Electronic Journal of Differential Equations, Vol. 2016 (2016), No. 104, pp. 1-13. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

LONG TIME DECAY FOR 3D NAVIER-STOKES EQUATIONS IN SOBOLEV-GEVREY SPACES

JAMEL BENAMEUR, LOTFI JLALI

Abstract

In this article, we study the long time decay of global solution to 3 D incompressible Navier-Stokes equations. We prove that if $u \in \mathcal{C}\left([0, \infty), H_{a, \sigma}^{1}\left(\mathbb{R}^{3}\right)\right)$ is a global solution, where $H_{a, \sigma}^{1}\left(\mathbb{R}^{3}\right)$ is the Sobolev-Gevrey spaces with parameters $a>0$ and $\sigma>1$, then $\|u(t)\|_{H_{a, \sigma}^{1}\left(\mathbb{R}^{3}\right)}$ decays to zero as time approaches infinity. Our technique is based on Fourier analysis.

1. Introduction

The 3D incompressible Navier-Stokes equations are

$$
\begin{gather*}
\partial_{t} u-\Delta u+u \cdot \nabla u=-\nabla p \quad \text { in } \mathbb{R}^{+} \times \mathbb{R}^{3} \\
\operatorname{div} u=0 \quad \text { in } \mathbb{R}^{+} \times \mathbb{R}^{3} \tag{1.1}\\
u(0, x)=u^{0}(x) \quad \text { in } \mathbb{R}^{3},
\end{gather*}
$$

where, we assume that the fluid viscosity $\nu=1$, and $u=u(t, x)=\left(u_{1}, u_{2}, u_{3}\right)$ and $p=p(t, x)$ denote respectively the unknown velocity and the unknown pressure of the fluid at the point $(t, x) \in \mathbb{R}^{+} \times \mathbb{R}^{3},(u \cdot \nabla u):=u_{1} \partial_{1} u+u_{2} \partial_{2} u+u_{3} \partial_{3} u$, and $u^{0}=\left(u_{1}^{o}(x), u_{2}^{o}(x), u_{3}^{o}(x)\right)$ is a given initial velocity. If u^{0} is quite regular, the divergence free condition determines the pressure p.

We define the Sobolev-Gevrey spaces as follows; for $a, s \geq 0, \sigma>1$ and $|D|=$ $(-\Delta)^{1 / 2}$,

$$
H_{a, \sigma}^{s}\left(\mathbb{R}^{3}\right)=\left\{f \in L^{2}\left(\mathbb{R}^{3}\right): e^{a|D|^{1 / \sigma}} f \in H^{s}\left(\mathbb{R}^{3}\right)\right\}
$$

which is equipped with the norm

$$
\|f\|_{H_{a, \sigma}^{s}}=\left\|e^{a|D|^{1 / \sigma}} f\right\|_{H^{s}}
$$

and its associated inner product

$$
\langle f \mid g\rangle_{H_{a, \sigma}^{s}}=\left\langle e^{a|D|^{1 / \sigma}} f \mid e^{a|D|^{1 / \sigma}} g\right\rangle_{H^{s}} .
$$

There are several authors who have studied the behavior of the norm of the solution to infinity in the different Banach spaces. Wiegner [8] proved that the L^{2} norm of the solutions vanishes for any square integrable initial data, as time approaches infinity, and gave a decay rate that seems to be optimal for a class of

[^0]initial data. Schonbek and Wiegner [7, 9] derived some asymptotic properties of the solution and its higher derivatives under additional assumptions on the initial data. Benameur and Selmi [4] proved that if u is a Leray solution of the 2D NavierStokes equation, then $\lim _{t \rightarrow \infty}\|u(t)\|_{L^{2}\left(\mathbb{R}^{2}\right)}=0$. For the critical Sobolev spaces $\dot{H}^{1 / 2}$, Gallagher, Iftimie and Planchon [6] proved that $\|u(t)\|_{\dot{H}^{1 / 2}}$ approaches zero at infinity. Now, we state our main result.
Theorem 1.1. Let $a>0$ and $\sigma>1$. Let $u \in \mathcal{C}\left([0, \infty), H_{a, \sigma}^{1}\left(\mathbb{R}^{3}\right)\right)$ be a global solution to (1.1). Then
\[

$$
\begin{equation*}
\limsup _{t \rightarrow \infty}\|u(t)\|_{H_{a, \sigma}^{1}}=0 . \tag{1.2}
\end{equation*}
$$

\]

Note that the existence of local solutions to (1.1) was studied recently in 3 .
This article is organized as follows: In section 2 , we give some notations and important preliminary results. Section 3 is devoted to prove that if $u \in \mathcal{C}\left(\mathbb{R}^{+}, H^{1}\left(\mathbb{R}^{3}\right)\right)$ is a global solution to 1.1 then $\|u(t)\|_{H^{1}}$ decays to zero as time approaches infinity. The proof is based on the fact that

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\|u(t)\|_{\dot{H}^{1 / 2}}=0 \tag{1.3}
\end{equation*}
$$

and the energy estimate

$$
\begin{equation*}
\|u(t)\|_{L^{2}}^{2}+\int_{0}^{t}\|\nabla u(\tau)\|_{L^{2}}^{2} d \tau \leq\left\|u^{0}\right\|_{L^{2}}^{2} \tag{1.4}
\end{equation*}
$$

In section 4, we generalize the results of Foias-Temam [5] to \mathbb{R}^{3} and in section 5, we prove the main theorem.

2. Notation and preliminary results

2.1. Notation. In this section, we collect notation and definitions that will be used later. First, the Fourier transformation is normalized as

$$
\mathcal{F}(f)(\xi)=\widehat{f}(\xi)=\int_{\mathbb{R}^{3}} \exp (-i x \cdot \xi) f(x) d x, \quad \xi=\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \in \mathbb{R}^{3}
$$

the inverse Fourier formula is

$$
\mathcal{F}^{-1}(g)(x)=(2 \pi)^{-3} \int_{\mathbb{R}^{3}} \exp (i \xi \cdot x) g(\xi) d \xi, \quad x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}
$$

and the convolution product of a suitable pair of functions f and g on \mathbb{R}^{3} is

$$
(f * g)(x):=\int_{\mathbb{R}^{3}} f(y) g(x-y) d y
$$

For $s \in \mathbb{R}, H^{s}\left(\mathbb{R}^{3}\right)$ denotes the usual non-homogeneous Sobolev space on \mathbb{R}^{3} and $\langle\cdot \mid \cdot\rangle_{H^{s}}$ denotes the usual scalar product on $H^{s}\left(\mathbb{R}^{3}\right)$. For $s \in \mathbb{R}, \dot{H}^{s}\left(\mathbb{R}^{3}\right)$ denotes the usual homogeneous Sobolev space on \mathbb{R}^{3} and $\langle\cdot \mid \cdot\rangle_{\dot{H}^{s}}$ denotes the usual scalar product on $\dot{H}^{s}\left(\mathbb{R}^{3}\right)$. We denote by \mathbb{P} the Leray projection operator defined by the formula

$$
\mathcal{F}(\mathbb{P} f)(\xi)=\widehat{f}(\xi)-\frac{(f(\xi) \cdot \xi)}{|\xi|^{2}} \xi
$$

The fractional Laplacian operator $(-\Delta)^{\alpha}$ for a real number α is defined through the Fourier transform, namely

$$
\left(-\widehat{\Delta)^{\alpha} f}(\xi)=|\xi|^{2 \alpha} \hat{f}(\xi)\right.
$$

