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OPTIMIZATION PROBLEMS ON THE SIERPINSKI GASKET

MAREK GALEWSKI

Abstract. We investigate the existence of an optimal process for such an op-

timal control problem in which the dynamics is given by the Dirichlet problem
driven by weak Laplacian on the Sierpinski gasket. To accomplish this task

using a direct variational approach with no global growth conditions on the

nonlinear term, we consider the existence of solutions, their uniqueness and
their dependence on a functional parameter for mentioned Dirichlet problem.

This allows us to prove that the optimal control problem admits at least one

solution.

1. Introduction

Let V stand for the Sierpiński gasket, V0 its intrinsic boundary. Let ∆ denote the
weak Laplacian on V and let measure µ denote the restriction to V of normalized
logN/log 2-dimensional Hausdorff measure, so that µ(V ) = 1. Let M be a compact
interval of R and denote LM = {u ∈ L2(V, µ) : u(y) ∈M for a.e. y ∈ V }. The aim
of this article is to consider an optimal control problem of minimizing the action
functional

J0 =
∫
V

f0(y, x(y), u(y))dµ

where the admissible pairs satisfy

∆x(y) + a(y)x(y) = f(y, x(y), u(y)) + g(y) for a.e. y ∈ V \ V0,

x|V0 = 0,
(1.1)

and where we assume, apart from the growth conditions, that g ∈ L1(V, µ), g 6= 0
a.e. on V , f : V × R × M → R is a Caratheodory function and a ∈ L1(V, µ)
and a ≤ 0 almost everywhere in V . Solutions to (1.1) are understood in the weak
sense which we will describe in a more detail later. Define F : V × R ×M → R
by F (y, ξ, u) =

∫ ξ
0
f(y, x, u)dx, for a.e. y ∈ V and every u ∈ M . Concerning the

nonlinear term, we will employ the following conditions
(H1a) for any fixed u ∈ M and a.e. y ∈ V the function x → F (y, u, v) is convex

on R;
(H1b) there exists constants 0 < A < 1

2(2N+3) , B ∈ R such that

F (y, x, u) ≥ −A|x|2 +B
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for all x ∈ R, u ∈M and a. e. y ∈ V ;
(H2) for each r > 0 there exist functions fr, gr ∈ L1(V, µ) such that for all

(x, u) ∈ H1
0 (V )× LM satisfying ‖x‖H1

0 (V ) ≤ r and for a.e. y ∈ V it holds

|F (y, x(y), u(y))| ≤ fr(y), |f(y, x(y), u(y))| ≤ gr(y);

(H3) f0 : V × R × M → R is measurable with respect to the first variable
and continuous with respect to the two last variables and convex in u.
Moreover, for any d > 0 there exists a function ψd ∈ L1(V, µ) such that
|f0(y, x, u)| ≤ ψd(y) a.e. on V for all x ∈ [−d, d] and u ∈M .

In case of weakly convergent sequence of parameters, we would require some struc-
ture condition on a nonlinear term, i.e. f(y, x, u) = f1(y, x) + f2(y)u. We define

F1(y, x) =
∫ x

0

f1(y, s)ds for a.e. y ∈ V.

Now we replace (H2) with the assumption
(H4) f1 : V × R → R is a Caratheodory function, f2 ∈ L2(V, µ); for each r > 0

there exist functions fr, gr ∈ L1(V, µ) such that for all x ∈ H1
0 (V ) satisfying

‖x‖H1
0 (V ) ≤ r and for a.e. y ∈ V it holds

|F1(y, x(y))| ≤ fr(y), |f1(y, x(y))| ≤ gr(y).

