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EXISTENCE OF SOLUTIONS FOR KIRCHHOFF EQUATIONS
INVOLVING p-LINEAR AND p-SUPERLINEAR THERMS AND

WITH CRITICAL GROWTH

MATEUS BALBINO GUIMARÃES, RODRIGO DA SILVA RODRIGUES

Abstract. In this article we establish the existence of a nontrivial weak solu-
tion to a class of nonlinear boundary-value problems of Kirchhoff type involving

p-linear and p-superlinear terms and with critical Caffaearelli-Kohn-Nirenberg

exponent.

1. Introduction

In this article we study the existence of nontrivial solutions for the nonlocal
boundary-value problem of Kirchhoff type

L(u) = λ|x|−δf(x, u) + |x|−bp
∗
|u|p

∗−2u in Ω,
u = 0 on ∂Ω,

(1.1)

where
L(u) := −

[
M
(∫

Ω

|x|−ap|∇u|p dx
)]

div
(
|x|−ap|∇u|p−2∇u

)
,

and Ω ⊂ RN is a bounded smooth domain with N ≥ 3, 1 < p < N , a ≤ N−p
p ,

p∗ = Np
N−dp is the critical Caffarelli-Kohn-Nirenberg exponent, where d = 1 + a− b

with a ≤ b ≤ a+1, M : R+∪{0} → R+ is a continuous function, and f : Ω×R→ R
is a Caratheodory function.

Because of the integral over Ω in L(u), (1.1) is no longer a pointwise equation,
so it is called nonlocal problem. The mathematical difficulties that comes with this
phenomenon is what makes the study of such problems particularly interesting.
Also the physical motivation makes this problem interesting. Indeed, (1.1) is related
to the stationary version of the Kirchhoff equation

utt −M
(∫

Ω

|∇u|2dx
)

∆u = g(x, u) in Ω× (0, T )

u = 0 on ∂Ω× (0, T )

u(x, 0) = u0(x), ut(x, 0) = u1(x),

(1.2)

where M(s) = a + bs, a, b > 0. It was proposed by Kirchhoff [18] as an extension
of the classical D’Alembert’s wave equation for free vibrations of elastic strings to
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describe the transversal oscillations of a stretched string, particularly, taking into
account the subsequent change in string length caused by oscillations.

Some early classical studies of Kirchhoff equations were done by Bernstein [5]
and Pohozaev [27]. However, (1.2) received great attention only after Lions [19]
proposed an abstract framework for the problem. After that, the study on nonlocal
problems of the type (1.2) grew exponentially. Some interesting results can be
found, for example, in [1, 4, 8, 9, 10, 15, 16, 20, 22, 23, 24, 25, 26], and the references
therein.

Problems involving a Kirchhoff equation with critical growth can be seen, for ex-
ample, in [2, 12, 13]. In [7], the authors studied a problem involving the p-Laplacian
operator with weights, but with subcritical growth. A version of a Kirchhoff type
problem involving the p-Laplacian operator with weights and critical growth was
studied in [14].

In our work we intent to complement the results obtained in [14]. There the
authors studied problem (1.1) involving p-sublinear and p-superlinear therms. We
treat the case in which (1.1) has a p-linear therm. Also, we extend the results for the
p-superlinar case by finding a weak solution for each λ > 0. We use the mountain
pass theorem to find weak solutions for the problem. Different from the techniques
in [14] and the other articles listed above, we work with extremal functions to
control the level of the Palais-Smale sequence obtained with the mountain pass
theorem. The lack of compactness due to the critical therm in the first equation of
(1.1) was bypassed using a technique in common with some of the above papers: a
version of the concentration-compactness principle due to Lions [21].

Because of the nonlocal terms in the equation (1.1), it was necessary to make
a truncation on the Kirchhoff type function that appear on the operator, creating
an auxiliary problem. By finding solutions of the auxiliary problem we can find
solutions for (1.1). This truncation argument is similar to the one used in [12].

