RADIAL SOLUTIONS WITH A PRESCRIBED NUMBER OF ZEROS FOR A SUPERLINEAR DIRICHLET PROBLEM IN ANNULAR DOMAIN

BOUBKER AZEROUAL, ABDERRAHIM ZERTITI

Abstract

In this article we study the existence of radially symmetric solutions to a superlinear Dirichlet problem in annular domain in \mathbb{R}^{N}. Using fairly straightforward tools of the theory of ordinary differential equations, we show that if k is a sufficiently large nonnegative integer, there is a solution u which has exactly $(k-1)$ interior zeros.

1. Introduction

The main goal in this article is to study the existence of radially symmetric solutions $u: \mathbb{R}^{N} \rightarrow \mathbb{R}$ to the superlinear boundary-value problem

$$
\begin{gather*}
-\Delta u(x)=f(u)+g(|x|) \quad \text { if } x \in \Omega \\
u=0 \quad \text { if } x \in \partial \Omega, \tag{1.1}
\end{gather*}
$$

where $|x|$ denotes the standard norm of x in $\mathbb{R}^{N}, N \geq 3$ and Ω is the annulus of \mathbb{R}^{N} defined by

$$
\Omega=\mathbf{C}(0, R, T)=\left[x \in \mathbb{R}^{N}: R<|x|<T\right]
$$

where R and T are two real numbers such that $0<R<T, f: \mathbb{R} \rightarrow \mathbb{R}$ is a nonlinear function and $g \in C^{1}([R, T], \mathbb{R})$.

We will focus on studying the problem (1.1) with the following hypotheses:
(H1) f is locally Lipschitzian,
(H2) f is superlinear i.e.,

$$
\lim _{|u| \rightarrow \infty} \frac{f(u)}{u}=+\infty
$$

(H3) there exists $m>0$ such that

$$
N F(u)-\frac{N-2}{2} u f(u)-\frac{N+2}{2}\|g\||u|-T\left\|g^{\prime}\right\||u| \geq-m
$$

where $F(u)=\int_{0}^{u} f(s) \mathrm{d} s$ and $\|g\|=\sup _{R \leq t \leq T}|g(t)|$,
(H4) $u \rightarrow f(u)$ is increasing for $|u|$ large.

[^0]From (H2) and L'Hopital's Rule it follows that

$$
\begin{equation*}
\lim _{|u| \rightarrow \infty} \frac{F(u)}{u^{2}}=+\infty \tag{1.2}
\end{equation*}
$$

In recent decades, the existence of solutions to the superlinear Dirichlet problem (1.1) in general domains has been widely studied. Most of these results are based on variational methods. This requires finding a critical point of some energy functional in Sobolev spaces, by assuming that f is locally Lipschitz and satisfies a growth condition. A standard way to do this is to apply the mountain pass theorem. In this context, we mention as examples the authors Berestyki, Bahri and Struwe. When the growth of the nonlinearity surpasses the critical exponent of the Sobolev embedding theorem and the domain is the ball, Castro and Kurepa [2] proved the superlinear Dirichlet problem (1.1) has infinitely many radially symmetric solutions by offering sufficient condition and using the "shooting method" and "phase-plane angle analysis". However, these arguments are quite difficult and provide no specific information about the solution. In particular we ask whether radial solutions exist with prescribed numbers of zeros. Mcleod, Troy and Weissler in [6] studied this question for the following problem

$$
\begin{gathered}
\Delta u(x)+f(u)=0 \quad \text { if } x \in \mathbb{R}^{N} \\
u(x) \rightarrow 0 \quad \text { as }|x| \rightarrow+\infty
\end{gathered}
$$

Thereafter, in the case of the ball, Iaia and Pudipeddi [4] answered the question above and give an easy proof by using Bessel functions and proved the problem (1.1) has infinitely many radially symmetric solutions with (H1)-(H4) and adding the additional condition
(H5) There exists a $0<k \leq 1$, such that

$$
\lim _{u \rightarrow \infty}\left(\frac{u}{f(u)}\right)^{N / 2}\left(N F(k u)-\frac{N-2}{2} u f(u)-\frac{N+2}{2}\|g\||u|-T\left\|g^{\prime}\right\||u|\right)=+\infty
$$

An important contribution was made by Gidas, Li and Nirenberg [3] who showed that if Ω is a ball, then all positive solutions of the problem

$$
\begin{gathered}
\Delta u(x)+f(u)=0 \quad \text { if } x \in \Omega \\
u=0 \quad \text { if } x \in \partial \Omega
\end{gathered}
$$

are radially symmetric. This is not the case in the annulus domain. The difficulty resides with the fact that a positive radial solution in annular domain is not monotonic in the radial direction. Our aim here is to extend the results in [2, 4] to the case in an annular domain, by assuming (H1)-(H4) without adding (H5). Our method is based on the same approach used by Iaia and Pudipeddi 4, 7; by approximating the solution of (1.1) with an appropriate linear equation. At last, we note that by (H2) the assumption (H3) is more general than (H5)

Our paper is organized as follows: in Section 2 we begin to establish some preliminary results concerning the existence of radial solutions and by analysing the energy we show that the energy function converges uniformly to infinity. In Section 3 we obtain to localize the zeros of the solution and finally, we shall prove the following theorem.

Theorem 1.1. If (H 1$)-(\mathrm{H} 4)$ are satisfied then 1.1$)$ has infinitely many radially symmetric solutions u with $u^{\prime}(R) \neq 0$. For $k \in \mathbb{N}^{*}$ sufficiently large there exist two
radially symmetric solutions u_{k} and w_{k} of problem 1.1) which have exactly $(k-1)$ zeros on (R, T) such that $w_{k}^{\prime}(R)<0<u_{k}^{\prime}(R)$.

2. Preliminaries

The existence of radially symmetric solution $u(x)=u(r)$ with $r=|x|$ of 1.1) is equivalent to the existence of a solution u of the nonlinear ordinary differential equation

$$
\begin{gather*}
u^{\prime \prime}(r)+\frac{N-1}{r} u^{\prime}(r)+f(u)+g(r)=0 \quad \text { if } R<r<T \tag{2.1}\\
u(R)=u(T)=0 \tag{2.2}
\end{gather*}
$$

To solve (2.1-2.2, we apply the shooting method, by considering the initial value problem

$$
\begin{gather*}
u^{\prime \prime}(r)+\frac{N-1}{r} u^{\prime}(r)+f(u)+g(r)=0 \quad \text { if } R<r<T, \tag{2.3}\\
u(R)=0 \quad \text { and } \quad u^{\prime}(R)=d
\end{gather*}
$$

with d an arbitrary nonzero real number. Denote $u(r, d)$ as the solution of 2.3) which depends on parameter d. By varying d, we shall attempt to choose the parameter appropriately to have (2.2) and if k is a sufficiently large nonnegative integer then $u(r, d)$ has exactly $(k-1)$ zeros on (R, T).
Lemma 2.1. Let $d>0$, assume (H1) and (H2) hold. Then (2.3) has a unique solution $u(r, d)$ defined on interval $[R, T]$.

