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INVERSE SPECTRAL PROBLEMS FOR ENERGY-DEPENDENT
STURM-LIOUVILLE EQUATIONS WITH FINITELY MANY

POINT δ-INTERACTIONS

MANAF DZH. MANAFOV

In memory of M. G. Gasymov (1939-2008)

Abstract. In this study, inverse spectral problems for a energy-dependent
Sturm-Liouville equations with finitely many point δ-interactions. The unique-

ness theorems for the inverse problems of reconstruction of the boundary value

problem from the Weyl function, from the spectral data and from two spectra
are proved and a constructive procedure for finding its solution are obtained.

1. Introduction

We consider inverse problems for the boundary value problem L (BVP L) gen-
erated by the differential equation

− y′′ + q(x)y = λ2y, x ∈ ∪ms=0(as, as+1) (0 = a0, am+1 = π) (1.1)

with the Robin boundary conditions

U(y) := y′(0)− hy(0) = 0,

V (y) := y′(π) +Hy(π) = 0,
(1.2)

and the conditions at the points x = as:

I(y) := {
y(as + 0) = y(as − 0) = y(as)

y′(as + 0)− y′(as − 0) = 2αsλy(as),
(1.3)

q(x) is a complex-valued function in L2(0, π); h,H and αs are complex numbers,
s = 1,m := 1, 2, . . .m; and λ is a spectral parameter.

Note that, we can understand problem (1.1) and (1.3) as studying the equation

y′′ + (λ2 − 2λp(x)− q(x))y = 0, x ∈ (0, π), (1.4)

when p(x) =
∑m
s=1 αsδ(x− as), where δ(x) is the Dirac function (see [1]).

Sturm-Liouville spectral problems with potentials depending on the spectral pa-
rameter arise in various models of quantum and classical mechanics. For instance,
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the evolution equations that are used to model interactions between colliding rela-
tivistic spineless particles can be reduced to the form (1.1). Then λ2 is associated
with the energy of the system (see [14, 16]).

Spectral problems of differential operators are studied in two main branches,
namely, direct and inverse problems. Direct problems of spectral analysis consist
in investigating the spectral properties of an operator. On the other hand, inverse
problems aim at recovering operators from their spectral characteristics. One takes
for the main spectral data, for instance, one, two, or more spectra, the spectral
function, the spectrum, and the normalized constants, the Weyl function. Direct
and inverse problems for the classical Sturm-Liouville operators have been exten-
sively studied (see [8, 15, 17] and the references therein). Some classes of direct
and inverse problems for discontinuous BV Ps (special case p(x) ≡ 0) in various
statements have been considered in [2, 11, 13, 20, 21] and for further discussion see
the references therein. Notice that, inverse spectral problems for non-selfadjoint
Sturm-Liouville operators on a finite interval with possibly multiple spectra have
been investigated in [4, 5].

Non-linear dependence of (1.4) on the spectral parameter λ should be regarded
as a spectral problem for a quadratic operator pensil. The problem with p(x) ∈
W 1

2 (0, 1) and q(x) ∈ L2(0, 1) and with Robin boundary conditions was discussed
in [10]. Such problems for separated and non-separated boundary conditions were
considered (see [9, 12, 22] and the references therein). In this aspect, various inverse
spectral problems for the equation (1.4) have been investigated in [18, 19] for the
case m = 1.

In this article we establish various uniqueness results for inverse spectral prob-
lems of energy-dependent Sturm-Liouville equations with finitely many point δ-
interactions, and obtain a process for finding its solution.

2. Properties of the spectral characteristics of BVP L

In this section, we provide the spectral characteristics of the BVP L and present
the relationship among these spectral characteristics. Moreover, we formulate the
inverse problem of the reconstruction of BVP L: from the Weyl function, from the
spectral data, and from two spectra. The technique employed is similar to those
used in [8].

