Electronic Journal of Differential Equations, Vol. 2016 (2016), No. 107, pp. 1–11. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

INFINITELY MANY SOLUTIONS VIA VARIATIONAL-HEMIVARIATIONAL INEQUALITIES UNDER NEUMANN BOUNDARY CONDITIONS

FARIBA FATTAHI, MOHSEN ALIMOHAMMADY

ABSTRACT. In this article, we study the variational-hemivariational inequalities with Neumann boundary condition. Using a nonsmooth critical point theorem, we prove the existence of infinitely many solutions for boundaryvalue problems. Our technical approach is based on variational methods.

1. INTRODUCTION

In this article, we study following boundary-value problem, depending on the parameters λ, μ with nonsmooth Neumann boundary condition:

$$-\Delta_{p(x)}u + a(x)|u|^{p(x)-2}u = 0 \quad \text{in } \Omega$$

$$-|\nabla u|^{p(x)-2}\frac{\partial u}{\partial \nu} \in -\lambda\theta(x)\partial F(u) - \mu\partial\vartheta(x)G(u) \quad \text{on } \partial\Omega,$$

(1.1)

where $\Omega \subset \mathbb{R}^N (N \geq 2)$ is a bounded smooth domain, $\frac{\partial u}{\partial \nu}$ is the outer unit normal derivative on $\partial \Omega$, $p: \overline{\Omega} \to \mathbb{R}$ is a continuous function satisfying

$$1 < p^- = \min_{x \in \bar{\Omega}} p(x) \le p(x) \le p^+ = \max_{x \in \bar{\Omega}} p(x) < +\infty.$$

Here λ, μ are real parameters, $\lambda \in]0, \infty[, \mu \in [0, \infty[$ and $\theta, \vartheta \in L^1(\partial\Omega)$, where $\theta(x), \vartheta(x) \geq 0$ for a.e. $x \in \partial\Omega$. $F, G : \mathbb{R} \to \mathbb{R}$ are locally Lipschitz functions given by $F(\omega) = \int_0^{\omega} f(t)dt$, $G(\omega) = \int_0^{\omega} g(t)dt$, $\omega \in \mathbb{R}$ such that $f, g : \mathbb{R} \to \mathbb{R}$ are locally essentially bounded functions. $\partial F(u), \partial G(u)$ denote the generalized Clarke gradient of F(u), G(u).

Let X be real Banach space. We assume that it is also given a functional $\chi : X \to \mathbb{R} \cup \{+\infty\}$ which is convex, lower semicontinuous, proper whose effective domain $dom(\chi) = \{x \in X : \chi(x) < +\infty\}$ is a (nonempty, closed, convex) cone in X. Our aim is to study the following variational-hemivariational inequalities problem: Find $u \in \mathcal{B}$ which is called a *weak solution* of problem (1.1), i.e; if for all

²⁰¹⁰ Mathematics Subject Classification. 35J87, 49J40, 49J52, 49J53.

Key words and phrases. Nonsmooth critical point theory; infinitely many solutions; variational-hemivariational inequality.

^{©2016} Texas State University.

Submitted November 21, 2015. Published April 26, 2016.

 $v \in \mathcal{B}$,

$$\int_{\Omega} |\nabla u|^{p(x)-2} \nabla u \nabla (v-u) dx + \int_{\Omega} a(x) |u|^{p(x)-2} u(v-u) dx$$

$$-\lambda \int_{\partial \Omega} \theta(x) F^{0}(u; u-v) d\sigma - \mu \int_{\partial \Omega} \vartheta(x) G^{0}(u; u-v) d\sigma \ge 0,$$

(1.2)

where \mathcal{B} is a closed convex subset of $W_0^{1,p(\cdot)}(\Omega)$. For simplicity $\mathcal{B} = W_0^{1,p(\cdot)}(\Omega)$. Recently, many researchers have paid attention to impulsive differential equations by variational method. We refer the reader to [1, 6, 17, 20, 21, 22, 23] and references cited therein. The operator $\Delta_{p(x)}u = \operatorname{div}(|\nabla u|^{p(x)-2}\nabla u)$ is the so-called p(x)-Laplacian, which becomes *p*-Laplacian when $p(x) \equiv p$ is a constant. More recently, the study of p(x)-Laplacian problems has attracted more and more attention [4, 24].

Variational-hemivariational inequalities have been extensively studied in recent years via variational methods: in [15], the author studied hemivariational inequalities on an unbounded strip-like domain; in [19], the authors studied variationalhemivariational inequalities for the existence of a whole sequence of solutions with non-smooth potential and non-zero Neumann boundary condition; in [5], the authors studied variational-hemivariational inequalities involving the p-Laplace operator and a nonlinear Neumann boundary condition via abstract critical point result; in [3], the authors studied variational-hemivariational inequality on bounded domains by using the mountain pass theorem and the critical point theory for Motreanu-Panagiotopoulos type functionals.

The aim of the present paper is find sufficient conditions to guarantee the existence of infinitely many weak solutions for a variational-hemivariational inequality depending on two parameters. Our approach is a variational method and the main tool is a general nonsmooth critical point theorem.

