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LIMIT CYCLES BIFURCATED FROM A CENTER IN A THREE
DIMENSIONAL SYSTEM

BO SANG, BRIGITA FERČEC, QIN-LONG WANG

Abstract. Based on the pseudo-division algorithm, we introduce a method

for computing focal values of a class of 3-dimensional autonomous systems.

Using the ε1-order focal values computation, we determine the number of limit
cycles bifurcating from each component of the center variety (obtained by

Mahdi et al). It is shown that at most four limit cycles can be bifurcated from

the center with identical quadratic perturbations and that the bound is sharp.

1. Introduction

Many real world phenomena can be modeled by autonomous systems of the form

dx
dt

= f(x), x ∈ Rm, (1.1)

where f : D → Rm is a smooth function and D an open connected subset of
Rm. A limit cycle of the system is a periodic orbit which is isolated among periodic
orbits. Limit cycles may be used to model the behavior of many real-world oscillator
systems of great importance (see [6, 20, 24, 26, 29]). The study of limit cycles was
initiated by Poincaré [25]. Further research was perhaps motivated by Hilbert’s
16th problem. A fundamental question in these studies is the determination of
upper bounds, Hn, for the number of limit cycles in planar polynomial vector fields
of degree n and their relative position. Although the problem was formulated more
than a hundred years ago, it is not yet solved even for planar quadratic systems.
Moreover, it is unknown even whether a uniform upper bound exists (see [8, 27]).

An essential part of the problem, called the local 16th Hilbert problem [7], is the
investigation of the number of limit cycles bifurcated from singular points, i.e., the
cyclicity of singular points. The concept of cyclicity was introduced by Bautin in
[3], where he showed that in antisaddles of quadratic systems at most three small-
amplitude limit cycles can bifurcate out of one equilibrium point. Bautin’s work is
important not only because of the bound that it provides, but also because of the
approach it gives to the study of the problem of cyclicity in any polynomial system.
Specifically, Bautin showed that the cyclicity problem in the case of a simple focus
or center could be reduced to the problem of finding a basis for the ideal of focal
values. Bautin’s approach is described in detail and further developed in [16, 27].
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The cyclicity problem for some families of polynomial systems was treated also in
[5, 7, 14, 30, 33, 37].

Higher-dimensional vector fields may not only exhibit limit cycles, but also may
co-exist with chaotic dynamics. For results on limit cycles for higher-dimensional
vector fields see [4, 15, 18] and more references therein. Llibre et al.[18] studied the
limit cycles of polynomial vector fields in R3 which bifurcate from three different
kinds of two dimensional centers (non-degenerate and degenerate). Buzzi et al.
[4] studied the maximal number of limit cycles that can bifurcate from a periodic
orbits of the linear center in R4. Han and Yu [15] showed that perturbing a simple
quadratic system in R3 with a center-type equilibrium point can yield at least 10
small-amplitude limit cycles around an equilibrium point.

The computation of focal values (focus values, Lyapunov constants) plays an
important role in the study of the center-focus problem and small-amplitude limit
cycles arising in degenerated Hopf bifurcations (see [2, 5, 9, 10, 12, 15, 17, 19, 21,
29, 31, 35, 36] and references therein). For the definition and computation of focal
values in 3-dimensional systems, see [34, 36] and the second part of this paper.

We consider the general n-dimensional system
dx
dt

= f1(x,pk1) + εf2(x,pk2), (1.2)

(which is an integrable system for ε = 0) associated with a Hopf bifurcation, where
pk1 = (p1, p2, . . . , pk1) is the system parameter and pk2 = (pk1+1, . . . , pk−1) is the
perturbation parameter. Since the corresponding Hopf equilibrium point is a center
for the flow on the center manifold when ε = 0, the kth focal values of system (1.2)
can be written in the form of

Vk = ṽk,1(p)ε+ ṽk,2(p)ε2 + ṽk,3(p)ε3 + . . . , k = 1, 2, . . . , (1.3)

where ṽk,m are said to be εm-order focal values (see [35]). For |ε| > 0 sufficiently
small, we may use ṽk,1 to determine the number of small-amplitude limit cycles of
system (1.2) bifurcated from the equilibrium point.