The main idea to tackle this optimization problem is first to examine the con-
tinuous dependence on a functional parameter of problem (1.1) in case of strongly
and weakly convergent sequence of parameters. Having obtained these results we
can construct the set on which the optimization problem can be minimized, i.e. the
set containing all admissible pairs and then minimize J0 on this set. In order to
get the solution to the optimization problem considered, we require only weak con-
vergence of the sequence of parameters. However, we believe that the continuous
dependence on parameters results are of independent interest on fractal domains
since these to the best knowledge of the author have not been investigated yet.
Similar problems for a system described by second order PDE’s of the elliptic type
considered on domains in Rn with Dirichlet boundary data were investigated in
[18] and [19] using direct variational methods and for second order ODE in [17].
We base on the approach used in the sources mentioned with necessary modifica-
tions due to the setting of Sierpinski gasket. However we modify the ideas from
these works by putting emphasis on working mainly with weak solutions and using
a kind of a iterative technique. To the authors’ knowledge such problem was not
studied in the setting of Sierpinski gasket before. Necessary conditions of optimality
for second-order systems of ordinary differential equations with Dirichlet boundary
conditions were given by Goebel and Raitums in [10] and by Idczak in [14] (see also
the references therein).

The Sierpinski gasket has the origin in a paper by Sierpinski [23]. This fractal
domain can be described as a subset of the plane obtained from an equilateral
triangle by removing the open middle inscribed equilateral triangle of 1/4 of the
area, removing the corresponding open triangle from each of the three constituent
triangles and continuing in this way.

The study of the Laplacian on fractals started in physical sciences in [1] and
[21, 22]. The Laplacian on the Sierpiński gasket was first constructed in [16] and[11].
Among the contributions to the theory of nonlinear elliptic equations on fractals
we mention [4, 6, 8] and [15], [25]. Concerning some recent results by variational
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methods and critical point theory pertaining to the existence and the multiplicity of
solutions by the recently developed variational tools we must mention the following
sources [2], [3], [20], [5].

2. Remarks on the abstract setting

Concerning the Sierpinski gasket we employ the following definition and remarks,
these follow remarks collected in [2]. Let N ≥ 2 be a natural number and let
p1, . . . , pN ∈ RN−1 be so that |pi−pj | = 1 for i 6= j. Define, for every i ∈ {1, . . . , N},
the map Si : RN−1 → RN−1 by

Si(x) =
1
2
x+

1
2
pi .

Let S := {S1, . . . , SN} and denote by G : P(RN−1)→ P(RN−1) the map assigning
to a subset A of RN−1 the set

G(A) = ∪Ni=1Si(A).

It is known that there is a unique non-empty compact subset V of RN−1, called
the attractor of the family S, such that G(V ) = V ; see, Falconer [7, Theorem 9.1].

The set V is called the Sierpiński gasket in RN−1. It can be constructed induc-
tively as follows:

Put V0 := {p1, . . . , pN} which is called the intrinsic boundary of V and define
Vm := G(Vm−1), for m ≥ 1, and put V∗ := ∪m≥0Vm. Since pi = Si(pi) for
i ∈ {1, . . . , N}, we have V0 ⊆ V1, hence G(V∗) = V∗. Taking into account that the
maps Si, i ∈ {1, . . . , N}, are homeomorphisms, we conclude that V∗ is a fixed point
of G. On the other hand, denoting by C the convex hull of the set {p1, . . . , pN},
we observe that Si(C) ⊆ C for i = 1, . . . , N . Thus Vm ⊆ C for every m ∈ N, so
V∗ ⊆ C. It follows that V∗ is non-empty and compact, hence V = V∗.

The set V is endowed with the relative topology induced from the Euclidean
topology on RN−1.

