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INFINITELY MANY SOLUTIONS VIA
VARIATIONAL-HEMIVARIATIONAL INEQUALITIES UNDER

NEUMANN BOUNDARY CONDITIONS

FARIBA FATTAHI, MOHSEN ALIMOHAMMADY

Abstract. In this article, we study the variational-hemivariational inequal-

ities with Neumann boundary condition. Using a nonsmooth critical point
theorem, we prove the existence of infinitely many solutions for boundary-

value problems. Our technical approach is based on variational methods.

1. Introduction

In this article, we study following boundary-value problem, depending on the
parameters λ, µ with nonsmooth Neumann boundary condition:

−∆p(x)u+ a(x)|u|p(x)−2u = 0 in Ω

−|∇u|p(x)−2 ∂u

∂ν
∈ −λθ(x)∂F (u)− µ∂ϑ(x)G(u) on ∂Ω,

(1.1)

where Ω ⊂ RN (N ≥ 2) is a bounded smooth domain, ∂u
∂ν is the outer unit normal

derivative on ∂Ω, p : Ω̄→ R is a continuous function satisfying

1 < p− = min
x∈Ω̄

p(x) ≤ p(x) ≤ p+ = max
x∈Ω̄

p(x) < +∞.

Here λ, µ are real parameters, λ ∈]0,∞[, µ ∈ [0,∞[ and θ, ϑ ∈ L1(∂Ω), where
θ(x), ϑ(x) ≥ 0 for a.e. x ∈ ∂Ω. F,G : R → R are locally Lipschitz functions
given by F (ω) =

∫ ω
0
f(t)dt, G(ω) =

∫ ω
0
g(t)dt, ω ∈ R such that f, g : R → R are

locally essentially bounded functions. ∂F (u), ∂G(u) denote the generalized Clarke
gradient of F (u), G(u).

Let X be real Banach space. We assume that it is also given a functional
χ : X → R ∪ {+∞} which is convex, lower semicontinuous, proper whose effective
domain dom(χ) = {x ∈ X : χ(x) < +∞} is a (nonempty, closed, convex) cone
in X. Our aim is to study the following variational-hemivariational inequalities
problem: Find u ∈ B which is called a weak solution of problem (1.1), i.e; if for all
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v ∈ B, ∫
Ω

|∇u|p(x)−2∇u∇(v − u)dx+
∫

Ω

a(x)|u|p(x)−2u(v − u)dx

− λ
∫
∂Ω

θ(x)F 0(u;u− v)dσ − µ
∫
∂Ω

ϑ(x)G0(u;u− v)dσ ≥ 0,
(1.2)

where B is a closed convex subset of W 1,p(·)
0 (Ω). For simplicity B = W

1,p(·)
0 (Ω).

Recently, many researchers have paid attention to impulsive differential equations
by variational method. We refer the reader to [1, 6, 17, 20, 21, 22, 23] and references
cited therein. The operator ∆p(x)u = div(|∇u|p(x)−2∇u) is the so-called p(x)-
Laplacian, which becomes p-Laplacian when p(x) ≡ p is a constant. More recently,
the study of p(x)-Laplacian problems has attracted more and more attention [4, 24].

Variational-hemivariational inequalities have been extensively studied in recent
years via variational methods: in [15], the author studied hemivariational inequal-
ities on an unbounded strip-like domain; in [19], the authors studied variational-
hemivariational inequalities for the existence of a whole sequence of solutions with
non-smooth potential and non-zero Neumann boundary condition; in [5], the au-
thors studied variational-hemivariational inequalities involving the p−Laplace op-
erator and a nonlinear Neumann boundary condition via abstract critical point re-
sult; in [3], the authors studied variational-hemivariational inequality on bounded
domains by using the mountain pass theorem and the critical point theory for
Motreanu-Panagiotopoulos type functionals.

The aim of the present paper is find sufficient conditions to guarantee the exis-
tence of infinitely many weak solutions for a variational-hemivariational inequality
depending on two parameters. Our approach is a variational method and the main
tool is a general nonsmooth critical point theorem.

