∞)

|f̃(vn)|pσ
′
dx
)1/σ′

< ε,

(3.10)

for all n. Combining (3.9) with (3.10), we have∫
RN

G(x, f(vn))
‖vn‖p0

dx =
(∫

Ωn(0,r1)

+
∫

Ωn(r1,+∞)

)G(x, f(vn))
|f(vn)|p

|f̃(vn)|pdx < 2ε <
1
p
,

for all n > N0, which contradicts (3.6).
If w 6= 0, then meas(Ω) > 0, where Ω := {x ∈ RN : w 6= 0}. For x ∈ Ω,

|f(vn)| → ∞ as n → ∞. Hence Ω ⊂ Ωn(r0,∞) for large n ∈ N , where r0 is given
in (A3). By (A3), we have

G(x, f(vn))
|f(vn)|2p

→ +∞ as n→∞.

Hence, using Fatou’s lemma, we have∫
RN

G(x, f(vn))
|f(vn)|2p

→ +∞ as n→∞. (3.11)

It follows from (3.3) and (3.11) that

0 = lim
n→∞

c+ o(1)
‖vn‖p0

= lim
n→∞

I(vn)
‖vn‖p0

= lim
n→∞

1
‖vn‖p0

(1
p

∫
RN

(|∇vn|p + V (x)|f(vn)|p)dx−
∫

RN
G(x, f(vn))dx

)
= lim
n→∞

(1
p
−
∫

Ωn(0,r0)

G(x, f(vn))
|f(vn)|p

|f̃(vn)|pdx
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−
∫

Ωn(r0,+∞)

G(x, f(vn))
|f(vn)|p

|f̃(vn)|pdx
)

≤ 1
p

+ lim sup
n→∞

(C22 + C23r
q−p
0 )

∫
RN
|f̃(vn)|pdx

−
∫

Ωn(r0,+∞)

G(x, f(vn))
|f(vn)|p

|f̃(vn)|pdx

≤ C24 − lim inf
n→∞

∫
RN

G(x, f(vn))
|f(vn)|2p

|f(vn)f̃(vn)|pdx = −∞,

which is a contradiction. Thus, there exists C15 > 0 such that

∫
RN

(|∇vn|p + V (x)|f(vn)|p)dx ≤ C15.

Hence, from Proposition 2.4, we have that {vn} is bounded in E. �

Lemma 3.3. Suppose that (A1’), (A2), (A3), (A5) are satisfied. Then any (C)c
sequence of I is bounded.

Proof. Let {vn} ⊂ E be such that

I(vn)→ c and (1 + ‖vn‖E)I ′(vn)→ 0. (3.12)

Thus, there is a constant C25 > 0 such that

I(vn)− 1
µ
〈I ′(vn), vn〉 ≤ C25. (3.13)

Firstly, we prove that there exists C26 > 0 independent of n such that

∫
RN

(
|∇vn|p + V (x)|f(vn)|p

)
dx ≤ C26.

Suppose by contradiction, we assume that

‖vn‖p0 :=
∫

RN

(
|∇vn|p + V (x)|f(vn)|p

)
dx→∞ as n→∞.

As

∇(
f(vn)
f ′(vn)

) = ∇
[
f(vn) · (1 + 2p−1|f(vn)|p)1/p

]
= ∇vn[1 +

2p−1|f(vn)|p

1 + 2p−1|f(vn)|p
].
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By (A5) and µ > 2p we can obtain

C25 ≥ I(vn)− 1
µ
〈I ′(vn),

f(vn)
f ′(vn)

〉

=
1
p

∫
RN

(|∇vn|p + V (x)|f(vn)|p)dx−
∫

RN
G(x, f(vn))dx

− 1
µ

∫
RN

(
|∇vn|p−2∇(vn)∇(

f(vn)
f ′(vn)

)
)

dx

+
1
µ

∫
RN

(
g(x, f(vn))f ′(vn)

f(vn)
f ′(vn)