Finally, If $f=\left(f_{1}, f_{2}, f_{3}\right)$ and $g=\left(g_{1}, g_{2}, g_{3}\right)$ are two vector fields, we set

$$
f \otimes g:=\left(g_{1} f, g_{2} f, g_{3} f\right)
$$

and

$$
\operatorname{div}(f \otimes g):=\left(\operatorname{div}\left(g_{1} f\right), \operatorname{div}\left(g_{2} f\right), \operatorname{div}\left(g_{3} f\right)\right)
$$

2.2. Preliminary results. In this section, we recall some classical results and we give a new technical lemma.
Lemma 2.1 ([1]). Let $(s, t) \in \mathbb{R}^{2}$ be such that $s<3 / 2$ and $s+t>0$. Then, there exists a constant $C:=C(s, t)>0$, such that for all $u, v \in \dot{H}^{s}\left(\mathbb{R}^{3}\right) \cap \dot{H}^{t}\left(\mathbb{R}^{3}\right)$, we have

$$
\|u v\|_{\dot{H}^{s+t-\frac{3}{2}}\left(\mathbb{R}^{3}\right)} \leq C\left(\|u\|_{\dot{H}^{s}\left(\mathbb{R}^{3}\right)}\|v\|_{\dot{H}^{t}\left(\mathbb{R}^{3}\right)}+\|u\|_{\dot{H}^{t}\left(\mathbb{R}^{3}\right)}\|v\|_{\dot{H}^{s}\left(\mathbb{R}^{3}\right)}\right)
$$

If $s<3 / 2, t<3 / 2$ and $s+t>0$, then there exists a constant $c:=c(s, t)>0$, such that

$$
\|u v\|_{\dot{H}^{s+t-\frac{3}{2}}\left(\mathbb{R}^{3}\right)} \leq c\|u\|_{\dot{H}^{s}\left(\mathbb{R}^{3}\right)}\|v\|_{\dot{H}^{t}\left(\mathbb{R}^{3}\right)} .
$$

Lemma 2.2. Let $f \in \dot{H}^{s_{1}}\left(\mathbb{R}^{3}\right) \cap \dot{H}^{s_{2}}\left(\mathbb{R}^{3}\right)$, where $s_{1}<\frac{3}{2}<s_{2}$. Then, there is a constant $c=c\left(s_{1}, s_{2}\right)$ such that

$$
\|f\|_{L^{\infty}\left(\mathbb{R}^{3}\right)} \leq\|\hat{f}\|_{L^{1}\left(\mathbb{R}^{3}\right)} \leq c\|f\|_{\dot{H}^{s_{1}}\left(\mathbb{R}^{3}\right)}^{\frac{s_{2}-\frac{3}{2}}{s_{2}-s_{1}}}\|f\|_{\dot{H}^{s}\left(\mathbb{R}^{3}\right)}^{\frac{3}{2}-s_{1}} .
$$

Proof. We have

$$
\begin{aligned}
\|f\|_{L^{\infty}\left(\mathbb{R}^{3}\right)} & \leq\|\widehat{f}\|_{L^{1}\left(\mathbb{R}^{3}\right)} \\
& \leq \int_{\mathbb{R}^{3}}|\widehat{f(\xi)}| d \xi \\
& \leq \int_{|\xi|<\lambda}|\widehat{f(\xi)}| d \xi+\int_{|\xi|>\lambda}|\widehat{f(\xi)}| d \xi
\end{aligned}
$$

We take

$$
I_{1}=\int_{|\xi|<\lambda} \frac{1}{|\xi|^{s_{1}}}|\xi|^{s_{1}}|\widehat{f(\xi)}| d \xi
$$

Using the Cauchy-Schwarz inequality, we obtain

$$
\begin{aligned}
I_{1} & \leq\left(\int_{|\xi|<\lambda} \frac{1}{|\xi|^{2 s_{1}}} d \xi\right)^{1 / 2}\|f\|_{\dot{H}^{s_{1}}} \\
& \leq 2 \sqrt{\pi}\left(\int_{0}^{\lambda} \frac{1}{r^{2 s_{1}-2}} d r\right)^{1 / 2}\|f\|_{\dot{H}^{s_{1}}} \\
& \leq c_{s_{1}} \lambda^{\frac{3}{2}-s_{1}}\|f\|_{\dot{H}^{s_{1}}}
\end{aligned}
$$

Similarly, take

$$
I_{2}=\int_{|\xi|>\lambda} \frac{1}{|\xi|^{s_{2}}}|\xi|^{s_{2}}|\widehat{f(\xi)}| d \xi
$$

Then we have

$$
\begin{aligned}
I_{2} & \leq\left(\int_{|\xi|>\lambda} \frac{1}{|\xi|^{2 s_{2}}} d \xi\right)^{1 / 2}\|f\|_{\dot{H}^{s_{2}}} \\
& \leq 2 \sqrt{\pi}\left(\int_{\lambda}^{\infty} \frac{1}{r^{2 s_{2}-2}} d r\right)^{1 / 2}\|f\|_{\dot{H}^{s_{2}}}
\end{aligned}
$$

$$
\leq c_{s_{2}} \lambda^{\frac{3}{2}-s_{2}}\|f\|_{\dot{H}^{s_{2}}}
$$

Therefore,

$$
\|f\|_{L^{\infty}} \leq A \lambda^{\frac{3}{2}-s_{1}}+B \lambda^{\frac{3}{2}-s_{2}}
$$

with $A=c_{s_{1}}\|f\|_{\dot{H}^{s_{1}}}$ and $B=c_{s_{2}}\|f\|_{\dot{H}^{s_{2}}}$.
Since the function

$$
\lambda \mapsto \varphi(\lambda)=A \lambda^{\frac{3}{2}-s_{1}}+B \lambda^{\frac{3}{2}-s_{2}}
$$

attains its minimum at $\lambda=\lambda^{*}=c\left(s_{1}, s_{2}\right)(B / A)^{\frac{1}{s_{2}-s_{1}}}$. Then

$$
\|f\|_{L^{\infty}\left(\mathbb{R}^{3}\right)} \leq c^{\prime} A^{\frac{s_{2}-\frac{3}{2}}{s_{2}-s_{1}}} B^{\frac{3}{2}-s_{1}} \frac{s_{2}-s_{1}}{}
$$

We remark that, for $s_{1}=1$ and $s_{2}=2$, where $f \in \dot{H}^{1}\left(\mathbb{R}^{3}\right) \cap \dot{H}^{2}\left(\mathbb{R}^{3}\right)$, we obtain

$$
\begin{equation*}
\|f\|_{L^{\infty}\left(\mathbb{R}^{3}\right)} \leq\|\hat{f}\|_{L^{1}\left(\mathbb{R}^{3}\right)} \leq c\|f\|_{\dot{H}^{1}\left(\mathbb{R}^{3}\right)}^{1 / 2}\|f\|_{\dot{H}^{2}\left(\mathbb{R}^{3}\right)}^{1 / 2} \tag{2.1}
\end{equation*}
$$

3. Long time decay of 1.1) in $H^{1}\left(\mathbb{R}^{3}\right)$

In this section, we prove that if $u \in \mathcal{C}\left(\mathbb{R}^{+}, H^{1}\left(\mathbb{R}^{3}\right)\right)$ is a global solution of (1.1), then

$$
\begin{equation*}
\limsup _{t \rightarrow \infty}\|u(t)\|_{H^{1}}=0 \tag{3.1}
\end{equation*}
$$

This proof is done in two steps.
Step 1: We shall prove that

$$
\begin{equation*}
\limsup _{t \rightarrow \infty}\|u(t)\|_{\dot{H}^{1}}=0 \tag{3.2}
\end{equation*}
$$

