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RADIAL SOLUTIONS WITH A PRESCRIBED NUMBER OF
ZEROS FOR A SUPERLINEAR DIRICHLET PROBLEM IN

ANNULAR DOMAIN

BOUBKER AZEROUAL, ABDERRAHIM ZERTITI

Abstract. In this article we study the existence of radially symmetric solu-

tions to a superlinear Dirichlet problem in annular domain in RN . Using fairly

straightforward tools of the theory of ordinary differential equations, we show
that if k is a sufficiently large nonnegative integer, there is a solution u which

has exactly (k − 1) interior zeros.

1. Introduction

The main goal in this article is to study the existence of radially symmetric
solutions u : RN → R to the superlinear boundary-value problem

−∆u(x) = f(u) + g(|x|) if x ∈ Ω
u = 0 if x ∈ ∂Ω,

(1.1)

where |x| denotes the standard norm of x in RN , N ≥ 3 and Ω is the annulus of
RN defined by

Ω = C(0, R, T ) = [x ∈ RN : R < |x| < T ]

where R and T are two real numbers such that 0 < R < T , f : R→ R is a nonlinear
function and g ∈ C1([R, T ],R).

We will focus on studying the problem (1.1) with the following hypotheses:

(H1) f is locally Lipschitzian,
(H2) f is superlinear i.e.,

lim
|u|→∞

f(u)
u

= +∞,

(H3) there exists m > 0 such that

NF (u)− N − 2
2

uf(u)− N + 2
2
‖g‖ |u| − T‖g′‖ |u| ≥ −m

where F (u) =
∫ u
0
f(s)ds and ‖g‖ = supR≤t≤T |g(t)|,

(H4) u→ f(u) is increasing for |u| large.
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From (H2) and L’Hopital’s Rule it follows that

lim
|u|→∞

F (u)
u2

= +∞. (1.2)

In recent decades, the existence of solutions to the superlinear Dirichlet problem
(1.1) in general domains has been widely studied. Most of these results are based on
variational methods. This requires finding a critical point of some energy functional
in Sobolev spaces, by assuming that f is locally Lipschitz and satisfies a growth
condition. A standard way to do this is to apply the mountain pass theorem. In
this context, we mention as examples the authors Berestyki, Bahri and Struwe.
When the growth of the nonlinearity surpasses the critical exponent of the Sobolev
embedding theorem and the domain is the ball, Castro and Kurepa [2] proved the
superlinear Dirichlet problem (1.1) has infinitely many radially symmetric solutions
by offering sufficient condition and using the “shooting method” and “phase-plane
angle analysis”. However, these arguments are quite difficult and provide no specific
information about the solution. In particular we ask whether radial solutions exist
with prescribed numbers of zeros. Mcleod, Troy and Weissler in [6] studied this
question for the following problem

∆u(x) + f(u) = 0 if x ∈ RN

u(x)→ 0 as |x| → +∞.

Thereafter, in the case of the ball, Iaia and Pudipeddi [4] answered the question
above and give an easy proof by using Bessel functions and proved the problem
(1.1) has infinitely many radially symmetric solutions with (H1)–(H4) and adding
the additional condition

(H5) There exists a 0 < k ≤ 1, such that

lim
u→∞

( u

f(u)

)N/2(
NF (ku)− N − 2

2
uf(u)− N + 2

2
‖g‖ |u| − T‖g′‖ |u|

)
= +∞.

An important contribution was made by Gidas, Li and Nirenberg [3] who showed
that if Ω is a ball, then all positive solutions of the problem

∆u(x) + f(u) = 0 if x ∈ Ω
u = 0 if x ∈ ∂Ω

are radially symmetric. This is not the case in the annulus domain. The diffi-
culty resides with the fact that a positive radial solution in annular domain is not
monotonic in the radial direction. Our aim here is to extend the results in [2, 4]
to the case in an annular domain, by assuming (H1)–(H4) without adding (H5).
Our method is based on the same approach used by Iaia and Pudipeddi [4, 7]; by
approximating the solution of(1.1) with an appropriate linear equation. At last, we
note that by (H2) the assumption (H3) is more general than (H5)

Our paper is organized as follows: in Section 2 we begin to establish some pre-
liminary results concerning the existence of radial solutions and by analysing the
energy we show that the energy function converges uniformly to infinity. In Sec-
tion 3 we obtain to localize the zeros of the solution and finally, we shall prove the
following theorem.