For enunciating the main result, we need to give some hypotheses on the continu-
ous function M : R+∪{0} → R+, and on the Caratheodory function f : Ω×R→ R:

(H1) There exists m0 > 0 such that M(t) ≥ m0 for all t ≥ 0.
(H2) The function M is increasing.
(H3) f(x,−t) = −f(x, t) for all (x, t) ∈ Ω× R.
(H4) There exist r ∈ [p, p∗) and C1, C2 positive constants with C1 < C2, such

that

C1|t|r−1 ≤ f(x, t) ≤ C2|t|r−1, ∀(x, t) ∈ Ω× (R+ ∪ {0}).
Moreover, δ ≤ (a+ 1)r +N(1− r

p ).
(H5) The well known Ambrosetti-Rabinowitz superlinear condition holds,

0 < ξ

∫ t

0

f(x, s)ds ≤ tf(x, t), ∀(x, t) ∈ Ω× R+, and some ξ ∈ (p, p∗).

We denote by λ1 the first eigenvalue of the problem

−div(|x|−ap|∇u|p−2∇u) = λ

∫
Ω

|x|−δ|u|p−2udx in Ω,

u = 0 on ∂Ω,
(1.3)

Note that the first eigenvalue of (1.3) is given by

λ1 = inf
{∫

Ω

|x|−ap|∇u|pdx;u ∈ D1,p
a ,

∫
Ω

|x|−δ|u|pdx = 1
}
, (1.4)
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and it is positive (see for instance [29]). The main results of our paper are read as
follows.

Theorem 1.1. Assume (H1)–(H5) hold, and r = p. Then (1.1) has a nontrivial
solution for each λ ∈ (0, m0

C2
λ1).

Theorem 1.2. Assume (H1)–(H5) hold, and and p < r < p∗. Then (1.1) has a
nontrivial solution for each λ > 0.

This article is organized as follows. In section 2 we provide some preliminary
results and the variational framework. In section 3 we constructed the auxiliary
problem. Section 4 is devoted to the Palais-Smale condition for the Euler-Lagrange
functional associated to problem (1.1). In sections 5 and 6 we prove Theorems 1.1
and 1.2, respectively.

2. Preliminary results and variational framework

Consider Ω ⊂ RN a smooth domain with 0 ∈ Ω, N ≥ 3, 1 < p < N , a <
(N − p)/p, a ≤ b < a+ 1, and p∗ = Np/(N −dp), where d = 1 +a− b. From [6, 30]
we have (∫

Ω

|x|−α|u|rdx
)p/r

≤ C
∫

Ω

|x|−ap|∇u|pdx, ∀u ∈ D1,p
a , (2.1)

where 1 ≤ r ≤ Np/(N − p), α ≤ (a + 1)r + N(1 − r
p ), D1,p

a is the completion of
C∞0 (Ω) with respect to the norm

‖u‖ =
(∫

Ω

|x|−ap|∇u|pdx
)1/p

;

thus we have the continuous embedding of D1,p
a in the weighted space Lr(Ω, |x|−α).

This space is Lr(Ω) with the norm

‖u‖r,α =
(∫

Ω

|x|−α|u|rdx
)1/r

.

Moreover, this embedding is compact if 1 ≤ r < Np/(N − p) and α < (a + 1)r +
N(1 − r

p ). The best constant of the weighted Caffarelli-Kohn-Nirenberg type (see
[6]) inequality will be denoted by C∗a,p, which is characterized by

C∗a,p = inf
u∈D1,p

a \{0}

∫
Ω
|x|−ap|∇u|pdx( ∫

Ω
|x|−bp∗ |u|p∗dx

)p/p∗ .
We will look for solutions of (1.1) by finding critical points of the Euler-Lagrange

functional I : D1,p
a → R given by

I(u) =
1
p
M̂(‖u‖p)− λ

∫
Ω

|x|−δF (x, u) dx− 1
p∗

∫
Ω

|x|−bp
∗
|u|p

∗
dx,

where M̂(t) :=
∫ t

0
M(s)ds and F (x, t) =

∫ t
0
f(x, s)ds. Note that I ∈ C1 and

I ′(u)(φ) = M(‖u‖p)
∫

Ω

|x|−ap|∇u|p−2∇u∇φdx

− λ
∫

Ω

|x|−δf(x, u)φdx−
∫

Ω

|x|−bp
∗
|u|p

∗−2uφ dx,

for all φ ∈ D1,p
a .
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The next Lemma will be useful, and can be easily proved by using [11, Lemma
4.1].

Lemma 2.1 (S+ condition). Suppose that Ω ⊂ RN is a bounded smooth domain,
0 ∈ Ω, 1 < p < N , −∞ < a < N−p

p , and (un) ⊂ D1,p
a such that

un ⇀ u, as n→∞,

lim sup
n→∞

∫
Ω

|x|−ap|∇un|p−2∇un∇(un − u)dx ≤ 0,

then there exists a subsequence strongly convergent in D1,p
a .