Denote by C(V ) the space of real-valued continuous functions on V and by

C0(V ) := {u ∈ C(V ) : du|V0 = 0}.
The spaces C(V ) and C0(V ) are endowed with the usual supremum norm ‖ · ‖∞.
The space L2(V, µ) equipped with the product

〈v, h〉 =
∫
V

v(y)h(y)dµ

is obviously a Hilbert space.
For a function u : V → R and for m ∈ N let

Wm(u) =
(N + 2

N

)m ∑
|x−y|=2−m, x,y∈Vm

(u(x)− u(y))2. (2.1)

Since Wm(u) ≤Wm+1(u) for every natural m, we can put

W (u) = lim
m→∞

Wm(u). (2.2)

Define now
H1

0 (V ) := {u ∈ C0(V ) |W (u) <∞}.
H1

0 (V ) is a dense linear subset of L2(V, µ) equipped with the ‖ · ‖2 norm. We now
endow H1

0 (V ) with the norm
‖u‖ =

√
W (u).
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There is an inner product defining this norm: for u, v ∈ H1
0 (V ) and m ∈ N let

Wm(u, v) = (
N + 2
N

)m
∑

|x−y|=2−m, x,y∈Vm

(u(x)− u(y))(v(x)− v(y)).

Put

W(u, v) = lim
m→∞

Wm(u, v).

Note that W(u, v) ∈ R and the space H1
0 (V ), equipped with the inner product

W, which induces the norm ‖ · ‖, becomes real Hilbert spaces. Moreover,

‖u‖∞ ≤ (2N + 3)‖u‖, for every u ∈ H1
0 (V ), (2.3)

and the embedding

(H1
0 (V ), ‖ · ‖) ↪→ (C0(V ), ‖ · ‖∞) (2.4)

is compact, see [9] for further details.
Note that (H1

0 (V ), ‖ · ‖) is a Hilbert space which is dense in L2(V, µ), that W is
a Dirichlet form on L2(V, µ). Let Z be a linear subset of H1

0 (V ) which is dense in
L2(V, µ). Then, in [8] it is defined a linear self-adjoint operator ∆: Z → L2(V, µ),
the (weak) Laplacian on V , such that

−W(u, v) =
∫
V

∆u · vdµ, for every (u, v) ∈ Z ×H1
0 (V ).

Let H−1(V ) be the closure of L2(V, µ) with respect to the pre-norm

‖u‖−1 = sup
‖h‖=1, h∈H1

0 (V )

|〈u, h〉|,

v ∈ L2(V, µ) and h ∈ H1
0 (V ). Then H−1(V ) is a Hilbert space. Then the relation

−W(u, v) = 〈∆u, v〉, ∀v ∈ H1
0 (V ),

uniquely defines a function ∆u ∈ H−1(V ) for every u ∈ H1
0 (V ).

3. Existence and uniqueness

A function x ∈ H1
0 (V ) is called a weak solution of (1.1) if

W(x, v)−
∫
V

a(y)x(y)v(y)dµ

+
∫
V

f(y, x(y), u(y))v(x)dµ+
∫
V

g(y)x(y)dµ = 0,
(3.1)

for every v ∈ H1
0 (V ). Further on whenever we write that we obtain a solution to

(1.1) we mean the weak one. The functional J : H1
0 (V )→ R given by

J(x) =
1
2
‖x‖2 − 1

2

∫
V

a(y)x2(y)dµ+
∫
V

F (y, x(y), u(y))dµ+
∫
V

g(y)x(y)dµ, (3.2)

for all x ∈ H1
0 (V ), is the Euler action functional attached to problem (1.1). Em-

ploying calculations as in the classical case on the domain in Rn and the reasoning
from [8, Proposition 2.19] and further in [2] we obtain the following result.
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Lemma 3.1. Assume either (H2) or (H4). Then, the functional J : H1
0 (V ) → R

defined by relation (3.2) is a C1(H1
0 (V ),R) functional. Moreover,

J ′(x)(w) =W(u,w)−
∫
V

a(y)x(y)w(x)dµ+
∫
V

f(y, x(y), u(y))dµ+
∫
V

g(y)w(y)dµ,

for all w ∈ H1
0 (V ) for each point x ∈ H1

0 (V ). In particular, x ∈ H1
0 (V ) is a weak

solution of problem (1.1) if and only if x is a critical point of J .