We have

$$
\partial_{t} u-\Delta u+u \cdot \nabla u=-\nabla p
$$

Taking the $\dot{H}^{1 / 2}\left(\mathbb{R}^{3}\right)$ inner product of the above equality with u, we obtain

$$
\frac{1}{2} \frac{d}{d t}\|u\|_{\dot{H}^{1 / 2}}^{2}+\|\nabla u\|_{\dot{H}^{1 / 2}}^{2} \leq\left|\langle(u \cdot \nabla u) \mid u\rangle_{\dot{H}^{1 / 2}}\right|
$$

Using the fundamental property $u \cdot \nabla v=\operatorname{div}(u \otimes v)$ if $\operatorname{div} v=0$, we obtain

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t}\|u\|_{\dot{H}^{1 / 2}}^{2}+\|\nabla u\|_{\dot{H}^{1 / 2}}^{2} & \leq\left|\langle(u \cdot \nabla u) \mid u\rangle_{\dot{H}^{1 / 2}}\right| \\
& \leq\left|\langle\operatorname{div}(u \otimes u) \mid u\rangle_{\dot{H}^{1 / 2}}\right| \\
& \leq\left|\langle u \otimes u \mid \nabla u\rangle_{\dot{H}^{1 / 2}}\right| \\
& \leq\|u \otimes u\|_{\dot{H}^{1 / 2}}\|\nabla u\|_{\dot{H}^{1 / 2}} \\
& \leq\|u \otimes u\|_{\dot{H}^{1 / 2}}\|u\|_{\dot{H}^{3 / 2}}
\end{aligned}
$$

Hence, from Lemma (2.1) there would exist a constant $c>0$ such that

$$
\frac{1}{2} \frac{d}{d t}\|u\|_{\dot{H}^{1 / 2}}^{2}+\|u\|_{\dot{H}^{3 / 2}}^{2} \leq c\|u\|_{\dot{H}^{1 / 2}}\|u\|_{\dot{H}^{3 / 2}}^{2}
$$

From the equality (1.3) there would exist $t_{0}>0$ such that, for all $t \geq t_{0}$,

$$
\|u(t)\|_{\dot{H}^{1 / 2}}<\frac{1}{2 c}
$$

Then

$$
\frac{1}{2} \frac{d}{d t}\|u\|_{\dot{H}^{1 / 2}}^{2}+\frac{1}{2}\|u\|_{\dot{H}^{3 / 2}}^{2} \leq 0, \quad \forall t \geq t_{0}
$$

Integrating with respect to time, we obtain

$$
\|u(t)\|_{\dot{H}^{1 / 2}}^{2}+\int_{t_{0}}^{t}\|u(\tau)\|_{\dot{H}^{3 / 2}}^{2} d \tau \leq\left\|u\left(t_{0}\right)\right\|_{\dot{H}^{1 / 2}}^{2}, \quad \forall t \geq t_{0}
$$

Let $s>0$ and $c=c_{s}$. There exists $T_{0}=T_{0}\left(s, u^{0}\right)>0$, such that

$$
\left\|u\left(T_{0}\right)\right\|_{\dot{H}^{1 / 2}}<\frac{1}{2 c_{s}}
$$

Then

$$
\|u(t)\|_{\dot{H}^{1 / 2}}<\frac{1}{2 c_{s}}, \quad \forall t \geq T_{0}
$$

Now, for $s>0$ we have

$$
\partial_{t} u-\Delta u+u \cdot \nabla u=-\nabla p
$$

Taking the $\dot{H}^{s}\left(\mathbb{R}^{3}\right)$ inner product of the above equality with u, we obtain

$$
\frac{1}{2} \frac{d}{d t}\|u\|_{\dot{H}^{s}}^{2}+\|\nabla u\|_{\dot{H}^{s}}^{2} \leq\left|\langle(u \cdot \nabla u) \mid u\rangle_{\dot{H}^{s}}\right|
$$

Using the fundamental property $u \cdot \nabla v=\operatorname{div}(u \otimes v)$ if $\operatorname{div} v=0$, we obtain

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t}\|u\|_{\dot{H}^{s}}^{2}+\|u\|_{\dot{H}^{s+1}}^{2} & \leq\left|\langle(u \cdot \nabla u) \mid u\rangle_{\dot{H}^{s}}\right| \\
& \leq\left|\langle\operatorname{div}(u \otimes u) / u\rangle_{\dot{H}^{s}}\right| \\
& \leq\left|\langle u \otimes u \mid \nabla u\rangle_{\dot{H}^{s}}\right| \\
& \leq\|u \otimes u\|_{\dot{H}^{s}}\|\nabla u\|_{\dot{H}^{s}} \\
& \leq\|u \otimes u\|_{\dot{H}^{s}}\|u\|_{\dot{H}^{s+1}} \\
& \leq c_{s}\|u\|_{\dot{H}^{1 / 2}}\|u\|_{\dot{H}^{s+1}}^{2} .
\end{aligned}
$$

Thus

$$
\frac{1}{2} \frac{d}{d t}\|u\|_{\dot{H}^{s}}^{2}+\frac{1}{2}\|u(t)\|_{\dot{H}^{s+1}}^{2} \leq 0, \quad \forall t \geq T_{0}
$$

So, for $T_{0} \leq t^{\prime} \leq t$,

$$
\|u(t)\|_{\dot{H}^{s}}^{2}+\int_{t^{\prime}}^{t}\|u(\tau)\|_{\dot{H}^{s+1}}^{2} d \tau \leq\left\|u\left(t^{\prime}\right)\right\|_{\dot{H}^{s}}^{2}
$$

In particular, for $s=1$,

$$
\|u(t)\|_{\dot{H}^{1}}^{2}+\int_{t^{\prime}}^{t}\|u(\tau)\|_{\dot{H}^{2}}^{2} d \tau \leq\left\|u\left(t^{\prime}\right)\right\|_{\dot{H}^{1}}^{2}
$$

Then, the map $t \rightarrow\|u(t)\|_{\dot{H}^{1}}$ is decreasing on $\left[T_{0}, \infty\right)$ and $u \in L^{2}\left([0, \infty), \dot{H}^{2}\left(\mathbb{R}^{3}\right)\right)$. Now, let $\varepsilon>0$ be small enough. Then the L^{2}-energy estimate

$$
\|u(t)\|_{L^{2}}^{2}+2 \int_{T_{0}}^{t}\|\nabla u(\tau)\|_{L^{2}}^{2} d \tau \leq\left\|u\left(T_{0}\right)\right\|_{L^{2}}^{2}, \quad \forall t \geq T_{0}
$$

implies that $u \in L^{2}\left(\left[T_{0}, \infty\right), \dot{H}^{1}\left(\mathbb{R}^{3}\right)\right)$ and there is a time $t_{\varepsilon} \geq T_{0}$ such that

$$
\left\|u\left(t_{\varepsilon}\right)\right\|_{\dot{H}^{1}}<\varepsilon .
$$

Since the map $t \mapsto\|u(t)\|_{\dot{H}^{1}}$ is decreasing on $\left[T_{0}, \infty\right)$, it follows that

$$
\|u(t)\|_{\dot{H}^{1}}<\varepsilon, \quad \forall t \geq t_{\varepsilon}
$$

Therefore 3.2 is proved.

Step 2: In this step, we prove that

$$
\begin{equation*}
\limsup _{t \rightarrow \infty}\|u(t)\|_{L^{2}}=0 \tag{3.3}
\end{equation*}
$$

This proof is inspired by [2] and [4]. For $\delta>0$ and a given distribution f, we define the operators $A_{\delta}(D)$ and $B_{\delta}(D)$ as follows

$$
A_{\delta}(D) f=\mathcal{F}^{-1}\left(\mathbf{1}_{\{|\xi|<\delta\}} \mathcal{F}(f)\right), \quad B_{\delta}(D) f=\mathcal{F}^{-1}\left(\mathbf{1}_{\{|\xi| \geq \delta\}} \mathcal{F}(f)\right)
$$

It is clear that when applying $A_{\delta}(D)$ (respectively, $B_{\delta}(D)$) to any distribution, we are dealing with its low-frequency part (respectively, high-frequency part).