)
dx

− 1
µ

∫
RN

(
V (x)|f(vn)|p−2f(vn)f ′(vn)

f(vn)
f ′(vn)

)
dx

=
∫

RN

[1
p
− 1
µ

(
1 +

2p−1|f(vn)|p

1 + 2p−1|f(vn)|p
)]
|∇vn|pdx

+
∫

RN
(
1
p
− 1
µ

)(V (x)|f(vn)|p)dx

+
1
µ

∫
RN

[
g(x, f(vn))f(vn)− µG(x, f(vn))

]
dx

≥
∫

RN
(
1
p
− 2
µ

)|∇vn|pdx+
∫

RN
(
1
p
− 1
µ

)(V (x)|f(vn)|p)dx

− 1
µ

∫
RN
|f(vn)|pdx

≥ (
1
p
− 2
µ

)
∫

RN

(
|∇vn|p + V (x)|f(vn)|p

)
dx− 1

µ

∫
RN
|f(vn)|pdx

≥ (
1
p
− 2
µ

)‖vn‖p0 −
1
µ

∫
RN
|f(vn)|pdx.

(3.14)

Setting f̃(vn) := f(vn)/‖vn‖0, we have ‖f̃(vn)‖E ≤ 1. Passing to a subsequence,
we may assume that f̃(vn) ⇀ w in E, f̃(vn) → w in Ls(RN ), p ≤ s < p∗, and
f̃(vn)→ w a.e. RN .

From (3.14),
C25

‖vn‖p0
≥ (

1
p
− 2
µ

)− 1
µ

∫
RN
|f̃(vn)|pdx.

Hence, we obtain
1
µ

∫
RN
|f̃(vn)|pdx ≥ (

1
p
− 2
µ

)µ+ o(1).

Then f̃(vn)→ w and w 6= 0, so |f(vn)| → ∞ as n→∞.
Also by (A3), we have

G(x, f(vn))
|f(vn)|2p

→ +∞.

So ∫
RN

G(x, f(vn))
|f(vn)|2p

→ +∞, (3.15)
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From (3.12) and (3.15) it follows that

0 = lim
n→∞

c+ o(1)
‖vn‖p0

= lim
n→∞

I(vn)
‖vn‖p0

= lim
n→∞

1
‖vn‖p0

(1
p

∫
RN

(|∇vn|p + V (x)|f(vn)|p)dx−
∫

RN
G(x, f(vn))dx

)
= lim
n→∞

(1
p
−
∫

RN

G(x, f(vn))
|f(vn)|p

|f̃(vn)|pdx
)

≤ C27 − lim inf
n→∞

∫
RN

G(x, f(vn))
|f(vn)|2p

|f(vn)f̃(vn)|pdx = −∞.

(3.16)

Which is a contradiction. Thus, there exists C26 > 0 such that∫
RN

(|∇vn|p + V (x)|f(vn)|p)dx ≤ C26.

Hence, from Proposition 2.4, we obtain that {vn} is bounded in E. �

Since (A2) and (A6) imply (A5), we have the following corollary.

Corollary 3.4. Suppose that (A1’), (A2), (A3), (A6) are satisfied. Then any (C)c
sequence of I is bounded.

4. Proof of main results

Proof of Theorems 1.3 and 1.4.

Lemma 4.1. The functional I is bounded from below on a neighborhood of the
origin. That is, there exist C28 ∈ R and ρ > 0, such that

I(u) ≥ C28, ∀u ∈ Bρ = {u ∈ E : ‖u‖ ≤ ρ}.

Proof. If the conclusion is not true, there exists {un} ⊂ E, satisfying

‖un‖ ≤
1
n
, I(un)→ −∞.

So un → 0 in E, and

I(un) =
1
p

∫
RN

(|∇un|p + V (x)|f(un)|p)dx−
∫

RN
G(x, f(un))dx.

Obviously,
1
p

∫
RN

(|∇un|p + V (x)|f(un)|p)dx→ 0.

