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NONTRIVIAL SOLUTIONS FOR KIRCHHOFF EQUATIONS
WITH PERIODIC POTENTIALS

XIAOYAN MA, XIAOMING HE

Abstract. In this article we consider the Kirchhoff equations

−
“
a + b

Z
R3
|∇u|2

”
∆u + V (x)u = f(x, u), x ∈ R3,

where a, b > 0 are constants, the nonlinearity f is superlinear at infinity with

subcritical or critical growth and V is positive, continuous and periodic in
x. Some existence results for ground state solutions are obtained by using

variational methods. Moreover, when V ≡ 1 we obtain ground state solutions
for the above problem with a wide class of superlinear nonlinearities by using

a new approach.

1. Introduction and main results

In this article we study the Kirchhoff-type equation

−
(
a+ b

∫
R3
|∇u|2

)
∆u+ V (x)u = f(x, u), x ∈ R3, (1.1)

where a, b > 0 are constants, and f ∈ C(R3×R,R) satisfies some conditions which
will be stated later.

Equations of the form (1.1) have been extensively studied because of their in-
teresting physical context. (1.1) is often referred to be a nonlocal problem in view
of that the appearance of the term

∫
R3 |Du|2 implies that (1.1) is not a point wise

identity. This causes some mathematical difficulties which make the study of (1.1)
particularly interesting.

When we set V = 0 and replace RN by a bounded domain Ω ⊂ RN in (1.1), we
get the Kirchhoff-type Dirichlet problem

−
(
a+ b

∫
Ω

|∇u|2
)

∆u = f(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.2)

which is related to the stationary analogue of the Kirchhoff equation

utt −
(
a+ b

∫
Ω

|∇u|2
)

∆u = f(x, u), (1.3)
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which was proposed by Kirchhoff [20] as an extension of classical D’Alembert’s wave
equation for free vibrations of elastic strings. Lions [21] introduced an abstract
functional analysis framework to the above equation. After that, (1.3) has been
receiving much attention, see [3, 4, 5, 6, 8, 10] and the references therein.

We remark that the stationary problem associated with (1.3), i.e., (1.2) has
been investigated by many researchers by using variational methods, see for ex-
ample, [1, 2, 9, 17, 25, 26, 28, 39] and the references therein. Especially, Ma and
Rivera [25] showed the existence and non-existence of positive solutions for a class of
Kirchhoff type equation by variational methods. The existence of multiple positive
solutions for (1.2) was also proved in [2, 9, 17, 28]. Mao and Zhang [26] investigated
the existence of sign-changing solutions for (1.2) by using minimax methods and
invariant sets of descent flow.

We also recall that in recent years, there have been new results on existence,
nonexistence and multiplicity of solutions for the following parameter-perturbed
Kirchhoff equation

−
(
ε2a+ εb

∫
RN
|∇u|2

)
∆u+ V (x)u = f(x, u), x ∈ R3,

u ∈ H1(R3), u(x) > 0 x ∈ R3,

(1.4)

where ε > 0 is a parameter. Jin and Wu [19], proved that (1.4) has infinitely many
radial solutions by using a fountain theorem [37] when ε = 1, V (x) ≡ 1, f(x, u) is
subcritical, superlinear at the origin and 4-superlinear at infinity. Wu [38] obtained
the existence of a sequence of high energy solutions (1.4) with ε = 1, by applying a
Symmetric Mountain Pass Theorem [30], the potential V (x) ∈ C(R3,R) is assumed
to satisfy

• V ∈ C(R3,R) satisfies infx∈R3 V (x) ≥ a1 > 0 and for eachM > 0,meas{x ∈
R3 : V (x) ≤ M} < +∞, where a1 is a constant and meas denotes the
Lebesgue measure in R3.

For ε small, He and Zou [15, 16], proved the existence, multiplcity and concentration
of positive solutions of (1.4) by using Ljusternik-Schnirelmann category theory,
Nehari manifold. For other existence and concentration results, we refer to He, Li
and Peng [14], Figueiredo, Ikoma and Santos [12], Li and Ye [23], Wang, Tian, Xu
and Zhang [36], Sun and Ma [33] and the references therein. In [15, 16, 36], the
potential V is required to satisfy the following Rabinowitz-type condition [29]

• 0 < V0 < lim inf |x|→+∞ V (x) := V∞, where V0 := infx∈R3 V (x).
While, in [23, 12, 14], V is assumed to satisfy the following local condition which
was first given by del Pino and Felmer [11]

• There is an bounded open domain Λ ⊂ R3 such that

inf∂ΛV > inf
Λ

:= V0.

Motivated by the above works, we consider problem (1.1) with periodic potential
V and more general assumptions on f which may subcritical or critical growth at
infinity but not need to be C1. We first consider the subcritical case. We use the
following assumptions on V and f :

(A1) V is continuous, 1-periodic in xi, for i = 1, 2, 3. and V0 = infx∈R3 V (x) > 0.
(A2) f ∈ C(R3 × R,R), f is 1-periodic in xi, for i = 1, 2, 3 and |f(x, u)| ≤

C(1 + |u|p−1) for some C > 0 and p ∈ (4, 6);
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(A3) f(x, u) = o(u) uniformly in x as u→ 0;
(A4) F (x, u)/u4 uniformly in x as u→∞;
(A5) u → f(x, u)/u3 is positive for u 6= 0, strictly decreasing on (−∞, 0) and

strictly increasing on (0,∞).

Our first main result reads as follows.

Theorem 1.1. Suppose (A1)–(A5) are satisfied. Then

(i) Problem (1.1) has a ground state solution;
(ii) K is compact (up to translation ) in H1(R3), where K denotes the set of

all ground state solutions of (1.1).

We next study the existence of ground state solutions of problem (1.2) with the
critical growth case. To be precise, we consider the problem

−
(
a+ b

∫
R3
|∇u|2

)
∆u+ V (x)u = K(x)|u|4u+ λg(x, u) in R3, (1.5)

where λ > 0 is a real number. Let G(x, u) =
∫ u

0
g(x, s)ds, assume that V satisfies

(A1) and K and g satisfy the following assumptions:

(A6) K is continuous, 1-periodic in xi, for i = 1, 2, 3, K(x) > 0 for all x ∈ R3

and K(x) − K(x0) = O(|x − x0|α) as x → x0, where α > 0, K(x0) =
maxR3 K(x);

(A7) g ∈ C(R3×R,R), g is 1-periodic in x and |g(x, u)| ≤ C(1+ |u|p−1) for some
C > 0 and p ∈ (2, 6);

(A8) g(x, u) = o(u) uniformly in x as u→ 0;
(A9) u → g(x, u)/u3 is positive for u 6= 0, nonincreasing on (−∞, 0) and node-

creaing on (0,∞).

The main result for (1.5) is states as follows.

Theorem 1.2. Suppose assumptions (A1), (A6)–(A9) hold.
(i) If α ≥ 1 and g satisfies:

(A10) There are c0 > 0 and q ≥ 4 such that G(x, u) ≥ c0|u|q for all (x, u),

then problem (1.5) has a ground state solution for any λ > 0 whenever q ∈ (4, 6);
problem (1.5) admits a ground state solution provided that λ is sufficiently large
whenever q = 4.