Lemma 3.2. Assume that either (H1a), (H2) or (H1b), (H2) hold. Let u ∈ L2(V, µ)
be fixed. Then J is continuously Gâteaux differentiable, weakly lower semicontinu-
ous and coercive and its critical points correspond to the weak solutions of (1.1).

Proof. Let us take any weakly convergent sequence {xk}∞k=1 ⊂ H1
0 (V ). Then by

(2.4) a sequence {xk}∞k=1 has a subsequence {xkn
}∞n=1 which is strongly convergent

in L2(V, µ) and also convergent in C(V ). Denote by x ∈ H1
0 (V ) the weak limit

of {xkn
}∞n=1. Since {xkn

}∞n=1 is bounded there exist a constant r > 0 such that
‖vkn‖H1

0 (V ) ≤ r for all n ∈ N . Thus from (H3) there exists a function gr ∈ L1(V, µ)
such that |F (y, xkn

(y), u(y))| ≤ gr(y) for a.e. y ∈ V . Than by the Lebesgue
Dominated Convergence Theorem we obtain∫

V

F (y, xkn(y), u(y))dµ→
∫
V

F (y, x(y), u(y))dµ.

Therefore, J is weakly l.s.c. on H1
0 (V ) since all other terms of J are weakly l.s.c.

on H1
0 (V )

Consider first case (H1a). Since f is nondecreasing, it follows that F is convex
in the second variable. We see that for all v ∈ R, u ∈M and a.e. y ∈ V it follows

F (y, v, u) ≥ f(y, 0, u)y + F (y, 0, u) (3.3)

By (H2) there exist functions f0, g0 ∈ L1(V, µ) such that

|F (y, 0, u(y))| ≤ f0(y), |f(y, 0, u(y))| ≤ g0(y)

We see by (2.3) that for every y ∈ V ,

|x(y)| ≤ ‖x‖∞ ≤ (2N + 3)‖x‖H1
0 (V ). (3.4)

Then we see that∫
V

|f(y, 0, u(y))||x(y)|dµ ≤ ‖x‖∞
∫
V

|f(y, 0, u(y))|dµ

≤ ((2N + 3)
∫
V

|g0(y)|dµ)‖x‖H1
0 (V )

for any x ∈ H1
0 (V ). Thus by (3.3),∫

V

F (y, x(y), u(y))dµ ≥ −((2N + 3)
∫
V

|g0(y)|dµ)‖x‖H1
0 (V ) −

∫
V

g0(y)dµ (3.5)

for any x ∈ H1
0 (V ). Next we see that∫

V

g(y)x(y)dµ ≤ ‖x‖∞
∫
V

|g(y)|dµ ≤ ((2N + 3)
∫
V

|g(y)|dµ)‖x‖H1
0 (V )

Since a is non-positive, it now follows that J is coercive in x for any fixed u. Indeed

J(x) ≥ 1
2
‖x‖2 −

(
(2N + 3)

∫
V

|g0(y)|dµ+
∫
V

|g(y)|dµ
)
‖x‖H1

0 (V ) −
∫
V

g0(y)dµ

so J(x)→∞ as ‖x‖ → ∞.
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To prove coercivity in case (H1b) we see using the first inequality (3.4) and the
fact that µ(V ) = 1

‖x‖L2(V,µ) ≤ ‖x‖∞ ≤ (2N + 3)‖x‖H1
0 (V )

for any x ∈ H1
0 (V ). Thus∫

V

F (y, x(y), u(y))dµ ≥ −A(2N + 3)‖x‖2H1
0 (V ) −B

Now by the assumptions on A, we see that J is coercive. �

Replacing (H2) with (H4) we obtain the following result.

Corollary 3.3. Assume that either (H1a), (H4) or (H1b), (H4) hold. Let u ∈
L2(V, µ) be fixed. Then J is continuously Gâteaux differentiable, weakly l.s.c and
coercive and its critical points correspond to the weak solutions of (1.1).