2. Preliminaries

In this section, we recall some definitions and results which are used further in
this paper. The variable exponent Lebesgue space is defined by

Lp(·)(Ω) = {u : Ω→ R :
∫

Ω

|u(x)|p(x)dx <∞}

and is endowed with the Luxemburg norm

‖u‖p(·) = inf { λ > 0 :
∫

Ω

|u(x)
λ
|p(x)dx ≤ 1}.

Note that, when p is constant, the Luxemburg norm ‖ · ‖p(·) coincides with the
standard norm ‖ · ‖p of the Lebesgue space Lp(Ω). (Lp(·)(Ω), ‖ · ‖p(·)) is a Banach
space.

The generalized Lebesgue-Sobolev space WL,p(·)(Ω) for L = 1, 2, . . . is defined
by

WL,p(·)(Ω) = {u ∈ Lp(·)(Ω) : Dαu ∈ Lp(·)(Ω), |α| ≤ L},

where Dαu = ∂|α|

∂α1x1...∂αnxn
with α = (α1, α2, . . . , αN ) is a multi-index and |α| =

ΣNi=1αi. The space WL,p(·)(Ω) with the norm

‖u‖WL,p(·)(Ω) =
∑
|α|≤L

‖Dαu‖p(·),
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is a separable reflexive Banach space [9].
W

L,p(·)
0 (Ω) denotes the closure in WL,p(·)(Ω) of the set of functions in WL,p(·)(Ω)

with compact support.
For every u ∈ W

L,p(·)
0 (Ω) the Poincaré inequality holds, where Cp > 0 is a

constant
‖u‖Lp(·)(Ω) ≤ Cp‖∇u‖Lp(·)(Ω).

(see [12]). Hence, an equivalent norm for the space WL,p(·)
0 (Ω) is given by

‖u‖
W
L,p(·)
0 (Ω)

=
∑
|α|=L

‖Dαu‖p(·).

Given p(x), let p∗L denote the critical variable exponent related to p, defined for
all x ∈ Ω̄ by the pointwise relation

p∗L(x) =

{
Np(x)

N−Lp(x) Lp(x) < N,

+∞ Lp(x) ≥ N,
(2.1)

is the critical exponent related to p. Let

K = sup
u∈X\{0}

maxx∈Ω̄ |u(x)|p

‖u‖p
, M = inf

u∈X\{0}

minx∈Ω̄ |u(x)|p

‖u‖p
. (2.2)

Since p > N , X are compactly embedded in C0(Ω̄), it follows that K,M <∞.

Proposition 2.1. For Φ(u) =
∫

Ω
[|∇u|p(x) + a(x)|u(x)|p(x)]dx, and u, un ∈ X, we

have
(i) ‖u‖ < (=, >)1⇔ Φ(u) < (=, >)1,
(ii) ‖u‖ ≤ 1⇒ ‖u‖p+ ≤ Φ(u) ≤ ‖u‖p− ,

(iii) ‖u‖ ≥ 1⇒ ‖u‖p− ≤ Φ(u) ≤ ‖u‖p+ ,
(iv) ‖un‖ → 0⇔ Φ(un)→ 0,
(v) ‖un‖ → ∞⇔ Φ(un)→∞.

The proof of the above proposition is similar to that in [11].

Proposition 2.2 ([11, 14]). For p, q ∈ C+(Ω) in which q(x) ≤ p∗L(x) for all x ∈ Ω,
there is a continuous embedding

WL,p(·)(Ω) ↪→ Lq(·)(Ω).

If we replace ≤ with <, the embedding is compact.