From (A2), and (3) and (8) of Lemma 2.2, we have∫
RN

G(x, f(un))dx ≤ C29

∫
RN

(
|f(un)|p + |f(un)|q

)
dx

≤ C29

∫
RN

(|un|p + |un|
q
2 )dx→ 0.

Hence, I(un)→ 0, contradicts with I(un)→ −∞, as n→ +∞. �

Lemma 4.2. There exists ϑ ∈ E, such that I(tϑ) < 0, for t small enough.
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Proof. Let ϑ ∈ C∞0 (RN , [0, 1])\{0}, and K = suppϑ. From (A3), we have

G(x, u) ≥ C30|u|τ > 0,

for all (x, u) ∈ RN × R, |u| ≥ r0. By (A2), for a.e. x ∈ RN and 0 ≤ |u| ≤ 1, there
exists M > 0 such that

|g(x, u)u
|u|p

| ≤
∣∣C(|u|p−1 + |u|q−1) · |u|

|u|p
∣∣ ≤M,

which implies that
g(x, u)u ≥ −M |u|p.

We can use the equality G(x, u) =
∫ 1

0
g(x, tu)udt, for a.e. x ∈ RN and 0 ≤ |u| ≤ 1,

to obtain
G(x, u) ≥ −M

p
|u|p .

Then
G(x, u) ≥ −M

p
|u|p + C30|u|τ . (4.1)

So from (4.1),
I(tϑ)

=
tp

p

∫
RN
|∇ϑ|pdx+

1
p

∫
RN

V (x)|f(tϑ)|pdx−
∫

RN
G(x, f(tϑ))dx

≤ tp

p

∫
RN

(
|∇ϑ|p + V (x)|ϑ|p

)
dx+

M

p

∫
RN
|f(tϑ)|pdx− C31

∫
RN
|f(tϑ)|τdx

≤ tp

p

∫
RN

(
|∇ϑ|p + V (x)|ϑ|p +M |ϑ|p

)
dx− C31

∫
RN
|f(tϑ)|τdx.

(4.2)

Since f(t)/t is decreasing and 0 ≤ tϑ ≤ t, for t ≥ 0. We obtain f(tϑ) ≥ f(t)ϑ.
By (9) of Lemma 2.2, we obtain f(tϑ) ≥ Ctϑ, for 0 ≤ t ≤ 1. Hence

I(tϑ) ≤ tp

p

∫
RN

(
|∇ϑ|p + V (x)|ϑ|p +M |ϑ|p

)
dx− C32t

τ

∫
RN
|ϑ|τdx,

and since τ < p, we obtain I(tϑ) < 0, for t sufficiently small and the Lemma is
proved. �

Thus, we obtain that

c0 = inf{I(u) : u ∈ Bρ} < 0,

which ρ > 0 is given in Lemma 4.1. Then we can apply the Ekeland’s variational
principle and [24, corollary 2.5], there exists a sequence {un} ⊂ Bρ such that
C33 ≤ I(un) < C33 + 1

n . Hence

I(u) ≥ I(un)− 1
n
‖w − un‖E , ∀w ∈ Bρ.

Then, following the idea in [24], we can show that {un} is a bounded Cerami
sequence of I. Therefore, Lemma 3.1 implies that there exists a function u0 ∈ E
such that I ′(u0) = 0 and I(u0) = c0 < 0.

Next, we show that there exists a second solution for problem 1.1.

Lemma 4.3. If the conditions (A1)–(A3), (A7) are satisfied, there exist two con-
stants ρ1 > 0, α > 0, such that

I(u) ≥ α > 0, ∀u ∈ Sρ1 = {u ∈ E : ‖u‖E = ρ1}.
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Proof. From (A2) and (A7), it follows that

|G(x, u)| ≤ ε|u|p + Cε|u|q, ∀(x, u) ∈ RN × R.