Proof. The proof is divided into two steps. First we show the existence and uniqueness of the local solution of 2.3 . In the second step we prove that a unique solution can be extended to a maximal interval $[R, T]$.
Step 1. We consider the initial value problem

$$
\begin{gather*}
u^{\prime \prime}(r)+\frac{N-1}{r} u^{\prime}(r)+f(u)+g(r)=0 \quad \text { if } \rho<r<T \tag{2.4}\\
u(\rho)=a, \quad u^{\prime}(\rho)=b
\end{gather*}
$$

with $R \leq \rho<T$ and $(a, b) \in \mathbb{R}^{2}$. Let $u(r)$ be a solution of (2.4). Multiplying (2.1) by r^{N-1} and by integrating on (ρ, r) with the initial condition gives

$$
\begin{equation*}
u^{\prime}(r)=\frac{1}{r^{N-1}}\left(b \rho^{N-1}-\int_{\rho}^{r} t^{N-1}(f(u)+g(t)) \mathrm{d} t\right) \tag{2.5}
\end{equation*}
$$

Integrating this, we obtain

$$
\begin{equation*}
u(r)=a+\frac{b \rho^{N-1}}{N-2}\left(\frac{1}{\rho^{N-2}}-\frac{1}{r^{N-2}}\right)-\int_{\rho}^{r} \frac{1}{t^{N-1}}\left(\int_{\rho}^{t} s^{N-1}(f(u)+g(s)) \mathrm{d} s\right) \mathrm{d} t \tag{2.6}
\end{equation*}
$$

Conversely, if $u(r)$ is a continuous function and satisfies 2.6 then u is a solution of 2.4). Let $\varepsilon>0$ and $\Psi(u)$ be equal to the right hand side of 2.6 where $X=C([\rho, \rho+\varepsilon], \mathbb{R})$ the Banach space of real continuous functions on $[\rho, \rho+\varepsilon]$ with uniform norm. By $(H 1)$ we can choose ε sufficiently small such that Ψ is a contraction mapping. This enables us to conclude that the problem 2.3 has a unique solution $u(r, d)$ defined on $[R, R+\varepsilon]$ for ε sufficiently small (we take $a=0$, $b=d$ and $\rho=R$ in (2.4).
Step 2. Let $u(r, d)=u(r)$ be the unique solution of 2.3) and denote by $\left[R, R_{1}\right.$ [its maximal domain. We will show that $R_{1}=T$. Otherwise, we suppose that $R_{1}<T$.

Then we claim that u is bounded on $\left[R, R_{1}[\right.$. We define the energy function of a solution of (2.3) as

$$
\begin{equation*}
E(r, d)=E(r)=\frac{u^{\prime 2}(r)}{2}+F(u(r)) \quad \forall r \in\left[R, R_{1}\right) \tag{2.7}
\end{equation*}
$$

Then we see from 1.2 that $F(u)>0$ for u large enough so there exists a $J>0$ such that

$$
\begin{equation*}
F(u)>-J \quad \forall u \in \mathbb{R} \tag{2.8}
\end{equation*}
$$

It follows from $1.2,2.7$ and 2.8 that

$$
E^{\prime}(r)=-u^{\prime} g(r)-\frac{N-1}{r} u^{\prime 2} \leq\|g\|\left|u^{\prime}\right| \leq\|g\| \sqrt{2(E+J)}
$$

Dividing by $\sqrt{2(E+J)}$ and integrating this on (R, r) we obtain

$$
\begin{gathered}
\sqrt{2(E+J)}-\sqrt{2(E(R)+J)} \leq\|g\|(r-R) \\
\left|u^{\prime}\right| \leq \sqrt{2(E(r)+J)} \leq\|g\|\left(R_{1}-R\right)+\sqrt{d^{2}+2 J}
\end{gathered}
$$

It follows that u^{\prime} is bounded on $\left[R, R_{1}[\right.$. Therefore, by the mean value theorem and since $u(R)=0$ we see that u is bounded on $\left[R, R_{1}[\right.$. By using this, 2.5 and 2.6 (we take $a=0, b=d$ and $\rho=R$) we deduce that $\left(u\left(r_{n}\right)\right)$ and $\left(u^{\prime}\left(r_{n}\right)\right)$ are Cauchy sequences for all sequence $\left(r_{n}\right)$ on $\left[R, R_{1}\right)$ increasing and converging to R_{1} which implies the existence of the finite limits

$$
\lim _{r \rightarrow R_{1}^{-}} u(r)=a, \lim _{r \rightarrow R_{1}^{-}} u^{\prime}(r)=b
$$

Now we consider the initial value problem

$$
\begin{gathered}
v^{\prime \prime}(r)+\frac{N-1}{r} v^{\prime}(r)+f(v)+g(r)=0 \quad \text { if } r>R_{1} \\
v\left(R_{1}\right)=a, \quad v^{\prime}\left(R_{1}\right)=b .
\end{gathered}
$$

By step 1 , there exists a $\varepsilon>0$ and a solution $v(r)$ defined on $\left[R_{1}, R_{1}+\varepsilon\right]$. Then it is easy to see that

$$
\widetilde{u}(r)= \begin{cases}u(r) & \text { if } R<r<R_{1} \\ v(r) & \text { if } R_{1}<r<R_{1}+\varepsilon\end{cases}
$$

is a solution of (2.3) on the interval $\left[R, R_{1}+\varepsilon\right]$ which contains the maximal domain. This is a contradiction. Hence $R_{1}=T$.

Remark 2.2. Using the Arzela-Ascoli theorem the solution $u(r, d)$ of 2.3 depends continuously on d in the sense that if the sequence $\left(d_{n}\right)$ converges to d, then the sequence of functions $u\left(., d_{n}\right)$ converges uniformly to $u(\cdot, d)$ on any bounded interval. A similar property is also true for $u^{\prime}\left(\cdot, d_{n}\right)$.

Remark 2.3. We can use the standard ODE existence-uniqueness theorem to obtain a local solution of 2.3 on $[R, R+\varepsilon]$ for some $\varepsilon>0$.

As $u^{\prime}(R, d)=d>0$ and by continuity then, there exists $r>R$ such that $u^{\prime}>0$ on (R, r). Denote $r_{0}(d)$ as the largest $r \in(R, T)$ such that $u^{\prime}>0$ on (R, r).

Lemma 2.4. Assume (H1) and (H2) hold. Then
(1) $\lim _{d \rightarrow+\infty} r_{0}(d)=R$.
(2) $\lim _{d \rightarrow+\infty} u\left(r_{0}(d), d\right)=+\infty$.