Theorem 1.1. If (H1)–(H4) are satisfied then (1.1) has infinitely many radially
symmetric solutions u with u′(R) 6= 0. For k ∈ N∗ sufficiently large there exist two
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radially symmetric solutions uk and wk of problem (1.1) which have exactly (k− 1)
zeros on (R, T ) such that w′k(R) < 0 < u′k(R).

2. Preliminaries

The existence of radially symmetric solution u(x) = u(r) with r = |x| of (1.1)
is equivalent to the existence of a solution u of the nonlinear ordinary differential
equation

u′′(r) +
N − 1
r

u′(r) + f(u) + g(r) = 0 if R < r < T, (2.1)

u(R) = u(T ) = 0. (2.2)

To solve (2.1)-(2.2), we apply the shooting method, by considering the initial value
problem

u′′(r) +
N − 1
r

u′(r) + f(u) + g(r) = 0 if R < r < T,

u(R) = 0 and u′(R) = d
(2.3)

with d an arbitrary nonzero real number. Denote u(r, d) as the solution of (2.3)
which depends on parameter d. By varying d, we shall attempt to choose the
parameter appropriately to have (2.2) and if k is a sufficiently large nonnegative
integer then u(r, d) has exactly (k − 1) zeros on (R, T ).

Lemma 2.1. Let d > 0, assume (H1) and (H2) hold. Then (2.3) has a unique
solution u(r, d) defined on interval [R, T ].

Proof. The proof is divided into two steps. First we show the existence and unique-
ness of the local solution of (2.3). In the second step we prove that a unique solution
can be extended to a maximal interval [R, T ].
Step 1. We consider the initial value problem

u′′(r) +
N − 1
r

u′(r) + f(u) + g(r) = 0 if ρ < r < T

u(ρ) = a, u′(ρ) = b
(2.4)

with R ≤ ρ < T and (a, b) ∈ R2. Let u(r) be a solution of (2.4). Multiplying (2.1)
by rN−1 and by integrating on (ρ, r) with the initial condition gives

u′(r) =
1

rN−1

(
b ρN−1 −

∫ r

ρ

tN−1(f(u) + g(t)) dt
)
, (2.5)

Integrating this, we obtain

u(r) = a+
b ρN−1

N − 2

( 1
ρN−2

− 1
rN−2

)
−
∫ r

ρ

1
tN−1

(∫ t

ρ

sN−1(f(u) + g(s)) ds
)

dt. (2.6)

Conversely, if u(r) is a continuous function and satisfies (2.6) then u is a solution
of (2.4). Let ε > 0 and Ψ(u) be equal to the right hand side of (2.6) where
X = C([ρ, ρ + ε],R) the Banach space of real continuous functions on [ρ, ρ + ε]
with uniform norm. By (H1) we can choose ε sufficiently small such that Ψ is a
contraction mapping. This enables us to conclude that the problem (2.3) has a
unique solution u(r, d) defined on [R,R+ ε] for ε sufficiently small (we take a = 0,
b = d and ρ = R in (2.4)).
Step 2. Let u(r, d) = u(r) be the unique solution of (2.3) and denote by [R,R1[ its
maximal domain. We will show that R1 = T . Otherwise, we suppose that R1 < T .
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Then we claim that u is bounded on [R,R1[. We define the energy function of a
solution of (2.3) as

E(r, d) = E(r) =
u′2(r)

2
+ F (u(r)) ∀r ∈ [R,R1). (2.7)

Then we see from (1.2) that F (u) > 0 for u large enough so there exists a J > 0
such that

F (u) > −J ∀u ∈ R. (2.8)
It follows from (1.2), (2.7) and (2.8) that

E′(r) = −u′g(r)− N − 1
r

u′2 ≤ ‖g‖|u′| ≤ ‖g‖
√

2(E + J).

Dividing by
√

2(E + J) and integrating this on (R, r) we obtain√
2(E + J)−

√
2(E(R) + J) ≤ ‖g‖(r −R),

|u′| ≤
√

2(E(r) + J) ≤ ‖g‖(R1 −R) +
√
d2 + 2J.

It follows that u′ is bounded on [R,R1[. Therefore, by the mean value theorem and
since u(R) = 0 we see that u is bounded on [R,R1[. By using this, (2.5) and (2.6)
(we take a = 0, b = d and ρ = R) we deduce that (u(rn)) and (u′(rn)) are Cauchy
sequences for all sequence (rn) on [R,R1) increasing and converging to R1 which
implies the existence of the finite limits

lim
r→R−1

u(r) = a, lim
r→R−1

u′(r) = b.