3. Auxiliary problem

To proof Theorems 1.1 and 1.2, we will use a version of the mountain pass the-
orem due to Ambrosetti and Rabinowitz [3], but since we are working with critical
growth and a nonlocal operator without more information about the behavior of
the function M at infinity, we need to make a truncation on function M . So we
will prove that the Euler-Lagrange functional associated to (1.1) has the Mountain
Pass Geometry.

From (H2), there exists t0 > 0 such that m0 = M(0) < M(t0) < ξ
pm0, where ξ

is given by (H5). We set

M0(t) :=

{
M(t), if 0 ≤ t ≤ t0,
M(t0), if t ≥ t0.

From (H2) we obtain

m0 ≤M0(t) ≤ ξ

p
m0, ∀t ≥ 0. (3.1)

The proofs of the Theorems 1.1 and 1.2 are based on a careful study of solutions
of the auxiliary problem

L0(u) = λ|x|−δf(x, u) + |x|−bp
∗
|u|p

∗−2u in Ω,
u = 0 on ∂Ω,

(3.2)

where

L0(u) := −
[
M0

(∫
Ω

|x|−ap|∇u|p dx
)]

div
(
|x|−ap|∇u|p−2∇u

)
.

We will look for solutions of (3.2) by finding critical points of the Euler-Lagrange
functional J : D1,p

a → R given by

J(u) =
1
p
M̂0(‖u‖p)− λ

∫
Ω

|x|−δF (x, u) dx− 1
p∗

∫
Ω

|x|−bp
∗
|u|p

∗
dx,

where M̂0(t) :=
∫ t

0
M0(s)ds. Note that J is C1 and

J ′(u)(φ) = M0(‖u‖p)
∫

Ω

|x|−ap|∇u|p−2∇u∇φdx

− λ
∫

Ω

|x|−δf(x, u)φdx−
∫

Ω

|x|−bp
∗
|u|p

∗−2uφ dx,

for all φ ∈ D1,p
a .
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4. Palais-Smale Condition

In this section we verify that, under the hypotheses (H1)–(H4), the functional J
satisfies the Palais-Smale condition below a given level.

Lemma 4.1. Let (un) be a bounded sequence in D1,p
a such that

J(un)→ c and J ′(un)→ 0 in (D1,p
a )−1, as n→∞.

Suppose (H1)–(H5) hold, and

c <
(1
ξ
− 1
p∗

)(
m0C

∗
a,p

) p∗
p∗−p .

Then there exists a subsequence strongly convergent in D1,p
a .

Proof. Since (un) is bounded in D1,p
a , passing to a subsequence, if necessary, we

have

un ⇀ u in D1,p
a ,

un → u in Ls(Ω, |x|−σ),

un(x)→ u(x) a.e. in Ω,

‖un‖ → t0 ≥ 0,

as n→ +∞, where 1 ≤ s < p∗ and σ < (a+ 1)s+N(1− s/p). Moreover, using the
concentration-compactness principle due to Lions (cf. [21, 30]), we obtain at most
countable index set Λ, sequences (xi) ⊂ RN , (µi), (νi) ⊂ (0,∞), such that

|x|−ap|∇un|p ⇀ |x|−ap|∇u|p + µ and |x|−bp
∗
|un|p

∗
⇀ |x|−bp

∗
|u|p

∗
+ ν, (4.1)

as n→ +∞, in weak∗-sense of measures where

ν =
∑
i∈Λ

νiδxi
, µ ≥

∑
i∈Λ

µiδxi
, C∗a,pν

p/p∗

i ≤ µi, (4.2)

for all i ∈ Λ, where δxi
is the Dirac mass at xi ∈ Ω.

Now let k ∈ N. Without loss of generality we can suppose B2(0) ⊂ Ω, then for
every % > 0, we set ψ%(x) := ψ((x − xk)/%) where ψ ∈ C∞0 (Ω, [0, 1]) is such that
ψ ≡ 1 on B1(0), ψ ≡ 0 on Ω\B2(0), and |∇ψ| ≤ 1. Observe that (ψ%un) is bounded
in D1,p

a . So we have J ′(un)(ψ%un)→ 0; that is,

M0(‖un‖p)
∫

Ω

un|∇un|p−2∇un∇ψ%
|x|ap

dx+ on(1)

= −M0(‖un‖p)
∫

Ω

|∇un|pψ%
|x|ap

dx+ λ

∫
Ω

f(x, un)ψ%un
|x|δ

dx+
∫

Ω

ψ%|un|p
∗

|x|bp∗
dx.