Let y(x) and z(x) be continuously differentiable functions on the intervals (0, a1),
(a1, a2), . . . , (am−1, am) and (am, π). Denote 〈y, z〉 := yz′ − y′z. If y(x) and z(x)
satisfy the conditions (1.3), then

〈y, z〉x=as−0 = 〈y, z〉x=as+0, s = 1,m, (2.1)

i.e. the function 〈y, z〉 is continuous on (0, π).
Let ϕ(x, λ), ψ(x, λ) be solutions of (1.1) under the conditions

ϕ(0, λ) = ψ(π, λ) = 1

ϕ′(0, λ) = h, ψ′(π, λ) = −H,
(2.2)

and under condition (1.3).
Denote ∆(λ) := 〈ϕ(x, λ), ψ(x, λ)〉. By (2.1) and the Ostrogradskii-Liouville the-

orem (see [6, p.83]), ∆(λ) does not depend on x. The function ∆(λ) is called the
characteristic function of L. Clearly,

∆(λ) = −V (ϕ) = U(ψ). (2.3)



EJDE-2016/11 INVERSE SPECTRAL PROBLEMS 3

Obviously, the function ∆(λ) is entire in λ and it has at most a countable set of
zeros {λn}.

We confine ourselves, for simplicity, to the case when all zeros of the characteristic
function ∆(λ) are simple.

Lemma 2.1. The eigenvalues {λ2
n}n≥0 of the BVP L coincide with the zeros of the

characteristic function. The functions ϕ(x, λn) and ψ(x, λn) are eigenfunctions,
and there exists a sequence {βn} such that

ψ(x, λn) = βnϕ(x, λn), βn 6= 0.

Proof. Let ∆(λ0) = 0. Then by 〈ϕ(x, λ0), ψ(x, λ0)〉 = 0, we have ψ(x, λ0) =
Cϕ(x, λ0) for some constant C. Hence λ0 is an eigenvalue and ϕ(x, λ0), ψ(x, λ0)
are eigenfunctions related to λ0.

Conversely, let λ0 be an eigenvalue of L. We shall show that ∆(λ0) = 0. As-
suming the converse, suppose that ∆(λ0) 6= 0. In this case the functions ϕ(x, λ0)
and ψ(x, λ0) are linearly independent. Then y(x, λ0) = c1ϕ(x, λ0) + c2ψ(x, λ0) is a
general solution of the problem L. If c1 6= 0, we can write

ϕ(x, λ0) =
1
c1
y(x, λ0)− c2

c1
ψ(x, λ0).

Then we have

〈ϕ(x, λ0), ψ(x, λ0)〉 = − 1
c1

[y′(π, λ0) +Hy(π, λ0)] = 0,

which is a contradiction.
Note that for each eigenvalue there exists only one eigenfunction. Therefore

there exists sequence βn such that ψ(x, λn) = βnϕ(x, λn). �

Denote

γn =
∫ π

0

ϕ2(x, λn)dx− 1
λn

m∑
s=1

αsϕ
2(as, λn).

The set {λn, γn}n=0,±1,±2,... is called the spectral data of L.

Lemma 2.2. The equality

∆̇(λn) = −2λnβnγn (2.4)

holds. Here ∆̇(λ) = d
dλ∆(λ).

Proof. Since

−ϕ
′′
(x, λn) + q(x)ϕ(x, λn) = λ2

nϕ(x, λn), −ψ
′′
(x, λ) + q(x)ψ(x, λ) = λ2ψ(x, λ),

we obtain
d

dx
〈ϕ(x, λn), ψ(x, λ)〉 = (λ2 − λ2

n)ϕ(x, λn)ψ(x, λ).

Integrating from 0 to π and using the conditions (1.2), (1.3), we obtain∫ π

0

ϕ(x, λn)ψ(x, λ)dx− 2
λn + λ

m∑
s=1

αsϕ(as, λn)ψ(as, λ) =
∆(λn)−∆(λ)

λ2 − λ2
n

.

Because λ→ λn, by Lemma 2.1, this yields

∆̇(λn) = −2λnβnγn.

�
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Corollary 2.3. For BVP L, λn 6= 0, γn 6= 0 and λn 6= λk (n 6= k) hold.

Now, consider the solutions ϕ(x, λ) and ψ(x, λ). Let τ := Imλ. The following
asymptotic estimates hold uniformly with respect to x ∈ (as, as+1), 0 ≤ s ≤ m, as
|λ| → ∞:

ϕ(x, λ)

= α′1α
′
2 . . . α

′
s cos(λx− θ1 − θ2 − · · · − θs)

+
∑

1≤i≤s

α′1 . . . αi . . . α
′
s sin[λ(x− 2ai) + θ1 + · · ·+ θi−1 − θi+1 − · · · − θs]

+
∑

1≤i<j≤s

α′1 . . . αi . . . αj . . . α
′
s cos

[
λ(x+ 2ai − 2aj) + θ1 + . . .