(ii) If α ∈ (0, 1) and g satisfies:

(A11) there exists an open set Ω ⊂ R3 with x0 ∈ Ω such that

lim
|s|→∞

G(x, s)
|s|2(3−α)

= +∞,

then (1.5) has a ground state solution for any λ > 0.
(iii) Under the assumption of (i) or (ii), K̃ is compact (up to translation) in

H1(R3), where K̃ denotes the set of all ground state solutions of (1.5).

Remark 1.3. (i) Clearly, G(x, u) = |u|q for q ≥ 4 and G(x, u) = |u|6−2α+δ with
α ∈ (0, 1) and δ ∈ (0, 2α) satisfy (A10) and (A11) respectively.

(ii) The condition (A11) was first given in [13] to deal with the general critical
growth semilinear elliptic equations on bounded domains.

(iii) Note that if V (x) ≡ 1, the conclusions of Theorems 1.1 and 1.2 remain valid.
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Our argument in this article is variational. Let E := H1(R3), under the periodic
assumption (A1), we define a new norm

‖u‖ :=
(∫

R3
(a|∇u|2 + V (x)u2dx)

)1/2

in E which is equivalent to the usual norm of E. Denote the norm of D1,2 by

|u‖D1,2 :=
(∫

R3
(|∇u|2dx

)1/2

.

Moreover, under our assumption it is standard to see that the solutions of (1.1)
correspond to the critical points of the functional defined in E by

I(u) =
1
2

∫
R3

(a|∇u|2 + V (x)u2)dx+
b

4

(∫
R3
|∇u|2dx

)2

−
∫

R3
F (x, u)dx, ∀u ∈ E.

Hence if u ∈ E is a critical point of I, then the u is a solution of (1.1).
To prove Theorems 1.1 and 1.2, we define the Nehari manifold of (1.1) as the set

N := {u ∈ E\{0} : 〈I ′(u), u〉 = 0}.
Obviously, N contains all nontrivial critical points of I. We do not know whether
N is of class C1 under our assumptions and therefore we cannot use minimax
methods directly on N . To overcome this difficulty, we shall employ Szulkin and
Weth’s technique [34, 35] to show that N is still a topological manifold, naturally
homeomorphic to the unit sphere of E, and then we can consider a new minimax
characterization of the corresponding critical value for I.

Finally, we try to obtain the existence of ground state solutions to (1.1) with
V ≡ 1 and more general nonlinearity than that of [19] by using a new approach.
More precisely, we consider the autonomous Kirchhoff-type problem

−
(
a+ b

∫
R3
|∇u|2

)
∆u+ u = f(u) in R3, (1.6)

where f satisfies the following conditions:
(A2’) f ∈ C(R,R), and |f(u)| ≤ C(1 + |u|p−1) for some C > 0 and p ∈ (2, 6);
(A3’) f(u) = o(u) as u→ 0;
(A4’) there exists µ > 3 such that f(u)u ≥ µF (u) > 0 for all u ∈ R\{0}, where

F (u) =
∫ u

0
f(s)ds.

Theorem 1.4. Suppose (A2’)–(A4’) are satisfied, then (1.6) has a ground state
solution in H1(R3).

Remark 1.5. We note that in [15, 16, 19, 36], the nonlinearity f is assumed to
satisfy the Ambrosetti-Rabinowitz type 4-superlinear condition:

(AR) there exists some µ > 4 such that

f(x, t)t ≥ µF (x, t), ∀(x, t) ∈ R3 × R.
This condition plays a crucial role in obtaining the boundedness of the (PS) se-
quence of the functional I. Without condition (AR), it is difficult to get a bounded
(PS) sequence and more techniques are involved. To overcome the difficulty, we
use Jeanjean’s monotonicity trick [18] to construct a special (PS) sequence. For
more applications about the monotonicity tricks and symmetry in variational prin-
ciples, we refer the readers to Squassinas papers [31] [32]. Using Pohozaev identity
and a global compactness lemma, we can obtain that the special (PS) sequence is
bounded and hence, we can obtain a nontrivial critical point.
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The article is organized as follows. In Section 2 we prove Theorem 1.1 by using
Szulkin and Weth’s generalized Nehari manifold method. In Section 3 we present
some estimates for the minimax level and give a threshold value (see Lemma 3.3
below) under which the (PS)c condition is satisfied, and Theorem 1.2 is proved.
Section 4 is devoted to deal with the proof of Theorem 1.4.
Notation. Throughout this paper we shall denote by C, ci, Ci, i = 1, 2, . . . various
positive constants whose exact value may change from lines to lines but are not
essential to the analysis of problem. We will write o(1) to denote quantity that
tends to 0 as n → ∞. For notational simplicity, we omit the integral symbol dx
in the integral representations below. Denote by R+ = [0,∞). BR(x) is the ball
centered at the point x with radius R.

2. Proof of Theorem 1.1

The main ingredient for the proof of Theorem 1.1 is based on Szulkin and Weth’s
generalized Nehari manifold methods [34]. From now on, we assume that (A1)–(A5)
are satisfied. First, by (A2) and (A3), for any ε > 0 there exists Cε > 0 such that

|f(x, u)| ≤ ε|u|+ Cε|u|p−1 ∀(x, u) ∈ (R3 × R). (2.1)

By (A3) and (A5), one can easily check that

F (x, u) ≥ 0 and f(x, u)u > 4F (x, u) > 0 if u 6= 0. (2.2)

Now we summarize some properties of I onN which are useful to study our problem.

Lemma 2.1. Assume that (A1)–(A5) are satisfied, then the following conclusions
hold:

(i) For u ∈ E\{0}, there exists a unique tu = t(u) > 0 such that m(u) :=
tuu ∈ N and I(m(u)) = maxt>0 I(tu).

(ii) There exists α0 > 0 such that ‖u‖ ≥ α0 for all u ∈ N .
(iii) I is bounded from below on N by a positive constant.
(iv) I is coercive on N , i.e., I(u)→∞, as ‖u‖ → ∞, u ∈ N .
(v) Suppose V ⊂ E\{0} is a compact subset, then there exists R > 0 such that

I ≤ 0 on R+V\BR(0).

Proof. (i) For t > 0, we denote

h(t) : = I(tu) =
t2

2

∫
R3

(a|∇u|2 + V (x)u2) +
bt4

4

(∫
R3
|∇u|2

)2

−
∫

R3
F (x, tu)

=
t2

2
‖u‖2 +

bt4

4

(∫
R3
|∇u|2

)2

−
∫

R3
F (x, tu).

From (2.1) and the Sobolev embeddings E ↪→ L2(R3), E ↪→ Lp(R3), for ε suffi-
ciently small we obtain

h(t) ≥ t2

2
‖u‖2 − εt2

2

∫
R3
|u|2dx− Cεt

p

p

∫
R3
|u|p ≥ t2

4
‖u‖2 − C1t

p‖u‖p

where the constant C1 is independent of t. Since u 6= 0 and p > 4, It is easy to see
that h(t) > 0, whenever t > 0 is small enough.

On the other hand, nothing that |tu(x)| → ∞ as t→∞, if u(x) 6= 0. It follows
from (A4) and Fatou’s lemma that

h(t) ≤ t2

2
‖u‖2 +

Ct4

4
‖u‖4 − t4

∫
R3

F (x, tu)
(tu)4

u4 → −∞ as t→∞.
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Therefore, maxt>0 h(t) is achieved at some tu = t(u) > 0 such that h′(tu) = 0 and
tuu ∈ N .