Since un → u in Lr
(
Ω, |x|−δ

)
, it follows from (4.1), (H1), (H4) and the Domi-

nated Convergence Theorem, that

lim sup
n→∞

[
M0(‖un‖p)

∫
Ω

un|∇un|p−2∇un∇ψ%
|x|ap

dx
]

≤ −m0

∫
Ω

|∇u|pψ%
|x|ap

dx−m0

∫
Ω

ψ%dµ+ λ

∫
Ω

f(x, u)ψ%u
|x|δ

dx+
∫

Ω

ψ%|u|p
∗

|x|bp∗
dx+

∫
Ω

ψ%dν.
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Using the Dominated Convergence Theorem again, we obtain∫
Ω

|∇u|pψ%
|x|ap

dx = o%(1),
∫

Ω

f(x, u)ψ%u
|x|δ

dx = o%(1),
∫

Ω

ψ%|u|p
∗

|x|bp∗
dx = o%(1),

where lim%→0+ o%(1) = 0. So, we obtain

lim
%→0+

{
lim sup
n→∞

[
M0(‖un‖p)

∫
Ω

un|∇un|p−2∇un∇ψ%
|x|ap

dx
]}

≤ lim
%→0+

[ ∫
Ω

ψ%dν −m0

∫
Ω

ψ%dµ
]
.

(4.3)

Now, we show that

lim
%→0+

[
lim sup
n→∞

M0(‖un‖p)
∫

Ω

|x|−apun|∇un|p−2∇un∇ψ%dx
]

= 0. (4.4)

Indeed, by Hölder’s Inequality,∣∣∣ ∫
Ω

un|∇un|p−2∇un∇ψ%
|x|ap

dx
∣∣∣ ≤ ‖un‖p−1

(∫
Ω

|un∇ψ%|p

|x|ap
dx
)1/p

.

Since un is bounded in D1,p
a , M0 is continuous, and supp(ψ%) ⊂ B(xk; 2%), there

exists L > 0 such that

M0(‖un‖p)
∣∣ ∫

Ω

un|∇un|p−2∇un∇ψ%
|x|ap

dx
∣∣ ≤ L(∫

B(xk;2%)

|un∇ψ%|p

|x|ap
dx
)1/p

.

Using the dominated convergence theorem and Hölder’s inequality, we obtain

lim sup
n→∞

[
M0(‖un‖p)

∣∣∫
Ω

un|∇un|p−2∇un∇ψ%
|x|ap

dx
∣∣]

≤ L
(∫

B(xk;2%)

|u|p|∇ψ%|p

|x|ap
dx
)1/p

≤ L
(∫

B(xk;2%)

|∇ψ%|Ndx
)1/N(∫

B(xk;2%)

(
|x|−ap|u|p

) N
N−p dx

)N−p
Np

≤ L|B(xk; 2%)|1/N
(∫

Ω

χB(xk;2%)

(
|x|−ap|u|p

) N
N−p dx

)N−p
Np

.

Letting %→ 0+ on the above expression, we obtain (4.4). Thus, we conclude from
(4.3) that

0 ≤ lim
ρ→0+

[ ∫
Ω

ψ%dν −m0

∫
Ω

ψ%dµ
]
.

That is,

0 ≤ lim
ρ→0+

[ ∫
B(xk;2%)

ψ%dν −m0

∫
B(xk;2%)

ψ%dµ
]

= ν({xk})−m0µ({xk})

≤
∑
i∈Λ

νiδxi({xk})−m0

∑
i∈Λ

µiδxi({xk})

= νk −m0µk.