Proof. For (1), we argue by contradiction. Suppose that there exists $\varepsilon>0$ such that for all $\gamma>0$ there exists $d>\gamma$ for which

$$
R+\varepsilon \leq r_{0}(d)
$$

Denote $R_{0}=R+\varepsilon$. Then there exists a sequence $d_{n} \rightarrow+\infty$ such that

$$
\begin{gather*}
r_{0}\left(d_{n}\right) \geq R_{0} \\
u\left(r, d_{n}\right)>0, \quad u^{\prime}\left(r, d_{n}\right) \geq 0 \quad \forall r \in\left(R, R_{0}\right), \forall n \in \mathbb{N} . \tag{2.9}
\end{gather*}
$$

We set $\bar{r}=\left(R+R_{0}\right) / 2$ and $u\left(\bar{r}, d_{n}\right)=u_{n}(\bar{r})$. We now show that the sequence $\left(u_{n}(\bar{r})\right)$ is unbounded. Again by contradiction we suppose that there exists $M>0$ such that for all $n \in \mathbb{N}, 0<u_{n}(\bar{r}) \leq M$. By (2.6) (with $a=0, b=d_{n}$ and $\rho=R$) and u_{n} is increasing on $\left[R, R_{0}\right.$] we obtain

$$
\begin{aligned}
\frac{d_{n} R^{N-1}}{N-2}\left(\frac{1}{R^{N-2}}-\frac{1}{\bar{r}^{N-2}}\right) & =u_{n}(\bar{r})+\int_{R}^{\bar{r}} \frac{1}{t^{N-1}}\left(\int_{R}^{t} s^{N-1}(f(u)+g(s)) \mathrm{d} s\right) \mathrm{d} t \\
& \leq M+\frac{T^{2}}{N} \sup _{0 \leq \zeta \leq M}(|f(\zeta)|+\|g\|)<\infty
\end{aligned}
$$

which is a contradiction to $d_{n} \rightarrow+\infty$. Hence, the sequence $\left(u_{n}(\bar{r})\right)$ is unbounded and passing to subsequence we can suppose that

$$
\lim _{n \rightarrow+\infty} u_{n}(\bar{r})=+\infty
$$

Now, for all $n \in \mathbb{N}$, we denote

$$
M_{n}=\inf _{\bar{r} \leq r \leq R_{0}}\left\{\frac{f\left(u_{n}\right)}{u_{n}}+\frac{g(r)}{u_{n}}\right\}
$$

Since, $0<u_{n}(\bar{r}) \leq u_{n}(r)$ for all $r \in\left[\bar{r}, R_{0}\right]$ we see that

$$
M_{n} \geq \inf _{u_{n}(\bar{r}) \leq u \leq u_{n}\left(R_{0}\right)}\left\{\frac{f(u)}{u}\right\}-\frac{\|g\|}{u_{n}(\bar{r})}
$$

On the other hand, from (H2) and $\lim _{n \rightarrow+\infty} u_{n}(\bar{r})=+\infty$ we have $\lim _{n \rightarrow+\infty} M_{n}=$ $+\infty$. Thus, there exists $n_{0} \in \mathbb{N}$ such that $M_{n_{0}}>\mu_{2}$ where $\mu_{2}>0$ is the second eigenvalue of $-\left[\frac{d^{2}}{d r^{2}}+\frac{N-1}{r} \frac{d}{d r}\right]$ in $\left(\bar{r}, R_{0}\right)$ with Dirichlet boundary conditions. It is known that the first eigenfunction of this operator can be chosen to be positive. Then since the second eigenfunction is orthogonal to the first eigenfunction then necessarily the second Φ_{2} eigenfunction must be zero somewhere on $\left(\bar{r}, R_{0}\right)$. Then by Sturm comparison theorem since $\mu_{2}<M_{n_{0}}$ it follows that $u_{n_{0}}$ has at least one zero in $\left(\bar{r}, R_{0}\right)$. This is a contradiction with 2.9 and finally we deduce that $\lim _{d \rightarrow+\infty} r_{0}(d)=R$.

For (2), since $\lim _{d \rightarrow+\infty} r_{0}(d)=R$ then for $d>0$ sufficiently large we have $R<r_{0}(d)<T$. On the other hand, u has a local maximum at $r_{0}(d)$ then, there exists $r^{*} \in\left(r_{0}(d), T\right)$ such that u is decreasing and nonnegative on $\left(r_{0}(d), r^{*}\right)$. Now, we will show that

$$
\lim _{d \rightarrow+\infty} u\left(r_{0}(d), d\right)=+\infty
$$

Suppose that there exists a sequence $d_{n} \rightarrow+\infty$ such that $\left(u\left(r_{0}\left(d_{n}\right), d_{n}\right)\right)$ is bounded by M. From 2.5 we obtain that for all $n \in \mathbb{N}$ and for all $r \in\left(r_{0}\left(d_{n}\right), r^{*}\right)$

$$
r^{N-1} u^{\prime}(r)=d_{n} R^{N-1}-\int_{R}^{r} t^{N-1}(f(u)+g(t)) \mathrm{d} t \leq 0
$$

$$
\begin{aligned}
d_{n} R^{N-1} & \leq \int_{R}^{r} t^{N-1}(f(u)+g(t)) \mathrm{d} t \quad(0 \leq u \leq M) \\
& \leq \sup _{0 \leq \zeta \leq M}(|f(\zeta)|+\|g\|) \frac{T^{N}}{N}<\infty
\end{aligned}
$$

It follows that $\left(d_{n}\right)$ is bounded which is a contradiction to $d_{n} \rightarrow+\infty$.
Lemma 2.5. Assume (H 1$)-(\mathrm{H} 3)$ hold. Then

$$
\lim _{d \rightarrow+\infty} \inf _{r \in[R, T]} E(r, d)=+\infty
$$

Proof. Let $r \in[R, T]$. We consider the Pohozaev-type identity

$$
\begin{aligned}
& \left(r^{N} E+r^{N} g(r) u+\frac{N-2}{2} r^{N-1} u u^{\prime}\right)^{\prime} \\
& =r^{N-1}\left(N F(u)-\frac{N-2}{2} u f(u)+\frac{N+2}{2} g(r) u+r g^{\prime}(r) u\right)
\end{aligned}
$$

From (H3), we have

$$
N F(u)-\frac{N-2}{2} u f(u)-\frac{N+2}{2}\|g\||u|-T\left\|g^{\prime}\right\||u| \geq-m
$$

Integrating Pohozaev's identity on (R, r) with the initial conditions, gives

$$
\begin{equation*}
r^{N} E+r^{N} g(r) u+\frac{N-2}{2} r^{N-1} u u^{\prime} \geq \frac{R^{N} d^{2}}{2}-\frac{m}{N}\left(T^{N}-R^{N}\right) \tag{2.10}
\end{equation*}
$$

Now from (1.2) we deduce there exists $B>0$ such that for all $|u|>B$,

$$
0<u^{2}<F(u)<F(u)+J
$$

If $|u| \leq B$ then from 2.8 we see that

$$
\begin{equation*}
u^{2} \leq F(u)+J+B^{2} \leq E+J+B^{2} \quad \forall u \in \mathbb{R} \tag{2.11}
\end{equation*}
$$

Using Young's inequality we have

$$
\left|u u^{\prime}\right| \leq \frac{u^{2}}{2}+\frac{u^{\prime 2}}{2} \leq F(u)+J+B^{2}+\frac{u^{\prime 2}}{2}
$$