2. Preliminaries

In this section, we recall some definitions and results which are used further in this paper. The variable exponent Lebesgue space is defined by

$$L^{p(\cdot)}(\Omega) = \{ u : \Omega \to \mathbb{R} : \int_{\Omega} |u(x)|^{p(x)} dx < \infty \}$$

and is endowed with the Luxemburg norm

$$||u||_{p(\cdot)} = \inf \{ \lambda > 0 : \int_{\Omega} |\frac{u(x)}{\lambda}|^{p(x)} dx \le 1 \}.$$

Note that, when p is constant, the Luxemburg norm $\|\cdot\|_{p(\cdot)}$ coincides with the standard norm $\|\cdot\|_p$ of the Lebesgue space $L^p(\Omega)$. $(L^{p(\cdot)}(\Omega), \|\cdot\|_{p(\cdot)})$ is a Banach space.

The generalized Lebesgue-Sobolev space $W^{L,p(\cdot)}(\Omega)$ for L = 1, 2, ... is defined by

$$W^{L,p(\cdot)}(\Omega) = \{ u \in L^{p(\cdot)}(\Omega) : D^{\alpha}u \in L^{p(\cdot)}(\Omega), |\alpha| \le L \},\$$

where $D^{\alpha}u = \frac{\partial^{|\alpha|}}{\partial^{\alpha_1}x_1...\partial^{\alpha_n}x_n}$ with $\alpha = (\alpha_1, \alpha_2, ..., \alpha_N)$ is a multi-index and $|\alpha| = \sum_{i=1}^{N} \alpha_i$. The space $W^{L,p(\cdot)}(\Omega)$ with the norm

$$||u||_{W^{L,p(\cdot)}}(\Omega) = \sum_{|\alpha| \le L} ||D^{\alpha}u||_{p(\cdot)},$$

is a separable reflexive Banach space [9].

 $W_0^{L,p(\cdot)}(\Omega)$ denotes the closure in $W^{L,p(\cdot)}(\Omega)$ of the set of functions in $W^{L,p(\cdot)}(\Omega)$ with compact support.

For every $u \in W_0^{L,p(\cdot)}(\Omega)$ the Poincaré inequality holds, where $C_p > 0$ is a constant

$$\|u\|_{L^{p(\cdot)}(\Omega)} \le C_p \|\nabla u\|_{L^{p(\cdot)}(\Omega)}$$

(see [12]). Hence, an equivalent norm for the space $W_0^{L,p(\cdot)}(\Omega)$ is given by

$$\|u\|_{W_0^{L,p(\cdot)}(\Omega)} = \sum_{|\alpha|=L} \|D^{\alpha}u\|_{p(\cdot)}.$$

Given p(x), let p_L^* denote the critical variable exponent related to p, defined for all $x \in \overline{\Omega}$ by the pointwise relation

$$p_L^*(x) = \begin{cases} \frac{Np(x)}{N - Lp(x)} & Lp(x) < N, \\ +\infty & Lp(x) \ge N, \end{cases}$$
(2.1)

is the critical exponent related to p. Let

$$\mathcal{K} = \sup_{u \in X \setminus \{0\}} \frac{\max_{x \in \bar{\Omega}} |u(x)|^p}{\|u\|^p}, \quad \mathcal{M} = \inf_{u \in X \setminus \{0\}} \frac{\min_{x \in \bar{\Omega}} |u(x)|^p}{\|u\|^p}.$$
(2.2)

Since p > N, X are compactly embedded in $C^0(\overline{\Omega})$, it follows that $\mathcal{K}, \mathcal{M} < \infty$.

Proposition 2.1. For $\Phi(u) = \int_{\Omega} [|\nabla u|^{p(x)} + a(x)|u(x)|^{p(x)}] dx$, and $u, u_n \in X$, we have

- (i) $||u|| < (=, >)1 \Leftrightarrow \Phi(u) < (=, >)1,$
- (ii) $||u|| \le 1 \Rightarrow ||u||^{p^+} \le \Phi(u) \le ||u||^{p^-}$,
- (iii) $||u|| \ge 1 \Rightarrow ||u||^{p^-} \le \Phi(u) \le ||u||^{p^+},$ (iv) $||u_n|| \to 0 \Leftrightarrow \Phi(u_n) \to 0,$
- (v) $||u_n|| \to \infty \Leftrightarrow \Phi(u_n) \to \infty$.

The proof of the above proposition is similar to that in [11].

Proposition 2.2 ([11, 14]). For $p, q \in C_+(\overline{\Omega})$ in which $q(x) \leq p_L^*(x)$ for all $x \in \overline{\Omega}$, there is a continuous embedding

$$W^{L,p(\cdot)}(\Omega) \hookrightarrow L^{q(\cdot)}(\Omega).$$

If we replace \leq with <, the embedding is compact.

Remark 2.3. (i) By the proposition 2.2 there is a continuous and compact embedding of $W_0^{1,p(\cdot)}(\Omega)$ into $L^{q(\cdot)}$ where $q(x) < p^*(x)$ for all $x \in \overline{\Omega}$. $W_0^{1,p(\cdot)}(\Omega)$ is continuously embedded in $W^{1,p^-}(\Omega)$ and since $p^- > N$, we deduce that $W^{1,p^-}_0(\Omega)$ is compactly embedded in $C^0(\bar{\Omega})$, So, there exists a constant c > 0 such that

$$\|u\|_{\infty} \le c\|u\|, \quad \forall u \in X, \tag{2.3}$$

where $||u||_{\infty} := \sup_{x \in \overline{\Omega}} |u(x)|.$

(ii) Denote

$$||u|| = \inf\{\lambda > 0: \int_{\Omega} \left[\left|\frac{\nabla u}{\lambda}\right|^{p(x)} + a(x)\right] \frac{u}{\lambda} |^{p(x)}] dx \le 1\},$$

which is a norm on $W_0^{1,p(\cdot)}(\Omega)$.