Thus, by Proposition 2.3, we take u ∈ E with ‖u‖ ≤ ρ, where ρ is given in Propo-
sition 2.3, we can deduce that

I(u) =
1
p

∫
RN

(|∇u|p + V (x)|f(u)|p)dx−
∫

RN
G(x, f(u))dx

≥ C34

p
‖u‖pE − Cε‖u‖

p
E − Cε‖u‖

q
E

≥ C35

2p
‖u‖pE − C36‖u‖qE ,

(4.3)

and since q > 2p, there exists α, ρ1 > 0 such that I(u) ≥ α > 0 for ‖u‖E = ρ1. �

Lemma 4.4. There exist a v ∈ E with ‖v‖E > ρ1, such that I(v) < 0, which ρ1 is
defined in Lemma 4.3.

Proof. Let u0 ∈ E and u0 > 0. From (A3), (9) of Lemma 2.2, and Fatou’s Lemma,
we have

lim
t→∞

I(tu0)
tp

= lim
t→∞

( 1
ptp

∫
RN

(|∇tu0|p + V (x)|f(tu0)|p)dx−
∫

RN

G(x, f(tu0))
tp

dx
)

≤ lim
t→∞

(∫
RN

|∇u0|p

p
dx+

∫
RN

V (x)|tu0|p

ptp
dx

−
∫

RN

G(x, f(tu0))
(f(tu0))2p

(f(tu0))2p

(tu0)p
(u0)pdx

)
=
‖u0‖pE
p
− lim
t→∞

∫
RN

G(x, f(tu0))
(f(tu0))2p

(f(tu0))2p

(tu0)p
(u0)pdx

≤
‖u0‖pE
p
−
∫

RN
lim inf
t→∞

G(x, f(tu0))
(f(tu0))2p

(f(tu0))2p

(tu0)p
(u0)pdx = −∞.

Thus, this lemma is proved by taking v = tu0 with t > 0 large enough. �

Based on Lemmas 4.3 and 4.4, Theorem 2.5 implies that there is a sequence
{un} ⊂ E such that

I(un)→ c and (1 + ‖un‖E)I ′(un)→ 0.

From Lemma 3.2 and 3.1, it shows that this sequence {un} has a convergent sub-
sequence in E. Thus, there exists u1 ∈ E such that I ′(u1) = 0 and I(u1) = c1 > 0.
Consequently, the proof of Theorem 1.3 is complete.

By the similar arguments as the proof of Theorem 1.3, Theorem 1.4 and Corollary
1.5 can be proved.

Proof of Theorems 1.6 and 1.7. Let {ei}i∈N ∈ E is a total orthonormal basis
of E and {e∗j}j∈N ∈ E∗, so that

E = span{ei : i = 1, 2, · · · }, E∗ = span{e∗j : j = 1, 2, · · · },

〈ei, e∗j 〉 =

{
1, i = j,

0, i 6= j;



EJDE-2016/10 SIGN-CHANGING POTENTIAL 17

So we define Xj = Rej ,

Yk = ⊕kj=1Xj , Zk = ⊕∞j=k+1Xj , k ∈ Z

and Yk is finite-dimensional. Similar to [24, Lemma 3.8], we have the following
lemma.

Lemma 4.5. Under assumption (A1’), for p ≤ s < p∗,

βk(s) := sup
v∈Zk,‖v‖=1

‖v‖s → 0, k →∞.

Lemma 4.6. Suppose that (A1’), (A2) are satisfied. Then there exist constants
ρ > 0, α > 0 such that I

∣∣
Sρ

T
Zm
≥ α.

Proof. For any v ∈ Zm with ‖v‖E = ρ < 1, by (3) and (8) of Lemma 2.2, and
proposition 2.3, we have

I(v) =
1
p

∫
RN

(|∇v|p + V (x)|f(v)|p)dx−
∫

RN
G(x, f(v))dx

≥ C37

p
‖v‖pE − C38

∫
RN

(|f(v)|p + |f(v)|q)dx

≥ C37

p
‖v‖pE − C39

∫
RN

(|v|p + |v|
q
2 )dx.