So, we have m0µk ≤ νk. It follows from (4.2) that

νk ≥ (m0C
∗
a,p)

p∗
p∗−p ≥

(1
θ
− 1
p∗
)
(m0C

∗
a,p)

p∗/(p∗−p). (4.5)
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Now we shall prove that the above expression can not occur, and therefore the
set Λ is empty. Indeed, arguing by contradiction, let us suppose that (4.5) hold for
some k ∈ Λ. Thus, once that m0 ≤ M0(t) ≤ ξ

pm0, for all t ∈ R, and by using (f3)
we have

c = J(un)− 1
ξ
J ′(un)(un) + on(1)

≥
(m0

p
− ξm0

ξp

)
‖un‖p − λ

∫
Ω

F (x, un)− 1
ξ f(x, un)un
|x|δ

dx

+
(1
ξ
− 1
p∗
)∫

Ω

|un|p
∗

|x|bp∗
dx+ on(1)

≥
(1
ξ
− 1
p∗
)∫

Ω

|un|p
∗
ψ%

|x|bp∗
dx+ on(1).

Letting n→ +∞, we obtain

c ≥
(1
ξ
− 1
p∗
)
(m0C

∗
a,p)

p∗
p∗−p .

But this is a contradiction. Thus Λ is empty and it follows that un → u in
Lp

∗ (
Ω, |x|−bp∗

)
.

Now we will prove that un → u in D1,p
a . Indeed, since un → u in Lr(Ω, |x|−δ)

and in Lp
∗
(Ω, |x|−bp∗), it follows from the dominated convergence theorem that

lim
n→+∞

∫
Ω

f(x, un)(un − u)
|x|δ

dx = lim
n→+∞

∫
Ω

|un|p
∗−2un(un − u)
|x|bp∗

dx = 0.

Therefore, as (un) is bounded in D1,p
a , J ′(un)(un − u)→ 0 in (D1,p

a )−1, ‖un‖ → t0,
as n→∞, and as M is continuous and positive, we conclude that

lim
n→∞

∫
Ω

|x|−ap|∇un|p−2∇un∇(un − u)dx = 0.

It follows from Lemma 2.1 that un → u in D1,p
a . �

5. Proof of Theorem 1.1

In this section we prove Theorem 1.1, which concerns to problem (1.1) when
r = p. The next two lemmas show that the functional J has the Mountain Pass
geometry.

Lemma 5.1. Suppose that r = p and let λ1 be as in (1.4). Assume that the
conditions (H1)–(H4) hold. Then, there exist positive numbers ρ and α such that

J(u) ≥ α > 0,∀u ∈ D1,p
a , with ‖u‖ = ρ,

for all λ ∈ (0, m0
C2
λ1).

Proof. Let λ ∈ (0, m0
C2
λ1). From (H1), (H3), (H4), (1.4), and Caffarelli-Khon-

Nirenberg inequality, we obtain

J(u) ≥
(
m0 −

λC2

λ1

)1
p
‖u‖p − 1

p∗
C̃‖u‖p

∗
.

Since p < p∗ and λ < m0
C2
λ1. The result follows by choosing ρ > 0 small enough. �

Lemma 5.2. Suppose that r = p. Assume that the conditions (H1), (H3), (H4)
hold. For each λ > 0, there exists e ∈ D1,p

a with J(e) < 0 and ‖e‖ > ρ.
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Proof. Fix v0 ∈ D1,p
a \{0}, with v0 > 0 in Ω. Using (3.1) and (H4) we obtain

J(tv0) ≤ ξ

p2
m0t

p‖v0‖p −
λC1

p
tp
∫

Ω

|v0|p

|x|δ
dx− tp

∗

p∗

∫
Ω

|v0|p
∗

|x|bp∗
dx.

Since p < p∗, we have limt→+∞ J(tv0) = −∞. Thus, there exists t̄ > 0 large
enough, such that t̄‖v0‖ > ρ and J(t̄v0) < 0. The result follows by considering
e = t̄v0. �

Using a version of the mountain pass theorem without the (PS) condition (see
[28]), for each λ ∈ (0, m0

C2
λ1), there exists a sequence (un) ∈ D1,p

a , satisfying

J(un)→ cλ and J ′(un)→ 0 in (D1,p
a )−1,

where

0 < cλ = inf
γ∈Γ

max
t∈[0,1]

J(γ(t)),

Γ :=
{
γ ∈ C([0, 1],D1,p

a ) : γ(0) = 0, γ(1) = t̄v0

}
,

and v0 ∈ D1,p
a is such that v0 > 0.