Let $\eta : \partial \Omega \to \mathbb{R}$ be a measurable. Define the weighted variable exponent Lebesgue space by

$$L^{p(x)}_{\eta(x)}(\partial\Omega) = \{ u : \partial\Omega \to \mathbb{R} \text{ is measurable and } \int_{\partial\Omega} |\eta(x)| |u|^{p(x)} d\sigma < \infty \},$$

with the norm

$$|u|_{(p(x),\eta(x))} = \inf\{\tau > 0; \int_{\partial\Omega} |\eta(x)| |\frac{u}{\tau}|^{p(x)} d\sigma \le 1\},$$

where $d\sigma$ is the measure on the boundary.

Lemma 2.4 ([8]). Let $\rho(x) = \int_{\partial\Omega} |\eta(x)| |u|^{p(x)} d\sigma$ for $u \in L^{p(x)}_{\eta(x)}(\partial\Omega)$ we have

$$|u|_{(p(x),\eta(x))} \ge 1 \Rightarrow |u|_{(p(x),\eta(x))}^{p} \le \rho(u) \le |u|_{(p(x),\eta(x))}^{p},$$

$$|u|_{(p(x),\eta(x))} \le 1 \Rightarrow |u|_{(p(x),\eta(x))}^{p^{+}} \le \rho(u) \le |u|_{(p(x),\eta(x))}^{p^{-}}.$$

For $A \subseteq \overline{\Omega}$ denote by $\inf_{x \in A} p(x) = p^-$, $\sup_{x \in A} p(x) = p^+$. Define

$$p^{\partial}(x) = (p(x))^{\partial} := \begin{cases} \frac{(N-1)p(x)}{N-p(x)} & p(x) < N, \\ +\infty & p(x) \ge N, \end{cases}$$

$$p^{\partial}(x)_{r(x)} := \frac{r(x)-1}{r(x)} p^{\partial}(x),$$
(2.4)

where $x \in \partial\Omega, r \in C(\partial\Omega, \mathbb{R})$ and r(x) > 1.

Proposition 2.5 ([10, 14]). If $q \in C_+(\overline{\Omega})$ and $q(x) < p^{\partial}(x)$ for any $x \in \overline{\Omega}$, then the embedding $W^{1,p(\cdot)}(\Omega)$ to $L^{q(\cdot)}(\partial\Omega)$ is compact and continuous.

In this part we introduce the definitions and basic properties from the theory of generalized differentiation for locally Lipschitz functions. Let X be a Banach space and X^* its topological dual. By $\|\cdot\|$ we will denote the norm in X and by $\langle\cdot,\cdot\rangle_X$ the duality brackets for the pair (X, X^*) . A function $h: X \to \mathbb{R}$ is said to be locally Lipschitz, if for every $x \in X$ there exists a neighbourhood U of x and a constant K > 0 depending on U such that $|h(y) - h(z)| \leq K ||y - z||$ for all $y, z \in U$. For a locally Lipschitz function $h: X \to \mathbb{R}$ is defined by the generalized directional derivative of h at $u \in X$ in the direction $\gamma \in X$ by

$$h^{0}(u;\gamma) = \limsup_{w \to u, t \to 0^{+}} \frac{h(w+t\gamma) - h(w)}{t}.$$

The generalized gradient of h at $u \in X$ is defined by

$$\partial h(u) = \{ x^* \in X^* : \langle x^*, \gamma \rangle_X \le h^0(u; \gamma), \ \forall \gamma \in X \},\$$

which is non-empty, convex and w^* -compact subset of X^* , where $\langle \cdot, \cdot \rangle_X$ is the duality pairing between X^* and X.

Proposition 2.6 ([7]). Let $h, g: X \to \mathbb{R}$ be locally Lipschitz functions. Then:

- (i) $h^0(u; \cdot)$ is subadditive, positively homogeneous.
- (ii) $(-h)^0(u; v) = h^0(u; -v)$ for all $u, v \in X$.
- (iii) $h^0(u; v) = \max\{\langle \xi, v \rangle : \xi \in \partial h(u)\}$ for all $u, v \in X$.
- (iv) $(h+g)^0(u;v) \le h^0(u;v) + g^0(u;v)$ for all $u, v \in X$.

Definition 2.7 ([18]). Let X be a Banach space, $\mathcal{I} : X \to (-\infty, +\infty]$ is called a Motreanu-Panagiotopoulos-type functional, if $\mathcal{I} = h + \chi$, where $h : X \to \mathbb{R}$ is locally Lipschitz and $\chi : X \to (-\infty, +\infty]$ is convex, proper and lower semicontinuous.