To show the uniqueness of tu, suppose by contradiction that there exists t′u > 0
with t′u 6= tu such that h′(t′u) = 0. Then

‖u‖2

(t′u)2
+ b
(∫

R3
|∇u|2dx

)2

=
∫

R3

f(x, t′uu)
(t′uu)3

u4.

This together with

‖u‖2

(tu)2
+ b
(∫

R3
|∇u|2dx

)2

=
∫

R3

f(x, tuu)
(tuu)3

u4

implies ( 1
(t′u)2

− 1
(tu)2

)
‖u‖2 =

∫
R3

(
f(x, t′uu)

(t′uu)3
− f(x, tuu)

(tuu)3

)
u4,

which contradicts (A5).
(ii) Let u ∈ N , by (2.1), for ε small enough, we have

0 = ‖u‖2 + b
(∫

R3
|∇u|2

)2

−
∫

R3
f(x, u)u ≥ ‖u‖2 − ε

∫
R3
|u|2 − Cε

∫
R3
|u|p

≥ 1
2
‖u‖2 − C1‖u‖p

which implies ‖u‖ ≥ α0 > 0 for all u ∈ N .
(iii) For u ∈ N , it follows from (i) and (2.2) that

I(u) = I(u)− 1
4
〈I ′(u), u〉

=
1
4
‖u‖2 +

∫
R3

(1
4
f(x, u)u− F (x, u)

)
≥ 1

4
‖u‖2 ≥ C2 > 0.

(iv) For u ∈ N , it follows from (iii)

I(u) ≥ 1
4
‖u‖2,

which implies that I is coercive on N .
(v) Without loss of generality, we may assume that ‖u‖ = 1 for every u ∈ V.

Arguing indirectly suppose that there exist un ∈ V and vn = tnun such that
I(vn) ≥ 0 for all n and tn →∞ as n→∞. Passing to a subsequence, there exists
u ∈ E with ‖u‖ = 1, such that un → u. Note that |vn(x)| → ∞ if u(x) 6= 0. By
(A4) and Fatou’s lemma we have∫

R3

F (x, vn)
v4
n

u4
n →∞

which implies

0 ≤ I(vn)
‖vn‖4

=
1

2‖vn‖2
+
b
( ∫

R3 |∇vn|2dx
)2

4‖vn‖4
−
∫

R3

F (x, vn)
v4
n

u4
n → −∞,

a contradiction. �
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Now we define the unit sphere S := {u ∈ E : ‖u‖ = 1} of E and the mapping
S 7→ N , u 7→ m(u). As in [34, Lemma 2.8], we have from Lemma 2.1 the following
key observation: the mapping m is continuous and moreover m is homeomorphism
between S and N , where the inverse of m is given by

m−1(u) =
u

‖u‖
. (2.3)

Now we consider the functional Ψ : S → R defined by Ψ(w) := I(m(w). As in [34,
Prop. 2.9 and Cor. 2.10], the following lemma follows as a consequence of Lemma
2.1 and the above observation.

Lemma 2.2. (i) Ψ(w) ∈ C1(S,R), and

Ψ′(w)z = ‖m(w)‖〈I ′(m(w)), z〉, for any z ∈ TwS = {v ∈ E : 〈v, w〉 = 0}.
(ii) {wn} is a Palais-Smale sequence for Ψ if and only if {m(wn)} is a Palais-

Smale sequence for I.
(iii) w ∈ S is a critical point of Ψ if and only if m(w) ∈ N is a critical point

of I. Moreover, the corresponding critical values of Ψ and I coincide and
infS Ψ = infN I.

(iv) If I is even, then so is Ψ.

Now we set the infimum of I on N by

c = inf
N
I = inf

S
Ψ.

We recall the following result due to P.L. Lions [37, Lemma 1.21]).

Lemma 2.3. Let r > 0, If {un} is bounded in H1(R3) and

lim
n→∞

sup
y∈R3

∫
Br(y)

|un|2 = 0,

then un → 0 in Ls(R3) for any s ∈ (2, 6).

Now we are ready to study the minimizing sequence for I on N .

Lemma 2.4. Let {un} ⊂ N be a minimizing sequence for I. Then {un} is bounded.
Moreover, after a suitable Z3-translation, passing to a subsequence there exists u ∈
N such that un ⇀ u and I(u) = infN I.

Proof. Let {un} ⊂ N be a minimizing sequence such that I(un) → c. Then {un}
is bounded by Lemma 2.1 (iv). Therefore un ⇀ u for some u ∈ E, after passing to
a subsequence. Assume that

lim
n→∞

sup
y∈R3

∫
Br(y)

|un|2 = 0, (2.4)

then from Lemma 2.3 we conclude that un → 0 in Ls(R3) for any s ∈ (2, 6) and so
it is standard to show that

∫
R3 f(x, un)un = o(1) as n→∞ by (2.1). Therefore,

0 = 〈I ′(un), un〉 = ‖un‖2 + b
(∫

R3
|∇un|2

)2

−
∫

R3
f(x, un)un ≥ ‖un‖2 − o(1),

which implies ‖un‖ → 0, contrary to Lemma 2.1 (ii). Hence (2.4) cannot hold, and
so, there exist r, δ > 0 and a sequence {yn} ⊂ R3 such that

lim
n→∞

∫
Br(yn)

|un|2 ≥ δ > 0.



8 X. MA, X. HE EJDE-2016/102

Here we may assume yn ∈ Z3 by taking a larger r if necessary. In view of I and N
are invariant under translations, we may assume that {yn} is bounded in Z3. Thus,
passing to a subsequence we have un ⇀ u 6= 0.

Now we prove that u is a critical point of I. Indeed, since {un} is bounded, then
up to a subsequence, un → u in Lploc(R3), p ∈ [1, 6), un → u a.e. in R3, and we may
suppose ∫

R3
|∇un|2 → A2 ≥ 0.

For any φ ∈ C∞0 (R3), we have I ′(un)φ = o(1). That is

I ′(un)φ =
∫

R3
(a∇un∇φ+V unφ)+b

∫
R3
|∇un|2

∫
R3
∇un∇φ−

∫
R3
f(x, un)φ = o(1).

(2.5)
Passing to a limit as n→∞, we have

0 =
∫

R3
(a∇u∇φ+ V uφ) + bA2

∫
R3
∇u∇φ−

∫
R3
f(x, u)φ, (2.6)

for any φ ∈ C∞0 (R3). By Lemma 2.1 (iii) we know that c > 0, and so A > 0. Next
we show that ∫

R3
|∇u|2 = A2.

Notice that
A2 = lim inf

n→∞

∫
R3
|∇un|2 ≥

∫
R3
|∇u|2.

Suppose by contradiction, that ∫
R3
|∇u|2 < A2.

Therefore, ∫
R3

(a|∇u|2 + V u2) + b
(∫

R3
|∇u|2

)2

−
∫

R3
f(x, u)u

<

∫
R3

(a|∇u|2 + V u2) + bA2

∫
R3
|∇u|2 −

∫
R3
f(x, u)u = 0.