Lemma 1.1 ([15]). Assume that at p = pc = (p1c, p2c, . . . , p(k−1)c), the ε1-order
focal values of system (1.2) satisfy

ṽj,1(pc) = 0, j = 1, 2, . . . , k − 1; ṽk,1(pc) 6= 0

and

Rank
[D(ṽ1,1, ṽ2,1, . . . , ṽk−1,1)

D(p1, p2, . . . , pk−1)

]
p=pc

= k − 1. (1.4)

Then, proper perturbations can be made to the parameters p1, p2, . . . , pk−1 around
the critical point pc to generate k− 1 small-amplitude limit cycles in the vicinity of
the Hopf equilibrium point.

In fact, this Lemma was first presented in [15] without proof. For completeness
and convenience, we give a proof using the basic idea found in [13].

Proof. Proving the existence of k − 1 small-amplitude limit cycles near the equi-
librium point for system (1.2) is equivalent to proving that the amplitude equation
of the normal form (expressed in polar coordinates) of the system up to kth order,
given by

dr

dt
= r3(V1 + V2r

2 + · · ·+ Vkr
2k−2)
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= r3
k∑
j=1

( ∞∑
s=1

ṽj,s(p)εs
)

(r2)
j−1

= εr3
k∑
j=1

ṽj,1(p)(r2)
j−1

+ o(ε)

= εr3
( k∑
j=1

ṽj,1(p)(r2)
j−1

+ o(1)
)
, ε→ 0,

has k − 1 small positive zeros for r2, where p = (pk1 ,pk2) = (p1, p2, . . . , pk−1).
Let ρ = r2. By the implicit function theorem, one can reduce the problem to the
existence of k − 1 small positive simple zeros for ρ in the algebraic equation

ṽk,1(p)ρk−1 + ṽk−1,1(p)ρk−2 + · · ·+ ṽ1,1(p) = 0. (1.5)

By the conditions given in (1.4), there exists a p = (p1, p2, . . . , pk−1) in a neighbor-
hood of pc, such that

|ṽ1,1(p)| � |ṽ2,1(p)| � |ṽ3,1(p)| � · · · � |ṽk,1(p)| � 1, ṽj,1(p)ṽj+1,1(p) < 0,

for j = 1, 2, . . . k − 1, which ensures the existence of k − 1 positive simple zeros for
(1.5). Hence, k− 1 small-amplitude limit cycles can bifurcate from the equilibrium
point. This completes the proof. �

Mulholland [24] studied the behavior of the solutions of the third-order non-linear
differential equation

d3x

dt3
+ F (r)

d2x

dt2
+ F (r)

dx

dt
+ x = 0, (1.6)

in which

F (r) = 1− εf(r), f(r) = 1− r2, r2 = x2 + (
dx

dt
)2 + (

d2x

dt2
)2. (1.7)

Here F (r) represents a central restoring force, which has important applications in
modern control theory. For this equation with small non-linearities, the existence of
a limit cycle is established by a fixed point technique, the approach to the limit cycle
is approximated by averaging methods, and the periodic solution is harmonically
represented by perturbation.

Mahdi et al [22, 23] investigated the center-focus problem of a third-order dif-
ferential equation of the form

d3u

dt3
=
d2u

dt2
+
du

dt
+ u+ f(u,

du

dt
,
d2u

dt2
), (1.8)

where f(u, dudt ,
d2u
dt2 ) is an analytic function starting with quadratic terms. It can be

reduced to a system of first order differential equations

du

dt
= −v + h(u, v, w),

dv

dt
= u+ h(u, v, w),

dw

dt
= −w + h(u, v, w),

(1.9)
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where h(u, v, w) = f(−u+w, v−w, u+w)/2, which is equivalent to (1.8), see [22].
The center conditions on the local center manifold for system (1.9) with

h(u, v, w) = a1u
2 + a2v

2 + a3w
2 + a4uv + a5uw + a6vw (1.10)

were obtained in [23]. For center conditions of some other polynomial differential
systems in R3 we refer to [1, 11, 32].