+ θi−1 − θi+1 − · · · − θj−1 + θj+1 + · · ·+ θs
]

+ · · ·+ α1α2 . . . αs{

{
cos if s is even
sin if s is odd[

λ(x+ 2(−1)sa1 + 2(−1)s−1a2 + · · · − 2αs)
]

+O
( 1
|λ|

exp(|τ |x)
)
,

(2.5)

ϕ′(x, λ)

= λ
[
− α′1α′2 . . . α′s sin(λx− θ1 − θ2 − · · · − θs)

+
∑

1≤i≤s

α′1 . . . αi . . . α
′
s cos

[
λ(x− 2ai) + θ1 + · · ·+ θi−1 − θi+1 − · · · − θs

]
−

∑
1≤i<j≤s

α′1 . . . αi . . . αj . . . α
′
s sin

[
λ(x+ 2ai − 2aj) + θ1 + · · ·+ θi−1

− θi+1 − · · · − θj−1 + θj+1 + · · ·+ θs
]

+ · · ·+ α1α2 . . . αs

{
− sin if s is even
cos if s is odd[

λ
(
x+ 2(−1)sa1 + 2(−1)s−1a2 + · · · − 2αs

)]
+O

(
exp(|τ |x)

)
,

(2.6)
and
ψ(x, λ)

= α′s+1α
′
s+2 . . . α

′
m cos[λ(π − x)− θs+1 − θs+2 − θm]

−
∑

s+1≤i≤m

α′s+1 . . . αi . . . α
′
m sin[λ(π + x− 2am)− θs+1 − θs+2 − θm−1]

+
∑

s+1≤i<j≤m

α′s+1 . . . αi . . . αj . . . α
′
m cos

[
λ(π + x+ 2ai − 2aj) + θs+1+

· · ·+ θi−1 − θi+1 − · · · − θj−1 + θj+1 + · · ·+ θm
]

+ . . .

+ αs+1αs+2 . . . αm

{
cos if s is even
sin if s is odd

[λ(π + x− 2as+1 + · · ·+ 2(−1)s−1am−1 + 2(−1)sam)]

+O
( 1
|λ|

exp(|τ |(π − x))
)
,

(2.7)
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ψ′(x, λ)

= λ[α′s+1α
′
s+2 . . . α

′
m sin[λ(π − x)− θs+1 − θs+2 − θm]

−
∑

s+1≤i≤m

α′s+1 . . . αi . . . α
′
m cos[λ(π + x− 2am)− θs+1 − θs+2 − θm−1]

+
∑

s+1≤i<j≤m

α′s+1 . . . αi . . . αj . . . α
′
m sin

[
λ(π + x+ 2ai − 2aj) + θs+1

+ · · ·+ θi−1 − θi+1 − · · · − θj−1 + θj+1 + · · ·+ θm
]

+ . . .

+ αs+1αs+2 . . . αm

{
− sin if s is even
cos if s is odd[

λ(π + x− 2as+1 + · · ·+ 2(−1)s−1am−1 + 2(−1)sam)
]

+O
(

exp(|τ |(π − x))
)
,

(2.8)

where α′i =
√

1 + α2
i , θi = tan−1 αi, i = 1,m.

It is easy to have the following asymptotic formulae for ϕ(x, λ) and ψ(x, λ),

|ϕ(ν)(x, λ)| = O
(
|λ|νe|τ |x

)
, 0 ≤ x ≤ π, ν = 0, 1, (2.9)

|ψ(ν)(x, λ)| = O(|λ|νe|τ |(π−x)). (2.10)

It follows from (2.3), (2.5) and (2.6) that

∆(λ) = ∆0(λ) +O
(

exp(|τ |π)
)
, (2.11)

where

∆0(λ)

= λ
[
− α′1α′2 . . . α′s sin(λπ − θ1 − θ2 − · · · − θs)