Let u be a solution to 1.1 . Denote by ω_{δ} and v_{δ}, respectively, the low-frequency part and the high-frequency part of u and so on $\omega_{\delta}{ }^{0}$ and $v_{\delta}{ }^{0}$ for the initial data u^{0}. We have

$$
\partial_{t} u-\Delta u+u \cdot \nabla u=-\nabla p
$$

Then

$$
\partial_{t} u-\Delta u+\mathbb{P}(u \cdot \nabla u)=0 .
$$

Applying the pseudo-differential operators $A_{\delta}(D)$ to the above equality, we obtain

$$
\begin{gathered}
\partial_{t} A_{\delta}(D) u-\Delta A_{\delta}(D) u+A_{\delta}(D) \mathbb{P}(u \cdot \nabla u)=0, \\
\partial_{t} \omega_{\delta}-\Delta \omega_{\delta}+A_{\delta}(D) \mathbb{P}(u \cdot \nabla u)=0 .
\end{gathered}
$$

Taking the $L^{2}\left(\mathbb{R}^{3}\right)$ inner product of the above equality with $\omega_{\delta}(t)$, we obtain

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t}\left\|\omega_{\delta}(t)\right\|_{L^{2}}^{2}+\left\|\nabla \omega_{\delta}(t)\right\|_{L^{2}}^{2} & \leq\left|\left\langle A_{\delta}(D) \mathbb{P}(u(t) \cdot \nabla u(t)) \mid \omega_{\delta}(t)\right\rangle_{L^{2}}\right| \\
& \leq\left|\left\langle A_{\delta}(D) \operatorname{div}(u \otimes u)(t) \mid \omega_{\delta}(t)\right\rangle_{L^{2}}\right| \\
& \leq\left|\left\langle A_{\delta}(D)(u \otimes u)(t) \mid \nabla \omega_{\delta}(t)\right\rangle_{L^{2}}\right| \\
& \leq\left|\left\langle(u \otimes u)(t) \mid \nabla \omega_{\delta}(t)\right\rangle_{L^{2}}\right| \\
& \leq\|u \otimes u(t)\|_{L^{2}}\left\|\nabla \omega_{\delta}(t)\right\|_{L^{2}} \\
& \leq\|u \otimes u(t)\|_{L^{2}}\left\|\nabla \omega_{\delta}(t)\right\|_{L^{2}} .
\end{aligned}
$$

Lemma 2.1 gives

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t}\left\|\omega_{\delta}(t)\right\|_{L^{2}}^{2}+\left\|\nabla \omega_{\delta}(t)\right\|_{L^{2}}^{2} & \leq C\|u(t)\|_{\dot{H}^{1 / 2}}\|\nabla u(t)\|_{L^{2}}\left\|\nabla \omega_{\delta}(t)\right\|_{L^{2}} \\
& \leq C M\|\nabla u(t)\|_{L^{2}}\left\|\nabla \omega_{\delta}(t)\right\|_{L^{2}}
\end{aligned}
$$

with $\left.M=\sup _{t \geq 0}\|u(t)\|_{\dot{H}^{1 / 2}}\right)$. Integrating with respect to t, we obtain

$$
\left\|\omega_{\delta}(t)\right\|_{L^{2}}^{2} \leq\left\|\omega_{\delta}^{0}\right\|_{L^{2}}^{2}+C M \int_{0}^{t}\|\nabla u(\tau)\|_{L^{2}}\left\|\nabla \omega_{\delta}(\tau)\right\|_{L^{2}} d \tau
$$

Hence, we have $\left\|\omega_{\delta}(t)\right\|_{L^{2}}^{2} \leq M_{\delta}$ for all $t \geq 0$, where

$$
M_{\delta}=\left\|\omega_{\delta}^{0}\right\|_{L^{2}}^{2}+C M \int_{0}^{\infty}\|\nabla u(\tau)\|_{L^{2}}\left\|\nabla \omega_{\delta}(\tau)\right\|_{L^{2}} d \tau
$$

Using the fact that $\lim _{\delta \rightarrow 0}\left\|\omega_{\delta}^{0}\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2}=0$ and thanks to the Lebesgue-dominated convergence theorem we deduce that

$$
\begin{equation*}
\lim _{\delta \rightarrow 0} \int_{0}^{\infty}\|\nabla u(\tau)\|_{L^{2}}\left\|\nabla \omega_{\delta}(\tau)\right\|_{L^{2}} d \tau=0 \tag{3.4}
\end{equation*}
$$

Hence $\lim _{\delta \rightarrow 0} M_{\delta}=0$, and thus

$$
\begin{equation*}
\lim _{\delta \rightarrow 0} \sup _{t \geq 0}\left\|\omega_{\delta}(t)\right\|_{L^{2}}=0 \tag{3.5}
\end{equation*}
$$

We can take time equal to ∞ in the integral because by definition of ω_{δ} we have

$$
\begin{aligned}
\left\|\nabla \omega_{\delta}\right\|_{L^{2}} & =\left\|\mathcal{F}\left(\nabla \omega_{\delta}\right)\right\|_{L^{2}} \\
& =\left\|\xi \mid \mathbf{1}_{\{|\xi|<\delta\}} \mathcal{F}(u)\right\|_{L^{2}} \\
& \leq\|\xi \mid \mathcal{F}(u)\|_{L^{2}} \\
& \leq\|\nabla u\|_{L^{2}} .
\end{aligned}
$$

Now, using the fact that $\lim _{\delta \rightarrow 0}\left\|\nabla \omega_{\delta}(t)\right\|_{L^{2}}=0$ almost everywhere. Then, the sequence

$$
\|\nabla u(t)\|_{L^{2}}\left\|\nabla \omega_{\delta}(t)\right\|_{L^{2}}
$$

converges point-wise to zero. Moreover, using the above computations and the energy estimate 1.4 , we obtain

$$
\|\nabla u(t)\|_{L^{2}}\left\|\nabla \omega_{\delta}(t)\right\|_{L^{2}} \leq\|\nabla u(t)\|_{L^{2}}^{2} \in L^{1}\left(\mathbb{R}^{+}\right)
$$

Thus, the integral sequence is dominated. Hence, the limiting function is integrable and one can take the time $T=\infty$ in (3.4).