That is, I ′(u)u < 0. From conditions (A2)–(A4), we have I ′(θ0u)θ0u > 0 for some
0 < θ0 << 1. Thus, there is θ ∈ (θ0, 1) such that I ′(θu)θu = 0. Consequently, by
Fatou’s lemma, we conclude that

c ≤ I(θu) = I(θu)− 1
4
I ′(θu)θu

=
θ2

4

∫
R3

(a|∇u|2 + V u2)−
∫

R3

(1
4
f(x, u)u− F (x, u)

)
≤ lim inf

n→∞

{θ2

4

∫
R3

(a|∇un|2 + V u2
n)−

∫
R3

(1
4
f(x, θun)θun − F (x, θun)

)}
< lim inf

n→∞

{1
4

∫
R3

(a|∇un|2 + V u2
n)−

∫
R3

(1
4
f(x, un)un − F (x, un)

)}
= lim inf

n→∞

{
I(u)− 1

4
I ′(u)u

}
= c,

which leads to a contradiction. Here we have used the following facts:
(i) 1

4f(x, t)t ≥ F (x, t) ≥ 0 for all t ∈ R.
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(ii) 1
4f(x, t)t− F (x, t) is nondecreasing for t ≥ 0; and nonincreasing for t ≤ 0.

In fact, property (i) can be easily checked by using (A3), (A5). We only check
property (ii) for the case t ≤ 0. Indeed, letting s < t < 0 and using (A5) we obtain

1
4
f(x, s)s− 4F (x, s) =

1
4
f(x, s)s− F (x, t) +

∫ t

s

f(x, τ)
τ3

τ3dτ

>
1
4
f(x, s)s− F (x, t) +

∫ t

s

f(x, s)
s3

τ3dτ

=
1
4
f(x, s)s− F (x, t) +

f(x, s)
s3

1
4

[t4 − s4]

=
t4

4
f(x, s)
s3

− F (x, t)

>
t4

4
f(x, t)
t3

− F (x, t)

=
1
4
f(x, t)t− F (x, t).

The above contradiction shows that∫
R3
|∇un|2 → A2 =

∫
R3
|∇u|2. (2.7)

Hence, from (2.5)-(2.6) we have that I ′(u) = 0. So, u ∈ N . Clearly, I(u) ≥ c. To
complete the proof, it remains to prove that I(u) ≤ c. In fact, from (2.2), Fatou’s
lemma, the weakly lower semi-continuity of ‖ · ‖ and the boundedness of {un}, we
obtain

c+ o(1) = I(un)− 1
4
〈I ′(un), un〉

=
1
4
‖un‖2 +

∫
R3

(1
4
f(x, un)un − F (x, un)

)
≥ 1

4
‖u‖2 +

∫
R3

(1
4
f(x, u)u− F (x, u)

)
+ o(1)

= I(u)− 1
4
〈I ′(u), u〉+ o(1)

= I(u) + o(1)

which implies I(u) ≤ c. The proof is completed. �

Now we are ready to prove the existence and compactness of Theorem 1.1.

Proof of Theorem 1.1. (i) Let c = infN I as mentioned above. From Lemma 2.1
(iii) we see that c > 0. Moreover, if u0 ∈ N satisfies I(u0) = c, then m−1(u0) ∈ S
is a minimizer of Ψ and therefore a critical point of Ψ. Thus by Lemma 2.2 (iii)
u0 is a critical point of I. It remains to prove that there exists a minimizer u of
I|N . By Ekeland’s variational principle [37], there exists a sequence {wn} ⊂ S with
Ψ(wn) → c and Ψ′(wn) → 0 as n → ∞. Put un = m(wn). Then from Lemma
2.2(ii), we have that I(un) → c and I ′(un) → 0 as n → ∞. Consequently, {un} is
a minimizing sequence for I on N . Therefore, by Lemma 2.4 exists a minimizer u
of I|N , as required.

(ii) Let {un} ⊂ K be a bounded sequence. Then un ∈ N , I(un) = c and
I ′(un) = 0. Up to a subsequence, we may assume un ⇀ u in E. From Lemma 2.4,
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we have that {un} is non-vanishing, i.e.,

lim
n→∞

∫
Br(yn)

|un|2 ≥ δ > 0.

By the invariance of I on N under the translations of the form u 7→ u(· − k) with
k ∈ Z3, we may assume that {yn} is bounded in Z3. Therefore un ⇀ u 6= 0 and
I ′(u) = 0. Again by Lemma 2.4, one obtains that I(u) = c. So we obtain

c = I(u)− 1
4
〈I ′(u), u〉

=
1
4
‖u‖2 +

∫
R3

(1
4
f(x, u)u− F (x, u)

)
≤ lim
n→∞

(1
4
‖un‖2 +

∫
R3

(1
4
f(x, un)un − F (x, un)

))
= lim
n→∞

(
I(un)− 1

4
〈I ′(un), un〉

)
= c

(2.8)

which implies that‖un‖ → ‖u‖. Hence un → u in E. �

3. Proof of Theorem 1.2

In this section we always assume that (A1), (A6)–(A9) are satisfied. Note that
(A8) and (A9) imply g(x, u) = O(u3) as u→ 0 and

g(x, u)u ≥ 4G(x, u) ≥ 0. (3.1)

Moreover, by (A7) and (A8), for any ε > 0 there exists Cε > 0 such that

|g(x, u)| ≤ ε|u|+ Cε|u|p−1, ∀(u, x) ∈ R× R3. (3.2)

We denote the energy functional associated with (1.3) by

J(u) =
1
2

∫
R3

(a|∇u|2 + V (x)u2) +
b

4

(∫
R3
|∇u|2dx

)2

− λ
∫

R3
G(x, u)− 1

6

∫
R3
|u|6,

for all u ∈ E.
Next we enunciate without proof the following lemma, the proof follows from a

similar argument to that used in the proof of Lemma 2.2. The Nehari manifold for
(1.5) is still denoted by N .

Lemma 3.1. (i) For u ∈ E\{0}, there exists a unique tu = t(u) > 0 such that
m(u) := tuu ∈ N and I(m(u)) = max I(R+u).

(ii) There exists α0 > 0 such that ‖u‖ ≥ α0 for all u ∈ N .
(iii) J is bounded from below on N by a positive constant.
(iv) J is coercive on N .
(v) Suppose V ∈ E\{0} is a compact subset, then there exists R > 0 such that

J ≤ 0 on R+V\BR(0).

From Lemma 3.1, and arguing as [34, Lemma 2.8], we see that the mapping m is
continuous. m is homeomorphism between S and N , and the inverse of m is given
by m−1(u) = u

‖u‖ . Now we consider the functional Ψ : S → R defined by

Ψ(w) := J(m(w)).

Similar to Lemma 2.2, we have the following parallel lemma.
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Lemma 3.2. (i) Ψ ∈ C1(S,R), and

Ψ′(w)z = ‖m(w)‖〈J ′(m(w)), z〉 for any z ∈ TwS = {v ∈ E : 〈v, w〉 = 0}

(ii) {wn} is a Palais-Smale sequence for Ψ if and only if {m(wn)} is a Palais-
smale sequence for J .