+
∑

1≤i≤s

α′1 . . . αi . . . α
′
s cos

[
λ(π − 2ai) + θ1 + · · ·+ θi−1 − θi+1 − · · · − θs

]
−

∑
1≤i<j≤s

α′1 . . . αi . . . αj . . . α
′
s sin

[
λ(π + 2ai − 2aj) + θ1 + · · ·+ θi−1

− θi+1 − · · · − θj−1 + θj+1 + · · ·+ θs
]

+ · · ·+ α1α2 . . . αs

{
− sin if s is even
cos if s is odd[

λ(π + 2(−1)sa1 + 2(−1)s−1a2 + · · · − 2αs)
]

+O
(

exp(|τ |π)
)
.

(2.12)
Let {λ0

n} be zeros of ∆0(λ). Using (2.11), by the well known methods (see, for
example, [3]) one can obtain the following properties of the characteristic function
∆(λ) of the BVP L:

(1) For |λ| → ∞, ∆(λ) = O(|λ| exp(|τ |π)).
(2) Denote Gδ := {λ : |λ− λ0

n| ≥ δ}. Then exist Cδ > 0 such that

|∆(λ)| ≥ Cδ|λ| exp(|τ |π) for all λ ∈ Gδ (δ > 0). (2.13)
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(3) For sufficiently large values of n, one has

|∆(λ)−∆0(λ)| < Cδ
2

exp(|τ |π),

λ ∈ Γn := {λ : |λ| = |λ0
n|+

1
2

inf
n6=m
|λ0
n − λ0

m|}.

Then
λn = λ0

n + o(1), n→∞. (2.14)

Substituting (2.5), (2.6) and (2.13) into (2.3) we obtain

γn = γ0
n + o(1), n→∞, (2.15)

where

γ0
n =

∫ π

0

ϕ2(x, λ0
n)dx− 1

λ0
n

m∑
s=1

αsϕ
2(as, λ0

n).

3. Formulation of the inverse problem. Uniqueness theorems

In this section, we study three inverse problems of recovering L from its spectral
characteristics, namely

i from the Weyl function,
ii from the so-called spectral data,
iii from two spectra.

For each class of inverse problems we prove the corresponding uniqueness theorems
and show the connection between the different spectral characteristics.

Let Φ(x, λ) be the solution of (1.4) under the conditions U(Φ) = 1 and V (Φ) = 0.
We set M(λ) := Φ(λ). The functions Φ(x, λ) and M(λ) are called the Weyl solution
and the Weyl function for BVP L, respectively. Clearly

Φ(x, λ) =
ψ(x, λ)
∆(λ)

= S(x, λ) +M(λ)ϕ(x, λ), (3.1)

M(λ) =
ψ(0, λ)
∆(λ)

, (3.2)

where ψ(0, λ) is the characteristic function of BVP L1 which is equation (1.4) with
the boundary conditions U(y) = 0, y(π) = 0, and S(x, λ) is defined from the
equality

ψ(x, λ) = ψ(0, λ)ϕ(x, λ) + ∆(λ)S(x, λ).

Note that, by equalities 〈ϕ(x, λ), S(x, λ)〉 ≡ 1 and (3.1), one has

〈Φ(x, λ), ϕ(x, λ)〉 ≡ 1. (3.3)

Let {µ2
n}n≥0 be zeros of ψ(0, λ), i.e. the eigenvalues of L1.

First, let us prove the uniqueness theorems for the solutions of the problems
(i)-(iii). For this purpose we agree that together with L we consider a BVP L̃

of the same form but with different coefficients q̃(x), h̃, H̃, ãs and α̃s, s = 1,m.
Everywhere below if a certain symbol e denotes an object related to L, then the
corresponding symbol ẽ with tilde denotes the analogous object related to L̃.