We deduce that

$$
\begin{equation*}
\left|u u^{\prime}\right| \leq E+J+B^{2} . \tag{2.12}
\end{equation*}
$$

Hence using 2.11 and 2.12,

$$
\begin{aligned}
& r^{N} E+r^{N} g(r) u+\frac{N-2}{2} r^{N-1} u u^{\prime} \\
& \leq T^{N} E+T^{N}\|g\||u|+\frac{N-2}{2} T^{N-1}\left|u u^{\prime}\right| \\
& \leq T^{N} E+T^{N}\left(\|g\|^{2}+u^{2}\right)+\frac{N-2}{2} T^{N-1}\left(E+J+B^{2}\right) \\
& \leq T^{N} E+T^{N}\|g\|^{2}+\left(T^{N}+\frac{N-2}{2} T^{N-1}\right)\left(E+J+B^{2}\right) \\
& \leq\left(2 T^{N}+\frac{N-2}{2} T^{N-1}\right) E+T^{N}\|g\|^{2}+\left(T^{N}+\frac{N-2}{2} T^{N-1}\right)\left(J+B^{2}\right) \\
& \leq C_{1} E+C_{2}
\end{aligned}
$$

with C_{1} and C_{2} two positive real numbers depending only on N, T, J and g. From (2.10), then we have

$$
\inf _{r \in[R, T]} E \geq \frac{R^{N} d^{2}}{2 C_{1}}-\frac{C_{2}}{C_{1}}-\frac{m}{N C_{1}}\left(T^{N}-R^{N}\right)
$$

Finally we deduce that $\lim _{d \rightarrow+\infty} \inf _{r \in[R, T]} E(r, d)=+\infty$.
Lemma 2.6. If d is sufficiently large, then
(1) all the zeros of $u(r, d)$ are simple on $[R, T]$.
(2) $u(r, d)$ has a finite number of zeros on $[R, T]$.

Proof. (1) From Lemma 2.5, for d sufficiently large and all $r \in[R, T]$, we have $E(r, d)>0$. If t_{0} is a zero of $u(r, d)$, then $E\left(t_{0}, d\right)=\frac{u^{\prime 2}\left(t_{0}, d\right)}{2}>0$; thus $u^{\prime}\left(t_{0}, d\right) \neq 0$. Then t_{0} is a simple zero of $u(r, d)$.

For (2), we argue by contradiction. Suppose if d is sufficiently large there exists $R<t_{1}<\ldots<t_{n}<t_{n+1} \leq T$ and $u\left(t_{n}\right)=0$ for all $n \in \mathbb{N}$. Using the mean value theorem, there exists $z_{n} \in\left(t_{n}, t_{n+1}\right)$ such that $u^{\prime}\left(z_{n}, d\right)=0$ for all $n \in \mathbb{N}$. So $\left(t_{n}\right)$ converges to $t \leq T$ and by continuity of u and u^{\prime} we deduce that $u(t, d)=u^{\prime}(t, d)=$ 0 . This is a contradiction to (1). Thus for d sufficiently large u has a finite number of zeros on $[R, T]$.

3. Solution with a prescribed number of Zeros

In this section we show the solution $u(r, d)$ has a large number of zeros for d sufficiently large. For this we study the behavior of zeros of $u(r, d)$ for d large enough. Also, assuming (H1)-(H4) hold, it is obvious that the first zero of $u(r, d)$ is $z_{0}(d)=R$. In the following we focus on finding the zeros of $u(r, d)$ on interval $] R, T]$. From (H2), the mapping $u \mapsto F(u)$ is increasing for large u and decreasing when u is a large negative number. By $\sqrt{1.2}$, we have $F(u)>0$ for sufficiently large $|u|$ and from Lemma 2.5 we deduce that for d sufficiently large the equation $F(u)=\frac{1}{2} \inf _{r \in[R, T]} E(r, d)$ has exactly two solutions, which we denote $h_{1}(d)$ and $h_{2}(d)$ such that

$$
\begin{gathered}
h_{2}(d)<0<h_{1}(d) \\
F\left(h_{i}(d)\right)=\frac{1}{2} \inf _{r \in[R, T]} E(r, d) \quad \text { for } i=1,2 .
\end{gathered}
$$

From 1.2 and Lemma 2.5 we see that

$$
\begin{equation*}
\lim _{d \rightarrow+\infty} h_{1}(d)=+\infty \tag{3.1}
\end{equation*}
$$

Also, $\lim _{d \rightarrow+\infty} h_{2}(d)=-\infty$.
On the other hand by (H2), for d large enough, $u^{\prime \prime}\left(r_{0}(d)\right)=-f\left(u\left(r_{0}(d)\right)-\right.$ $g\left(r_{0}(d)\right)<0$. As $u^{\prime}\left(r_{0}(d)\right)=0$ so u is decreasing on $\left(r_{0}(d), r\right)$ for r close enough to $r_{0}(d)$. Denote for d sufficiently large

$$
r^{*}(d)=\sup \left\{r \in\left(r_{0}(d), T\right): u \text { is decreasing on }\left(r_{0}(d), r\right)\right\}
$$

There are two cases $r^{*}(d)=T$ and $r^{*}(d)<T$.
Lemma 3.1. If (H 1$)-(\mathrm{H} 4)$ are satisfied, then for d sufficiently large there exist $r_{1} \in\left(r_{0}(d), T\right)$ such that $u\left(r_{1}\right)=h_{1}(d)$ and $h_{1}(d)<u \leq u\left(r_{0}(d)\right)$ on $\left[r_{0}(d), r_{1}\right)$.

Proof. Suppose by contradiction there exists a sequence $d_{n} \rightarrow \infty$ such that for all $n \in \mathbb{N}$),

$$
u\left(r, d_{n}\right)=u_{n}(r)>h_{1}\left(d_{n}\right) \quad \text { on }\left(r_{0}\left(d_{n}\right), T\right) .
$$

If $r^{*}\left(d_{n}\right)=T$ then u_{n} is decreasing on $\left[r_{0}\left(d_{n}\right), T\right]$ for n large enough. From (3.1), (H2) and (H4) we obtain for n large enough and for all $r \geq r_{0}\left(d_{n}\right)$

$$
\begin{equation*}
u_{n}(r)>h_{1}\left(d_{n}\right) \quad \text { and } \quad f\left(u_{n}(r)\right)>f\left(h_{1}\left(d_{n}\right)\right)>\|g\| . \tag{3.2}
\end{equation*}
$$

Let n be large enough and $s \geq r_{0}\left(d_{n}\right)=r_{0, n}$. From 2.5 we have

$$
-u_{n}^{\prime}(s)=\frac{1}{s^{N-1}} \int_{r_{0, n}}^{s} t^{N-1}\left(f\left(u_{n}\right)+g(t)\right) \mathrm{d} t
$$