Remark 2.3. (i) By the proposition 2.2 there is a continuous and compact em-
bedding of W 1,p(·)

0 (Ω) into Lq(·) where q(x) < p∗(x) for all x ∈ Ω. W
1,p(·)
0 (Ω) is

continuously embedded in W 1,p−(Ω) and since p− > N , we deduce that W 1,p−

0 (Ω)
is compactly embedded in C0(Ω̄), So, there exists a constant c > 0 such that

‖u‖∞ ≤ c‖u‖, ∀u ∈ X, (2.3)

where ‖u‖∞ := supx∈Ω̄ |u(x)|.
(ii) Denote

‖u‖ = inf{λ > 0 :
∫

Ω

[|∇u
λ
|p(x) + a(x)|u

λ
|p(x)]dx ≤ 1},

which is a norm on W
1,p(·)
0 (Ω).
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Let η : ∂Ω → R be a measurable. Define the weighted variable exponent
Lebesgue space by

L
p(x)
η(x)(∂Ω) = {u : ∂Ω→ R is measurable and

∫
∂Ω

|η(x)||u|p(x)dσ <∞},

with the norm

|u|(p(x),η(x)) = inf{τ > 0;
∫
∂Ω

|η(x)| |u
τ
|p(x)dσ ≤ 1},

where dσ is the measure on the boundary.

Lemma 2.4 ([8]). Let ρ(x) =
∫
∂Ω
|η(x)||u|p(x)dσ for u ∈ Lp(x)

η(x)(∂Ω) we have

|u|(p(x),η(x)) ≥ 1⇒ |u|p
−

(p(x),η(x)) ≤ ρ(u) ≤ |u|p
+

(p(x),η(x)),

|u|(p(x),η(x)) ≤ 1⇒ |u|p
+

(p(x),η(x)) ≤ ρ(u) ≤ |u|p
−

(p(x),η(x)).

For A ⊆ Ω̄ denote by infx∈A p(x) = p−, supx∈A p(x) = p+. Define

p∂(x) = (p(x))∂ :=

{
(N−1)p(x)
N−p(x) p(x) < N,

+∞ p(x) ≥ N,
(2.4)

p∂(x)r(x) :=
r(x)− 1
r(x)

p∂(x),

where x ∈ ∂Ω, r ∈ C(∂Ω,R) and r(x) > 1.

Proposition 2.5 ([10, 14]). If q ∈ C+(Ω) and q(x) < p∂(x) for any x ∈ Ω, then
the embedding W 1,p(·)(Ω) to Lq(·)(∂Ω) is compact and continuous.

In this part we introduce the definitions and basic properties from the theory
of generalized differentiation for locally Lipschitz functions. Let X be a Banach
space and X? its topological dual. By ‖ · ‖ we will denote the norm in X and by
〈·, ·〉X the duality brackets for the pair (X,X?). A function h : X → R is said to
be locally Lipschitz, if for every x ∈ X there exists a neighbourhood U of x and a
constant K > 0 depending on U such that |h(y)−h(z)| ≤ K‖y−z‖ for all y, z ∈ U .
For a locally Lipschitz function h : X → R is defined by the generalized directional
derivative of h at u ∈ X in the direction γ ∈ X by

h0(u; γ) = lim sup
w→u,t→0+

h(w + tγ)− h(w)
t

.

The generalized gradient of h at u ∈ X is defined by

∂h(u) = {x? ∈ X? : 〈x?, γ〉X ≤ h0(u; γ), ∀γ ∈ X},

which is non-empty, convex and w?−compact subset of X?, where < ·, · >X is the
duality pairing between X? and X.

Proposition 2.6 ([7]). Let h, g : X → R be locally Lipschitz functions. Then:
(i) h0(u; ·) is subadditive, positively homogeneous.

(ii) (−h)0(u; v) = h0(u;−v) for all u, v ∈ X.
(iii) h0(u; v) = max{< ξ, v >: ξ ∈ ∂h(u)} for all u, v ∈ X.
(iv) (h+ g)0(u; v) ≤ h0(u; v) + g0(u; v) for all u, v ∈ X.
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Definition 2.7 ([18]). Let X be a Banach space, I : X → (−∞,+∞] is called a
Motreanu-Panagiotopoulos-type functional, if I = h+χ, where h : X → R is locally
Lipschitz and χ : X → (−∞,+∞] is convex, proper and lower semicontinuous.