Theorem 3.1. If M(λ) = M̃(λ), then L = L̃. Thus, the specification of the Weyl
function M(λ) uniquely determines L.
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Proof. Let us define the matrix P (x, λ) = [Pjk(x, λ)]j,k=1,2 by the formula

P (x, λ)

[
ϕ̃(x, λ) Φ̃(x, λ)
ϕ̃′(x, λ) Φ̃′(x, λ)

]
=
[
ϕ(x, λ) Φ(x, λ)
ϕ′(x, λ) Φ′(x, λ)

]
. (3.4)

By (3.1), we calculate

Pj1(x, λ) = ϕ(j−1)(x, λ)Φ̃′(x, λ)− Φ(j−1)(x, λ)ϕ̃′(x, λ),

Pj2(x, λ) = Φ(j−1)(x, λ)ϕ̃(x, λ)− ϕ(j−1)(x, λ)Φ̃(x, λ),
(3.5)

and
ϕ(x, λ) = P11(x, λ)ϕ̃(x, λ) + P12(x, λ)ϕ̃′(x, λ),

Φ(x, λ) = P11(x, λ)Φ̃(x, λ) + P12(x, λ)Φ̃′(x, λ).
(3.6)

Taking (2.5), (2.6) and (2.13) into account, we infer that

|P11(x, λ)− 1| ≤ Cδ|λ|−1, |P12(x, λ)| ≤ Cδ|λ|−1, λ ∈ Gδ, (3.7)

where Gδ is defined in (2.13) and Cδ is a constant.
On the other hand according to (3.2) and (3.5),

P11(x, λ) = ϕ(x, λ)S̃′(x, λ)− S(x, λ)ϕ̃′(x, λ) + (M̃(λ)−M(λ))ϕ(x, λ)ϕ̃′(x, λ),

P12(x, λ) = S(x, λ)ϕ̃(x, λ)− ϕ(x, λ)S̃(x, λ) + (M(λ)− M̃(λ))ϕ(x, λ)ϕ̃(x, λ).

Since M(λ) = M̃(λ), it follows that for each fixed x the functions P1k(x, λ), k = 1, 2
are entire in λ. With the help of (3.7) and well-known Liouville’s theorem, this
yields P11(x, λ) ≡ 1, P12(x, λ) ≡ 0. Substituting into (3.6), we obtain ϕ(x, λ) ≡
ϕ̃(x, λ), Φ(x, λ) = Φ̃(x, λ) for all x ∈ ∪ms=0(xs, xs+1) and λ. Taking this into
account, from (1.1) we obtain q(x) = q̃(x) a.e. on (0, π), from (2.2) we obtain
h = h̃, H = H̃, and from (1.3) we conclude that as = ãs, αs = α̃s (s = 1,m).
Consequently, L = L̃. �

Theorem 3.2. If λn = λ̃n, γn = γ̃n, n = 0,±1,±2, . . . , then L = L̃. Thus,
the specification of the spectral data {λn, γn}n=0,±1,±2,... uniquely determines the
operator.

Proof. It follows from (3.2) that the Weyl function M(λ) is meromorphic with
simple poles at points λ2

n. Using (3.2), Lemma 2.1 and equality ∆̇(λn) = −2λnβnγn,
we have

Re sλ−λnM(λ) =
ψ(0, λ)
∆̇(λn)

=
βn

∆̇(λn)
=

1
−2λnγn

. (3.8)

Since the Weyl function M(λ) is regular for λ ∈ Γn, applying the Rouche theorem
[7, p.112], we conclude that

M(λ) =
1

2πi

∫
Γn

M(µ)
λ− µ

dµ, λ ∈ intΓn,

where the contour Γn is assumed to have the counterclockwise circuit.
Taking (2.13) and (3.2) into account, we arrive at |M(λ)| ≤ Cδ|λ|−1, λ ∈ Gδ.

Hence, by the residue theorem, we have

M(λ) =
∞∑

n=−∞

1
2λnγn(λ− λn)

. (3.9)
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Under the hypothesis of the theorem we obtain, in view of (3.9), that M(λ) = M̃(λ)
and consequently by Theorem 3.1, L = L̃. �

Theorem 3.3. If λn = λ̃n and µn = µ̃n, n = 0,±1,±2, . . . , then L = L̃. Thus the
specification of two spectra {λn, µn}n=0,±1,±2,... uniquely determines L.