To obtain the level cλ below the level given by Lemma 4.1, we will give some
estimates. We define the Sobolev space

W 1,p
a,b (Ω) =

{
u ∈ Lp

∗
(Ω, |x|−bp

∗
) : |∇u| ∈ Lp(Ω, |x|−ap)

}
,

with respect to the norm

‖u‖W 1,p
a,b (Ω) = ‖u‖p∗,bp∗ + ‖∇u‖p,ap.

We consider the best constant of the weighted Caffarelli-Kohn-Nirenberg type given
by

S̃a,p = inf
u∈W 1,p

a,b (RN )\{0}

{ ∫
RN |x|−ap|∇u|pdx( ∫

RN |x|−bp∗ |u|p∗dx
)p/p∗ } .

We also set R1,p
a,b(Ω) as the subspace of W 1,p

a,b (Ω) of the radial functions, more pre-
cisely

R1,p
a,b(Ω) =

{
u ∈W 1,p

a,b (Ω) : u(x) = u(|x|)
}
,

with respect to the induced norm

‖u‖R1,p
a,b(Ω) = ‖u‖W 1,p

a,b (Ω).

Horiuchi [17] proved that

S̃a,p,R = inf
u∈R1,p

a,b(RN )\{0}

{ ∫
RN |x|−ap|∇u|pdx( ∫

RN |x|−bp∗ |u|p∗dx
)p/p∗ }

is achieved by functions of the form

uε(x) = ka,p(ε)vε(x), ∀ε > 0,

where

ka,p(ε) = cε(N−dp)/dp2 vε(x) =
(
ε+ |x|

dp(N−p−ap)
(p−1)(N−dp)

)−( N−dp
dp )

·

Moreover, uε satisfies∫
RN

|x|−ap|∇uε|pdx =
∫

RN

|x|−bp
∗
|uε|p

∗
dx = (S̃a,p,R)

p∗
p∗−p . (5.1)
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From (5.1) we obtain∫
RN

|x|−ap|∇vε|pdx = [ka,p(ε)]−p(S̃a,p,R)
p∗

p∗−p , (5.2)∫
RN

|x|−bp
∗
|vε|p

∗
dx = [ka,p(ε)]−p

∗
(S̃a,p,R)

p∗
p∗−p . (5.3)

Let R0 be a positive constant and set Ψ(x) ∈ C∞0 (RN ) such that 0 ≤ Ψ(x) ≤ 1,
Ψ(x) = 1, for all |x| ≤ R0, and Ψ(x) = 0, for all |x| ≥ 2R0. Set

ṽε(x) = Ψ(x)vε(x), (5.4)

for all x ∈ RN and for all ε > 0. Without loss of generality we can consider
B(0; 2R0) ⊂ Ω.

Lemma 5.3. With the above notation we have

lim
ε→0+

‖ṽε‖p( ∫
Ω
|x|−bp∗ |ṽε|p∗dx

)p/p∗ = 0.

Proof. By a straightforward computation we obtain

‖ṽε‖p ≤ [ka,p(ε)]−p(S̃a,p,R)
p∗

p∗−p + C, (5.5)∫
Ω

|x|−bp
∗
|ṽε|p

∗
dx = ε−

N−dp
dp p∗ · C, ∀ε ∈ (0, 1), (5.6)

where C denotes a positive constant. Therefore, for all ε ∈ (0, 1), from (5.5) and
(5.6) we obtain

‖ṽε‖p( ∫
Ω
|x|−bp∗ |ṽε|p∗dx

)p/p∗ ≤ [ka,p(ε)]−p(S̃a,p,R)
p∗

p∗−p + C(
ε−

N−dp
dp p∗ · C

)p/p∗
=
c−p(S̃a,p,R)

p∗
p∗−p ε

N−dp
dp (p−1) + Cε

N−dp
dp p

C
.

Since p > 1, we have

lim
ε→0+

‖ṽε‖p( ∫
Ω
|x|−bp∗ |ṽε|p∗dx

)p/p∗ = 0.

�

Lemma 5.4. Let λ ∈ (0, m0
C2
λ1). Assume that (H1)–(H5) hold. Set

l∗ = min
{(1

p
m0 −

1
ξ
M0(t0)

)
t0,
(1
ξ
− 1
p∗
)
(m0C

∗
a,p)

p∗
p∗−p

}
.

Then, there exists ε1 ∈ (0, 1) such that

sup
t≥0

J(tṽε) < l∗,

for all ε ≤ ε1.