Definition 2.8 ([13]). An element u ∈ X is said to be a critical point of I = h+χ
if

h0(u; v − u) + χ(v)− χ(u) ≥ 0, ∀v ∈ X.

Let X is a reflexive real Banach space, φ : X → R is a sequentially weakly
lower semicontinuous and coercive, Υ : X → R is a sequentially weakly upper
semicontinuous, λ is a positive real parameter, χ : X → (−∞,+∞] is a convex,
proper, lower semicontinuous functional and D(χ) is the effective domain of χ.
Assuming also that φ and Υ are locally Lipschitz continuous functionals. Set

E := Υ− χ, Lλ := φ− λE = (φ− λΥ) + λχ.

We assume that
φ−1(]−∞, r[) ∩D(χ) 6= ∅, ∀r > inf

X
φ,

and define for every r > infX φ,

ϕ(r) = inf
u∈φ−1(]−∞,r[)

(
supv∈φ−1(]−∞,r[) E(v)

)
− E(u)

r − φ(u)
and

γ := lim inf
r→+∞

ϕ(r), δ := lim inf
r→(infX φ)+

ϕ(r).

We recall the following nonsmooth version of a critical point result.

Theorem 2.9 ([16]). Under the above assumptions on X, φ and E, we have
(a) For every r > infX φ, and every λ ∈ (0, 1

ϕ(r) ), the restriction of the func-
tional

Lλ = φ− λE
to φ−1(−∞, r) admits a global minimum, which is a critical point (local
minimum) of Lλ in X.

(b) If γ < +∞, then for each λ ∈ (0, 1/γ), the following alternative holds:
either (b1) Lλ possesses a global minimum, or (b2) there is a sequence
{un} of critical points (local minima) of Lλ such that

lim
n→+∞

φ(un) = +∞.

(c) If δ < +∞, then for each λ ∈ (0, 1
δ ), the following alternative holds: either

(c1) there is a global minimum of φ which is a local minimum of Lλ, or (c2)
there is a sequence {un} of pairwise distinct critical points (local minima)
of Lλ that converges weakly to a global minimum of φ.

Consider φ,F ,G : X → R, as follows

φ(u) =
∫

Ω

1
p(x)

[|∇u|p(x) + a(x)|u|p(x)]dx, u ∈W 1,p(·)
0 (Ω),

F(u) =
∫
∂Ω

F (u(x))dσ, u ∈W 1,p(·)
0 (Ω),

G(u) =
∫
∂Ω

G(u(x))dσ, u ∈W 1,p(·)
0 (Ω).
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The next lemma characterizes some properties of φ [2].

Lemma 2.10. Let

φ(u) =
∫

Ω

1
p(x)

[|∇u|p(x) + a(x)|u|p(x)]dx.

Then
(i) φ : X → R is sequentially weakly lower semicontinuous;
(ii) φ′ is of (S+) type;

(iii) φ′ is a homeomorphism.

Proposition 2.11 ([15]). Let F,G : R→ R be locally Lipschitz functions. Then F
and G are well-defined and

F0(u; v) ≤
∫
∂Ω

F 0(u(x); v(x))dσ, ∀u, v ∈W 1,p(·)
0 (Ω),

G0(u; v) ≤
∫
∂Ω

G0(u(x); v(x))dσ, ∀u, v ∈W 1,p(·)
0 (Ω).

3. Main results

Let f : R→ R be a locally essentially bounded function whose potential F (t) =∫ t
0
f(ω)dω for all t ∈ R. Set

α := lim inf
ω→+∞

max|t|≤ω F (t)
|ω|p−

, β := lim sup
ω→+∞

F (ω)
|ω|p+

.