Integrating on $\left(r_{0, n}+\frac{r}{2}, r_{0, n}+r\right)$ with $r \in\left(0, T-r_{0, n}\right)$ gives

$$
u_{n}\left(r_{0, n}+\frac{r}{2}\right)=u_{n}\left(r_{0, n}+r\right)+\int_{r_{0, n}+\frac{r}{2}}^{r_{0, n}+r} \frac{1}{s^{N-1}}\left(\int_{r_{0, n}}^{s} t^{N-1}\left(f\left(u_{n}\right)+g(t)\right) \mathrm{d} t\right) \mathrm{d} s
$$

As u_{n} is decreasing and by (3.2 we have

$$
u_{n}\left(r_{0, n}+\frac{r}{2}\right) \geq \frac{f\left(u_{n}\left(r_{0, n}+\frac{r}{2}\right)\right)-\|g\|}{2 N T^{N-1}}\left(\left[r_{0, n}+\frac{r}{2}\right]^{N}-r_{0, n}^{N}\right) r .
$$

Taking $r=T-r_{0, n}$ by (3.1), 3.2) and (H2) we see that

$$
\left(\left[\frac{r_{0, n}+T}{2}\right]^{N}-r_{0, n}^{N}\right) \frac{\left(T-r_{0, n}\right)}{2 N T^{N-1}} \leq \frac{u_{n}\left(\frac{r_{0, n}+T}{2}\right)}{f\left(u_{n}\left(\frac{r_{0, n}+T}{2}\right)\right)-\|g\|} \rightarrow 0
$$

Since $r_{0, n} \rightarrow R$, it follows that

$$
\left(\left[\frac{R+T}{2}\right]^{N}-R^{N}\right) \frac{(T-R)}{2 N T^{N-1}}=0
$$

which implies $T=R$ which is impossible. Thus it must be that $r^{*}\left(d_{n}\right)<T$.
For $r^{*}\left(d_{n}\right)=r^{*}<T$, we haven $u_{n}^{\prime}\left(r^{*}\right)=0$ and $\int_{r_{0, n}}^{r^{*}} t^{N-1}\left(f\left(u_{n}\right)+g(t)\right) \mathrm{d} t=0$.
However by (3.2) we deduce that $f\left(u_{n}(t)\right)-g(t)>f\left(u_{n}(t)\right)-\|g\|>0$ on $\left[r_{0, n}, r^{*}\right]$ and so $\int_{r_{0, n}}^{r^{*}} t^{N-1}\left(f\left(u_{n}\right)+g(t)\right) \mathrm{d} t>0$. This is impossible. End of the proof.

Thus, for d sufficiently large we denote by $r_{1}(d)$ the smallest $r \in\left(r_{0}(d), T\right)$ such that

$$
\begin{equation*}
u\left(r_{1}(d)\right)=h_{1}(d), \quad h_{1}(d)<u \leq u\left(r_{0}(d)\right) \quad \text { on }\left[r_{0}(d), r_{1}(d)\right) \tag{3.3}
\end{equation*}
$$

Lemma 3.2. If (H1)-(H4) are satisfied, then
(1) $\lim _{d \rightarrow+\infty} r_{1}(d)=R$.
(2) For d sufficiently large, $u(r, d)$ has a first zero $z_{1}(d)$ in the interval (R, T), and $\lim _{d \rightarrow+\infty} z_{1}(d)=R$.

Proof. For (1), let

$$
C(d)=\frac{1}{2} \min _{r \in\left[r_{0}(d), r_{1}(d)\right]} \frac{f(u)}{u}=\frac{1}{2} \min _{r \in\left[h_{1}(d), u\left(r_{0}(d)\right)\right]} \frac{f(s)}{s} .
$$

It follows from 3.1) and (H2) that

$$
\begin{equation*}
\lim _{d \rightarrow+\infty} C(d)=+\infty \tag{3.4}
\end{equation*}
$$

We now compare the problem

$$
\begin{equation*}
u^{\prime \prime}(r)+\frac{N-1}{r} u^{\prime}(r)+\frac{f(u)}{u} u+g(r)=0 \tag{3.5}
\end{equation*}
$$

with

$$
\begin{equation*}
v^{\prime \prime}(r)+\frac{N-1}{r} v^{\prime}(r)+C(d) v=0 \tag{3.6}
\end{equation*}
$$

with the initial conditions

$$
\begin{equation*}
u\left(r_{0}(d)\right)=v\left(r_{0}(d)\right) \quad \text { and } \quad u^{\prime}\left(r_{0}(d)\right)=v^{\prime}\left(r_{0}(d)\right)=0 \tag{3.7}
\end{equation*}
$$

Then by (3.4) we see that for d sufficiently large and all $r \in\left[r_{0}(d), r_{1}(d)\right]$, we have

$$
\begin{equation*}
\frac{f(u)}{u} \geq 2 C(d)>C(d) \tag{3.8}
\end{equation*}
$$

Claim: for d sufficiently large, $u<v$ on $\left(r_{0}(d), r_{1}(d)\right.$].
Indeed, multiplying (3.5) by $r^{N-1} v$ and 3.6 by $r^{N-1} u$ and subtracting, gives

$$
\left(r^{N-1}\left(u^{\prime} v-u v^{\prime}\right)\right)^{\prime}+r^{N-1} u v\left(\frac{f(u)}{u}+\frac{g(r)}{u}-C(d)\right)=0 .
$$

Integrating this on $\left(r_{0}(d), r\right)$ and using the initial conditions, gives

$$
\begin{equation*}
r^{N-1}\left(u^{\prime} v-u v^{\prime}\right)=-\int_{r_{0}(d)}^{r} t^{N-1} u v\left(\frac{f(u)}{u}+\frac{g(t)}{u}-C(d)\right) \mathrm{d} t \tag{3.9}
\end{equation*}
$$

From (3.1), (3.4) and 3.8 we see that for d sufficiently large,

$$
\begin{equation*}
\frac{f(u)}{u}+\frac{g(r)}{u}-C(d) \geq C(d)-\frac{\|g\|}{h_{1}(d)}>0 \tag{3.10}
\end{equation*}
$$

For d sufficiently large, let $\mathscr{F}=\left\{r \in\left(r_{0}(d), r_{1}(d)\right): u<v\right.$ on $\left.\left(r_{0}(d), r\right)\right\}$. Then

$$
\begin{aligned}
u^{\prime \prime}\left(r_{0}(d)\right) & =-g\left(r_{0}(d)\right)-f\left(u\left(r_{0}(d)\right)\right) \\
& =u\left(r_{0}(d)\right)\left(-\frac{g\left(r_{0}(d)\right)}{u\left(r_{0}(d)\right)}-\frac{f\left(u\left(r_{0}(d)\right)\right)}{u\left(r_{0}(d)\right)}+C(d)\right)-C(d) u\left(r_{0}(d)\right)
\end{aligned}
$$

From (H2) and Lemma 2.4 it follows that for d sufficiently large

$$
u\left(r_{0}(d)\right)>0 \quad \text { and } \quad-\frac{g\left(r_{0}(d)\right)}{u\left(r_{0}(d)\right)}-\frac{f\left(u\left(r_{0}(d)\right)\right)}{u\left(r_{0}(d)\right)}+C(d)<0
$$