Now we consider the initial value problem

v′′(r) +
N − 1
r

v′(r) + f(v) + g(r) = 0 if r > R1

v(R1) = a, v′(R1) = b.

By step 1, there exists a ε > 0 and a solution v(r) defined on [R1, R1 + ε]. Then it
is easy to see that

ũ(r) =

{
u(r) if R < r < R1

v(r) if R1 < r < R1 + ε

is a solution of (2.3) on the interval [R,R1 +ε] which contains the maximal domain.
This is a contradiction. Hence R1 = T . �

Remark 2.2. Using the Arzela-Ascoli theorem the solution u(r, d) of (2.3) depends
continuously on d in the sense that if the sequence (dn) converges to d, then the
sequence of functions u(., dn) converges uniformly to u(·, d) on any bounded interval.
A similar property is also true for u′(·, dn).

Remark 2.3. We can use the standard ODE existence-uniqueness theorem to
obtain a local solution of (2.3) on [R,R+ ε] for some ε > 0.

As u′(R, d) = d > 0 and by continuity then, there exists r > R such that u′ > 0
on (R, r). Denote r0(d) as the largest r ∈ (R, T ) such that u′ > 0 on (R, r).

Lemma 2.4. Assume (H1) and (H2) hold. Then
(1) limd→+∞ r0(d) = R.
(2) limd→+∞ u(r0(d), d) = +∞.
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Proof. For (1), we argue by contradiction. Suppose that there exists ε > 0 such
that for all γ > 0 there exists d > γ for which

R+ ε ≤ r0(d).

Denote R0 = R+ ε. Then there exists a sequence dn → +∞ such that

r0(dn) ≥ R0

u(r, dn) > 0, u′(r, dn) ≥ 0 ∀r ∈ (R,R0),∀n ∈ N.
(2.9)

We set r = (R + R0)/2 and u(r, dn) = un(r). We now show that the sequence
(un(r)) is unbounded. Again by contradiction we suppose that there exists M > 0
such that for all n ∈ N, 0 < un(r) ≤ M . By (2.6) (with a = 0, b = dn and ρ = R)
and un is increasing on [R,R0] we obtain

dnR
N−1

N − 2

( 1
RN−2

− 1
rN−2

)
= un(r) +

∫ r

R

1
tN−1

(∫ t

R

sN−1(f(u) + g(s)) ds
)

dt

≤M +
T 2

N
sup

0≤ζ≤M

(
|f(ζ)|+ ‖g‖

)
<∞

which is a contradiction to dn → +∞. Hence, the sequence (un(r)) is unbounded
and passing to subsequence we can suppose that

lim
n→+∞

un(r) = +∞.

Now, for all n ∈ N, we denote

Mn = inf
r≤r≤R0

{f(un)
un

+
g(r)
un

}
.

Since, 0 < un(r) ≤ un(r) for all r ∈ [r,R0] we see that

Mn ≥ inf
un(r)≤u≤un(R0)

{f(u)
u
} − ‖g‖

un(r)
.

On the other hand, from (H2) and limn→+∞ un(r) = +∞ we have limn→+∞Mn =
+∞. Thus, there exists n0 ∈ N such that Mn0 > µ2 where µ2 > 0 is the second
eigenvalue of −[ d

2

dr2 + N−1
r

d
dr ] in (r,R0) with Dirichlet boundary conditions. It is

known that the first eigenfunction of this operator can be chosen to be positive.
Then since the second eigenfunction is orthogonal to the first eigenfunction then
necessarily the second Φ2 eigenfunction must be zero somewhere on (r,R0). Then
by Sturm comparison theorem since µ2 < Mn0 it follows that un0 has at least
one zero in (r,R0). This is a contradiction with (2.9) and finally we deduce that
limd→+∞ r0(d) = R.

For (2), since limd→+∞ r0(d) = R then for d > 0 sufficiently large we have
R < r0(d) < T . On the other hand, u has a local maximum at r0(d) then, there
exists r∗ ∈ (r0(d), T ) such that u is decreasing and nonnegative on (r0(d), r∗). Now,
we will show that

lim
d→+∞

u(r0(d), d) = +∞.

Suppose that there exists a sequence dn → +∞ such that (u(r0(dn), dn)) is bounded
by M . From (2.5) we obtain that for all n ∈ N and for all r ∈ (r0(dn), r∗)

rN−1u′(r) = dnR
N−1 −

∫ r

R

tN−1(f(u) + g(t)) dt ≤ 0,
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dnR
N−1 ≤

∫ r

R

tN−1(f(u) + g(t)) dt (0 ≤ u ≤M)

≤ sup
0≤ζ≤M

(|f(ζ)|+ ‖g‖)T
N

N
<∞.