Now, let us investigate the high-frequency part. For this, we apply the pseudodifferential operators $B_{\delta}(D)$ to the (1.1) to obtain

$$
\partial_{t} v_{\delta}-\Delta v_{\delta}+B_{\delta}(D) \mathbb{P}(u \cdot \nabla u)=0
$$

Taking the Fourier transform with respect to the space variable, we obtain

$$
\begin{aligned}
\partial_{t}\left|\widehat{v}_{\delta}(t, \xi)\right|^{2}+2|\xi|^{2}\left|\widehat{v_{\delta}}(t, \xi)\right|^{2} & \leq 2\left|\mathcal{F}\left(B_{\delta}(D) \mathbb{P}(u \cdot \nabla u)\right)(t, \xi) \| \widehat{v_{\delta}}(t, \xi)\right| \\
& \leq 2\left|\mathcal{F}\left(B_{\delta}(D) \mathbb{P}(\operatorname{div}(u \otimes u))\right)(t, \xi) \| \widehat{v_{\delta}}(t, \xi)\right| \\
& \leq 2\left|\xi\left\|\mathcal{F}\left(B_{\delta}(D) \mathbb{P}(u \otimes u)\right)(t, \xi)\right\| \widehat{v}_{\delta}(t, \xi)\right| \\
& \leq 2\left|\xi\|\mathcal{F}(u \otimes u)(t, \xi)\| \widehat{v_{\delta}}(t, \xi)\right| \\
& \leq 2\left|\mathcal{F}(u \otimes u)(t, \xi) \| \widehat{\nabla v_{\delta}}(t, \xi)\right| .
\end{aligned}
$$

Multiplying the obtained equation by $\exp \left(2 t|\xi|^{2}\right)$ and integrating with respect to time, we obtain

$$
\left|\widehat{v_{\delta}}(t, \xi)\right|^{2} \leq e^{-2 t|\xi|^{2}}\left|\widehat{v_{\delta}^{0}}(\xi)\right|^{2}+2 \int_{0}^{t} e^{-2(t-\tau)|\xi|^{2}}\left|\mathcal{F}(u \otimes u)(\tau, \xi) \| \widehat{\nabla v_{\delta}}(\tau, \xi)\right| d \tau
$$

Since $|\xi|>\delta$, we have

$$
\left|\widehat{v_{\delta}}(t, \xi)\right|^{2} \leq e^{-2 t \delta^{2}}\left|\widehat{v_{\delta}^{0}}(\xi)\right|^{2}+2 \int_{0}^{t} e^{-2(t-\tau) \delta^{2}}\left|\mathcal{F}(u \otimes u)(\tau, \xi) \| \widehat{\nabla v_{\delta}}(\tau, \xi)\right| d \tau
$$

Integrating with respect to the frequency variable ξ and using Cauchy-Schwarz inequality, we obtain

$$
\left\|v_{\delta}(t)\right\|_{L^{2}}^{2} \leq e^{-2 t \delta^{2}}\left\|v_{\delta^{0}}\right\|_{L^{2}}^{2}+2 \int_{0}^{t} e^{-2(t-\tau) \delta^{2}}\|u \otimes u(\tau)\|_{L^{2}}\left\|\nabla v_{\delta}(\tau)\right\|_{L^{2}} d \tau
$$

By the definition of v_{δ}, we have

$$
\left\|v_{\delta}(t)\right\|_{L^{2}}^{2} \leq e^{-2 t \delta^{2}}\left\|u^{0}\right\|_{L^{2}}^{2}+2 \int_{0}^{t} e^{-2(t-\tau) \delta^{2}}\|u \otimes u(\tau)\|_{L^{2}}\|\nabla u(\tau)\|_{L^{2}} d \tau
$$

Lemma 2.1 and the equality (1.3) yield

$$
\begin{aligned}
\left\|v_{\delta}(t)\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2} & \leq e^{-2 t \delta^{2}}\left\|u^{0}\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2}+C \int_{0}^{t} e^{-2(t-\tau) \delta^{2}}\|u(\tau)\|_{\dot{H}^{1 / 2}}\|\nabla u(\tau)\|_{L^{2}}^{2} d \tau \\
& \leq e^{-2 t \delta^{2}}\left\|u^{0}\right\|_{L^{2}}^{2}+C M \int_{0}^{t} e^{-2(t-\tau) \delta^{2}}\|\nabla u(\tau)\|_{L^{2}}^{2} d \tau
\end{aligned}
$$

where $M=\sup _{t \geq 0}\|u\|_{\dot{H}^{1 / 2}}$. Hence, $\left\|v_{\delta}(t)\right\|_{L^{2}}^{2} \leq N_{\delta}(t)$, where

$$
N_{\delta}(t)=e^{-2 t \delta^{2}}\left\|u^{0}\right\|_{L^{2}}^{2}+C M \int_{0}^{t} e^{-2(t-\tau) \delta^{2}}\|\nabla u(\tau)\|_{L^{2}}^{2} d \tau
$$

Using the energy estimate (1.4), we obtain $N_{\delta} \in L^{1}\left(\mathbb{R}^{+}\right)$and

$$
\int_{0}^{\infty} N_{\delta}(t) d t \leq \frac{\left\|u^{0}\right\|_{L^{2}}^{2}}{2 \delta^{2}}+\frac{C M\left\|u^{0}\right\|_{L^{2}}^{2}}{4 \delta^{2}}
$$

This leads to the fact that the function $t \rightarrow\left\|v_{\delta}(t)\right\|_{L^{2}}^{2}$ is both continuous and Lebesgue integrable over \mathbb{R}^{+}.

Now, let $\varepsilon>0$. At first, the inequality (3.5) implies that there exists some $\delta_{0}>0$ such that

$$
\left\|\omega_{\delta_{0}}(t)\right\|_{L^{2}} \leq \varepsilon / 2, \forall t \geq 0
$$

Let us consider the set $\mathrm{R}_{\delta_{0}}$ defined by $\mathrm{R}_{\delta_{0}}:=\left\{t \geq 0,\left\|v_{\delta}(t)\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}>\varepsilon / 2\right\}$. If we denote by $\lambda_{1}\left(\mathrm{R}_{\delta_{0}}\right)$ the Lebesgue measure of $\mathrm{R}_{\delta_{0}}$, we have

$$
\int_{0}^{\infty}\left\|v_{\delta_{0}}(t)\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2} d t \geq \int_{\mathrm{R}_{\delta_{0}}}\left\|v_{\delta}(t)\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2} d t \geq(\varepsilon / 2)^{2} \lambda_{1}\left(\mathrm{R}_{\delta_{0}}\right)
$$

By doing this, we can deduce that $\lambda_{1}\left(\mathrm{R}_{\delta_{0}}\right)=T_{\delta^{0}}^{\varepsilon}<\infty$, and there exists $t_{\delta^{0}}^{\varepsilon}>T_{\delta^{0}}^{\varepsilon}$ such that

$$
\left\|v_{\delta_{0}}\left(t_{\delta^{0}}^{\varepsilon}\right)\right\|_{L^{2}}^{2} \leq(\varepsilon / 2)^{2}
$$

So, $\left\|u\left(t_{\delta^{0}}^{\varepsilon}\right)\right\|_{L^{2}} \leq \varepsilon$ and from the energy estimate 1.4 we have

$$
\|u(t)\|_{L^{2}} \leq \varepsilon, \quad \forall t \geq t_{\delta^{0}}^{\varepsilon} .
$$

This completes the proof of (3.3).

4. Generalization of Foias-Temam result in $H^{1}\left(\mathbb{R}^{3}\right)$

Fioas and Temam [5] proved an analytic property for the Navier-Stokes equations on the torus $\mathbb{T}^{3}=\mathbb{R}^{3} / \mathbb{Z}^{3}$. Here, we give a similar result on the whole space \mathbb{R}^{3}.