Definition 2.8 ([13]). An element $u \in X$ is said to be a critical point of $\mathcal{I} = h + \chi$ if

$$h^0(u; v - u) + \chi(v) - \chi(u) \ge 0, \quad \forall v \in X.$$

Let X is a reflexive real Banach space, $\phi : X \to \mathbb{R}$ is a sequentially weakly lower semicontinuous and coercive, $\Upsilon : X \to \mathbb{R}$ is a sequentially weakly upper semicontinuous, λ is a positive real parameter, $\chi : X \to (-\infty, +\infty]$ is a convex, proper, lower semicontinuous functional and $D(\chi)$ is the effective domain of χ . Assuming also that ϕ and Υ are locally Lipschitz continuous functionals. Set

$$\mathcal{E} := \Upsilon - \chi, \quad \mathcal{L}_{\lambda} := \phi - \lambda \mathcal{E} = (\phi - \lambda \Upsilon) + \lambda \chi,$$

We assume that

$$\phi^{-1}(] - \infty, r[) \cap D(\chi) \neq \emptyset, \quad \forall r > \inf_{\chi} \phi,$$

and define for every $r > \inf_X \phi$,

$$\varphi(r) = \inf_{u \in \phi^{-1}(]-\infty, r[)} \frac{\left(\sup_{v \in \phi^{-1}(]-\infty, r[)} \mathcal{E}(v)\right) - \mathcal{E}(u)}{r - \phi(u)}$$

and

$$\gamma := \liminf_{r \to +\infty} \varphi(r), \quad \delta := \liminf_{r \to (\inf_X \phi)^+} \varphi(r).$$

We recall the following nonsmooth version of a critical point result.

Theorem 2.9 ([16]). Under the above assumptions on X, ϕ and \mathcal{E} , we have

(a) For every $r > \inf_X \phi$, and every $\lambda \in (0, \frac{1}{\varphi(r)})$, the restriction of the functional

$$\mathcal{L}_{\lambda} = \phi - \lambda \mathcal{E}$$

to $\phi^{-1}(-\infty, r)$ admits a global minimum, which is a critical point (local minimum) of \mathcal{L}_{λ} in X.

(b) If $\gamma < +\infty$, then for each $\lambda \in (0, 1/\gamma)$, the following alternative holds: either (b1) \mathcal{L}_{λ} possesses a global minimum, or (b2) there is a sequence $\{u_n\}$ of critical points (local minima) of \mathcal{L}_{λ} such that

$$\lim_{n \to +\infty} \phi(u_n) = +\infty$$

(c) If $\delta < +\infty$, then for each $\lambda \in (0, \frac{1}{\delta})$, the following alternative holds: either (c1) there is a global minimum of ϕ which is a local minimum of \mathcal{L}_{λ} , or (c2) there is a sequence $\{u_n\}$ of pairwise distinct critical points (local minima) of \mathcal{L}_{λ} that converges weakly to a global minimum of ϕ .

Consider $\phi, \mathcal{F}, \mathcal{G} : X \to \mathbb{R}$, as follows

$$\begin{split} \phi(u) &= \int_{\Omega} \frac{1}{p(x)} [|\nabla u|^{p(x)} + a(x)|u|^{p(x)}] dx, \quad u \in W_0^{1,p(\cdot)}(\Omega), \\ \mathcal{F}(u) &= \int_{\partial \Omega} F(u(x)) d\sigma, \quad u \in W_0^{1,p(\cdot)}(\Omega), \\ \mathcal{G}(u) &= \int_{\partial \Omega} G(u(x)) d\sigma, \quad u \in W_0^{1,p(\cdot)}(\Omega). \end{split}$$

The next lemma characterizes some properties of ϕ [2].

Lemma 2.10. Let

$$\phi(u) = \int_{\Omega} \frac{1}{p(x)} [|\nabla u|^{p(x)} + a(x)|u|^{p(x)}] dx.$$

Then

- (i) $\phi: X \to \mathbb{R}$ is sequentially weakly lower semicontinuous;
- (ii) ϕ' is of (S_+) type;
- (iii) ϕ' is a homeomorphism.

Proposition 2.11 ([15]). Let $F, G : \mathbb{R} \to \mathbb{R}$ be locally Lipschitz functions. Then \mathcal{F} and \mathcal{G} are well-defined and

$$\mathcal{F}^{0}(u;v) \leq \int_{\partial\Omega} F^{0}(u(x);v(x))d\sigma, \quad \forall u,v \in W^{1,p(\cdot)}_{0}(\Omega),$$
$$\mathcal{G}^{0}(u;v) \leq \int_{\partial\Omega} G^{0}(u(x);v(x))d\sigma, \quad \forall u,v \in W^{1,p(\cdot)}_{0}(\Omega).$$

3. Main results

Let $f : \mathbb{R} \to \mathbb{R}$ be a locally essentially bounded function whose potential $F(t) = \int_0^t f(\omega) d\omega$ for all $t \in \mathbb{R}$. Set

$$\alpha := \liminf_{\omega \to +\infty} \frac{\max_{|t| \le \omega} F(t)}{|\omega|^{p^-}}, \quad \beta := \limsup_{\omega \to +\infty} \frac{F(\omega)}{|\omega|^{p^+}}.$$

Theorem 3.1. Let $\theta, \vartheta \in L^1(\partial\Omega)$ be non-negative and non-zero identically zero functions. Assume that

$$\alpha < \frac{p^{-}\mathcal{M}\theta^{*}\beta}{p^{+}\mathcal{K}} \tag{3.1}$$

for each $\lambda \in (\lambda_1, \lambda_2)$, where

$$\lambda_1 = \frac{1}{p^- \mathcal{M} \theta^* \beta}, \quad \lambda_2 = \frac{1}{p^+ \mathcal{K} \alpha},$$

and $\theta^* = \int_{\partial\Omega} \theta(x) d\sigma$. Also assume that for each locally essentially bounded function $g: \mathbb{R} \to \mathbb{R}$ with potential $G(t) = \int_0^t g(\omega) d\omega$, for all $t \in \mathbb{R}$, satisfies

$$G_{\infty} = \limsup_{\omega \to +\infty} \frac{\max_{|t| \le \omega} G(t)}{|\omega|^{p^{-}}} < +\infty,$$
(3.2)

for every $\mu \in [0, \mu_{G,\lambda})$, where

$$\mu_{G,\lambda} = \frac{1}{p^+ \mathcal{K} G_\infty} (1 - p^+ \mathcal{K} \lambda \alpha).$$