It follows that (dn) is bounded which is a contradiction to dn → +∞. �

Lemma 2.5. Assume (H1)–(H3) hold. Then

lim
d→+∞

inf
r∈[R,T ]

E(r, d) = +∞.

Proof. Let r ∈ [R, T ]. We consider the Pohozaev-type identity(
rNE + rN g(r)u+

N − 2
2

rN−1uu′
)′

= rN−1
(
NF (u)− N − 2

2
uf(u) +

N + 2
2

g(r)u+ rg′(r)u
)
.

From (H3), we have

NF (u)− N − 2
2

uf(u)− N + 2
2
‖g‖ |u| − T‖g′‖ |u| ≥ −m.

Integrating Pohozaev’s identity on (R, r) with the initial conditions, gives

rNE + rN g(r)u+
N − 2

2
rN−1uu′ ≥ RNd2

2
− m

N
(TN −RN ). (2.10)

Now from (1.2) we deduce there exists B > 0 such that for all |u| > B,

0 < u2 < F (u) < F (u) + J.

If |u| ≤ B then from (2.8) we see that

u2 ≤ F (u) + J +B2 ≤ E + J +B2 ∀u ∈ R. (2.11)

Using Young’s inequality we have

|uu′| ≤ u2

2
+
u′2

2
≤ F (u) + J +B2 +

u′2

2
,

We deduce that
|uu′| ≤ E + J +B2. (2.12)

Hence using (2.11) and (2.12),

rNE + rNg(r)u+
N − 2

2
rN−1uu′

≤ TNE + TN‖g‖|u|+ N − 2
2

TN−1|uu′|

≤ TNE + TN (‖g‖2 + u2) +
N − 2

2
TN−1(E + J +B2)

≤ TNE + TN‖g‖2 + (TN +
N − 2

2
TN−1)(E + J +B2)

≤
(

2TN +
N − 2

2
TN−1

)
E + TN‖g‖2 + (TN +

N − 2
2

TN−1)(J +B2)

≤ C1E + C2
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with C1 and C2 two positive real numbers depending only on N,T, J and g. From
(2.10), then we have

inf
r∈[R,T ]

E ≥ RNd2

2C1
− C2

C1
− m

NC1
(TN −RN ).

Finally we deduce that limd→+∞ infr∈[R,T ]E(r, d) = +∞. �

Lemma 2.6. If d is sufficiently large, then
(1) all the zeros of u(r, d) are simple on [R, T ].
(2) u(r, d) has a finite number of zeros on [R, T ].

Proof. (1) From Lemma 2.5, for d sufficiently large and all r ∈ [R, T ], we have
E(r, d) > 0. If t0 is a zero of u(r, d), then E(t0, d) = u′2(t0,d)

2 > 0; thus u′(t0, d) 6= 0.
Then t0 is a simple zero of u(r, d).

For (2), we argue by contradiction. Suppose if d is sufficiently large there exists
R < t1 < . . . . < tn < tn+1 ≤ T and u(tn) = 0 for all n ∈ N. Using the mean value
theorem, there exists zn ∈ (tn, tn+1) such that u′(zn, d) = 0 for all n ∈ N. So (tn)
converges to t ≤ T and by continuity of u and u′ we deduce that u(t, d) = u′(t, d) =
0. This is a contradiction to (1). Thus for d sufficiently large u has a finite number
of zeros on [R, T ]. �

3. Solution with a prescribed number of zeros

In this section we show the solution u(r, d) has a large number of zeros for d
sufficiently large. For this we study the behavior of zeros of u(r, d) for d large
enough. Also, assuming (H1)–(H4) hold, it is obvious that the first zero of u(r, d)
is z0(d) = R. In the following we focus on finding the zeros of u(r, d) on interval
]R, T ]. From (H2), the mapping u 7→ F (u) is increasing for large u and decreasing
when u is a large negative number. By (1.2), we have F (u) > 0 for sufficiently
large |u| and from Lemma 2.5 we deduce that for d sufficiently large the equation
F (u) = 1

2 infr∈[R,T ]E(r, d) has exactly two solutions, which we denote h1(d) and
h2(d) such that

h2(d) < 0 < h1(d),

F (hi(d)) =
1
2

inf
r∈[R,T ]

E(r, d) for i = 1, 2.