Theorem 3.1. Let θ, ϑ ∈ L1(∂Ω) be non-negative and non-zero identically zero
functions. Assume that

α <
p−Mθ∗β

p+K
(3.1)

for each λ ∈ (λ1, λ2), where

λ1 =
1

p−Mθ∗β
, λ2 =

1
p+Kα

,

and θ∗ =
∫
∂Ω
θ(x)dσ. Also assume that for each locally essentially bounded function

g : R→ R with potential G(t) =
∫ t

0
g(ω)dω, for all t ∈ R, satisfies

G∞ = lim sup
ω→+∞

max|t|≤ω G(t)
|ω|p−

< +∞, (3.2)

for every µ ∈ [0, µG,λ), where

µG,λ =
1

p+KG∞
(1− p+Kλα).

Then (1.1) has a sequence of weak solutions for every µ ∈ [0, µG,λ) in X such that∫
Ω

1
p(x)

[|∇un|p(x) + a(x)|un|p(x)]dx→ +∞.

Proof. Our strategy is to apply Theorem 2.9 (b).
Case 1. Assume that ‖u‖ ≥ 1. Let λ̄ ∈ (λ1, λ2) and G satisfy our assumptions.
Since λ̄ < λ2, it follows that

µG,λ̄ =
1

p+KG∞
(1− p+Kλ̄α).
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Fix µ̄ ∈ (0, µG,λ̄) and define the functionals φ, E : X → R for each u ∈ X as follows:

φ(u) =
∫

Ω

1
p(x)

[|∇u|p(x) + a(x)|u|p(x)]dx,

Υ(u) =
∫
∂Ω

θ(x)[F (u(x))]dσ +
µ̄

λ̄

∫
∂Ω

ϑ(x)[G(u(x))]dσ,

χ(u) =

{
0 u ∈ B,
+∞ u /∈ B,

E(u) = Υ(u)− χ(u) .

(3.3)

Then define the functional

Lλ̄(u) := φ(u)− λ̄E(u)

whose critical points are the weak solutions of (1.1).
To apply Lemma 2.10, we assume that φ satisfies the regularity assumptions of

Theorem 2.9. By standard argument, Υ is sequentially weakly continuous. First,
we claim that λ̄ < 1/γ. Note that φ(0) = E(0) = 0, then for every n large enough,
one has

ϕ(r) = inf
u∈φ−1(]−∞,r[)

(
supv∈φ−1(]−∞,r[) E(v)

)
− E(u)

r − φ(u)

≤
supv∈φ−1(]−∞,r[) E(v)

r
.

Coercivity of φ implies that infX φ = φ(0) = 0. Since B contains constant functions,
0 ∈ B = D(χ), thus

0 ∈ φ−1(]−∞, r[) ∩D(χ), ∀r > inf
X
φ.

For v ∈ X with φ(v) < r and in view of (2.2),

φ−1(]−∞, r[) : = {v ∈ X : φ(v) < r} = {v ∈ X :
1
p+
‖v‖p

−
< r}

⊆ {v ∈ X : |v(x)| < (p+Kr)
1
p− }.

(3.4)

Then

ϕ(r) ≤

(
sup
{v∈X:|v(x)|<(p+Kr)

1
p− }
E(v)− χ(v)

)
r

.

Let {ωn} be a sequence of positive numbers in X such that limn→+∞ ωn = +∞
and

α = lim
n→+∞

max|t|≤ωn F (t)
|ωn|p−

.

Set

rn =
|ωn|p

−

Kp+
, n ∈ N.

Take v ∈ φ−1(]−∞, rn[), from (3.4), we have |v(x)| < (p+Kr)
1
p− . Hence,

ϕ(rn) ≤
sup{v∈X:|v(x)|<ωn, ∀x∈∂Ω}

∫
∂Ω

[θ(x)F (v) + µ̄
λ̄
ϑ(x)G(v)]dσ

|ωn|p−
Kp+
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≤ Kp+

∫
∂Ω

max|t|≤ωn [θ(x)F (t) + µ̄
λ̄
ϑ(x)G(t)]dσ

|ωn|p−

≤ Kp+
[θ∗max|t|≤ωn F (t)

|ωn|p−
+
µ̄

λ̄
ϑ∗

max|t|≤ωn G(t)
|ωn|p−

]
,

where ϑ∗ =
∫
∂Ω
ϑ(x)dσ. Moreover, from (3.1) and (3.2),

γ ≤ lim inf
n→+∞

ϕ(rn) ≤ Kp+(θ∗α+
µ̄

λ̄
ϑ∗G∞) < +∞.