Then (1.1) has a sequence of weak solutions for every $\mu \in [0, \mu_{G,\lambda})$ in X such that

$$\int_{\Omega} \frac{1}{p(x)} [|\nabla u_n|^{p(x)} + a(x)|u_n|^{p(x)}] dx \to +\infty.$$

Proof. Our strategy is to apply Theorem 2.9 (b).

Case 1. Assume that $||u|| \ge 1$. Let $\overline{\lambda} \in (\lambda_1, \lambda_2)$ and G satisfy our assumptions. Since $\overline{\lambda} < \lambda_2$, it follows that

$$\mu_{G,\bar{\lambda}} = \frac{1}{p^+ \mathcal{K} G_\infty} (1 - p^+ \mathcal{K} \bar{\lambda} \alpha)$$

Fix $\bar{\mu} \in (0, \mu_{G,\bar{\lambda}})$ and define the functionals $\phi, \mathcal{E} : X \to \mathbb{R}$ for each $u \in X$ as follows:

$$\phi(u) = \int_{\Omega} \frac{1}{p(x)} [|\nabla u|^{p(x)} + a(x)|u|^{p(x)}] dx,$$

$$\Upsilon(u) = \int_{\partial\Omega} \theta(x) [F(u(x))] d\sigma + \frac{\bar{\mu}}{\bar{\lambda}} \int_{\partial\Omega} \vartheta(x) [G(u(x))] d\sigma,$$

$$\chi(u) = \begin{cases} 0 & u \in \mathcal{B}, \\ +\infty & u \notin \mathcal{B}, \\ \mathcal{E}(u) = \Upsilon(u) - \chi(u). \end{cases}$$
(3.3)

Then define the functional

 $\mathcal{L}_{\bar{\lambda}}(u) := \phi(u) - \bar{\lambda}\mathcal{E}(u)$

whose critical points are the weak solutions of (1.1).

To apply Lemma 2.10, we assume that ϕ satisfies the regularity assumptions of Theorem 2.9. By standard argument, Υ is sequentially weakly continuous. First, we claim that $\bar{\lambda} < 1/\gamma$. Note that $\phi(0) = \mathcal{E}(0) = 0$, then for every *n* large enough, one has

$$\varphi(r) = \inf_{\substack{u \in \phi^{-1}(] - \infty, r[) \\ dv = \frac{\sup_{v \in \phi^{-1}(] - \infty, r[)} \mathcal{E}(v)}{r}.$$

Coercivity of ϕ implies that $\inf_X \phi = \phi(0) = 0$. Since \mathcal{B} contains constant functions, $0 \in \mathcal{B} = D(\chi)$, thus

$$0 \in \phi^{-1}(] - \infty, r[) \cap D(\chi), \quad \forall r > \inf_X \phi.$$

For $v \in X$ with $\phi(v) < r$ and in view of (2.2),

$$\phi^{-1}(] - \infty, r[) := \{ v \in X : \phi(v) < r \} = \{ v \in X : \frac{1}{p^+} \| v \|^{p^-} < r \}$$

$$\subseteq \{ v \in X : |v(x)| < (p^+ \mathcal{K} r)^{\frac{1}{p^-}} \}.$$
(3.4)

Then

$$\varphi(r) \leq \frac{\left(\sup_{\{v \in X: |v(x)| < (p^+ \mathcal{K}r)^{\frac{1}{p^-}}\}} \mathcal{E}(v) - \chi(v)\right)}{r}$$

Let $\{\omega_n\}$ be a sequence of positive numbers in X such that $\lim_{n\to+\infty}\omega_n=+\infty$ and

$$\alpha = \lim_{n \to +\infty} \frac{\max_{|t| \le \omega_n} F(t)}{|\omega_n|^{p^-}}$$

Set

$$r_n = \frac{|\omega_n|^{p^-}}{\mathcal{K}p^+}, \ n \in \mathbb{N}$$

Take $v \in \phi^{-1}(] - \infty, r_n[)$, from (3.4), we have $|v(x)| < (p^+ \mathcal{K}r)^{\frac{1}{p^-}}$. Hence, $\varphi(r_n) \leq \frac{\sup_{\{v \in X: |v(x)| < \omega_n, \forall x \in \partial \Omega\}} \int_{\partial \Omega} [\theta(x)F(v) + \frac{\bar{\mu}}{\lambda} \vartheta(x)G(v)] d\sigma}{\frac{|\omega_n|^{p^-}}{\mathcal{K}p^+}}$

$$\leq \mathcal{K}p^{+} \frac{\int_{\partial\Omega} \max_{|t|\leq\omega_{n}} [\theta(x)F(t) + \frac{\mu}{\bar{\lambda}}\vartheta(x)G(t)]d\sigma}{|\omega_{n}|^{p^{-}}}$$
$$\leq \mathcal{K}p^{+} \Big[\frac{\theta^{*} \max_{|t|\leq\omega_{n}} F(t)}{|\omega_{n}|^{p^{-}}} + \frac{\bar{\mu}}{\bar{\lambda}}\vartheta^{*} \frac{\max_{|t|\leq\omega_{n}} G(t)}{|\omega_{n}|^{p^{-}}} \Big]$$

where $\vartheta^* = \int_{\partial\Omega} \vartheta(x) d\sigma$. Moreover, from (3.1) and (3.2),

$$\gamma \leq \liminf_{n \to +\infty} \varphi(r_n) \leq \mathcal{K}p^+(\theta^* \alpha + \frac{\bar{\mu}}{\bar{\lambda}}\vartheta^* G_\infty) < +\infty.$$