(4.4)

By Lemma 4.5, we can choose an integer m ≥ 1 such that

C39‖v‖pp ≤
C37

2p
‖v‖pE , C39‖v‖

q
2
q
2
≤ C37

2p
‖v‖

q
2
E , ∀v ∈ Zm.

Combining the above inequality with (4.4), we have

I(v) ≥ C37

p
‖v‖pE −

C37

2p
‖v‖pE −

C37

2p
‖v‖

q
2
E =

C37

2p
‖v‖pE(1− ‖v‖

q−2p
2

E ) > 0,

since q > 2p. This completes the proof. �

Lemma 4.7. Suppose that (A1’), (A2), (A3) are satisfied. Then for any finite
dimensional subspace Ẽ ⊂ E, there is R = R(Ẽ) > 0 such that

I(v) ≤ 0, ∀v ∈ Ẽ\BR.

Proof. For any finite dimensional subspace Ẽ ⊂ E, there exists a m ∈ N such
that Ẽ ⊂ Em. Suppose by contradiction, we assume that there exists a sequence
{vn} ⊂ Ẽ such that ‖vn‖E →∞ and I(vn) > 0. Hence

1
p

∫
RN

(|∇vn|p + V (x)|f(vn)|p)dx >
∫

RN
G(x, f(vn))dx. (4.5)

Set wn = vn
‖vn‖E . Then, up to a subsequence, we can assume that wn ⇀ w in E,

wn → w in Ls(RN ) for all p ≤ s < p∗, and wn → w a.e.on RN . Set Ω1 := {x ∈
RN : w(x) 6= 0} and Ω2 := {x ∈ RN : w(x) = 0}. If meas(Ω1) > 0, by (A3), (5) of
Lemma 2.2, and Fatou’s lemma, we have∫

Ω1

G(x, f(vn))
‖vn‖pE

dx =
∫

Ω1

G(x, f(vn))
|f(vn)|2p

|f(vn)|2p

|vn|p
|wn|pdx→ +∞. (4.6)

On the other hand, by (A2) and (A3), there exists C40 > 0 such that

G(x, t) ≥ −C40|t|p, for all (x, t) ∈ RN × R.
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Hence ∫
Ω2

G(x, f(vn))
‖vn‖pE

dx ≥ −C40

∫
Ω2

|f(vn)|p

‖vn‖pE
dx ≥ −C41

∫
Ω2

|wn|pdx.

Hence, by the fact that wn → w in Lp(RN ), we obtain

lim inf
n→∞

∫
Ω2

G(x, f(vn))
‖vn‖pE

dx ≥ 0.

Combining this with (4.6), we have∫
RN

G(x, f(vn))
‖vn‖pE

dx = +∞,

which implies a contradiction with (4.5). Hence, meas(Ω1) = 0, i.e. w(x) = 0 a.e.
on RN . By the fact that all norms are equivalent in Ẽ, there exists C42 > 0 such
that

‖v‖pp ≥ C42‖v‖pE , ∀v ∈ Ẽ.
Hence

0 = lim
n→∞

‖wn‖pp ≥ lim
n→∞

C42‖wn‖pE = C42,

this results in a contradiction. The proof is complete. �

Proof of theorem 1.3. Let X = E, Y = Ym and Z = Zm. Obviously, I(0) = 0
and (A8) imply that I is even. By Lemma 3.2, Lemma 4.2 and Lemma 4.3, all
conditions of Theorem 2.6 are satisfied. Thus, problem (2.1) possesses infinitely
many nontrivial solutions {vn} such that I(vn)→∞ as n→∞. Namely, problem
(1.1) also possesses infinitely many nontrivial solutions {un} such that J(un)→∞
as n→∞. �

By the similar arguments as Theorem 1.6, we can give the proof of Theorem 1.7
and Corollary 1.8.
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