(iii) w ∈ S is a critical point of Ψ if and only if m(w) ∈ N is a critical point
of J . Moreover, the corresponding critical values of Ψ and J coincide and
infS Ψ = infN J .

Recall that c = infN J . By Lemma 3.1 (iii), c > 0. Applying Ekeland’s vari-
ational principle, there exists a Palais-Smale sequence {wn} ⊂ S for Ψ such that
Ψ(wn) → c. Set u = m(wn). Then from Lemma 3.2 (ii), {un} ⊂ N is a Palais-
Smale sequence for J and J(un)→ c. By Lemma 3.1 (iv), {un} is bounded. Then
{un} is either

(i) Vanishing: for each r > 0,

lim
n→∞

sup
y∈R3

∫
Br(y)

|un|2 = 0;

or (ii) Non-vanishing: there exists r, δ > 0 and a sequence {yn} ⊂ R3 such that

lim
n→∞

∫
Br(yn)

|un|2 ≥ δ.

In case (ii) we may assume yn ∈ Z3 by taking a larger r if necessary. Suppose case
(ii) holds and let ũn(x) := un(x + yn). Since J is invariant and ∇J is equivariant
with respect to the Z3-action, ũn ⇀ u up to a subsequence, J ′(u) = 0, J(u) ≥ c
and since limn→∞

∫
Br(y)

|un|2 ≥ δ, u 6= 0. Hence u is a nontrivial critical point of
J . Moreover, u ∈ N and J(u) ≥ c. Consequently, J(u) = c and thus u is a ground
state solutions of problem (1.5). It remains to prove that vanishing cannot occur.
This will be done in the following two lemmas.

We assume without loss of generality that, K(x0) = K(0) = maxx∈R3 K(x) =:
‖K‖∞. We note that the critical equation

−∆u = u5 in R3 (3.3)

has the well known minimal decaying positive solution

u = uε = K
( ε

ε2 + |x|2
)1/2

, K = 31/4

for any ε > 0. It is well known that [7], uε satisfies∫
R3
|∇uε|2 =

∫
R3
|uε|6 = S3/2, (3.4)

where S is the best Sobolev embedding constant given by

S := inf
u∈D1,2(R3)\{0}

∫
R3 |∇u|2

(
∫

R3 |u|6)1/3
. (3.5)

Define
wε(x) = η(x)uε(x), x ∈ R3, ε > 0,
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where η ∈ C∞0 (R3, [0, 1]) is a piecewise smooth function with support in B2R(0)
such that η(x) = 1 in BR(0), 0 ≤ η(x) ≤ 1 in B2R(0) and |∇η| ≤ C/R. As in
[7, 27], we have the following estimates as ε→ 0+.

‖∇wε‖22 = S3/2 +O(ε), ‖wε‖66 = S3/2 +O(ε3), (3.6)

‖wε‖ss =


O(εs/2), if s ∈ [2, 3),
O(εs/2| ln ε|), if s = 3,
O(ε

6−s
2 ), if s ∈ (3, 6).

(3.7)

Since K(x) −K(0) = O(|x|α) as x → 0, as in [13, Lemma 2], by (3.6), as ε → 0+

we have ∫
R3
K(x)|wε|6 = ‖K‖∞

∫
R3
|wε|6 +

∫
R3

(K(x)−K(0))|wε|6

= ‖K‖∞S3/2 +O(θ(ε)),
(3.8)

where

θ(ε) =


εα, if α < 3
ε3| ln ε|, if α = 3
ε3, if α > 3.

(3.9)

Let

vε(x) = wε

[ ∫
R3
K(x)|wε|6

]−1/6

. (3.10)

Lemma 3.3.

c < c∗ =
abS3‖K‖−1

∞
4

+
b3S6‖K‖−2

∞
24

+
(b2S4 + 4aS‖K‖∞)3/2‖K‖−2

∞
24

.

Proof. Since ∂uε/∂~n ≤ 0, integration by parts of (3.3) yields∫
BR(x0)

|∇wε|2 =
∫
BR(0)

|∇uε|2 ≤
∫
BR(0)

|uε|6. (3.11)

By a direct computation, we can easily verify that

K(0)
∫
BR(0)

|uε|6 ≤
∫
BR(0)

K(x)|uε|6 +O(εα),∫
R3\BR(0)

|uε|6 = O(ε3), (3.12)

Aε =
∫

R3\BR(0)

|∇wε|2 = O(ε) (3.13)

as ε→ 0. Therefore, (3.8)–(3.13) yield the estimate∫
R3
|∇wε|2 =

∫
BR(0)

|∇wε|2 +Aε ≤
∫
BR(0)

|uε|6 +Aε

= S
[ ∫

BR(0)

|uε|6
]1/3

+Aε

≤ S‖K‖−1/3
∞

[ ∫
BR(0)

K(x)|wε|6
]1/3

+O(εα) +O(ε).

(3.14)
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Put Wε =
∫

R3 |∇vε|2, since for small R > 0 the integral
∫
BR(0)

K(x)|wε|6 is bounded
below by a positive constant, independent of ε. Hence, (3.4) and (3.14) imply the
inequality

Wε =
∫

R3
|∇vε|2 ≤ S‖K‖−1/3

∞ +O(εβ). (3.15)

where β = min{α, 1}.
By Lemma 3.1 (i) and (iii), there exists tε > 0 such that

J(tεvε) = max
t≥0

J(tvε) ≥ C.

From the continuity of J , we see that there exists t0 > 0 independent of ε satisfying
tε > t0 > 0. Put

ζ(t) =
t2

2

∫
R3

(a|∇vε|2 + V (x)v2
ε) +

bt4

4

(∫
R3
|∇vε|2dx

)2

− t6

6
.

Then it is easy to see that ζ(t) achieves its maximum at the global maximum point
t̃ε > 0, satisfying∫

R3
(a|∇vε|2 + V (x)v2

ε) + b(t̃ε)2
(∫

R3
|∇vε|2

)2

− (t̃ε)4 = 0.

Then t̃ε takes the form

(t̃ε)2 =
bW 2

ε +
√
b2W 4

ε + 4(aWε +
∫

R3 V (x)v2
ε)

2
:= T0. (3.16)

As in [14], denote c1 = bW 2
ε ,

c2 = aWε +
∫

R3
V (x)v2

ε .

Using (A9), tε > t0, we obtain

J(tεvε) = ζ(tε)− λ
∫

R3
G(x, tεvε)

≤ ζ(t̃ε)− λc0tqε
∫

R3
|vε|q

≤ (t̃ε)2

2

∫
R3

(
a|∇vε|2 + V (x)v2

ε

)
+
b(t̃ε)4

4

(∫
R3
|∇vε|2

)2

− (t̃ε)6

6
− λC1

∫
R3
|vε|q

=
T0

2

∫
R3

(
a|∇vε|2 + V (x)v2

ε

)
+
bT 2

0

4

(∫
R3
|∇vε|2

)2

− T 3
0

6
− λC1

∫
R3
|vε|q

=
T0

2

(
aWε +

∫
R3
V (x)v2

ε

)
+

1
4
bT 2

0W
2
ε −

1
6
T 3

0 − λC1

∫
R3
|vε|q

=
1
24

(c1 + c2)3/2 +
1
24
c1c2 +

1
24
c31 − λC1

∫
R3
|vε|q.