Then, for d sufficiently large we have

$$
u^{\prime \prime}\left(r_{0}(d)\right)<-C(d) u\left(r_{0}(d)\right)=v^{\prime \prime}\left(r_{0}(d)\right) .
$$

By continuity there exists $\varepsilon>0$ such that $(u-v)^{\prime \prime}(r)<0$ on $\left(r_{0}(d), r_{0}(d)+\varepsilon\right)$. Using the initial conditions (3.7) we deduce that $u<v$ on $\left(r_{0}(d), r_{0}(d)+\varepsilon\right)$. Thus $\mathscr{F} \neq \emptyset$. We denote $\bar{r}=\sup \mathscr{F}$. Now we will show that $\bar{r}=r_{1}(d)$. Otherwise, suppose that

$$
u<v \quad \text { on }\left(r_{0}(d), \bar{r}\right) \quad \text { and } \quad u(\bar{r})=v(\bar{r})
$$

Since $0<h_{1}(d)<u<v$ on $\left(r_{0}(d), \bar{r}\right)$ and by 3.10 we see that, for d sufficiently large then

$$
r^{N-1} u v\left(\frac{f(u)}{u}+\frac{g(r)}{u}-C(d)\right)>0
$$

Therefore, by 3.9) $u^{\prime}(r) v(r)-u(r) v^{\prime}(r)<0$ on $\left(r_{0}(d), \bar{r}\right]$. Thus, $u^{\prime}(\bar{r})<v^{\prime}(\bar{r})$. On the other hand, as $u(r)<v(r)$ for $r<\bar{r}$ we have

$$
\frac{u(r)-u(\bar{r})}{r-\bar{r}}>\frac{v(r)-v(\bar{r})}{r-\bar{r}}
$$

Hence $u^{\prime}(\bar{r}) \geq v^{\prime}(\bar{r})$. This is a contradiction. It follows that $\bar{r}=r_{1}(d)$ which completes the proof of the claim.

Now, we set

$$
z(r)=(r / \sqrt{C(d)})^{\frac{N-2}{2}} v(r / \sqrt{C(d)})
$$

It is easy to verify that $z(r)$ is a solution of Bessel's equation of order $\nu=\frac{N-2}{2}>0$. i.e.,

$$
z^{\prime \prime}+\frac{z^{\prime}}{r}+\left(1-\frac{\nu^{2}}{r^{2}}\right) z=0
$$

Then there exists a constant $K>0$ such that every interval of length K has at least one zero of $z(r)$ (see [5]). It follows that every interval of length $K / \sqrt{C(d)}$ contains at least one zero of $v(r)$. Hence by claim for d sufficiently large we have

$$
r_{0}(d)<r_{1}(d)<r_{0}(d)+\frac{K}{\sqrt{C(d)}}
$$

Now (1) of this lemma is a consequence of Lemma 2.4 and (3.4).
For (2), suppose not, which means $u>0$ on $(R, T]$ and consider $r>r_{1}(d)$. Then $0<u<u\left(r_{1}(d)\right)$. Also as $F\left(h_{1}(d)\right)=\frac{1}{2} \inf _{r \in[R, T]} E(r, d)$ for large d, thus

$$
2 F\left(h_{1}(d)\right) \leq \frac{u^{\prime 2}}{2}+F(u) \leq \frac{u^{\prime 2}}{2}+F\left(h_{1}(d)\right) .
$$

Therefore

$$
-u^{\prime}=\left|u^{\prime}\right| \geq \sqrt{2 F\left(h_{1}(d)\right)} \quad \text { for } r_{1}(d) \leq r \leq T
$$

Integrating on $\left(r_{1}(d), r\right)$ and by 3.3 we obtain

$$
h_{1}(d)-u(r)=u\left(r_{1}(d)\right)-u(r) \geq \sqrt{2 F\left(h_{1}(d)\right)}\left(r-r_{1}(d)\right),
$$

so that

$$
h_{1}(d)-\sqrt{2 F\left(h_{1}(d)\right)}\left(r-r_{1}(d)\right) \geq u(r)>0
$$

thus

$$
\begin{equation*}
r-r_{1}(d) \leq \frac{h_{1}(d)}{\sqrt{2 F\left(h_{1}(d)\right)}} \tag{3.11}
\end{equation*}
$$

for large d.
Taking $r=T$ and taking the limit as $d \rightarrow \infty$ in (3.11) as well as using (1.2), (3.1) and $r_{1}(d) \rightarrow R$ we see that

$$
0<T-R \leq \frac{h_{1}(d)}{\sqrt{2 F\left(h_{1}(d)\right)}} \rightarrow 0
$$

as $d \rightarrow \infty$. This is impossible since $T>R$. Thus u has a first zero $z_{1}(d)$. Then using a similar argument on $\left[r_{1}(d), z_{1}(d)\right]$ and letting $r=r_{1}(d)$ in 3.11) we obtain $\lim _{d \rightarrow+\infty} z_{1}(d)=R$. The proof is complete.

Lemma 3.3. Let (H1)-(H4) be satisfied. Then for d sufficiently large the solution $u(r, d)$ attains a local minimum at $r_{3}(d) \in\left(r_{2}(d), T\right)$ and moreover $\lim _{d \rightarrow \infty} r_{3}(d)=$ R.

Proof. We begin to establish the following claim.
Claim: for d sufficiently large $u(r, d)$ attains the value $h_{2}(d)$ on $\left(z_{1}(d), T\right)$.
Otherwise, there exists a sequence $d_{n} \rightarrow \infty$ such that for all $n \in \mathbb{N}, u_{n}(r)>$ $h_{2}\left(d_{n}\right)$ on $\left(z_{1}\left(d_{n}\right), T\right)$. By Lemma 2.6 we have $u_{n}^{\prime}\left(z_{1}\left(d_{n}\right)\right) \neq 0$ for n large enough. As $u_{n}^{\prime}<0$ on $] r_{1}\left(d_{n}\right), z_{1}\left(d_{n}\right)\left[\right.$ therefore $u_{n}^{\prime}\left(z_{1}\left(d_{n}\right)\right)<0$. Then by continuity we see that $u_{n}^{\prime}<0$ on some maximal interval $\left[z_{1}\left(d_{n}\right), r^{*}[\right.$ for n large enough, therefore $h_{2}\left(d_{n}\right)<u_{n}$. Thus $F\left(u_{n}\right)<F\left(h_{2}\left(d_{n}\right)\right)$ on $\left[z_{1}\left(d_{n}\right), r^{*}\right.$. Hence by the definition of $h_{2}(d)$ at the beginning of section 3 we have

$$
2 F\left(h_{2}\left(d_{n}\right)\right) \leq E\left(r, d_{n}\right)<\frac{u_{n}^{\prime 2}}{2}+F\left(h_{2}\left(d_{n}\right)\right)
$$

Therefore

$$
0<\sqrt{2 F\left(h_{2}\left(d_{n}\right)\right)} \leq\left|u_{n}^{\prime}\right|=-u_{n}^{\prime} \quad \forall r \in\left[z_{1}\left(d_{n}\right), r^{*}\right] .
$$