It is clear that, for every $\bar{\mu} \in (0, \mu_{G,\bar{\lambda}})$,

$$\gamma \leq \mathcal{K}p^+\theta^*\alpha + \vartheta^*\frac{(1-\bar{\lambda}\mathcal{K}p^+\alpha)}{\bar{\lambda}}.$$

Then

$$\bar{\lambda} = \frac{1}{\mathcal{K}p^+\theta^*\alpha + \vartheta^*(1-\bar{\lambda}\mathcal{K}p^+\alpha)/\bar{\lambda}} < \frac{1}{\gamma}.$$

We claim that the functional $\mathcal{L}_{\bar{\lambda}}$ is unbounded from below. Indeed, since $\frac{1}{\bar{\lambda}} < \mathcal{M}p^{-}\theta^{*}\beta$, we can consider a sequence $\{\tau_{n}\}$ of positive numbers and $\eta > 0$ such that $\tau_{n} \to +\infty$ and

$$\frac{1}{\bar{\lambda}} < \eta < \lim_{n \to +\infty} \frac{\mathcal{M}p^- \theta^* F(\tau_n)}{|\tau_n|^{p^+}},\tag{3.5}$$

for every $n \in \mathbb{N}$ large enough. Let $\xi_n(x) = \tau_n$ be a sequence in X for all $n \in \mathbb{N}$, $x \in \overline{\Omega}$. Fix $n \in \mathbb{N}$, by proposition 2.1,

$$\phi(\xi_n) = \int_{\Omega} \frac{1}{p(x)} [|\nabla \xi_n|^{p(x)} + a(x)|\xi_n|^{p(x)}] dx \le \frac{1}{p^-} ||\tau_n||^{p^+} \le \frac{1}{\mathcal{M}p^-} |\tau_n|^{p^+}.$$
 (3.6)

Since G is non-negative and from the definition of \mathcal{E}

$$\mathcal{E}(\xi_n) = \int_{\partial\Omega} [\theta(x)F(\xi_n) + \frac{\bar{\mu}}{\bar{\lambda}}\vartheta(x)G(\xi_n)]d\sigma - \chi(\xi_n)$$

$$\geq \int_{\partial\Omega} \theta(x)F(\xi_n)d\sigma = \theta^*F(\tau_n).$$
(3.7)

According to (3.5), (2.1) and (3.7),

$$L_{\lambda}(\xi_n) \leq \frac{1}{p^-} \|\tau_n\|^{p^+} - \bar{\lambda} \int_{\partial\Omega} \theta(x) F(\tau_n) d\sigma < \frac{1}{\mathcal{M}p^-} |\tau_n|^{p^+} - \frac{1}{\mathcal{M}p^-} \bar{\lambda} |\tau_n|^{p^+} \eta,$$

for every enough large $n \in \mathbb{N}$. Since $\bar{\lambda}\eta > 1$ and $\lim_{n \to +\infty} \tau_n = +\infty$, it results that

$$\lim_{n \to +\infty} \mathcal{L}_{\bar{\lambda}}(\xi_n) = -\infty$$

Hence, the functional $\mathcal{L}_{\bar{\lambda}}$ is unbounded from below, and it follows that $\mathcal{L}_{\bar{\lambda}}$ has no global minimum. Therefore, applying 3.5 we deduce that there is a sequence $u_n \in X$ of critical points of $\mathcal{L}_{\bar{\lambda}}$ such that

$$\int_{\Omega} \frac{1}{p(x)} [|\Delta u_n|^{p(x)} + a(x)|u_n|^{p(x)}] dx \to +\infty.$$

Case 2. If $||u|| \le 1$ the proof is similar to the first case and the proof of theorem is complete.

Lemma 3.2. Every critical point of the functional \mathcal{L}_{λ} is a solution of (1.1).

$$(\phi - \lambda \Upsilon)^0(u_n; v - u_n) \ge 0, \quad \forall v \in \mathcal{B}.$$

Using proposition 2.11,

$$\int_{\Omega} |\nabla u_n|^{p(x)-2} \nabla u_n \nabla (v-u_n) dx + \int_{\Omega} a(x) |u_n|^{p(x)-2} u_n (v-u_n) dx$$

$$-\lambda \int_{\partial \Omega} \theta(x) F^0(u_n; v-u_n) d\sigma - \mu \int_{\partial \Omega} \vartheta(x) G^0(u_n; v-u_n) d\sigma \ge 0.$$
(3.8)
erv $v \in \mathcal{B}$. This completes the proof.

for every $v \in \mathcal{B}$. This completes the proof.

(

Now, we give a concrete application of Theorem 3.1.