(3.17)

Using (3.15) and inequality

(a+ b)p ≤ ap + p(a+ b)p−1b, p ≥ 1, ab > 0 (3.18)
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we conclude that

J(tεvε) ≤
1
24

(b2W 4
ε + 4aWε)3/2 + C1

∫
R3
V (x)v2

ε +
1
4
abW 3

ε + C2

∫
R3
V (x)v2

ε

+
1
24
b3W 3

ε − λC1

∫
R3
|vε|q

≤ 1
24
[
b2[S‖K‖−1/3

∞ +O(εβ)]4 + 4a[S‖K‖−1/3
∞ +O(εβ)]

]3/2
+

1
4
ab[S‖K‖−1/3

∞ +O(εβ)]3 +
1
24
b3[S‖K‖−1/3

∞ +O(εβ)]3

+ C3

∫
R3
V (x)v2

ε − λC1

∫
R3
|vε|q

≤ 1
24

[
b2S4‖K‖−4/3

∞ + 4aS‖K‖−1/3
∞

]3/2
+

1
4
abS3‖K‖−1

∞ +
1
24
b3S6‖K‖−2

∞

+ C3

∫
R3
V (x)v2

ε +O(εβ)− λC1

∫
R3
|vε|q,

(3.19)
where Ci, i = 1, 2, 3, are positive constants, independent of ε.

If α ≥ 1 then β = 1, Hence to complete the proof, it remains to show that

lim
ε→0+

1
ε

∫
BR(0)

[
C3V (x)v2

ε − λC1|vε|q
]

= −∞, (3.20)

lim
ε→0+

1
ε

∫
R3\BR(0)

[
C3V (x)v2

ε − λC1|vε|q
]
≤ C4. (3.21)

In fact, from (3.7), (3.8) it is easy to see that
1
ε

∫
BR(0)

C3V (x)v2
ε ≤

C

ε

∫
BR(0)

ε

ε2 + |x|2
≤ CR, (3.22)

λC1

ε

∫
BR(0)

|vε|q ≥
λC

ε

∫
BR(0)

|wε|q =
λC

ε

∫
BR(0)

ε
q
2

(ε2 + |x|2)
q
2
≥ λCε

−q+4
4 . (3.23)

Again by (3.6), we have
1
ε

∫
R3\BR(0)

[
C3V (x)v2

ε − λC1|vε|q
]
≤ 1
ε

∫
B2R(0)\BR(0)

C3V (x)v2
ε

≤ 1
ε

∫
B2R(x0)\BR(0)

C6w
2
ε ≤ C7,

(3.24)

where Ci, i = 4, 5, 6, 7, are positive constants, independent of ε. If 4 < q < 6,
(3.20) follows immediately from (3.22), (3.23) for any λ > 0. If q = 4, one can
chose λ = ε−δ, δ > 0 in inequality (3.23) to obtain (3.20).

If 0 < α < 1, then β = α. Choosing ε so small that Bε(0) ⊂ BR(0) ⊂ Ω, then
by (3.1) we have∫

R3
G(x, tεvε) ≥

∫
Bε(0)

G
(
x, tεwε

[ ∫
R3
K(x)|wε|6

]−1/6)
.

Since tε ≥ t0, by (3.7) and the definition of wε it is easy to check that, for all
x ∈ Bε(0),

tεwε

[ ∫
R3
K(x)|wε|6

]− 1
6

=
3

1
4 tεε

1/2

(ε2 + |x|2)1/2
×
(
‖K‖∞S3/2 +O(εα)

)−1/6
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≥ Ct0ε−1/2 → +∞

as ε→ 0+, which jointly with (g′4), implies that for any M > 0 there exists ε0 > 0
such that for all ε ∈ (0, ε0)∫

R3
G(x, tεvε) ≥ C1M

∫
Bε(0)

εα−3 = C2Mεα. (3.25)

It follows from (3.17), (3.19) and (3.25) that

J(tεvε) ≤
1
24

[
b2S4‖K‖−4/3

∞ + 4aS‖K‖−1/3
∞

]3/2
+

1
4
abS3‖K‖−1

∞ +
1
24
b3S6‖K‖−2

∞

+O(εα) + C1ε− C2Mεα.

(3.26)
Hence taking M large enough and for ε small enough, we deduce that

J(tεvε) ≤
1
24

[
b2S4‖K‖−4/3

∞ + 4aS‖K‖−1/3
∞

]3/2
+

1
4
abS3‖K‖−1

∞ +
1
24
b3S6‖K‖−2

∞ ,

as required. �

Lemma 3.4. If c ∈ (0, c∗), then {un} cannot vanish.

Proof. Suppose by contradiction that {un} is vanishing, then it follows Lemma 2.3,
that un → 0 in Ls(R3) whenever 2 < s < 6, Thus by (3.2), we deduce that∫

R3
g(x, un)un → 0 and

∫
R3
G(x, un)→ 0,

and hence,

J(un) =
1
2
‖un‖2 +

b

4

(∫
R3
|∇un|2dx

)2

− 1
6

∫
R3
K(x)u6

n = c+ o(1), (3.27)

J ′(un)un = ‖un‖2 + b
(∫

R3
|∇un|2dx

)2

−
∫

R3
K(x)u6

n = o(1) (3.28)

where o(1)→ 0 as n→∞. By (3.28) we may assume that

‖un‖2 → l1 b

(∫
R3
|∇un|2dx

)2

→ l2

∫
R3
K(x)u6

n → l3,

for some l1 ≥ 0, l2 ≥ 0, l3 ≥ 0. Then by (3.27) and (3.28), we have
1
2
l1 +

1
4
l2 −

1
6
l3 = c,

l1 + l2 − l3 = 0,
(3.29)

which implies

c =
1
3
l1 +

1
12
l2. (3.30)

It is easy to see that l1 > 0, otherwise ‖un‖ → 0 as n → ∞ which contradicts to
c > 0. By (3.5) we have∫

R3
|∇un|2 ≥ S

(∫
R3
|un|6

)1/3

≥ S‖K‖−1/3
∞

(∫
R3
K(x)|un|6

)1/3

.

Then, we have

‖un‖2 ≥ a
∫

R3
|∇un|2 ≥ aS‖K‖−1/3

∞

(∫
R3
K(x)|un|6

)1/3

,
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b
(∫

R3
|∇un|2

)2

≥ bS2‖K‖−2/3
∞

(∫
R3
K(x)|un|6

)2/3

.

Passing the limit in the previous two inequalities, as n→∞, we obtain

l1 ≥ aS‖K‖−1/3
∞ (l1 + l2)1/3,

l2 ≥ bS2‖K‖−2/3
∞ (l1 + l2)2/3.

Hence

(l1 + l2)1/3 ≥
‖K‖−2/3

∞ (bS2 +
√
b2S4 + 4aS‖K‖∞)
2

.