Lemma 1.2 ([23]). The system (1.9) with h(u, v, w) as in (1.10) admits a center
on the local center manifold (for the equilibrium point at the origin) if and only if
one of the following holds:

(1) a1 = a2 = a4 = 0;
(2) a1 − a2 = a3 = a5 = a6 = 0;
(3) a1 + a2 = a3 = a5 = a6 = 0;
(4) a1 + a2 = 2a2 − a3 + a6 = a3 − a4 − 2a5 = 2a4 + 3a5 + a6 = 0;
(5) 2a1 − a6 = 2a2 + a5 = 2a3 − a5 + a6 = a4 + a5 + a6 = 0;
(6) a1 − a2 = 2a2 + a6 = a4 = a5 + a6 = 0;
(7) 2a1 + a2 = 2a2 + a6 = 4a3 + 5a6 = a4 = 2a5 − a6 = 0.

For system (1.9), we consider the perturbed system (with identical nonlinearities
for the three components) of the form

du

dt
= −v + h(u, v, w) + εh1(u, v, w),

dv

dt
= u+ h(u, v, w) + εh1(u, v, w),

dw

dt
= −w + h(u, v, w) + εh1(u, v, w),

(1.11)

where
h1(u, v, w) = b1u

2 + b2v
2 + b3w

2 + b4uv + b5uw + b6vw. (1.12)
The purpose of this paper is prove that four is an upper bound for small ampli-
tude limit cycles that bifurcate from the origin of the system (1.11) when one of
conditions in Lemma 1.2 holds.

The remainder of the paper is organized as follows. Based on a previously devel-
oped algorithm of Sang [28] for 2-dimensional systems, in Section 2, we introduced
a new algorithm for computing focal values of 3-dimensional systems. In Section
3, we prove that at most four small-amplitude limit cycles can bifurcate out of the
center based on the analysis of ε1-order focal values.

2. Algorithm for computing focal values

In this section, we present an algorithm for computing focal values of a class of
3-dimensional differential systems

du

dt
= −v +

∞∑
j+k+s=2

ãjksu
jvkws,

dv

dt
= u+

∞∑
j+k+s=2

b̃jksu
jvkws,

dw

dt
= −dw +

∞∑
j+k+s=2

c̃jksu
jvkws,

(2.1)
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which is analytic in the neighborhood of the origin and u, v, w, t ∈ R, d > 0,
ãjks, b̃jks, c̃jks ∈ R, j, k, s ∈ N ∪ {0}.

By means of the transformation

u =
1
2

(x+ y), v =
i

2
(−x+ y), w = z, t = −it1, (2.2)

where i =
√
−1, system (2.1) can be transformed into the following complex system

dx

dt1
= x+

∞∑
j+k+s=2

ajksx
jykzs = X(x, y, z),

dy

dt1
= −y +

∞∑
j+k+s=2

bjksx
jykzs = Y (x, y, z),

dz

dt1
= idz +

∞∑
j+k+s=2

cjksx
jykzs = Z(x, y, z).

(2.3)

Lemma 2.1 ([36]). For system (2.3), there exists a formal power series

F (x, y, z) = xy +
∞∑
s=3

s∑
k=0

s−k∑
j=0

Bs,k,jx
s−k−jykzj , (2.4)

such that

dF

dt1

∣∣∣
(2.3)

=
∂F

∂x
X +

∂F

∂y
Y +

∂F

∂z
Z =

∞∑
n=1

Wn(xy)n+1, (2.5)

where Bs,k,j are determined by the recursive formula (see [36]) with B2k,k,0 = 0.
The terms Wn are called the nth singular point values of system (2.3) at the origin.