In particular $u_{n}^{\prime}\left(r^{*}\right)<0$. This implies $r^{*}=T$ for if $r^{*}<T$ then by definition of r^{*} we wold have $u_{n}^{\prime}\left(r^{*}\right)=0$. Now integrating this inequality on $\left.\left(z_{1}\left(d_{n}\right)\right), r\right)$ we obtain, for n large enough

$$
\begin{equation*}
h_{2}\left(d_{n}\right)<u_{n}(r) \leq-\sqrt{2 F\left(h_{2}\left(d_{n}\right)\right)}\left(r-z_{1}\left(d_{n}\right)\right) \quad \forall r \in\left[z_{1}\left(d_{n}\right), T\right] . \tag{3.12}
\end{equation*}
$$

Taking $r=T$ we have

$$
T-z_{1}\left(d_{n}\right) \leq \frac{-h_{2}\left(d_{n}\right)}{\sqrt{2 F\left(h_{2}\left(d_{n}\right)\right)}}
$$

Since $\lim _{n \rightarrow \infty} h_{2}\left(d_{n}\right)=-\infty$, by (1.2) we deduce that $\lim _{n \rightarrow \infty} \frac{-h_{2}\left(d_{n}\right)}{\sqrt{2 F\left(h_{2}\left(d_{n}\right)\right)}}=0$. As $\lim _{n \rightarrow \infty} z_{1}\left(d_{n}\right)=R$ (by Lemma 3.2 then $T=R$. This is a contradiction. End of proof of claim.

We denote by $r_{2}(d)$ the smallest $r \in\left(z_{1}(d), T\right)$ such that $u\left(r_{2}(d)\right)=h_{2}(d)$ and $h_{2}(d)<u(r, d)$ on $\left[z_{1}(d), r_{2}(d)\left[\right.\right.$. By 3.12] taking $r=r_{2}(d)$ we see that

$$
\begin{equation*}
\lim _{d \rightarrow \infty} r_{2}(d)=R \tag{3.13}
\end{equation*}
$$

Now, suppose by contradiction that u is decreasing on $\left(r_{2}(d), T\right)$. Then $u<h_{2}(d)<$ 0 on $\left(r_{2}(d), T\right)$. We set

$$
C(d)=\frac{1}{2} \min _{u \leq h_{2}(d)} \frac{f(u)}{u} .
$$

By (H2), we see that

$$
\begin{equation*}
\lim _{d \rightarrow+\infty} C(d)=+\infty \tag{3.14}
\end{equation*}
$$

Now, we compare the problem

$$
\begin{equation*}
u^{\prime \prime}(r)+\frac{N-1}{r} u^{\prime}(r)+\frac{f(u)}{u} u+g(r)=0 \tag{3.15}
\end{equation*}
$$

with

$$
\begin{equation*}
v^{\prime \prime}(r)+\frac{N-1}{r} v^{\prime}(r)+C(d) v=0 \tag{3.16}
\end{equation*}
$$

and with the initial conditions

$$
\begin{equation*}
v\left(r_{2}(d)\right)=u\left(r_{2}(d)\right)=h_{2}(d) \text { and } v^{\prime}\left(r_{2}(d)\right)=u^{\prime}\left(r_{2}(d)\right) \tag{3.17}
\end{equation*}
$$

As in the proof of Lemma 3.2 we see that $u>v$ on $\left(r_{2}(d), T\right)$, for d large enough. We saw that

$$
z(r)=(r / \sqrt{C(d)})^{\frac{N-2}{2}} v(r / \sqrt{C(d)})
$$

is a solution of the Bessel's equation of order $\nu=\frac{N-2}{2}$. Then, there exists $K>0$ such every interval of length K has at least one zero of $z(r)$. We deduce that for large d, v must have a zero on $\left(r_{2}(d), T\right)$ and since $u>v$ we see that u gets positive which contradicts that u is decreasing on $\left(r_{2}(d), T\right)$. It follows that u has a local minimum at $r_{3}(d) \in\left(r_{2}(d), T\right)$. Also, for d sufficiently large we have

$$
r_{2}(d)<r_{3}(d) \leq r_{2}(d)+\frac{K}{\sqrt{C(d)}}
$$

It follows from (3.14) and 3.13 as $d \rightarrow \infty$ that $r_{3}(d) \rightarrow R$. This completes the proof.

As $F\left(u\left(r_{3}(d)\right)\right)=E\left(r_{3}(d)\right) \rightarrow \infty$ as $d \rightarrow \infty$ (by Lemma 2.5), in similar way we can show that for d large enough, $u(r, d)$ has a second zero $z_{2}(d)$ with $r_{3}(d)<$ $z_{2}(d)<T$ and moreover $\lim _{d \rightarrow+\infty} z_{2}(d)=R$. Proceeding in the same way, we can show that for d sufficiently large, $u(r, d)$ has a second local maximum at $r_{4}(d) \in$ $\left(z_{2}(d), T\right)$ with $\lim _{d \rightarrow+\infty} u\left(r_{4}(d)\right)=+\infty$ and therefore, there exists $z_{3}(d)$ the third zero of $u(r, d)$ on (R, T) with $\lim _{d \rightarrow+\infty} z_{3}(d)=R$.

Remark 3.4. Continuing in the same way we can obtain as many zeros of $u(r, d)$ as desired on (R, T) for d large enough.

4. Proof of main result

For $d>0$, let us denote by N_{d} card\{zeros zeros of $u(r, d)$ on $\left.(R, T)\right\}$. For $k \geq 1$ defined by set

$$
S_{k}=\left\{d: N_{d}=k-1 \text { and } \inf _{r \in[R, T]} E(r, d)>0\right\}
$$

By Lemma 2.5 and remark 3.4 , we see that for d sufficiently large, S_{k} is not empty for some k and $\inf _{r \in[R, T]} E(r, d)>0$ and we denote $k_{0}=\min \left\{k \in \mathbb{N}^{*} \mid S_{k} \neq \emptyset\right\}$. It follows that $S_{k_{0}}$ is not empty and is bounded above. Let $d_{k_{0}}=\sup S_{k_{0}}$.

Lemma 4.1. $N_{d_{k_{0}}}=k_{0}-1$.
Proof. By definition of k_{0} we have $N_{d_{k_{0}}} \geq k_{0}-1$. Suppose now that $N_{d_{k_{0}}} \geq k_{0}$. Then for d close to $d_{k_{0}}$ and $d \leq d_{k_{0}}$ by remark 2.2 with respect to initial conditions and by Lemma 2.6 we see that $N_{d} \geq k_{0}$. However, if $d \in S_{k_{0}}$ and is close to $d_{k_{0}}$ and $d<d_{k_{0}}$ then $N_{d}=k_{0}-1$. This is a contradiction to the definition of $d_{k_{0}}$. Hence $N_{d_{k_{0}}}=k_{0}-1$.