Then

c = lim
n→∞

J(un)

=
1
3
l1 +

1
12
l2

≥ 1
3
aS‖K‖−1/3

∞ (l1 + l2)1/3 +
1
12
bS2‖K‖−2/3

∞ (l1 + l2)
2
3

≥ 1
3
aS‖K‖−1

∞
bS2 +

√
b2S4 + 4aS‖K‖∞

2

+
1
12
bS2‖K‖−2

∞
(bS2 +

√
b2S4 + 4aS‖K‖∞)2

4

=
abS3‖K‖−1

∞
4

+
b3S6‖K‖−2

∞
24

+
(b2S4 + 4aS‖K‖∞)3/2‖K‖−2

∞
24

=: c∗

which contradicts that c < c∗, so the lemma is proved. �

Proof of Theorem 1.2 (completed). As mentioned above, the conclusion (i) and (ii)
follow from Lemma 3.3 and 3.4. Now we prove (iii). Let {un} ⊂ K̃ be a bounded
sequence. Then un ∈ N , J(un) = c and J ′(un) = 0 Passing to a subsequence, we
may assume un ⇀ u in E. As in the proof of Lemma 3.4, one can easily prove that
{un} is non-vanishing, i.e.,

lim
n→∞

∫
Br(yn)

|un|2 ≥ δ > 0.

From the invariance of J and N under the translations of the form u 7→ u(· − k)
with k ∈ Z3, we may assume that {yn} is bounded in Z3. Therefore, un ⇀ u 6= 0
and J ′(un) = 0. Arguing as in the proof of Lemma 2.4, one obtains that J(u) = c.
On the other hand, by Fatou’s lemma we conclude that

c = J(u)− 1
4
〈J ′(u), u〉

=
1
4
‖u‖2 +

1
12

∫
R3
K(x)|u|6 + λ

∫
R3

(1
4
g(x, u)u−G(x, u)

)
≤ lim
n→∞

[1
4
‖un‖2 +

1
12

∫
R3
K(x)|un|6 + λ

∫
R3

(1
4
g(x, un)un −G(x, un)

)]
= lim
n→∞

(
I(un)− 1

4
〈I ′(un), un〉

)
= c

which implies ‖un‖ → ‖u‖. Therefore, un → u in E. �
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4. Proof of Theorem 1.4

In this section, we consider problem (1.6) and give the proof of Theorem 1.4.
We shall use the following abstract result which is due to Jeanjean [18].

Lemma 4.1. Let X be a Banach space equipped with a norm ‖ ·‖X and let Λ ∈ R+

be an interval. Let {Φλ}λ∈Λ be a family of C1-functionals on X of the form

Φλ(u) = A(u)− λB(u), ∀λ ∈ Λ,

where B(u) ≥ 0 for all u ∈ X and such that either A(u)→ +∞ or B(u)→∞, as
‖u‖X →∞. We assume that there are two points v1, v2 in X such that

cλ := inf
γ∈Γ

max
t∈[0,1]

Φλ(γ(t)) > max{Φλ(v1),Φλ(v2)}, ∀λ ∈ Λ

where
Γ = {γ ∈ C([0, 1], X) : γ(0) = v1, γ(1) = v2}.

Then, for almost every λ ∈ Λ, there is a bounded (PS)cλ sequence for Φλ; that is,
there exists a sequence {un(λ)} ⊂ X such that

(i) {un(λ)} is bounded in X;
(ii) Φλ(un(λ))→ cλ;
(iii) Φ′λ(un(λ)) → 0 in X∗, where X∗ is the dual of X. Moreover, the map

λ 7→ cλ is nonincreasing and left continuous.

Denote Λ = [δ, 1], where δ ∈ (0, 1) is a positive constant. To apply lemma 4.1,
we introduce a family of functions defined by

Iλ(u) =
1
2

∫
R3

(a|∇u|2 + u2) +
b

4

(∫
R3
|∇u|2dx

)2

− λ
∫

R3
F (u)

for λ ∈ [δ, 1]. First we have the following lemma.

Lemma 4.2. If (A2’)–(A4’) are satisfied, then
(i) there exists a v ∈ E\{0} independent of λ such that Iλ(v) ≤ 0 for all

λ ∈ [δ, 1];
(ii) cλ = infγ∈Γ maxt∈[0,1] Iλ(γ(t)) > max{Iλ(0), Iλ(v)} for all λ ∈ [δ, 1], where

Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = v};
(iii) there exists M > 0 independent of λ such that cλ ≤M for all λ ∈ [δ, 1].

Proof. (i) For a fixed u ∈ E\{0} and any λ ∈ [δ, 1], we have

Iλ(u) ≤ Iδ(u) =
1
2

∫
R3

(a|∇u|2 + u2) +
b

4

(∫
R3
|∇u|2dx

)2

− δ
∫

R3
F (u).

Set ut(x) = t2u( xt2 ), t > 0. It is easy to check that

Iδ(ut) =
t6

2

∫
R3
a|∇u|2 +

t10

2

∫
R3
u2 +

bt12

4

(∫
R3
|∇u|2dx

)2

− δt12

∫
R3

F (t2u)
(t2u)3

u3.

(4.1)
By (A2’) and (A4’) if u 6= 0, then F (t2u)/|t2u|3 → +∞ as t→ +∞. From Fatou’s
lemma we have Iδ(ut) → −∞ as t → +∞. So, taking v = ut, for t large we have
Iλ(v) ≤ Iδ(v) < 0 for all λ ∈ [δ, 1].

(ii) By (A2’) and (A3’), for any ε > 0 there exists Cε > 0 such that

|f(u)| ≤ ε|u|+ Cε|u|p−1, ∀u ∈ R. (4.2)
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Then, for ε small enough and by the Sobolev embedding, we obtain

Iλ(u) ≥ 1
2

∫
R3

(a|∇u|2 + u2)− ε

2

∫
R3
u2 − Cε

p

∫
R3
up

≥ 1− ε
2
‖u‖2 − CCε‖u‖p.

Since p > 2, we deduce that Iλ has a strict local minimum at 0 and hence cλ > 0.
(iii) By cλ ≤ maxt>0 Iλ(ut) ≤ maxt>0 Iδ(ut) for λ ∈ [δ, 1], the conclusion follows

from (4.1). �

Note that conditions (A2’)–(A4’), Lemma 4.2 and the definition of Iλ(u) imply
that Iλ(u) satisfies the assumptions of Lemma 4.1 with X = E and Φλ = Iλ. Hence
for almost every λ ∈ [δ, 1], there exists a bounded sequence un(λ) ⊂ E such that

Iλ(un(λ))→ cλ, I ′(un(λ))→ 0 in E.

In the sequel, we denote {un} in place of {un(λ)} for simplicity.

Lemma 4.3. Assume f satisfies (A2’)–(A4’). Let u be a critical point of Iλ in E,
then we have the Pohozaev type identity

a

2

∫
R3
|∇u|2 +

3
2

∫
R3
u2 +

b

2

(∫
R3
|∇u|2

)2

− 3λ
∫

R3
F (u) = 0. (4.3)

Moreover, there exists κ > 0 independent of λ such that Iλ(u) ≥ κ for any nontrivial
critical point u ∈ E of Iλ.

Proof. The proof of the Pohozaev type identity can be found in [6]. Now we show
the second conclusion of the lemma. Let u be a nontrivial critical point of Iλ. Then

‖u‖2 + b
(∫

R3
|∇u|2

)2

= λ

∫
R3
f(u)u, (4.4)

which jointly with (4.2), implies that ‖u‖2 ≤ ε‖u‖22 + Cε‖u‖pp, then for ε small
enough by the Sobolev embedding, one gets that ‖u‖ ≥ δ for some positive constant
δ independent of λ.