Lemma 2.2 ([36]). For any positive natural number n, the following assertion
holds:

Vn = iπWn mod 〈W1,W2, . . . ,Wn−1〉, (2.6)

where Vn is the n-th focal value of system (2.1), and Wj is the jth singular point
value of system (2.3), j = 1, 2, . . . , n. More precisely, when W1 = W2 = · · · =
Wn−1 = 0, the following assertion holds:

Vn = iπWn. (2.7)

Note that the equilibrium point of system (2.1) at the origin is either a center
or a fine focus for the flow on the local center manifold (see [36]). The problem of
distinguishing between these two cases is called the center problem. The origin is
said to be a fine focus of order k (k ∈ N) if Vk is the first non-zero focal value. In
this case at most k limit cycles can be bifurcated from the fine focus; these limit
cycles are called small-amplitude limit cycles. The origin is a center when all the
focal values are zero.
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Grouping like terms in the second expression of (2.5), we obtain

∂F

∂x
X +

∂F

∂y
Y +

∂F

∂z
Z

=
2n+1∑
s=3

s∑
k=0

s−k∑
j=0

fs,k,jx
s−k−jykzj

+
∑
k,j≥0

k+j≤2n+2
(k,j) 6=(n+1,0)

f2n+2,k,jx
2n+2−k−jykzj +Dn(xy)n+1 + . . . ,

(2.8)

where Dn, fs,k,j , f2n+2,k,j can be considered as linear polynomials of variables Bs,k,j
with coefficients formed from ajks, bjks, cjks.

Suppose that W1 = W2 = · · · = Wn−1 = 0. In this case, we are in a position
to develop the algorithm for computing the nth singular point value Wn of system
(2.3) based on pseudo-divisions. It is remarkable that the idea behind it is similar to
the situation of 2-dimensional systems described by Sang in [28]. When computing
the nth singular point value Wn, the coefficients fs,k,j , f2n+2,k,j have to be zero.
Thus in order to eliminate variables Bs,k,j from Dn, we use successive pseudo-
divisions: first choosing an adequate variable order of Bs,k,j ; then rearranging some
polynomials fs,k,j , f2n+2,k,j to get a triangular set TSn, next performing successive
pseudo-division of Dn + ξ by TSn to get the pseudo-remainder Rn, and finally
expressing the nth singular point value Wn as Rn

coeff(Rn,ξ)
− ξ, where coeff(Rn, ξ)

is the coefficient of ξ in the polynomial Rn, and ξ is a dummy variable. The
termination of the algorithm is trivial because the number of variables Bs,k,j is
finite when n is fixed.

Recalling Lemma 2.2, once Wn is returned, the nth focal value Vn of system
(2.1) can be obtained from relation (2.7). Thus, the algorithm can be modified for
computing the nth focal value Vn of system (2.1).

3. Four limit cycles obtained from ε-order focal values

Suppose that the condition (1) in Lemma 1.2 holds. It is easy to obtain the
ε1-order focal values of system (1.11) (up to a positive constant multiple):

ṽ1,1 =
13a5b1

20
+

7a5b2
20

− 1
20
a5b4 +

11a6b1
20

+
9a6b2

20
+

3a6b4
20

,

ṽ2,1 =
473a5

3b1
1080

+
371a5

3b2
1080

− 2a5
3b4

27
+

409a6a5
2b1

1080
+

71a5
2a6b2

360

+
31a5a6

2b1
360

− a5a6
2b2

120
+
a6

3b1
120

− 1
40
a6

3b2,

ṽ3,1 = −49a5
5b1

2720
+

2661a6a5
4b1

19040
− 3981a5

3a6
2b1

3332
− 156509a5

2a6
3b1

13328

− 667381a5
2a6

3b2
93296

− 5379919a5a6
4b1

133280
− 142871a5a6

4b2
5831

− 25080959a6
5b1

932960

− 2066875a6
5b2

93296
− 342555a6

5b4
46648

,

ṽm,1 = 0, m ≥ 4,
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where the quantity ṽk,1 is reduced with respect to the Gröbner basis of {ṽj,1 : j <
k}.