It is clear that, for every µ̄ ∈ (0, µG,λ̄),

γ ≤ Kp+θ∗α+ ϑ∗
(1− λ̄Kp+α)

λ̄
.

Then

λ̄ =
1

Kp+θ∗α+ ϑ∗(1− λ̄Kp+α)/λ̄
<

1
γ
.

We claim that the functional Lλ̄ is unbounded from below. Indeed, since 1
λ̄
<

Mp−θ∗β, we can consider a sequence {τn} of positive numbers and η > 0 such that
τn → +∞ and

1
λ̄
< η < lim

n→+∞

Mp−θ∗F (τn)
|τn|p+

, (3.5)

for every n ∈ N large enough. Let ξn(x) = τn be a sequence in X for all n ∈ N,
x ∈ Ω̄. Fix n ∈ N, by proposition 2.1,

φ(ξn) =
∫

Ω

1
p(x)

[|∇ξn|p(x) + a(x)|ξn|p(x)]dx ≤ 1
p−
‖τn‖p

+
≤ 1
Mp−

|τn|p
+
. (3.6)

Since G is non-negative and from the definition of E

E(ξn) =
∫
∂Ω

[θ(x)F (ξn) +
µ̄

λ̄
ϑ(x)G(ξn)]dσ − χ(ξn)

≥
∫
∂Ω

θ(x)F (ξn)dσ = θ∗F (τn).
(3.7)

According to (3.5), (2.1) and (3.7),

Lλ(ξn) ≤ 1
p−
‖τn‖p

+
− λ̄

∫
∂Ω

θ(x)F (τn)dσ <
1
Mp−

|τn|p
+
− 1
Mp−

λ̄|τn|p
+
η,

for every enough large n ∈ N. Since λ̄η > 1 and limn→+∞ τn = +∞, it results that

lim
n→+∞

Lλ̄(ξn) = −∞.

Hence, the functional Lλ̄ is unbounded from below, and it follows that Lλ̄ has
no global minimum. Therefore, applying 3.5 we deduce that there is a sequence
un ∈ X of critical points of Lλ̄ such that∫

Ω

1
p(x)

[|∆un|p(x) + a(x)|un|p(x)]dx→ +∞.

Case 2. If ‖u‖ ≤ 1 the proof is similar to the first case and the proof of theorem
is complete. �

Lemma 3.2. Every critical point of the functional Lλ is a solution of (1.1).
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Proof. By definition 2.7, Lλ = (φ− λΥ) + λχ is a Motreanu-Panagiotopoulos type
functional. Let {un} ⊂ X be a critical sequence of Lλ = φ − λF − µG + λχ then
un ∈ B, definition 2.8 and proposition 2.6 imply that

(φ− λΥ)0(un; v − un) ≥ 0, ∀v ∈ B.
Using proposition 2.11,∫

Ω

|∇un|p(x)−2∇un∇(v − un)dx+
∫

Ω

a(x)|un|p(x)−2un(v − un)dx

− λ
∫
∂Ω

θ(x)F 0(un; v − un)dσ − µ
∫
∂Ω

ϑ(x)G0(un; v − un)dσ ≥ 0.
(3.8)

for every v ∈ B. This completes the proof. �

Now, we give a concrete application of Theorem 3.1.