From (1.2) and Lemma 2.5 we see that

lim
d→+∞

h1(d) = +∞. (3.1)

Also, limd→+∞ h2(d) = −∞.
On the other hand by (H2), for d large enough, u′′(r0(d)) = −f(u(r0(d)) −

g(r0(d)) < 0. As u′(r0(d)) = 0 so u is decreasing on (r0(d), r) for r close enough to
r0(d). Denote for d sufficiently large

r∗(d) = sup
{
r ∈ (r0(d), T ) : u is decreasing on (r0(d), r)

}
.

There are two cases r∗(d) = T and r∗(d) < T .

Lemma 3.1. If (H1)–(H4) are satisfied, then for d sufficiently large there exist
r1 ∈ (r0(d), T ) such that u(r1) = h1(d) and h1(d) < u ≤ u(r0(d)) on [r0(d), r1).
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Proof. Suppose by contradiction there exists a sequence dn → ∞ such that for all
n ∈ N),

u(r, dn) = un(r) > h1(dn) on (r0(dn), T ).

If r∗(dn) = T then un is decreasing on [r0(dn), T ] for n large enough. From (3.1),
(H2) and (H4) we obtain for n large enough and for all r ≥ r0(dn)

un(r) > h1(dn) and f(un(r)) > f(h1(dn)) > ‖g‖. (3.2)

Let n be large enough and s ≥ r0(dn) = r0,n. From (2.5) we have

−u′n(s) =
1

sN−1

∫ s

r0,n

tN−1(f(un) + g(t)) dt.

Integrating on (r0,n + r
2 , r0,n + r) with r ∈ (0, T − r0,n) gives

un(r0,n +
r

2
) = un(r0,n + r) +

∫ r0,n+r

r0,n+ r
2

1
sN−1

(∫ s

r0,n

tN−1(f(un) + g(t)) dt
)

ds.

As un is decreasing and by (3.2) we have

un(r0,n +
r

2
) ≥

f(un(r0,n + r
2 ))− ‖g‖

2NTN−1

(
[r0,n +

r

2
]N − rN0,n

)
r.

Taking r = T − r0,n by (3.1), (3.2) and (H2) we see that(
[
r0,n + T

2
]N − rN0,n

) (T − r0,n)
2NTN−1

≤
un
( r0,n+T

2

)
f
(
un
( r0,n+T

2

))
− ‖g‖

→ 0.

Since r0,n → R, it follows that(
[
R+ T

2
]N −RN

) (T −R)
2NTN−1

= 0

which implies T = R which is impossible. Thus it must be that r∗(dn) < T .
For r∗(dn) = r∗ < T , we haven u′n(r∗) = 0 and

∫ r∗
r0,n

tN−1(f(un) + g(t)) dt = 0.
However by (3.2) we deduce that f(un(t))− g(t) > f(un(t))− ‖g‖ > 0 on [r0,n, r∗]
and so

∫ r∗
r0,n

tN−1(f(un) + g(t)) dt > 0. This is impossible. End of the proof. �

Thus, for d sufficiently large we denote by r1(d) the smallest r ∈ (r0(d), T ) such
that

u(r1(d)) = h1(d), h1(d) < u ≤ u(r0(d)) on [r0(d), r1(d)). (3.3)

Lemma 3.2. If (H1)–(H4) are satisfied, then
(1) limd→+∞ r1(d) = R.
(2) For d sufficiently large, u(r, d) has a first zero z1(d) in the interval (R, T ),

and limd→+∞ z1(d) = R.

Proof. For (1), let

C(d) =
1
2

min
r∈[r0(d),r1(d)]

f(u)
u

=
1
2

min
r∈[h1(d),u(r0(d))]

f(s)
s
.

It follows from (3.1) and (H2) that

lim
d→+∞

C(d) = +∞. (3.4)
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We now compare the problem

u′′(r) +
N − 1
r

u′(r) +
f(u)
u

u+ g(r) = 0 (3.5)

with

v′′(r) +
N − 1
r

v′(r) + C(d)v = 0 (3.6)

with the initial conditions

u(r0(d)) = v(r0(d)) and u′(r0(d)) = v′(r0(d)) = 0. (3.7)

Then by (3.4) we see that for d sufficiently large and all r ∈ [r0(d), r1(d)], we have

f(u)
u
≥ 2C(d) > C(d). (3.8)

Claim: for d sufficiently large, u < v on (r0(d), r1(d)].
Indeed, multiplying (3.5) by rN−1v and (3.6) by rN−1u and subtracting, gives(

rN−1(u′v − uv′)
)′ + rN−1uv

(f(u)
u

+
g(r)
u
− C(d)

)
= 0.