Theorem 4.1. We assume that $u^{0} \in H^{1}\left(\mathbb{R}^{3}\right)$. Then, there exists a time T that depends only on the $\left\|u^{0}\right\|_{H^{1}\left(\mathbb{R}^{3}\right)}$, such that

- (1.1) possesses on $(0, T)$ a unique regular solution u such that the function $t \mapsto e^{t|D|} u(t)$ is continuous from $[0, T]$ into $H^{1}\left(\mathbb{R}^{3}\right)$.
- If $u \in \mathcal{C}\left(\mathbb{R}^{+}, H^{1}\left(\mathbb{R}^{3}\right)\right)$ is a global and bounded solution to (1.1), then there are $M \geq 0$ and $t_{0}>0$ such that

$$
\left\|e^{t_{0}|D|} u(t)\right\|_{H^{1}\left(\mathbb{R}^{3}\right)} \leq M, \quad \forall t \geq t_{0}
$$

Before proving this Theorem, we need the following Lemmas.
Lemma 4.2. Let $t \mapsto e^{t|D|} u$ belong to $\dot{H}^{1}\left(\mathbb{R}^{3}\right) \cap \dot{H}^{2}\left(\mathbb{R}^{3}\right)$. Then

$$
\left\|e^{t|D|}(u \cdot \nabla v)\right\|_{L^{2}\left(\mathbb{R}^{3}\right)} \leq\left\|e^{t|D|} u\right\|_{H^{1}\left(\mathbb{R}^{3}\right)}^{1 / 2}\left\|e^{t|D|} u\right\|_{H^{2}\left(\mathbb{R}^{3}\right)}^{1 / 2}\left\|e^{t|D|} v\right\|_{H^{1}\left(\mathbb{R}^{3}\right)} .
$$

Proof. We have

$$
\begin{aligned}
\left\|e^{t|D|}(u \cdot \nabla v)\right\|_{L^{2}}^{2} & =\int_{\mathbb{R}^{3}} e^{2 t|\xi|}|\widehat{u \cdot \nabla v}(\xi)|^{2} d \xi \\
& \leq \int_{\mathbb{R}^{3}} e^{2 t|\xi|}\left(\int_{\mathbb{R}^{3}}|\hat{u}(\xi-\eta) \| \widehat{\nabla v}(\eta)| d \eta\right)^{2} d \xi \\
& \leq \int_{\mathbb{R}^{3}}\left(\int_{\mathbb{R}^{3}} e^{t|\xi|}|\hat{u}(\xi-\eta) \| \widehat{\nabla v}(\eta)| d \eta\right)^{2} d \xi
\end{aligned}
$$

Using the inequality $e^{|\xi|} \leq e^{|\xi-\eta|} e^{|\eta|}$, we obtain

$$
\begin{aligned}
\left\|e^{t|D|}(u \cdot \nabla v)\right\|_{L^{2}}^{2} & \leq \int_{\mathbb{R}^{3}}\left(\int_{\mathbb{R}^{3}} e^{t|\xi-\eta|}|\hat{u}(\xi-\eta)| e^{t|\eta|}|\widehat{\nabla v}(\eta)| d \eta\right)^{2} d \xi \\
& \leq \int_{\mathbb{R}^{3}}\left(\int_{\mathbb{R}^{3}}\left(e^{t|\xi-\eta|}|\hat{u}(\xi-\eta)|\right)\left(e^{t|\eta|}|\eta \| \hat{v}(\eta)|\right) d \eta\right)^{2} d \xi \\
& \leq\left(\int_{\mathbb{R}^{3}} e^{t|\xi|}|\hat{u}(\xi)| d \xi\right)^{2}\left\|e^{t|D|} \nabla v\right\|_{L^{2}}^{2}
\end{aligned}
$$

Hence, for $f=\mathcal{F}^{-1}\left(e^{t|\xi|}|\hat{u}(\xi)|\right) \in \dot{H}^{1}\left(\mathbb{R}^{3}\right) \cap \dot{H}^{2}\left(\mathbb{R}^{3}\right)$, inequality 2.1) gives

$$
\begin{aligned}
\left\|e^{t|D|}(u \cdot \nabla v)\right\|_{L^{2}} & \leq\left\|e^{t|D|} u\right\|_{\dot{H}^{1}}^{1 / 2}\left\|e^{t|D|} u\right\|_{\dot{H}^{2}}^{1 / 2}\left\|e^{t|D|} \nabla v\right\|_{L^{2}} \\
& \leq\left\|e^{t|D|} u\right\|_{\dot{H}^{1}}^{1 / 2}\left\|e^{t|D|} u\right\|_{\dot{H}^{2}}^{1 / 2}\left\|e^{t|D|} v\right\|_{\dot{H}^{1}} \\
& \leq\left\|e^{t|D|} u\right\|_{H^{1}}^{1 / 2}\left\|e^{t|D|} u\right\|_{H^{2}}^{1 / 2}\left\|e^{t|D|} v\right\|_{H^{1}}
\end{aligned}
$$

Lemma 4.3. Let $t \mapsto e^{t|D|} u \in \dot{H}^{1}\left(\mathbb{R}^{3}\right) \cap \dot{H}^{2}\left(\mathbb{R}^{3}\right)$. Then

$$
\left|\left\langle e^{t|D|}(u \cdot \nabla v) \mid e^{t|D|} w\right\rangle_{H^{1}}\right| \leq\left\|e^{t|D|} u\right\|_{H^{1}}^{1 / 2}\left\|e^{t|D|} u\right\|_{H^{2}}^{1 / 2}\left\|e^{t|D|} v\right\|_{H^{1}}\left\|e^{t|D|} w\right\|_{H^{2}}
$$

Proof. We have

$$
\begin{aligned}
\langle u \cdot \nabla v \mid w\rangle_{H^{1}} & =\sum_{|j|=1}\left\langle\partial_{j}(u \cdot \nabla v) \mid \partial_{j} w\right\rangle_{L^{2}} \\
& =-\sum_{|j|=1}\left\langle u \cdot \nabla v \mid \partial_{j}^{2} w\right\rangle_{L^{2}} \\
& =-\langle u \cdot \nabla v \mid \Delta w\rangle_{L^{2}}
\end{aligned}
$$

Then

$$
\begin{aligned}
\left|\left\langle e^{t|D|}(u \cdot \nabla v) \mid e^{t|D|} w\right\rangle_{H^{1}}\right| & =\left|\left\langle e^{t|D|}(u \cdot \nabla v) \mid e^{t|D|} \Delta w\right\rangle_{L^{2}}\right| \\
& \leq\left\|e^{t|D|}(u \cdot \nabla v)\right\|_{L^{2}}\left\|e^{t|D|} \Delta w\right\|_{L^{2}} \\
& \leq\left\|e^{t|D|}(u \cdot \nabla v)\right\|_{L^{2}}\left\|e^{t|D|} w\right\|_{\dot{H}^{2}} \\
& \leq\left\|e^{t|D|}(u \cdot \nabla v)\right\|_{L^{2}}\left\|e^{t|D|} w\right\|_{H^{2}}
\end{aligned}
$$

Finally, using Lemma 4.2, we obtain the desired result.
Proof of Theorem 4.1. We have

$$
\partial_{t} u-\Delta u+u \cdot \nabla u=-\nabla p
$$

Applying the fourier transform to the last equation and multiplying by $\overline{\hat{u}}$, we obtain

$$
\partial_{t} \widehat{u} \cdot \overline{\widehat{u}}+|\xi|^{2}|\widehat{u}|^{2}=-(\widehat{u \cdot \nabla u}) \cdot \overline{\widehat{u}}
$$

Then

$$
\partial_{t}|\widehat{u}|^{2}+2|\xi|^{2}|\widehat{u}|^{2}=-2 \operatorname{Re}((\widehat{u \cdot \nabla u}) \cdot \widehat{u}) .
$$

Multiplying the above equation by $\left(1+|\xi|^{2}\right) e^{2 t|\xi|}$, we obtain

$$
\left(1+|\xi|^{2}\right) e^{2 t|\xi|} \partial_{t}|\widehat{u}|^{2}+2\left(1+|\xi|^{2}\right)|\xi|^{2} e^{2 t|\xi|}|\widehat{u}|^{2}=-2 \operatorname{Re}((\widehat{u \cdot \nabla u}) \cdot \widehat{u})\left(1+|\xi|^{2}\right) e^{2 t|\xi|}
$$