Theorem 3.3. Let $f : \mathbb{R} \to \mathbb{R}$ be a non-negative, continuous function and set $F(\omega) = \int_0^{\omega} f(t) dt$ for $\omega \in \mathbb{R}$. Assume that

$$\liminf_{\omega \to +\infty} \frac{F(\omega)}{\omega} < \frac{\mathcal{M}(\theta(1) + \theta(0))}{2\mathcal{K}} \limsup_{\omega \to +\infty} \frac{F(\omega)}{\omega^2}.$$
(3.9)

Then, for each

$$\lambda \in \left] \frac{1}{\mu(\theta(1) + \theta(0)) \limsup_{\omega \to +\infty} \frac{F(\omega)}{\omega^2}}, \frac{1}{2\mathcal{K} \liminf_{\omega \to +\infty} \frac{F(\omega)}{\omega}} \right[,$$

for each non-negative, continuous function $g: \mathbb{R} \to \mathbb{R}$, whose potential $G(\omega) =$ $\int_0^\omega g(t)dt$ satisfies

$$\limsup_{\omega \to +\infty} \frac{G(\omega)}{\omega} < +\infty$$

and for every $\mu \in [0, \mu_{G,\lambda}]$, where

$$\mu_{G,\lambda} := \frac{1}{2\mathcal{K}G_{\infty}} \left(1 - 2\mathcal{K}\lambda \liminf_{\xi \to +\infty} \frac{F(\omega)}{\omega} \right),$$

there is a sequence of pairwise distinct functions $\{u_n\} \subset W_0^{1,2-x}]0,1[$ such that for all $n \in \mathbb{N}$ one has

$$-(|u'(x)|^{-x}u'(x))' + |u(x)|^{-x}u(x) = 0 \quad x \in]0,1[,|u'_n(1)|^{-1}u'_n(1) = \bar{\lambda}\theta(1)f(u_n(1)) + \bar{\mu}\vartheta(1)g(u_n(1)), \qquad (3.10)|u'_n(0)|^{-1}u'_n(0) = \bar{\lambda}\theta(0)f(u_n(0)) + \bar{\mu}\vartheta(0)g(u_n(0)).$$

Proof. The first step is the inequality

$$\int_{0}^{1} \theta(x) [F(u(x))] + \vartheta(x) [G(u(x))] d\sigma$$

$$\leq (\theta(1) + \theta(0)) \max_{|\omega| \leq \omega_{n}} F(\omega) + (\vartheta(1) + \vartheta(0)) \max_{|\omega| \leq \omega_{n}} G(\omega)$$

It results that

$$\gamma \leq \liminf_{n \to +\infty} \varphi(r_n) \leq \mathcal{K}p^+ \alpha(\theta(1) + \theta(0)) + \mathcal{K}p^+(\vartheta(1) + \vartheta(0)) \frac{\bar{\mu}}{\bar{\lambda}} G_{\infty}) < +\infty.$$

The second step is the inequality

$$\int_0^1 \vartheta(x) [G(\xi_n(x))] d\sigma = (\vartheta(1) + \vartheta(0)) G(\tau_n) \ge (\vartheta(1) + \vartheta(0)) \liminf_{\omega \to +\infty} G(\omega) \ge 0,$$

which implies that $\lim_{n\to+\infty} \mathcal{L}_{\bar{\lambda}}(\xi_n) = -\infty$. The last one is

$$\begin{split} & \left[\int_{\partial\Omega} \theta(x) F(u_n(x); v(x) - u_n(x)) d\sigma + \int_{\partial\Omega} \vartheta(x) G(u_n(x); v(x) - u_n(x)) d\sigma \right]^{\circ} \\ & \leq \left[\int_{\partial\Omega} \theta(x) F(u_n(x); v(x) - u_n(x)) d\sigma \right]^{\circ} + \left[\int_{\partial\Omega} \vartheta(x) G(u_n(x); v(x) - u_n(x)) d\sigma \right]^{\circ} \\ & \leq \left[\theta(1) F(u_n(1); v(1) - u_n(1)) + \theta(0) F(u_n(0); v(0) - u_n(0)) \right]^{\circ} \\ & + \left[\vartheta(1) G(u_n(1); v(1) - u_n(1)) + \vartheta(0) G(u_n(0); v(0) - u_n(0)) \right]^{\circ} \\ & \leq \left[\theta(1) F^{\circ}(u_n(1); v(1) - u_n(1)) + \theta(0) F^{\circ}(u_n(0); v(0) - u_n(0)) \right] \\ & + \left[\vartheta(1) G^{\circ}(u_n(1); v(1) - u_n(1)) + \vartheta(0) G^{\circ}(u_n(0); v(0) - u_n(0)) \right]. \end{split}$$

Choosing $X = W^{1,2-x}(]0,1[), \Omega =]0,1[, p(x) = 2 - x$ and a(x) = 1, then the conditions of Theorem 3.1 hold. Hence,

$$\int_{0}^{1} [|u'_{n}(x)|^{-x}u'_{n}(x)(v'-u'_{n}) + |u_{n}(x)|^{-x}u_{n}(x)(v-u_{n})]dx$$

$$-\bar{\lambda}[\theta(1)f(u_{n}(1))v(1) + \theta(0)f(u_{n}(0))v(0)]$$

$$-\bar{\mu}[\vartheta(1)g(u_{n}(1))v(1) + \vartheta(0)g(u_{n}(0))v(0)] \ge 0.$$

There exists an unbounded sequence $\{u_n\} \subset W^{1,2-x}(]0,1[)$ such that

$$\int_{0}^{1} [|u'_{n}(x)|^{-x} u'_{n}(x)v'(x) + |u_{n}(x)|^{-x} u_{n}(x)v(x)]dx$$
$$- \left(\bar{\lambda}\theta(1)f(u_{n}(1)) + \bar{\mu}\vartheta(1)g(u_{n}(1))\right)$$
$$+ \bar{\lambda}\theta(0)f(u_{n}(0)) + \bar{\mu}\vartheta(0)g(u_{n}(0))\right) \ge 0.$$

Therefore $\{u_n\}$ is the unique solution of the problem (3.10).