Theorem 3.1. Based on the analysis of ε-order focal values for the case (1), the
perturbed system (1.11) can have at most two small-amplitude limit cycles bifurcated
from the center, and the bound is sharp.

Proof. For this case, an appropriate selection of (a5, b1, b2) for system (1.11) is:

a5 = 0, b1 = − 3
14
b4, b2 = − 1

14
b4, b4, a6 6= 0, (3.1)

which implies

ṽ1,1 = ṽ2,1 = 0, ṽ3,1 = −11b4a6
5

38080
6= 0,

and the rank of Jacobian matrix (evaluated at the critical point) of ṽ1,1, ṽ2,1 with
respect to b1, b2 is two, hence by Lemma 1.1, the perturbed system (1.11) can have
at most two small-amplitude limit cycles bifurcated from the center, and the bound
is sharp. �

Now, we assume that condition (2) in Lemma 1.2 holds. It is easy to obtain the
ε1-order focal values of system (1.11) (up to a positive constant multiple):

ṽ1,1 = −a2b1 + a2b2 + b5a2 + b6a2 −
1
20
b5a4 +

3b6a4

20
,

ṽ2,1 =
326b1a2

3

405
− 326b2a2

3

405
+

86b5a2
3

81
− 704b6a2

3

405
− 4b3a2

3 +
107b1a2

2a4

135

− 107b2a2
2a4

135
− 302a4a2

2b5
405

+
2
5
b3a4a2

2 − 4b1a4
2a2

45
+

4b2a4
2a2

45

+
43a2a4

2b5
135

− 53b3a4
2a2

150
+
a4

3b5
180

+
a4

3b3
300

,

ṽ3,1 = −1376747429a2
5b1

1275
+

1376747429a2
5b2

1275
− 1917866a2

5b3
85

+
185356263b5a2

5

170
+

913355709b6a2
5

850
− 68663387a2

4a4b1
1275

+
68663387a2

4a4b2
1275

+
5211337a2

4a4b3
2550

+
33139013a2

4a4b6
150

− 55023a2
3a4

2b1
34

+
55023a2

3a4
2b2

34
− 50399083a2

3a4
2b3

25500

+
50559593a2

3a4
2b6

5100
− 24129a2

2a4
3b1

1700

+
24129a2

2a4
3b2

1700
+

1877003a2
2a4

3b6
10200

− 269a2a4
4b1

3400

+
269a2a4

4b2
3400

+
31057a2a4

4b6
20400

+
87a4

5b6
13600

,

ṽ4,1 = −153971816454597031246a2
7b1

491160925125
+

153971816454597031246a2
7b2

491160925125

− 16610753188310104a2
7b3

2518773975
+

691036797753634751b5a2
7

2182937445

+
1309536133953556187b6a2

7

4197956625
− 264798540296377058a2

6a4b1
16936583625
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+
264798540296377058a2

6a4b2
16936583625

+
293602854116874307a2

6a4b3
491160925125

+
31507609090246881862a2

6a4b6
491160925125

− 25504331681017132a2
5a4

2b1
54573436125

+
25504331681017132a2

5a4
2b2

54573436125
− 218556152766434059a2

5a4
2b3

377816096250

+
2825095303169559761a2

5a4
2b6

982321850250
− 27926323546531a2

4a4
3b1

7276458150

+
27926323546531a2

4a4
3b2

7276458150
+

103518014332944689a2
4a4

3b6
1964643700500

− 1454958217433a2
3a4

4b1
163720308375

+
1454958217433a2

3a4
4b2

163720308375

+
755866567299851a2

3a4
4b6

1964643700500
+

265910137a2
2a4

5b1
2509123500

− 265910137a2
2a4

5b2
2509123500

− 529a2a4
6b1

4806750
+

529a2a4
6b2

4806750
,

ṽ5,1 = ṽ5,1(a2, a4, b5, b6),
ṽm,1 = 0, m ≥ 6,

where the quantity ṽk,1 is reduced with respect to the Gröbner basis of {ṽj,1 : j < k}
and the expression of ṽ5,1 is too lengthy to be presented here.