Integrating this on (r0(d), r) and using the initial conditions, gives

rN−1(u′v − uv′) = −
∫ r

r0(d)

tN−1uv
(f(u)

u
+
g(t)
u
− C(d)

)
dt. (3.9)

From (3.1), (3.4) and (3.8) we see that for d sufficiently large,

f(u)
u

+
g(r)
u
− C(d) ≥ C(d)− ‖g‖

h1(d)
> 0. (3.10)

For d sufficiently large, let F = {r ∈ (r0(d), r1(d)) : u < v on (r0(d), r)}. Then

u′′(r0(d)) = −g(r0(d))− f(u(r0(d)))

= u(r0(d))
(
− g(r0(d))
u(r0(d))

− f(u(r0(d)))
u(r0(d))

+ C(d)
)
− C(d)u(r0(d)).

From (H2) and Lemma 2.4 it follows that for d sufficiently large

u(r0(d)) > 0 and − g(r0(d))
u(r0(d))

− f(u(r0(d)))
u(r0(d))

+ C(d) < 0.

Then, for d sufficiently large we have

u′′(r0(d)) < −C(d)u(r0(d)) = v′′(r0(d)).

By continuity there exists ε > 0 such that (u − v)′′(r) < 0 on (r0(d), r0(d) + ε).
Using the initial conditions (3.7) we deduce that u < v on (r0(d), r0(d) + ε). Thus
F 6= ∅. We denote r = sup F . Now we will show that r = r1(d). Otherwise,
suppose that

u < v on (r0(d), r) and u(r) = v(r).

Since 0 < h1(d) < u < v on (r0(d), r) and by (3.10) we see that, for d sufficiently
large then

rN−1uv
(f(u)

u
+
g(r)
u
− C(d)

)
> 0.
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Therefore, by (3.9) u′(r)v(r)− u(r)v′(r) < 0 on (r0(d), r]. Thus, u′(r) < v′(r). On
the other hand, as u(r) < v(r) for r < r we have

u(r)− u(r)
r − r

>
v(r)− v(r)
r − r

.

Hence u′(r) ≥ v′(r). This is a contradiction. It follows that r = r1(d) which
completes the proof of the claim.

Now, we set

z(r) =
(
r/
√
C(d)

)N−2
2
v
(
r/
√
C(d)

)
.

It is easy to verify that z(r) is a solution of Bessel’s equation of order ν = N−2
2 > 0.

i.e.,

z′′ +
z′

r
+
(
1− ν2

r2
)
z = 0.

Then there exists a constant K > 0 such that every interval of length K has at
least one zero of z(r) (see [5]). It follows that every interval of length K/

√
C(d)

contains at least one zero of v(r). Hence by claim for d sufficiently large we have

r0(d) < r1(d) < r0(d) +
K√
C(d)

.

Now (1) of this lemma is a consequence of Lemma 2.4 and (3.4).
For (2), suppose not, which means u > 0 on (R, T ] and consider r > r1(d). Then

0 < u < u(r1(d)). Also as F (h1(d)) = 1
2 infr∈[R,T ]E(r, d) for large d, thus

2F (h1(d)) ≤ u′2

2
+ F (u) ≤ u′2

2
+ F (h1(d)).

Therefore
−u′ = |u′| ≥

√
2F (h1(d)) for r1(d) ≤ r ≤ T.

Integrating on (r1(d), r) and by (3.3) we obtain

h1(d)− u(r) = u(r1(d))− u(r) ≥
√

2F (h1(d))(r − r1(d)),

so that
h1(d)−

√
2F (h1(d))(r − r1(d)) ≥ u(r) > 0,

thus

r − r1(d) ≤ h1(d)√
2F (h1(d))

(3.11)

for large d.
Taking r = T and taking the limit as d → ∞ in (3.11) as well as using (1.2),

(3.1) and r1(d)→ R we see that

0 < T −R ≤ h1(d)√
2F (h1(d))

→ 0

as d → ∞. This is impossible since T > R. Thus u has a first zero z1(d). Then
using a similar argument on [r1(d), z1(d)] and letting r = r1(d) in (3.11) we obtain
limd→+∞ z1(d) = R. The proof is complete. �

Lemma 3.3. Let (H1)–(H4) be satisfied. Then for d sufficiently large the solution
u(r, d) attains a local minimum at r3(d) ∈ (r2(d), T ) and moreover limd→∞ r3(d) =
R.
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Proof. We begin to establish the following claim.
Claim: for d sufficiently large u(r, d) attains the value h2(d) on (z1(d), T ).