Since u satisfies the Pohozaev type identity (4.3) and µ > 3 it follows from (4.4)
and (A4’) that

Iλ(u) =
5µ− 6

12µ

∫
R3
a|∇u|2 +

µ− 2
4µ

∫
R3
u2 +

(µ− 3)b
6µ

(∫
R3
|∇u|2

)2

+
λ

2

∫
R3

( 1
µ
f(u)u− F (u)

)
≥ µ− 2

4µ
‖u‖2 ≥ µ− 3

2µ− 3
δ2 := κ > 0.

(4.5)

The proof is complete. �

We need the following global compactness lemma to study the behavior of
bounded (PS) sequence of Iλ, we refer to [22] and [24] for its proof.

Lemma 4.4. Suppose that (A2’)–(A4’) hold and let {un} ⊂ E be a bounded (PS)
sequence of Iλ at a certain level cλ > 0. Then, there exists a u0 ∈ E and A ∈ R
such that Ĩ ′λ(u0) = 0, where

Ĩλ(u) =
a+ bA2

2

∫
R3
|∇u|2 +

1
2

∫
R3
u2 − λ

∫
R3
F (u), (4.6)
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and either
(i) un → u0 in E; or
(ii) there exists a positive integer l ∈ N, and sequence {ykn} ⊂ R3, k = 1, 2 . . . l,

with |ykn| → ∞, |yin − yjn| → ∞, i 6= j as n → ∞, nonzero critical points
w1, . . . , wl of the problem

− (a+ bA2)∆u+ u = λf(u) (4.7)

such that

cλ +
bA2

4
= Ĩλ(u0) +

l∑
k=1

Ĩλ(wk),

∥∥un − u0 −
l∑

k=1

wk(· − ykn)
∥∥→ 0 as n→∞,

where

A2 = ‖∇u0‖22 +
l∑

k=1

‖∇wk‖22.

Proposition 4.5. Let {un} ⊂ E be a bounded (PS) sequence of Iλ at a certain
level cλ > 0, then exists uλ 6= 0 such that I ′λ(uλ) = 0.

The proof is similar to [22, Lemma 3.5] and [24, Lemma 3.4], we omit it here.
We remark that in this section the nonlinearity f does not satisfy the mono-

tonicity condition (A5), so we can not prove the weak limit of the (PS) sequence
of Iλ is a critical point as we have done in the previous section. Nevertheless, from
Lemma 4.4 and Proposition 4.5, we can obtain that for almost every λ ∈ [δ, 1], Iλ
has a nontrivial point uλ. Generally speaking, it is not known whether it is true for
λ = 1. Motivated by [18], we can select a sequence {λn} ∈ [δ, 1] and un ∈ E\{0}
such that λn → 1 and I ′λn(un) = 0. In order to obtain a nontrivial critical point of
I = I1, we need to discuss the critical value Iλn(un) carefully.

From Lemmas 4.1–4.4, Proposition 4.5, we have the following result.

Lemma 4.6. Suppose that (A2’)–(A4’) hold, then there exists a sequence {λn} ⊂
[δ, 1] and un ∈ E\{0} such that

λn → 1, I ′λn(un) = 0 and κ ≤ Iλn(un) = cλn

Moreover, the sequence {un} is bounded in E.

Proof. We only prove the boundedness of {un} in E, since I ′λn(un) = 0, similar to
(4.5), one concludes that

cλn = Iλn(un)

=
5µ− 6

12µ

∫
R3
a|∇un|2 +

µ− 2
4µ

∫
R3
u2
n +

(µ− 3)b
6µ

(∫
R3
|∇un|2

)2

+
λn
2

∫
R3

( 1
µ
f(un)un − F (un)

)
≥ µ− 2

4µ
‖un‖2.

(4.8)

Recalling that cλ ≤M for all λ ∈ [δ, 1]. By Lemma 4.2 (iii), from (4.8) we see that
‖un‖ is bounded. The proof is complete. �
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Proof of Theorem of 1.4. By Lemma 4.6, we obtain a bounded sequence of non-
trivial critical point {uλn} of Iλn such that λn → 1 and κ ≤ Iλn(uλn) = cλn .
Suppose

lim
n→∞

sup
y∈R3

∫
Br(y)

|uλn |2 = 0. (4.9)

Then by Lemma 2.3, uλn → 0 in Ls(R3) for all s ∈ (2, 6), Therefore∫
R3
f(uλn)uλn → 0 and

∫
R3
F (uλn)→ 0.

Consequently

Iλn(uλn) = Iλn(uλn)− 1
2
〈I ′λn(un), un〉

= − b
4

(∫
R3
|∇uλn |2dx

)2

+ λn

∫
R3

(1
2
f(uλn)uλn − F (uλn)

)
≤ 0

(4.10)

for n large enough. This contradicts to the fact Iλn(uλn) ≥ κ. Hence (4.9) does not
hold. Then up to a subsequence, we may assume uλn ⇀ u0 for some u0 ∈ E\{0}.

By Lemma 4.1 (iii), we see that

lim
n→∞

I1(uλn) = lim
n→∞

(
Iλn(uλn) + (λn − 1)

∫
R3
F (uλn)

)
= lim
n→∞

cλn = c1

and, for any ϕ ∈ H1(R3) it follows in a standard way that

lim
n→∞

〈I ′1(uλn), ϕ〉 = lim
n→∞

(
〈I ′λn(uλn), ϕ〉 − (λn − 1)

∫
R3
f(uλn)ϕ

)
= 0

which implies uλn is a bounded (PS)c1 sequence for I = I1. Then by Proposition
4.5, there exists a nontrivial critical point for I and I(u0) = c1.

To prove the existence of ground state solutions, we set

m = inf{I(u) : u ∈ E\{0}, I ′(u) = 0}.

It follows from Lemma 4.3 that κ ≤ m ≤ I(u0), where u0 is the nontrivial critical
point obtain above.

Suppose that {un} ∈ E\{0} such that I(un) → m and I ′(un) = 0. Similar to
(4.5), we obtain that {un} is bounded. Furthermore, as we analyze in (4.9), (4.10)
the sequence {un} can not be vanishing. Then up to translation, a subsequence
of {un} still denoted by {un}, converges weakly to u ∈ E\{0}. By Lemma 4.4
and Proposition 4.5 we see that u is a nontrivial critical point of I, and I(u) ≥ m.
In order to complete the proof, it suffices to show that I(u) ≤ m. Indeed, since
I ′(un) = 0, I ′(u) = 0, as in (4.5), by Fatou’s lemma, we have

m+ o(1) = I(un)

=
5µ− 6

12µ

∫
R3
a|∇un|2 +

µ− 2
4µ

∫
R3
u2
n +

(µ− 3)b
6µ

(∫
R3
|∇un|2

)2

+
1
2

∫
R3

( 1
µ
f(un)un − F (un)

)
≥ 5µ− 6

12µ

∫
R3
a|∇u|2 +

µ− 2
4µ

∫
R3
u2 +

(µ− 3)b
6µ

(∫
R3
|∇u|2

)2

+
1
2

∫
R3

( 1
µ
f(u)u− F (u)

)
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= I(u) + o(1)

which implies I(u) ≤ m, as required. �
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