The above assertion follows from Lemma 3.1. we obtain the last assertion.

Theorem 3.4. Let u ∈ L2(V, µ) be fixed. Then Problem (1.1) has exactly one
solution xu ∈ H1

0 (V ) in case (H1a), (H2) and at least one solution in case (H1b),
(H2). Note that all solutions are non-trivial.

Proof. By Lemma 3.2 J is Gâteaux differentiable, weakly l.s.c. and coercive on
H1

0 (V ). Therefore there exists xu ∈ H1
0 (V ) such that J(xu) = infv∈H1

0 (V ) J(v)
and thus xu satisfies (1.1). Since in case (H1a), (H2), (H3) functional J is strictly
convex, the critical point is unique. Assuming that 0 is a weak solution, we arrive
at contradiction since then we obtain g(y) = 0 for a.e. y ∈ V , which contradicts
the assumption on g. �

Corollary 3.5. Let u ∈ L2(V, µ) be fixed. Problem (1.1) has exactly one solution
xu ∈ H1

0 (V ) in case (H1a), (H4) and at least one solution in case (H1b), (H4).
Note that all solutions are non-trivial.

4. Continuous dependence on parameters

Having shown the existence and in one case the uniqueness of a solution, we
investigate the dependence on a sequence of parameters. These results will be
indispensable in proving the existence of solutions to the optimal control problem.
We note that it is not necessary to use the uniqueness of solutions in demonstrating
the continuous dependence on parameters. Therefore we would not distinguish
between the unique and the non-unique case as far as the methods in the proof
are used. We mainly use the iterative technique together with the definition of the
weak solution together with coercivity which appears to be uniform in u.

4.1. Case of strongly convergent sequence of parameters.

Theorem 4.1. Assume that either (H1a), (H2) or (H1b), (H2) hold. Assume
that {un}∞n=1 satisfies that uk → u0 ∈ L2(V, µ). Then, for any sequence {xk}∞k=1

of solutions to (1.1) corresponding to uk, there exists a subsequence {xnk
}∞k=1 ⊂

H1
0 (V ) and an element x0 ∈ H1

0 (V ) such that xnk
→ x0 (strongly) in H1

0 (V ) and
that x0 is a weak solution to (1.1) corresponding to u0.
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Proof. We define a sequence {xn}∞n=1, where xn is a solution to (1.1) with u = un.
Thus the following holds

−∆xn(y) + a(y)xn(y) = f(y, xn(y), un(y)) for a.e. y ∈ V \ V0,

xn|V0 = 0.
(4.1)

We shall investigate the convergence of {xn}∞n=1. By definition of J and by (3.5)
there exists a constant r > 0 such that ‖xn‖H1

0 (V ) ≤ r for n ∈ N . Indeed, each xn
is the argument of a minimum to J , so we see that

0 = J(0) ≥ 1
2
‖xn‖2 −

1
2

∫
V

a(y)x2
n(y)dµ−

∫
V

F (y, xn(y), un(y))dµ

−
∫
V

g(y)xn(y)dµ

≥ 1
2
‖xn‖2 −

(
(2N + 3)

∫
V

|g0(y)|dµ+
∫
V

|g(y)|dµ
)
‖xn‖H1

0 (V )

−
∫
V

f0(y)dµ.

Hence {xn}∞n=1 is weakly convergent in H1
0 (V ) to some x0, possibly up to a sub-

sequence which we assume to be chosen. We shall observe that x0 is a solution to
(1.1) corresponding to u0. Observe that by by (2.4) {xn}∞n=1 is also convergent in
C(V ) and therefore in L2(V, µ). Note that since {xn}∞n=1 is bounded by some r
say, we obtain by (2.3) for any v ∈ H1

0 (V ) with ‖v‖ ≤ r
|f(y, xm(y), um(y))v(y)|dµ ≤ |f(y, xm(y), um(y))|(2N + 3)r ≤ r(2N + 3)gr(y)

Since {xn}∞n=1, {un}∞n=1 are convergent in L2(V, µ) it follows by the Lebesgue Dom-
inated Theorem that∫

V

f(y, xm(y), um(y))v(y)dµ→
∫
V

f(y, x0(y), u0(y))v(y)dµ (4.2)

We see by the definition of the weak solution that

W(xm, v)−
∫
V

a(y)xm(y)v(y)dµ+
∫
V

f(y, xm(y), um(y))v(y)dµ = 0.