Theorem 3.2. Based on the analysis of ε-order focal values for the case (2), the
perturbed system (1.11) can have at most four small-amplitude limit cycles bifur-
cated from the center, and the bound is sharp.

Proof. For this case, an appropriate selection of (a2, b1, b3, b5) for system (1.11) is
that

a2 = −0.124090617911090057250206646846125321120939094367768(cont.)
2051487342750a4,

b1 = 1.000000000000000000000000000000000000000000000000000000000000001b2
+ 6.264551641463457593818886043698212586619541984593273(cont.)
257643565588b6,

b3 = 1.309260028633156162644799671413719205654316212923457750123345163b6,
b5 = 4.614157131800682898459705227984840546895131617055149564347672012b6

with a4, b6 6= 0, which implies

ṽ1,1 = 1.0× 10−64a4b2 − 1.00× 10−63b6a4,

ṽ2,1 = 2.0× 10−65b2a4
3 − 3.0× 10−64b6a4

3,

ṽ3,1 = 2.0× 10−62a4
5b2 − 1.0× 10−61a4

5b6,

ṽ4,1 = 1.00× 10−61a4
7b2 − 1.00× 10−60a4

7b6,

ṽ5,1 = −0.00025178105021258923344860574000162257838903488776(cont.)

44746869970435709a4
9b6 6= 0.

The errors on ṽ1,1, ṽ2,1, ṽ3,1, ṽ4,1 are due to numerical computation in the step of
solving a 12th-degree polynomial. The rank of Jacobian matrix (evaluated at the
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critical point) of ṽ1,1, ṽ2,1, ṽ3,1, ṽ4,1 with respect to a2, b1, b3, b5 is four, hence by
Lemma 1.1, the perturbed system (1.11) can have at most four small-amplitude
limit cycles bifurcated from the center, and the bound is sharp. �

Imitating the arguments in the proof of Theorem 3.2, we obtain the following
result.

Theorem 3.3. Based on the analysis of ε-order focal values for the cases (3)− (7),
the perturbed system (1.11) can have at most four small-amplitude limit cycles
bifurcated from the center respectively, and the bound is sharp.
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ifolds in the Lorenz, Chen and Lü systems, Commun. Nonlinear Sci. Numer. Simul., 19
(2014), No. 4, 772–775.

[2] L. Barreira, C. Valls, J. Llibre; Integrability and limit cycles of the Moon-Rand system, Int.

J. Nonlin. Mech., 69 (2015), 129–136.
[3] N. N. Bautin; On the number of limit cycles which appear with the variation of coefficients

from an equilibrium position of focus or center type, Math. Sb.(N.S.), 30 (1952), 181–196;
Amer. Math. Soc. Transl., 100 (1954), 181–196.

[4] C. A. Buzzi, J. Llibre, J. C. Medrado, J. Torregrosa; Bifurcation of limit cycles from a centre

in R4 in resonance 1 : N , Dynam. Syst., 24 (2009), 123–137.
[5] C. Christopher; Estimating limit cycle bifurcations from centers, in: D.M. Wang, Z.M. Zheng,

Differential equations with symbolic computation, Trends Math., Birkhäuser, Basel, 2005, 23–
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[11] J. Giné, C. Valls; Center problem in the center manifold for quadratic differential systems
in R3, J. Symbolic Comput., 73 (2016), 250–267.

[12] M. Gyllenberg, P. Yan; Four limit cycles for a three-dimensional competitive Lotka-Volterra

system with a heteroclinic cycle, Comput. Math. Appl., 58 (2009), 649–669.
[13] M. A. Han, Y. Lin, P. Yu; A study on the existence of limit cycles of a planar system with

third-degree polynomials, Int. J. Bifurcation and Chaos, 14(2004), 41–60.

[14] M. A. Han, H. Zang, T. H. Zhang; A new proof to Bautin’s theorem, Chaos, Solitons and
Fractals, 31 (2007), 218–223.
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