Otherwise, there exists a sequence dn → ∞ such that for all n ∈ N, un(r) >
h2(dn) on (z1(dn), T ). By Lemma 2.6 we have u′n(z1(dn)) 6= 0 for n large enough.
As u′n < 0 on ]r1(dn), z1(dn)[ therefore u′n(z1(dn)) < 0. Then by continuity we see
that u′n < 0 on some maximal interval [z1(dn), r∗[ for n large enough, therefore
h2(dn) < un. Thus F (un) < F (h2(dn)) on [z1(dn), r∗[. Hence by the definition of
h2(d) at the beginning of section 3 we have

2F (h2(dn)) ≤ E(r, dn) <
u′2n
2

+ F (h2(dn)).

Therefore
0 <

√
2F (h2(dn)) ≤ |u′n| = −u′n ∀r ∈ [z1(dn), r∗].

In particular u′n(r∗) < 0. This implies r∗ = T for if r∗ < T then by definition of r∗

we wold have u′n(r∗) = 0. Now integrating this inequality on (z1(dn)), r) we obtain,
for n large enough

h2(dn) < un(r) ≤ −
√

2F (h2(dn))(r − z1(dn)) ∀r ∈ [z1(dn), T ]. (3.12)

Taking r = T we have

T − z1(dn) ≤ −h2(dn)√
2F (h2(dn))

.

Since limn→∞ h2(dn) = −∞, by (1.2) we deduce that limn→∞
−h2(dn)√
2F (h2(dn))

= 0. As

limn→∞ z1(dn) = R (by Lemma 3.2) then T = R. This is a contradiction. End of
proof of claim.

We denote by r2(d) the smallest r ∈ (z1(d), T ) such that u(r2(d)) = h2(d) and
h2(d) < u(r, d) on [z1(d), r2(d)[. By (3.12) taking r = r2(d) we see that

lim
d→∞

r2(d) = R. (3.13)

Now, suppose by contradiction that u is decreasing on (r2(d), T ). Then u < h2(d) <
0 on (r2(d), T ). We set

C(d) =
1
2

min
u≤h2(d)

f(u)
u

.

By (H2), we see that
lim

d→+∞
C(d) = +∞. (3.14)

Now, we compare the problem

u′′(r) +
N − 1
r

u′(r) +
f(u)
u

u+ g(r) = 0 (3.15)

with
v′′(r) +

N − 1
r

v′(r) + C(d)v = 0 (3.16)

and with the initial conditions

v(r2(d)) = u(r2(d)) = h2(d) and v′(r2(d)) = u′(r2(d)). (3.17)

As in the proof of Lemma 3.2 we see that u > v on (r2(d), T ), for d large enough.
We saw that

z(r) =
(
r/
√
C(d)

)N−2
2
v
(
r/
√
C(d)

)



12 B. AZEROUAL, A. ZERTITI EJDE-2016/114

is a solution of the Bessel’s equation of order ν = N−2
2 . Then, there exists K > 0

such every interval of length K has at least one zero of z(r). We deduce that for
large d, v must have a zero on (r2(d), T ) and since u > v we see that u gets positive
which contradicts that u is decreasing on (r2(d), T ). It follows that u has a local
minimum at r3(d) ∈ (r2(d), T ). Also , for d sufficiently large we have

r2(d) < r3(d) ≤ r2(d) +
K√
C(d)

.

It follows from (3.14) and (3.13) as d → ∞ that r3(d) → R. This completes the
proof. �

As F (u(r3(d))) = E(r3(d)) → ∞ as d → ∞ (by Lemma 2.5), in similar way
we can show that for d large enough, u(r, d) has a second zero z2(d) with r3(d) <
z2(d) < T and moreover limd→+∞ z2(d) = R. Proceeding in the same way, we can
show that for d sufficiently large, u(r, d) has a second local maximum at r4(d) ∈
(z2(d), T ) with limd→+∞ u(r4(d)) = +∞ and therefore, there exists z3(d) the third
zero of u(r, d) on (R, T ) with limd→+∞ z3(d) = R.

Remark 3.4. Continuing in the same way we can obtain as many zeros of u(r, d)
as desired on (R, T ) for d large enough.