Since W(xm, v) → W(x0, v) and
∫
V
a(y)xm(y)v(y)dµ →

∫
V
a(y)x0(y)v(y)dµ as

m→∞, we see by (4.2)

W(x0, v)−
∫
V

a(y)x0(y)v(y)dµ+
∫
V

f(y, x0(y), u0(y))v(y)dµ = 0

for any v ∈ H1
0 (V ), so x0 is a weak solution to (1.1) corresponding to u0.

Now we further examine the convergence of {xn}∞n=1. Namely, we shall show
that it is in fact strong. Since each xn for n ∈ N is a critical point we see that for
any m ≥ k we have

0 = 〈J ′(xk), xk〉 − 〈J ′(xm), xm〉. (4.3)
Writing (4.3) explicitly we obtain

0 =W(xk, xk)−W(xm, xm)

−
∫
V

a(y)x2
k(y)dµ+

∫
V

f(y, xk(y), uk(y))xk(x)dµ

+
∫
V

a(y)x2
m(y)dµ−

∫
V

f(y, xm(y), um(y))xm(x)dµ
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As already mentioned since {xn}∞n=1 is weakly convergent in H1
0 (V ) by (2.4) it is

strongly convergent in L2(V, µ). Thus for some fixed ε > 0 there exists N1
ε that for

all m ≥ k ≥ N1
ε

−ε
2
<

∫
V

a(y)x2
m(y)dµ−

∫
V

a(y)x2
k(y)dµ <

ε

2
.

By (4.2) for all m ≥ k ≥ N2
ε , where N2

ε is some number

−ε
2
<

∫
V

f(y, xm(y), um(y))xm(y)dµ−
∫
V

f(y, xk(y), uk(y))xk(y)dµ <
ε

2

Therefore for all m ≥ k ≥ Nε := max{N1
ε , N

2
ε }

−ε
2
<W(xk, xk)−W(xm, xm) <

ε

2
This means that {W(xn, xn)}∞n=1 is a Cauchy sequence, and since H1

0 (V ) is com-
plete we see that

W(xn, xn)→W(x0, x0) as n→∞.
Since also {xn}∞n=1 is weakly convergent to x0, it converges strongly by the prop-
erties of the scalar product. �

4.2. Case of weakly convergent sequence of parameters. In Theorem 4.1 the
convergence of a sequence of parameters was a strong one. We are now interested
in the case when this convergence is weak.

Theorem 4.2. Assume that either (H1a), (H4) or (H1b), (H4) hold. Let {uk}∞k=1

satisfy that uk ⇀ u0 (weakly) L2(V, µ). Then, for any sequence {xk}∞k=1 of solutions
to (1.1) corresponding to uk, there exists a subsequence {xkn

}∞n=1 ⊂ H1
0 (V ) and an

element x0 ∈ H1
0 (V ) such that xkn ⇀ x0 (weakly) in H1

0 (V ) and that x0 is a
classical solution to (1.1) corresponding to u0.

Proof. Following the proof of Theorem 4.1 we obtain the weak convergence of a
subsequence {xkn}∞n=1 of solutions corresponding to a subsequence of parameters.
The only change is that now we apply the Lebesgue Dominated Theorem to function
f1 and we observe that for any v ∈ H1

0 (V ),∫
V

f2(y)unk
(y)v(y)dµ→

∫
V

f2(y)u(y)v(y)dµ

by the weak convergence of {uk}∞k=1. Then we obtain that x0 is a weak solution
corresponding to u0. �

5. Solvability of the optimal control problem

We construct a set A ⊂ H1
0 (V ) × L2(V, µ) consisting of pairs (xu, u) chosen as

follows: we fix a function u ∈ LM and next we take xu as all solutions to (1.1)
corresponding to u with assumptions (H1a), (H4), (H3) or (H1b), (H4), (H3) We
recall that to some u there may exist more than one solution whether we employ
convexity or not.