Theorem 3.3. Let f : R → R be a non-negative, continuous function and set
F (ω) =

∫ ω
0
f(t)dt for ω ∈ R. Assume that

lim inf
ω→+∞

F (ω)
ω

<
M(θ(1) + θ(0))

2K
lim sup
ω→+∞

F (ω)
ω2

. (3.9)

Then, for each

λ ∈
] 1

µ(θ(1) + θ(0)) lim supω→+∞
F (ω)
ω2

,
1

2K lim infω→+∞
F (ω)
ω

[
,

for each non-negative, continuous function g : R → R, whose potential G(ω) =∫ ω
0
g(t)dt satisfies

lim sup
ω→+∞

G(ω)
ω

< +∞

and for every µ ∈ [0, µG,λ[, where

µG,λ :=
1

2KG∞
(
1− 2Kλ lim inf

ξ→+∞

F (ω)
ω

)
,

there is a sequence of pairwise distinct functions {un} ⊂W 1,2−x
0 ]0, 1[ such that for

all n ∈ N one has

−(|u′(x)|−xu′(x))
′
+ |u(x)|−xu(x) = 0 x ∈]0, 1[,

|u′n(1)|−1u′n(1) = λ̄θ(1)f(un(1)) + µ̄ϑ(1)g(un(1)),

|u′n(0)|−1u′n(0) = λ̄θ(0)f(un(0)) + µ̄ϑ(0)g(un(0)).

(3.10)

Proof. The first step is the inequality∫ 1

0

θ(x)[F (u(x))] + ϑ(x)[G(u(x))]dσ

≤ (θ(1) + θ(0)) max
|ω|≤ωn

F (ω) + (ϑ(1) + ϑ(0)) max
|ω|≤ωn

G(ω).

It results that

γ ≤ lim inf
n→+∞

ϕ(rn) ≤ Kp+α(θ(1) + θ(0)) +Kp+(ϑ(1) + ϑ(0))
µ̄

λ̄
G∞) < +∞.

The second step is the inequality∫ 1

0

ϑ(x)[G(ξn(x))]dσ = (ϑ(1) + ϑ(0))G(τn) ≥ (ϑ(1) + ϑ(0)) lim inf
ω→+∞

G(ω) ≥ 0,
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which implies that limn→+∞ Lλ̄(ξn) = −∞. The last one is[ ∫
∂Ω

θ(x)F (un(x); v(x)− un(x))dσ +
∫
∂Ω

ϑ(x)G(un(x); v(x)− un(x))dσ
]◦

≤
[ ∫

∂Ω

θ(x)F (un(x); v(x)− un(x))dσ
]◦

+
[ ∫

∂Ω

ϑ(x)G(un(x); v(x)− un(x))dσ
]◦

≤
[
θ(1)F (un(1); v(1)− un(1)) + θ(0)F (un(0); v(0)− un(0))]◦

+
[
ϑ(1)G(un(1); v(1)− un(1)) + ϑ(0)G(un(0); v(0)− un(0))

]◦
≤
[
θ(1)F ◦(un(1); v(1)− un(1)) + θ(0)F ◦(un(0); v(0)− un(0))

]
+
[
ϑ(1)G◦(un(1); v(1)− un(1)) + ϑ(0)G◦(un(0); v(0)− un(0))

]
.

Choosing X = W 1,2−x(]0, 1[), Ω =]0, 1[, p(x) = 2 − x and a(x) = 1, then the
conditions of Theorem 3.1 hold. Hence,∫ 1

0

[|u′n(x)|−xu′n(x)(v′ − u′n) + |un(x)|−xun(x)(v − un)]dx

− λ̄[θ(1)f(un(1))v(1) + θ(0)f(un(0))v(0)]

− µ̄[ϑ(1)g(un(1))v(1) + ϑ(0)g(un(0))v(0)] ≥ 0.

There exists an unbounded sequence {un} ⊂W 1,2−x(]0, 1[) such that∫ 1

0

[|u′n(x)|−xu′n(x)v′(x) + |un(x)|−xun(x)v(x)]dx

−
(
λ̄θ(1)f(un(1)) + µ̄ϑ(1)g(un(1))

+ λ̄θ(0)f(un(0)) + µ̄ϑ(0)g(un(0))
)
≥ 0.

Therefore {un} is the unique solution of the problem (3.10). �
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[14] O. Kováčik, J. Rákosńınk; On spaces Lp(x)(Ω) and W 1,p(x)(Ω), Czechoslovak Math. J., 41

(1991), 592-618.
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