Proof. It is obvious that characteristic functions ∆(λ) and ψ(0, λ) are uniquely
determined by the sequences {λ2

n} and {µ2
n} (n = 0,±1,±2, . . . ), respectively. If

λn = λ̃n, µn = µ̃n, n = 0,±1,±2, . . . , then ∆(λ) ≡ ∆̃(λ), ψ(0, λ) = ψ̃(0, λ).
Together with (3.2) this yields M(λ) = M̃(λ). By Theorem 3.1 we obtain L =
L̃. �

Remark 3.4. By (3.2), the specification of two spectra {λn, µn}n=0,±1,±2,... is
equivalent to the specification of the Weyl function M(λ). On the other hand, it
follows from (3.9) that the specification of the Weyl function M(λ) is equivalent
to the specification of the spectral data {λn, γn}n=0,±1,±2,.... Consequently, three
statements of the inverse problem of reconstruction of the problem L from the Weyl
function, from the spectral data and from two spectra are equivalent.

4. Solution of the inverse problem

In this section, we will solve the inverse problems of recovering the BVP L by
the method of spectral mappings with the help of Cauchy’s integral formula and
Residue theorem. Finally, we provide the algorithms for the solution of the inverse
problems by using the solution of the main equation.

For definiteness we consider the inverse problem of recovering L from the spectral
data {λn, γn}n=0,±1,±2,.... Let BVPs L and L̃ be such that

as = ãs, s = 1,m,
∞∑

n=−∞
ζn|λn| <∞, (4.1)

where ζn := |λn − λ̃n|+ |γn − γ̃n|. Denote

λn0 = λn, λn1 = λ̃n, γn0 = γn, γn1 = γ̃n,

ϕni(x) = ϕ(x, λni), ϕ̃ni(x) = ϕ̃(x, λni),

Qkj(x, λ) =
〈ϕ(x, λ), ϕkj(x)〉
2λkjγkj(λ− λkj)

=
1

2λkjγkj

∫ x

0

ϕ(t, λ)ϕkj(t)dt,

Qni,kj(x) = Qkj(x, λni)

for i, j = 0, 1 and n, k = 0,±1,±2, . . . , where ϕ̃(x, λ) is the solution of (1.4) with
the potential q̃ under the initial conditions ϕ̃(0, λ) = 1, ϕ̃′(0, λ) = h̃. Analogously,
we can define Q̃kj(x, λ) by replacing ϕ with ϕ̃ in the above definition.

Using Schwarz’s lemma [7, p.130] and (2.5)-(2.8), (2.14) we obtain the following
asymptotic estimates:

|ϕ(ν)
nj (x)| ≤ C(|λ0

n|+ 1)ν , (4.2)

|Qni,kj(x)| ≤ C

|λ0
n − λ0

k|+ 1
, |Q(ν+1)

ni,kj (x)| ≤ C(|λ0
n|+ |λ0

k|+ 1)(ν), (4.3)

where n, k = 0,±1,±2, . . . , i, j, ν = 0, 1 and C is a positive constant. Analogous
estimates are also valid for ϕ̃ni(x), Q̃ni,kj(x).
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Lemma 4.1. Let ϕnj(x) and Qni,kj(x) be defined as above. Then the following
representations hold for i, j = 0, 1 and n, k = 0,±1,±2, . . . :

ϕ̃ni(x) = ϕni(x) +
∞∑

l=−∞

(
Q̃ni,l0(x)ϕk0(x)− Q̃ni,l1(x)ϕk1(x)

)
. (4.4)

Series (4.4) converge absolutely and uniformly with respect to x ∈ [0, π]\{as}ms=1.

Proof. By (4.1) we have as = ãs, αs = α̃s for s = 1,m. Then it follows from
(2.5)-(2.6) that

|ϕ(ν)(x, λ)− ϕ̃(ν)(x, λ)| ≤ C|λ|ν−1 exp(|τ |x). (4.5)

Similarly,
|ψ(ν)(x, λ)− ψ̃(ν)(x, λ)| ≤ C|λ|ν−1 exp(|τ |(π − x)). (4.6)

Denote G0
δ = Gδ ∩ G̃δ. In view of (2.10), (2.13), (3.1) and (4.6) we obtain

|Φ(ν)(x, λ)− Φ̃(ν)(x, λ)| ≤ Cδ|λ|ν−2 exp(−|τ |x), λ ∈ G0
δ . (4.7)

Let P (x, λ) be the matrix defined in Section 3. Since for each fixed x, the functions
P1k(x, λ) are meromorphic in λ with simple poles λn and λ̃n, we obtain by Cauchy’s
theorem [7, p.84]