Lemma 4.2. $u\left(T, d_{k_{0}}\right)=0$.
Proof. We argue by contradiction and assume that $u\left(T, d_{k_{0}}\right) \neq 0$, then by remark 2.2 with respect to initial conditions and by Lemma 2.6, we deduce that if d is close to $d_{k_{0}}$ then $N_{d}=N_{d_{k_{0}}}$ Now, for d close to $d_{k_{0}}$ and $d>d_{k_{0}}$ then $d \notin S_{k_{0}}$ therefore, $N_{d} \neq k_{0}-1$. This is a contradiction with Lemma 4.1. Hence $u\left(T, d_{k_{0}}\right)=0$.

We denote $S_{k_{0}+1}=\left\{d>d_{k_{0}}: N_{d}=k_{0}\right.$ and $\left.\inf _{r \in[R, T]} E(r, d)>0\right\}$.
Lemma 4.3. $S_{k_{0}+1} \neq \emptyset$.
Proof. We want to show the following result first.
Claim: If d close to $d_{k_{0}}$ and $d>d_{k_{0}}$ then $N_{d} \leq k_{0}$.

Suppose by contradiction that there exists a sequence $q_{n} \rightarrow d_{k_{0}}$ such that $N_{q_{n}} \geq$ $k_{0}+1$. For all $1 \leq i \leq k_{0}$ let us denote z_{i}^{n} the i th zero of $u\left(r, q_{n}\right)$ on (R, T) such that

$$
R<z_{1}^{n}<z_{2}^{n}<\cdots<z_{k_{0}}^{n}<z_{k_{0}+1}^{n}<T
$$

For every $1 \leq i \leq k_{0}+1$ the sequence $\left(z_{i}^{n}\right)$ is bounded and converges to z_{i} thus, we see that

$$
R<z_{1}<z_{2}<\cdots<z_{k_{0}}<z_{k_{0}+1}<T
$$

It follows that $N_{d_{k_{0}}} \geq k_{0}$, which contradicts Lemma 4.1. Thus the claim is proven.
Finally, if $d>d_{k_{0}}$ then $N_{d} \leq k_{0}$ and $N_{d} \neq k_{0}-1$ thus, $N_{d}=k_{0}$ and $S_{k_{0}+1} \neq \emptyset$ which completes the proof.

By remark 3.4 it follows that $S_{k_{0}+1}$ is not empty and bounded above thus, we denote $d_{k_{0}+1}=\sup S_{k_{0}+1}$. We show in a similar way as Lemmas 4.1 and 4.2 that $N_{d_{k_{0}+1}}=k_{0}$ and $u\left(T, d_{k_{0}+1}\right)=0$. Proceeding inductively we can show, for all $k \geq k_{0}$ there exists a solution $u_{k}(r)=u\left(r, d_{k}\right)$ of (2.1)-2.2) which has exactly $(k-1)$ zeros on (R, T) with $u_{k}^{\prime}(R)=d_{k}>0$.

Now, in the case $d<0$ we consider the problem

$$
\begin{gather*}
u^{\prime \prime}(r)+\frac{N-1}{r} u^{\prime}(r)+f(u)+g(r)=0 \quad \text { if } R<r<T \tag{4.1}\\
u(R)=0, \quad u^{\prime}(R)=d<0
\end{gather*}
$$

We denote $v(r)=-u(r)$ and $g_{1}(r)=-g(r)$ on $[R, T]$ and $f_{1}(s)=-f(-s)$ on \mathbb{R} then the problem (4.1) is equivalent to

$$
\begin{gather*}
v^{\prime \prime}(r)+\frac{N-1}{r} v^{\prime}(r)+f_{1}(v)+g_{1}(r)=0, \quad \text { if } R<r<T \tag{4.2}\\
v(R)=0, \quad v^{\prime}(R)=-d>0
\end{gather*}
$$

Then g_{1} is $C^{1}([R, T], \mathbb{R})$. It is clear that the assumptions (H1), (H2) and (H4) are satisfied.

It remains to prove $(\mathrm{H} 3)$. We set $F_{1}(v)=\int_{0}^{v} f_{1}(s) \mathrm{d} s$. Then $F_{1}(v)=F(-v)$ for all $v \in \mathbb{R}$; thus

$$
\begin{aligned}
& N F_{1}(v)-\frac{N-2}{2} v f_{1}(v)-\frac{N+2}{2}\left\|g_{1}\right\||v|-T\left\|g_{1}^{\prime}\right\||v| \\
& =N F(u)-\frac{N-2}{2} u f(u)-\frac{N+2}{2}\|g\||u|-T\left\|g^{\prime}\right\||u|>-m
\end{aligned}
$$

Next, according to the case $d>0$ we deduce that, for k sufficiently large, $\sqrt{2.1})-(2.2)$ has a solution v_{k} which has exactly $(k-1)$ zeros on (R, T) with $v_{k}^{\prime}(R)>0$. Finally, for k sufficiently large, 2.1 - 2.2 has a solution $w_{k}=-v_{k}$ which has $(k-1)$ zeros on (R, T) and $w_{k}^{\prime}(R)<0$. End of proof of the main Theorem 1.1.

References

[1] D. Arcoya,A. Zertiti; Existence and non-existence of radially symmetric non-negative solutions for a class of semi-positone problems in annulus, Rendiconti di Mathematica, serie VII, Volume 14, Roma (1994), 625-646.
[2] A. Castro, A. Kurepa; Infinitely many radially symmetric solutions to a superlinear Dirichlet problem in a Ball, American Mathematical Society, Volume 101, Sept (1987), pp. 57-64.
[3] B. Gidas, W-M. Ni, L. Nirenberg; Symmetry and related properties via maximum principle, Commun. Math. Phys, 68, (1979), pp. 209-243.
[4] J. Iaia, S. Pudipeddi; Radial solutions to a superlinear Dirichlet problem using Bessel's functions, Electronic Journal of Qualitative Theory of Differential Equations, No. 38, (2008), pp.1-13.
[5] G. F. Simmons; Differential Equations with Applications and Historical Notes, 2nd edition, McGraw-Hill Science/Engineering/Math(1991). pp. 165.
[6] K. Mcleod, W. C. Troy, F. B. Weissler; Radial solution of $\Delta u+f(u)=0$ with prescribed numbers of zeros, Journal of Differential Equation, Volume 83,(1990), pp. 368-378.
[7] S. Pudipeddi; Localized radial solutions for nonlinear p-Laplacian equation in $\mathbb{R}^{\mathbb{N}}, \mathrm{PhD}$ thesis, University of North Texas, (2006), pp. 47-61.

Azeroual Boubker
Université Abdelmalek Essaadi, Faculté des sciences, Département de Mathématiques, BP 2121, Tetouan, Morocco

E-mail address: boubker_azeroual@yahoo.fr
Abderrahim Zertiti
Université Abdelmalek Essaadi, Faculté des sciences, Département de Mathématiques, BP 2121, Tetouan, Morocco

E-mail address: abdzertiti@hotmail.fr

[^0]: 2010 Mathematics Subject Classification. 35J25, 35B05, 35A24.
 Key words and phrases. Superlinear; radial solution; Bessel's equation.
 (C) 2016 Texas State University.

 Submitted February 4, 2016. Published May 3, 2016.