Acknowledgement. The authors are grateful to the anonymous referee for the careful reading and helpful comments.

References

- G. Afrouzi, M. Mirzapour, V. Rădulescu; Qualitative properties of anisotropic elliptic Schrödinger equations, Adv. Nonlinear Stud. 14(3) (2014), 747-765.
- [2] A. R. El Amrouss, A. Ourraoui; Existence of solutions for a boundary problem involving p(x)-biharmonic operator, Bol. Soc. Paran. Mat. 31(1) (2013), 179-192.
- [3] M. Alimohammady, F. Fattahi; Existence of solutions to hemivaritional inequalities involving the p(x)-biharmonic operator, Electron. J. Diff. Equ., Vol. 2015 (2015), no. 79, 1-12.
- [4] M. Allaoui; Existence of solutions for a Robin problem involving the p(x)-Laplacian, Applied Mathematics E-Notes, 14 (2014), 107-115.
- [5] G. Bonannoa, P. Winkert; Multiplicity results to a class of variational-hemivariational inequalities, Topological Methods in Nonlinear Analysis, 43(2) (2014), 493-516.
- [6] J. Chabrowski; Inhomogeneous Neumann problem with critical Sobolev exponent, Adv. Nonlinear Anal. 1 (2012), no. 3, 221-255.
- [7] F. H. Clarke; Optimization and nonsmooth analysis, Society for Industrial and Applied Mathematics, Philadelphia, (1990).
- [8] S. G. Dend; Eigenvalues of the p(x)-laplacian Steklov problem, J. Math. Anal. Appl., 339 (2008), 925-937.

- [9] L. Diening, P. Harjulehto, P. Hästö, M. Růžička; Lebesgue and Sobolev spaces with variable exponents, Vol. 2017, Springer-Verlag, Berlin, 2011.
- [10] X. L. Fan; Regularity of minimizers of variational integrals with continuous p(x)-growth conditions, Chinese Ann. Math., **17A(5)** (1996), 557-564.
- [11] X. L. Fan, D. Zhao; On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$, J. Math. Anal. Appl., **263** (2001), 424-446.
- [12] X. L. Fan, Q. H. Zhang; Existence of solutions for p(x)-Laplacian Dirichlet problems, Nonlinear Anal., 52(2003), 1843-1852.
- [13] A. Iannizzotto; Three critical points for perturbed nonsmooth functionals and applications, Nonlinear Analysis, 72 (2010), 1319-1338.
- [14] O. Kováčik, J. Rákosnínk; On spaces $L^{p(x)}(\Omega)$ and $W^{1,p(x)}(\Omega)$, Czechoslovak Math. J., **41** (1991), 592-618.
- [15] A. Kristály; Multiplicity results for an eigenvalue problem for hemivariational inequalities in strip-like domains, Set-Valued Analysis, 13(2005), 85-103.
- [16] S. A. Marano, D. Motreanu; Infinitely many critical points of non-differentiable functions and applications to a Neumann-type problem involving the p-Laplacian, J. Differential Equations, 182(1) (2002), 108-120.
- [17] G. Molica Bisci, D. Repovš; Multiple solutions for elliptic equations involving a general operator in divergence form, Ann. Acad. Sci. Fenn. Math. 39(2014), 259-273.
- [18] D. Motreanu, V. Rădulescu; Variational and non-variational methods in nonlinear analysis and boundary value problems, Kluwer Academic Publishers, Boston-Dordrecht-London, 2003.
- [19] D. Motreanu, P. Winkert; Variational-hemivariational inequalities with nonhomogeneous neumann boundary condition, Le Matematiche, Vol. 2010, 109-119, doi: 10.4418/2010.65.2.12
- [20] V. Rădulescu, I. Ionescu; Nonlinear eigenvalue problems arising in earthquake initiation, Adv. Differential Equations, 8 (2003), 769-786.
- [21] V. Rădulescu, D. Repovš; Partial differential equations with variable exponents: Variational Methods and Qualitative Analysis, CRC Press, Taylor & Francis Group, Boca Raton FL, 2015.
- [22] V. Rădulescu; Nonlinear elliptic equations with variable exponent: old and new, Nonlinear Analysis: Theory, Methods and Applications, 121 (2015), 336-369.
- [23] M. Rosiu; Local trajectories on Klein surfaces, Rev. Roumaine Math. Pures Appl. 54 (2009), no. 5-6, 541-547.
- [24] C. Zhou, S. Liang; Infinitely many small solutions for the p(x)-Laplacian operator with critical growth, J. Appl. Math. & Informatics, **32** (2014), 137-152.

Fariba Fattahi

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MAZANDARAN, BABOLSAR, IRAN E-mail address: F.Fattahi@stu.umz.ac.ir

Mohsen Alimohammady

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MAZANDARAN, BABOLSAR, IRAN *E-mail address*: Amohsen@umz.ac.ir