Proof. Let 0 < ε < 1 and ṽε be as in (5.4). Since from Lemmas 5.1 and 5.2 the
functional J satisfies the Mountain Pass geometry, for each λ ∈ (0, m0

C2
λ1), there

exists tε such that
sup
t≥0

J(tṽε) = J(tεṽε),
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for each λ ∈ (0, m0
C2
λ1). So, we have

sup
t≥0

J(tṽε) =
1
p
M̂(‖tεṽε‖p)− λ

∫
Ω

|x|−δF (x, tεṽε)dx−
1
p∗

∫
Ω

|x|−bp
∗
tp
∗

ε |ṽε|p
∗
dx

≤ ξ

p2
m0t

p
ε‖ṽε‖p −

1
p∗
tp
∗

ε

∫
Ω

|x|−bp
∗
|ṽε|p

∗
dx,

for each λ ∈ (0, m0
C2
λ1). Now we consider the function g : R+ ∪ {0} → R+ ∪ {0},

given by

g(s) =
( ξ
p2
m0‖ṽε‖p

)
sp −

( 1
p∗

∫
Ω

|x|−bp
∗
|ṽε|p

∗
dx
)
sp

∗
.

It is easy to see that

s̄ =
( ξ

pm0‖ṽε‖p∫
Ω
|x|−bp∗ |ṽε|p∗dx

) 1
p∗−p

is a maximum of g and we have

g(s̄) =
(1
p
− 1
p∗
)(ξ
p
m0

) p∗
p∗−p

( ‖ṽε‖p( ∫
Ω
|x|−bp∗ |ṽε|p∗dx

)p/p∗ ) p∗
p∗−p

.

So, we have

sup
t≥0

J(tṽε) ≤
(1
p
− 1
p∗
)(ξ
p
m0

) p∗
p∗−p

( ‖ṽε‖p( ∫
Ω
|x|−bp∗ |ṽε|p∗dx

)p/p∗ ) p∗
p∗−p

,

for each λ ∈ (0, m0
C2
λ1).

It follows from Lemma 5.3 that there exists 0 < ε1 < 1 such that

sup
t≥0

J(tṽε) < l∗,

for all ε ≤ ε1 and for each λ ∈ (0, m0
C2
λ1). �

Remark 5.5. Let λ ∈ (0, m0
C2
λ1) and let us consider the path γ∗(t) = t(t̄vε1),

for t ∈ [0, 1], which belongs to Γ. It follows from Lemma 5.4 that we obtain the
following estimate

0 < cλ = inf
γ∈Γ

max
t∈[0,1]

J(γ(t)) ≤ sup
s≥0

J(sṽε1) < l∗,

for all λ ∈ (0, m0
C2
λ1).

Lemma 5.6. Suppose that r = p, λ ∈ (0, m0
C2
λ1), and (H1), (H2), (H4), (H5) hold.

Let (un) ∈ D1,p
a be a sequence such that

J(un)→ cλ and J ′(un)→ 0 in (D1,p
a )−1, as n→ +∞.

Then, for all n ∈ N, we have ‖un‖p ≤ t0.

Proof. Suppose by contradiction that for some n ∈ N we have ‖un‖p > t0. From the
definition of M0(t), (H5), and (3.1) we have that (un) bounded. Thus, we obtain

|J ′(un) · (un)| ≤ |J ′(un)| ‖(un)‖ → 0,
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as n→ +∞. Which implies

cλ = J(un)− 1
ξ
J ′(un)(un) + on(1)

≥ 1
p
M̂0(‖un‖p)−

1
ξ
M0(t0)‖un‖p + on(1)

≥
(1
p
m0 −

1
ξ
M0(t0)

)
‖un‖p + on(1).

(5.7)

Since m0 < M(t0) < ξ
pm0 we have 1

pm0 − 1
ξM0(t0) > 0. So we obtain

cλ ≥
(1
p
m0 −

1
ξ
M0(t0)

)
t0 > 0.