Integrating with respect to ξ, we obtain

$$
\begin{aligned}
& \int_{\mathbb{R}^{3}}\left(1+|\xi|^{2}\right) e^{2 t|\xi|} \partial_{t}|\widehat{u}(\xi)|^{2} d \xi+2 \int_{\mathbb{R}^{3}}\left(1+|\xi|^{2}\right)|\xi|^{2} e^{2 t|\xi|}|\widehat{u}(\xi)|^{2} d \xi \\
& =-2 \operatorname{Re} \int_{\mathbb{R}^{3}}((\widehat{u \cdot \nabla u}) \cdot \widehat{u})\left(1+|\xi|^{2}\right) e^{2 t|\xi|} d \xi
\end{aligned}
$$

Thus

$$
\begin{equation*}
\left\langle e^{t|D|} \partial_{t} u / e^{t|D|} u\right\rangle_{H^{1}}+2\left\|e^{t|D|} \nabla u\right\|_{H^{1}\left(\mathbb{R}^{3}\right)}^{2}=-2 \operatorname{Re}\left\langle e^{t|D|}(u \cdot \nabla u) \mid e^{t|D|} u\right\rangle_{H^{1}} \tag{4.1}
\end{equation*}
$$

Therefore,

$$
\begin{aligned}
\left\langle e^{t|D|} u^{\prime}(t) \mid e^{t|D|} u(t)\right\rangle_{H^{1}} & \left.=\left\langle\left(e^{t|D|} u(t)\right)^{\prime}-\right| D\left|e^{t|D|} u(t)\right| e^{t|D|} u(t)\right\rangle_{H^{1}} \\
& \left.=\frac{1}{2} \frac{d}{d t}\left\|e^{t|D|} u\right\|_{H^{1}}^{2}-\left\langle e^{t|D|}\right| D|u(t)| e^{t|D|} u(t)\right\rangle_{H^{1}} \\
& \geq \frac{1}{2} \frac{d}{d t}\left\|e^{t|D|} u\right\|_{H^{1}}^{2}-\left\|e^{t|D|} u\right\|_{H^{1}}\left\|e^{t|D|} u\right\|_{H^{2}}
\end{aligned}
$$

Using the Young inequality, we obtain

$$
\begin{equation*}
\frac{d}{d t}\left\|e^{t|D|} u\right\|_{H^{1}}^{2}-2\left\|e^{t|D|} u\right\|_{H^{1}}^{2}-\frac{1}{2}\left\|e^{t|D|} u\right\|_{H^{2}}^{2} \leq 2\left\langle e^{t|D|} u^{\prime}(t) \mid e^{t|D|} u(t)\right\rangle_{H^{1}} \tag{4.2}
\end{equation*}
$$

Hence, using Lemma 4.3 and Young inequality the right hand of 4.1) satisfies

$$
\begin{aligned}
\left|-2 \operatorname{Re}\left\langle e^{t|D|}(u \cdot \nabla u) \mid e^{t|D|} u\right\rangle_{H^{1}}\right| & \leq 2\left\|e^{t|D|} u\right\|_{H^{1}}^{3 / 2}\left\|e^{t|D|} u\right\|_{H^{2}}^{3 / 2} \\
& \leq \frac{3}{4}\left\|e^{t|D|} u\right\|_{H^{2}}^{2}+\frac{c_{1}}{2}\left\|e^{t|D|} u\right\|_{H^{1}}^{6}
\end{aligned}
$$

where c_{1} is a positive constant. Then, 4.1) yields

$$
\begin{equation*}
\left\langle e^{t|D|} u^{\prime}(t) \mid e^{t|D|} u(t)\right\rangle_{H^{1}}+2\left\|e^{t|D|} \nabla u\right\|_{H^{1}}^{2} \leq \frac{3}{4}\left\|e^{t|D|} u\right\|_{H^{2}}^{2}+\frac{c_{1}}{2}\left\|e^{t|D|} u\right\|_{H^{1}}^{6} \tag{4.3}
\end{equation*}
$$

Hence, using (4.2)-4.3), we obtain

$$
\frac{d}{d t}\left\|e^{t|D|} u\right\|_{H^{1}}^{2}-2\left\|e^{t|D|} u\right\|_{H^{1}}^{2}-2\left\|e^{t|D|} u\right\|_{H^{2}}^{2}+4\left\|e^{t|D|} \nabla u\right\|_{H^{1}}^{2} \leq c_{1}\left\|e^{t|D|} u\right\|_{H^{1}}^{6}
$$

The equality $\left\|e^{t|D|} u\right\|_{H^{2}}^{2}=\left\|e^{t|D|} u\right\|_{H^{1}}^{2}+\left\|e^{t|D|} \nabla u\right\|_{H^{1}}^{2}$ yields

$$
\begin{aligned}
\frac{d}{d t}\left\|e^{t|D|} u\right\|_{H^{1}}^{2}+2\left\|e^{t|D|} \nabla u\right\|_{H^{1}}^{2} & \leq 4\left\|e^{t|D|} u\right\|_{H^{1}}^{2}+c_{1}\left\|e^{t|D|} u\right\|_{H^{1}}^{6} \\
& \leq c_{2}+2 c_{1}\left\|e^{t|D|} u\right\|_{H^{1}}^{6}
\end{aligned}
$$

where c_{2} is a positive constant. Finally, we obtain

$$
y(t) \leq y(0)+K_{1} \int_{0}^{t} y^{3}(s) d s
$$

where

$$
y(t)=1+\left\|e^{t|D|} u(t)\right\|_{H^{1}}^{2} \quad \text { and } \quad K_{1}=2 c_{1}+c_{2}
$$

Let

$$
T_{1}=\frac{2}{K_{1} y^{2}(0)}
$$

and $0<T \leq T^{*}$ be such that $T=\sup \left\{t \in\left[0, T^{*}\right) \mid \sup _{0 \leq s \leq t} y(s) \leq 2 y(0)\right\}$. Hence for $0 \leq t \leq \min \left(T_{1}, T\right)$, we have

$$
\begin{aligned}
y(t) & \leq y(0)+K_{1} \int_{0}^{t} y^{3}(s) d s \\
& \leq y(0)+K_{1} \int_{0}^{t} 8 y^{3}(0) d s \\
& \leq\left(1+K_{1} 8 T_{1} y^{2}(0)\right) y(0)
\end{aligned}
$$

Taking $1+K_{1} 8 T_{1} y^{2}(0)<2$, we obtain $T>T_{1}$. Then $y(t) \leq 2 y(0)$ for all $t \in\left[0, T_{1}\right]$. This shows that $t \mapsto e^{t|D|} u(t) \in H^{1}\left(\mathbb{R}^{3}\right)$ for all $t \in\left[0, T_{1}\right]$. In particular

$$
\left\|e^{T_{1}|D|} u\left(T_{1}\right)\right\|_{H^{1}}^{2} \leq 2+2\left\|u_{0}\right\|_{H^{1}}^{2}
$$

Now, from the hypothesis, we assume that there exists $M_{1}>0$ such that

$$
\|u(t)\|_{H^{1}} \leq M_{1} \quad \text { for all } t \geq 0
$$

Define the system

$$
\begin{gathered}
\partial_{t} w-\Delta w+w \cdot \nabla w=-\nabla p \quad \text { in } \mathbb{R}^{+} \times \mathbb{R}^{3} \\
\operatorname{div} w=0 \quad \text { in } \mathbb{R}^{+} \times \mathbb{R}^{3} \\
w(0)=u(T) \quad \text { in } \mathbb{R}^{3}
\end{gathered}
$$

where $w(t)=u(T+t)$. Using a similar technique, we can prove that there exists $T_{2}=\frac{2}{K_{1}}\left(1+M_{1}^{2}\right)^{-2}$ such that

$$
y(t)=1+\left\|e^{t|D|} w(t)\right\|_{H^{1}}^{2} \leq 2\left(1+M_{1}^{2}\right), \quad \forall t \in\left[0, T_{2}\right]
$$