P1k(x, λ)− δ1k =
1

2πi

∫
Γn

P1k(x, ζ)− δ1k
λ− ζ

, k = 1, 2, (4.8)

where λ ∈ intΓn, and δjk is the Kronecker delta.
Further, (3.3) and (3.5) imply

P11(x, λ) = 1 + (ϕ(x, λ)− ϕ̃(x, λ))Φ̃′(x, λ)− (Φ(x, λ)− Φ̃(x, λ))ϕ̃′(x, λ). (4.9)

Using (2.9), (2.10), (3.5), (4.5), (4.7) and (4.9) we infer

|P1k(x, λ)− δ1k| ≤ Cδ|λ|−1, λ ∈ G0
δ . (4.10)

By (4.8) and (4.10)

P1k(x, λ)− δ1k = lim
n→∞

1
2πi

∫
Γn1

P1k(x, ζ)
ζ − λ

dζ,

where Γn1 = {λ : |λ| = |λ0
n|, n = 0,±1,±2, . . . }. Substituting this into (3.6), we

obtain

ϕ(x, λ) = ϕ̃(x, λ) + lim
n→∞

1
2πi

∫
Γn1

ϕ̃(x, λ)P11(x, ζ) + ϕ̃′(x, λ)P12(x, ζ)
λ− ζ

dζ.

Taking (3.1) and (3.5) into account we calculate

ϕ̃(x, λ) = ϕ(x, λ) + lim
n→∞

1
2πi

∫
Γn1

〈ϕ̃(x, λ), ϕ̃(x, ζ)〉
λ− ζ

M̃(ζ)ϕ(x, ζ)dζ. (4.11)

It follows from (3.8) that

Re sζ=λkj

〈ϕ̃(x, λ), ϕ̃(x, ζ)〉
λ− ζ

M̃(ζ)ϕ(x, ζ) = Q̃kj(x, λ)ϕkj(x).

Consequently, calculating the integral in (4.11) by the residue theorem [7, p.112]
and then taking λ = λni, we arrive at (4.4) as n→∞. Furthermore, according to
asymptotic formulaes (4.2) and (4.3), we derive for x ∈ (as, as+1), 0 ≤ s ≤ m that
the series converges absolutely and uniformly on x ∈ [0, π]\{as}ms=1. �
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From the above arguments, it is seen that, for each fixed x ∈ [0, π]\{as}ms=1,
the relation (4.4) can be considered as a system of linear equations with respect to
ϕni(x) for n = 0,±1,±2, . . . and i = 0, 1. But the series in (4.4) converges only
“with brackets”. Therefore, it is not convenient to use (4.4) as a main equation of
the inverse problem.

Let V be a set of indices u = (n, i), n = 0,±1,±2, . . . and i = 0, 1. For each
fixed x ∈ [0, π]\{as}ms=1, we define the vectors

φ(x) = [φu(x)]u∈V = [
[
φn0(x)
φn1(x)

]
, φ̃(x) = [φ̃u(x)]u∈V =

[
φ̃n0(x)
φ̃n1(x)

]
n=0,±1,±2,...

by the formulas[
φn0(x)
φn1(x)

]
=
[
ζ−1
n −ζ−1

n

0 1

] [
ϕn0(x)
ϕn1(x)

]
,

[
φ̃n0(x)
φ̃n1(x)

]
=
[
ζ−1
n −ζ−1

n

0 1

] [
ϕ̃n0(x)
ϕ̃n1(x)

]
.

(4.12)
If ζn = 0 for a certain n, then we put φn0(x) = φ̃n0(x) = 0.

Further, we define the block matrix

H(x) = [Hu,v(x)]u,v∈V =
[
Hn0,k0(x) Hn0,k1(x)
Hn1,k0(x) Hn1,k1(x)

]
n,k=0,±1,±2,...

,

where u = (n, i), v = (k, j) and[
Hn0,k0(x) Hn0,k1(x)
Hn1,k0(x) Hn1,k1(x)

]
=
[
ζ−1
n −ζ−1

n

0 1

] [
Qn0,k0(x) Qn0,k1(x)
Qn1,k0(x) Qn1,k1(x)

] [
ζk ζk
0 −1

]
.