4. Proof of main result

For d > 0, let us denote by Nd card{zeros zeros of u(r, d) on (R, T )}. For k ≥ 1
defined by set

Sk = {d : Nd = k − 1 and inf
r∈[R,T ]

E(r, d) > 0}.

By Lemma 2.5 and remark 3.4, we see that for d sufficiently large, Sk is not empty
for some k and infr∈[R,T ]E(r, d) > 0 and we denote k0 = min{k ∈ N∗ | Sk 6= ∅}. It
follows that Sk0 is not empty and is bounded above. Let dk0 = supSk0 .

Lemma 4.1. Ndk0
= k0 − 1.

Proof. By definition of k0 we have Ndk0
≥ k0 − 1. Suppose now that Ndk0

≥ k0.
Then for d close to dk0 and d ≤ dk0 by remark 2.2 with respect to initial conditions
and by Lemma 2.6 we see that Nd ≥ k0. However, if d ∈ Sk0 and is close to dk0 and
d < dk0 then Nd = k0 − 1. This is a contradiction to the definition of dk0 . Hence
Ndk0

= k0 − 1. �

Lemma 4.2. u(T, dk0) = 0.

Proof. We argue by contradiction and assume that u(T, dk0) 6= 0, then by remark
2.2 with respect to initial conditions and by Lemma 2.6, we deduce that if d is close
to dk0 then Nd = Ndk0

Now, for d close to dk0 and d > dk0 then d /∈ Sk0 therefore,
Nd 6= k0 − 1. This is a contradiction with Lemma 4.1. Hence u(T, dk0) = 0. �

We denote Sk0+1 = {d > dk0 : Nd = k0 and infr∈[R,T ]E(r, d) > 0}.

Lemma 4.3. Sk0+1 6= ∅.

Proof. We want to show the following result first.
Claim: If d close to dk0 and d > dk0 then Nd ≤ k0.
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Suppose by contradiction that there exists a sequence qn → dk0 such that Nqn
≥

k0 + 1. For all 1 ≤ i ≤ k0 let us denote zni the ith zero of u(r, qn) on (R, T ) such
that

R < zn1 < zn2 < · · · < znk0 < znk0+1 < T.

For every 1 ≤ i ≤ k0 + 1 the sequence (zni ) is bounded and converges to zi thus, we
see that

R < z1 < z2 < · · · < zk0 < zk0+1 < T.

It follows that Ndk0
≥ k0, which contradicts Lemma 4.1. Thus the claim is proven.

Finally, if d > dk0 then Nd ≤ k0 and Nd 6= k0 − 1 thus, Nd = k0 and Sk0+1 6= ∅
which completes the proof. �

By remark 3.4 it follows that Sk0+1 is not empty and bounded above thus, we
denote dk0+1 = supSk0+1. We show in a similar way as Lemmas 4.1 and 4.2 that
Ndk0+1 = k0 and u(T, dk0+1) = 0. Proceeding inductively we can show, for all
k ≥ k0 there exists a solution uk(r) = u(r, dk) of (2.1)-(2.2) which has exactly
(k − 1) zeros on (R, T ) with u′k(R) = dk > 0.

Now, in the case d < 0 we consider the problem

u′′(r) +
N − 1
r

u′(r) + f(u) + g(r) = 0 if R < r < T

u(R) = 0, u′(R) = d < 0.
(4.1)

We denote v(r) = −u(r) and g1(r) = −g(r) on [R, T ] and f1(s) = −f(−s) on R
then the problem (4.1) is equivalent to

v′′(r) +
N − 1
r

v′(r) + f1(v) + g1(r) = 0, if R < r < T

v(R) = 0, v′(R) = −d > 0.
(4.2)

Then g1 is C1([R, T ],R). It is clear that the assumptions (H1), (H2) and (H4) are
satisfied.

It remains to prove (H3). We set F1(v) =
∫ v
0
f1(s)ds. Then F1(v) = F (−v) for

all v ∈ R; thus

NF1(v)− N − 2
2

vf1(v)− N + 2
2
‖g1‖ |v| − T‖g′1‖ |v|

= NF (u)− N − 2
2

uf(u)− N + 2
2
‖g‖ |u| − T‖g′‖ |u| > −m.

Next, according to the case d > 0 we deduce that, for k sufficiently large, (2.1)-(2.2)
has a solution vk which has exactly (k−1) zeros on (R, T ) with v′k(R) > 0. Finally,
for k sufficiently large, (2.1)-(2.2) has a solution wk = −vk which has (k − 1) zeros
on (R, T ) and w′k(R) < 0. End of proof of the main Theorem 1.1.
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