Since λ ∈ (0, m0
C2
λ1), this contradicts the Remark 5.5. Hence we conclude that

‖un‖p ≤ t0. �

Proof of Theorem 1.1. Let λ ∈ (0, m0
C2
λ1). It follows from Remark 5.5 that

cλ <
(1
ξ
− 1
p∗
)
(m0C

∗
a,p)

p∗
p∗−p . (5.8)

From Lemmas 5.1 and 5.2, there exists a bounded sequence (un) ⊂ D1,p
a such that

J(un) → cλ and J ′(un) → 0, (D1,p
a )−1, as n → ∞. Since (5.8) holds, it follows

from Lemma 4.1 that, up to a subsequence, un → uλ strongly in D1,p
a . Thus uλ is

a weak solution of problem (3.2). By Lemma 5.6, we conclude that uλ is a weak
solution of problem (1.1). �

6. Proof of Theorem 1.2

Here we consider the case p < r < p∗. The main idea of the proof is essentially
the same as in Theorem 1.2, we apply the mountain pass theorem and use Lemma
4.1. The next two lemmas show that the functional J has the Mountain Pass
geometry.

Lemma 6.1. Suppose that p < r < p∗. Assume that the conditions (H1)–(H4)
hold. There exist positive numbers ρ and α such that

J(u) ≥ α > 0,∀u ∈ D1,p
a , with ‖u‖ = ρ.

Proof. From (H1), (H3), (H4), and Caffarelli-Kohn-Nirenberg inequality, we obtain

J(u) ≥ m0

p
‖u‖p − λC̃2‖u‖r −

1
p∗
C̃‖u‖p

∗
.

Since p < r < p∗, the result follows by choosing ρ > 0 small enough. �

Lemma 6.2. Suppose that p < r < p∗. For all λ > 0, there exists e ∈ D1,p
a with

J(e) < 0 and ‖e‖ > ρ.

Proof. Fix v0 ∈ D1,p
a \{0}, with v0 > 0 in Ω. Using (3.1) and (H4) we obtain

J(tv0) ≤ ξ

p2
m0t

p‖v0‖p −
λC1

r
tr
∫

Ω

|v0|r

|x|δ
dx− tp

∗

p∗

∫
Ω

|v0|p
∗

|x|bp∗
dx.

Since p < r < p∗, we have limt→+∞ J(tv0) = −∞. Thus, there exists t̄ > 0 large
enough, such that t̄‖v0‖ > ρ and J(t̄v0) < 0. The result follows by considering
e = t̄v0. �
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Using a version of the mountain pass theorem without the (PS) condition (see
[28]), there exists a sequence (un) ∈ D1,p

a , satisfying

J(un)→ cλ and J ′(un)→ 0 in (D1,p
a )−1,

where

0 < cλ = inf
γ∈Γ

max
t∈[0,1]

J(γ(t)),

Γ :=
{
γ ∈ C([0, 1],D1,p

a ) : γ(0) = 0, γ(1) = t̄v0

}
,

and v0 ∈ D1,p
a is such that v0 > 0.

Remark 6.3. From Lemmas 6.1 and 6.2, Lemma 5.4 holds for all λ > 0, when
p < r < p∗. So, if we consider the path γ∗(t) = t(t̄vε1), for t ∈ [0, 1], which belongs
to Γ, we obtain the estimate

0 < cλ = inf
γ∈Γ

max
t∈[0,1]

J(γ(t)) ≤ sup
s≥0

J(sṽε1) < l∗

for all λ > 0.

The next Lemma is a version of the Lemma 5.6 when p < r < p∗. By hypothesis
(H5) and Remark 6.3, its proof is similar to the proof of Lemma 5.6.

Lemma 6.4. Suppose that p < r < p∗, and (H1), (H2), (H4), (H5) hold. Let
(un) ∈ D1,p

a be a sequence such that

J(un)→ cλ and J ′(un)→ 0 in (D1,p
a )−1, as n→ +∞.

Then, for all n ∈ N, we have ‖un‖p ≤ t0.

Proof of Theorem 1.2. It follows from Remark 6.3 that

cλ <
(1
ξ
− 1
p∗
)
(m0C

∗
a,p)

p∗
p∗−p . (6.1)

From Lemmas 6.1 and 6.2, there exists a bounded sequence (un) ⊂ D1,p
a such that

J(un) → cλ and J ′(un) → 0, (D1,p
a )−1, as n → ∞. Since (6.1) holds, it follows

from Lemma 4.1 that, up to a subsequence, un → uλ strongly in D1,p
a . Thus uλ is

a weak solution of problem (3.2). Moreover, by Lemma 5.6 we conclude that uλ is
a weak solution of problem (1.1). �
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14 M. B. GUIMARÃES, R. D. S. RODRIGUES EJDE-2016/113

Rodrigo da Silva Rodrigues
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