Remark 5.1. Since the functions from LM are pointwisely equibounded we obtain
limk→∞ uk = u weakly in L2(V, µ), up to a subsequence by (3.4), for any sequence
{uk}∞k=1 ⊂ LM . Moreover, any sequence {xk}∞k=1 of solutions to (1.1) corresponding
to such {uk}∞k=1 is necessarily bounded in H1

0 (V ) as follows from the proof of
Theorem 4.2. Thus by relation (2.3) there exists a d > 0 such that xk(y) ∈ [−d, d]
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for all k = 1, 2, . . . and for all y ∈ V . Note that the last relation holds for all y ∈ V
since xk is continuous for all k = 1, 2, . . . .

Theorem 5.2. Assume that either (H1a), (H4), (H3) or (H1b), (H4), (H3) hold.
There exists a pair (x, u) ∈ A such that J(x, u) = inf(xu,u)∈A J(xu, u).

Proof. From Remark 5.1 it follows that any sequence in A is bounded. Any bounded
sequence in H1

0 (V ) has a uniformly convergent subsequence and by convexity of f0
with respect to u we see that J0 is weakly l.s.c. on H2

0 (V )×L2(V, µ). Assumption
(H3) and Remark 5.1 provide that the functional J0 is bounded from below on A.
Thus we may choose a minimizing sequence {xku, uk}∞k=1 for a functional J such
that {uk}∞k=1 is weakly convergent in L2(V, µ) to a certain u ∈ LM . Theorem 4.2
asserts that {xku}∞k=1 converges, possibly up to a subsequence, strongly in C(V ),
weakly in H1

0 (V ) to a certain x solving (1.1) for u in the weak sense. Thus

J0(x, u) = lim inf
k→∞

J(xku, u
k) ≥ J(x, u) ≥ inf

(x,u)∈A
J(x, u).

Therefore (x, u) solves our optimization problem. �

6. Examples

We conclude the paper with some examples on nonlinear terms satisfying our
assumptions related to both the continuous dependence on parameters results and
the optimization problem.

Example 6.1. Let g ∈ L1(V, µ), g 6= 0 a.e. on V , h ∈ L2(V, µ) and let f : R→ R
be a continuous nondecreasing function. Consider

∆x(y) + a(y)x(y) + f(x(y)) + h(y)u(y) = g(y),

x|V0 = 0.
(6.1)

Then we see that problem (6.1) satisfies the assumptions of Theorem 4.2 in the
convex case.

Example 6.2. Let g ∈ L1(V, µ), g 6= 0 a.e. on V , h ∈ L2(V, µ). Let m be an odd
number arbitrarily fixed. Consider

−∆x(y) + a(y)x(y) + xm(y)e−u
2(y) + h(y)u(y) = g(y),

x|V0 = 0.
(6.2)

Again we see that (6.2) satisfies the assumptions of Theorem 4.1 again in the convex
case.

We conclude with an example of the integrand f0.

Example 6.3. Let f0(y, x, u) = h(y)e−x
2(y)g(u), where h ∈ L1(V, µ) is positive

a.e. on V and g : R → R be a convex continuous function. Function ψd reads
ψd(y) = h(y)e−d

2
maxu∈M g(u).
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with oscillatory nonlinearities on the Sierpiński gasket. Chin. Ann. Math. Ser. B 34 (2013),
no. 3, 381–398.

[3] G. Bonanno, G. Molica Bisci, V. Rădulescu; Variational analysis for a nonlinear elliptic
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