This implies $1+\left\|e^{t|D|} u(T+t)\right\|_{H^{1}}^{2} \leq 2\left(1+M_{1}^{2}\right)$. Hence, for $t=T_{2}$ we have

$$
\left\|e^{T_{2}|D|} u\left(T+T_{2}\right)\right\|_{H^{1}}^{2} \leq 2\left(1+M_{1}^{2}\right)
$$

Since $t=T+T_{2} \geq T_{2}$ for all $T \geq 0$, we obtain

$$
\left\|e^{T_{2}|D|} u(t)\right\|_{H^{1}}^{2} \leq 2\left(1+M_{1}^{2}\right), \quad \forall t \geq T_{2}
$$

Then

$$
\left\|e^{T_{2}|D|} u(t)\right\|_{H^{1}}^{2} \leq 2\left(1+M_{1}^{2}\right), \quad \forall t \geq T_{2}
$$

where

$$
T_{2}=T_{2}\left(M_{1}\right)=\frac{2}{K_{1}}\left(1+M_{1}^{2}\right)^{-2}
$$

5. Proof of the main result

In this section, we prove Theorem 1.1. This proof uses the results of sections 3 and 4.

Let $u \in \mathcal{C}\left(\mathbb{R}^{+}, H_{a, \sigma}^{1}\left(\mathbb{R}^{3}\right)\right)$. As $H_{a, \sigma}^{1}\left(\mathbb{R}^{3}\right) \hookrightarrow H^{1}\left(\mathbb{R}^{3}\right)$, then $u \in \mathcal{C}\left(\mathbb{R}^{+}, H^{1}\left(\mathbb{R}^{3}\right)\right)$. Applying Theorem 4.1, there exist $t_{0}>$ such that

$$
\begin{equation*}
\left\|e^{t_{0}|D|} u(t)\right\|_{H^{1}} \leq c_{0}=2+M_{1}^{2}, \quad \forall t \geq t_{0} \tag{5.1}
\end{equation*}
$$

where $t_{0}=\frac{2}{K_{1}}\left(1+M_{1}^{2}\right)^{-2}$. Let $a>0, \beta>0$. Then there exists $c_{3} \geq 0$ such that

$$
a x^{1 / \sigma} \leq c_{3}+\beta x, \quad \forall x \geq 0
$$

Indeed, $\frac{1}{\sigma}+\frac{\sigma-1}{\sigma}=\frac{1}{p}+\frac{1}{q}=1$. Using the Young inequality, we obtain

$$
\begin{aligned}
a x^{1 / \sigma} & =a \beta^{\frac{-1}{\sigma}}\left(\beta^{1 / \sigma} x^{1 / \sigma}\right) \\
& \leq \frac{\left(a \beta^{\frac{-1}{\sigma}}\right)^{q}}{q}+\frac{\left(\beta^{1 / \sigma} x^{1 / \sigma}\right)^{p}}{p} \\
& \leq c_{3}+\frac{\beta x}{\sigma} \leq c_{3}+\beta x
\end{aligned}
$$

where $c_{3}=\frac{\sigma-1}{\sigma} a^{\frac{\sigma}{\sigma-1}} \beta^{\frac{1}{1-\sigma}}$.
Take $\beta=\frac{t_{0}}{2}$, using (5.1) and the Cauchy Schwarz inequality, we have

$$
\begin{aligned}
\|u(t)\|_{H_{a, \sigma}^{1}}^{2} & =\left\|e^{a|D|^{1 / \sigma}} u(t)\right\|_{H^{1}}^{2} \\
& =\int\left(1+|\xi|^{2}\right) e^{2 a|\xi|^{1 / \sigma}}|\widehat{u}(t, \xi)|^{2} d \xi \\
& \left.\leq \int\left(1+|\xi|^{2}\right) e^{2\left(c_{3}+\beta|\xi|\right.}\right)|\widehat{u}(t, \xi)|^{2} d \xi \\
& \leq \int\left(1+|\xi|^{2}\right) e^{2 c_{3}} e^{t_{0}|\xi|}|\widehat{u}(t, \xi)|^{2} d \xi \\
& \leq e^{2 c_{3}}\left(\int\left(1+|\xi|^{2}\right)|\widehat{u}(t, \xi)|^{2} d \xi\right)^{1 / 2}\left(\left.\int\left(1+|\xi|^{2}\right) e^{2 t_{0}|\xi|} \widehat{u}(t, \xi)\right|^{2} d \xi\right)^{1 / 2} \\
& \leq e^{2 c_{3}}\|u\|_{H^{1}}^{1 / 2}\left\|e^{t_{0}|D|} u(t)\right\|_{H^{1}}^{1 / 2} \\
& \leq c\|u\|_{H^{1}}^{1 / 2}
\end{aligned}
$$

where $c=e^{2 c_{3}} c_{0}^{1 / 2}$. Using the inequality (3.1), we obtain

$$
\limsup _{t \rightarrow \infty}\left\|e^{a|D|^{1 / \sigma}} u(t)\right\|_{H^{1}}=0
$$

References

[1] J. Y. Chemin; About Navier-Stokes Equations, Publication du Laboratoire Jaques-Louis Lions, Université de Paris VI, 1996, R96023.
[2] J. Benameur, M. Blel; Long-Time Decay to the Global Solution of the 2D Dissipative Quasigeostrophic Equation, Abstract and Applied Analysis. Volume 2012, Article ID 627813, 12 pages, doi:10.1155/2012/627813, 2012.
[3] J. Benameur, L. Jlali; On the blow up criterion of 3D-NSE in Sobolev-Gevrey spaces, To appear in Journal of Mathematical Fluid Mechanics.
[4] J. Benameur, R. Selmi; Long time decay to the Leray solution of the two-dimensional NavierStokes equations, Bull. Lond. Math. Soc. 44 (5), (2012), 1001-1019.
[5] C. Foias, R. Temam; Gevrey class regularity for the solutions of the Navier-Stokes equations, J. Funct. Anal. 87 (2), (189) 359-369.
[6] I. Gallagher, D. Iftimie, F. Planchon; Non-blowup at large times and stability for global solutions to the Navier-Stokes equations, C. R. Acad. Sc. Paris, Ser. I334 (2002), 289-292.
[7] M. E. Schonbek; Large time behaviour of solutions to the Navier-Stokes equations in H^{m} spaces, Comm. Partial Differential Equations 20 (1995), 103-117.
[8] M. Wiegner; Decay results for weak solutions of the Navier-Stokes equations on R^{n}, J. London Math. Soc. (2) 35 (1987), 303-313.
[9] M. E. Schonbek, M. Wiegner; On the decay of higher order of norms of the solutions of the Navier-Stokes equations, Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), 677-685.

Jamel Benameur
Institut Supérieur des Sciences Appliquées et de Technologie de Gabès, Université de Gabès, Tunisia

E-mail address: jamelbenameur@gmail.com
Lotfi Jlali
Faculté de Sciences Mathématiques, Physiques et Naturelles de Tunis, Université de Tunis El Manar, Tunisia

E-mail address: lotfihocin@gmail.com

[^0]: 2010 Mathematics Subject Classification. 35Q30, 35D35.
 Key words and phrases. Navier-Stokes Equation; critical spaces; long time decay.
 (C) 2016 Texas State University.

 Submitted February 2, 2016. Published April 21, 2016.