Analogously we define φ̃(x), H̃(x) by replacing in the previous definitions ϕni(x),
Qni,kj(x) by ϕ̃ni(x), Q̃ni,kj(x), respectively. It follows from (2.5)-(2.8), (2.14),
(2.15), (4.2), (4.3) and Schwarz’s lemma that

|φ(ν)
nj (x)|, |φ̃(ν)

nj (x)| ≤ C(|λ0
n|+ 1)ν , ν = 0, 1,

|Hni,kj(x)|, |H̃ni,kj(x)| ≤ Cζk
|λ0
n − λ0

k|+ 1
, (4.13)

|H(ν+1)
ni,kj (x)|, |H̃(ν+1)

ni,kj (x)| ≤ C(|λ0
n|+ |λ0

k|+ 1)νζk, ν = 0, 1. (4.14)

Let us consider the Banach space B of bounded sequences α = [αu]u∈V with
the norm ‖α‖B = supu∈V |αu|. It follows from (4.13), (4.14) that for each fixed
x ∈ (as, as+1), 0 ≤ s ≤ m, the operator E + H̃(x) and E − H(x) (here E is the
identity operator), acting from B to B, are linear bounded operator, and

‖H(x)‖, ‖H̃(x)‖ ≤ C sup
n

∞∑
k=−∞

ζk
|λ0
n − λ0

k|+ 1
<∞.

Here, we give the main result of the section.

Theorem 4.2. For each fixed x ∈ [0, π]\{as}ms=1, the vector φ(x) ∈ B satisfies the
equation

φ̃(x) = (E + H̃(x))φ(x) (4.15)

in the Banach space B. Moreover, the operator E + H̃(x) has a bounded inverse
operator, i.e. the equation (4.15) is uniquely solvable.
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Proof. Using the notation φ̃(x) we rewrite (4.4) as

φ̃ni(x) = φni(x) +
∑
k,j

H̃ni,kj(x)φkj(x), (n, i) ∈ V, (k, j) ∈ V,

which is equivalent to (4.4). Similarly, using the notation H(x):

Hni,lj(x)− H̃ni,lj(x) +
∑
k,t

H̃ni,kt(x)Hkt,lj(x) = 0

for (n, i), (l, j), (k, t) ∈ V or in the other form

(E + H̃(x))(E −H(x)) = E.

Interchanging places for L and L̃, we obtain analogously

φ(x) = (E −H(x))ϕ̃(x), (E −H(x))(E + H̃(x)) = E.

Hence the operator (E + H̃(x))−1 exists, and it is a linear bounded operator. �

Equation (4.15) is called the basic equation of the inverse problem. Solving
(4.15) we find the vector φ(x), and consequently, the functions ϕni(x). Thus, we
obtain the following algorithms for the solution of our inverse problems.

Algorithm 4.3. Given the spectral data {λn, γn}n=0,±1,±2,..., construct q(x) and
h,H; as, αs, s = 1,m.

(1) Choose L̃ and calculate φ̃(x) and H̃(x);
(2) Find φ(x) by solving the equation (4.15) and calculate ϕno(x) via (4.12);
(3) Choose some n (e.g., n = 0) and construct q(x) and h,H; as, αs, s = 1,m

by formulae

q(x) =
ϕ′′n0(x)
ϕn0(x)

+ λn, h = ϕ′n0(0), H = −ϕ
′
n0(π)

ϕn0(π)
;

ϕn0(as + 0) = ϕn0(as − 0); αs =
ϕ′n0(as + 0)− ϕ′n0(as − 0)

2λnϕn0(as − 0)
; s = 1,m.

Algorithm 4.4. Given M(λ), we construct q(x) and h,H; as, αs, s = 1,m.
(1) According to (3.9) construct the spectral data {λn, γn}n=0,±1,±2,....
(2) By Algorithm 4.3, construct q(x) and h,H; as, αs, s = 1,m.

Algorithm 4.5. Given two spectra {λn, µn}n=0,±1,±2,..., we construct q(x) and
h,H; as, αs, s = 1,m.

(1) By (3.2) calculate M(λ);
(2) By considering Algorithm 4.4, we construct q(x) and h,H; as, αs, s = 1,m.
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