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EXISTENCE OF SOLUTIONS FOR FRACTIONAL
DIFFERENTIAL EQUATIONS WITH DIRICHLET BOUNDARY

CONDITIONS

KHALED BEN ALI, ABDELJABBAR GHANMI, KHALED KEFI

Abstract. In this article, we apply the Nehari manifold to prove the existence
of a solution of the fractional differential equation

d

dt

“ 1

2
0D
−β
t (u′(t)) +

1

2
tD
−β
T (u′(t))) = f(t, u(t)) + λh(t)|u(t)|r−2u(t),

a.e t ∈ [0, T ],

u(0) = u(T ) = 0,

where 0D
−β
t , tD

−β
T are the left and right Riemann-Liouville fractional inte-

grals, respectively, of order 0 < β < 1.

1. Introduction

Recently, there has been surge in the interest for fractional differential equa-
tions in fields such as: from physics, chemistry, aerodynamics, electrical circuits,
diffusion, electro dynamics of complex medium, and applied mathematics. Among
the researchers studying such equations, we can quote for example the authors in
[1, 10, 12, 18].

Researchers have examined some problems related to these types of equations by
using methods such as fixed point theorem, coincidence degree theory, and critical
point theory; see [2, 3, 4, 5, 6, 7, 9, 11, 15, 16, 17, 19, 20, 23, 25, 24, 26, 27, 21, 8,
22, 13, 14]. As an example Jiao and Zhou [7] studied the boundary-value problem

d

dt

(1
2 0D

−β
t (u′(t)) +

1
2 tD

−β
T (u′(t))

)
+∇F (t, u(t)) = 0, a.e. t ∈ [0, T ],

u(0) = u(T ) = 0,
(1.1)

where 0 < β < 1, and 0D
−β
t and tD

−β
T t are the left and right Riemann-Liouville

fractional integrals of order β, respectively, F : [0, T ] × RN → R, and ∇F (t, x) is
the gradient of F with respect to x. By using the mountain pass theorem, they
showed the existence of a solution.
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Bai [4] and other researchers considered the problem
d

dt

(1
2 0D

α−1
t (C0 D

α
t (u(t))) +

1
2 tD

α−1
T (Ct D

α
Tu(t))

)
+ λa(t)f(u(t)) = 0,

a.e. t ∈ [0, T ],

u(0) = u(T ) = 0

(1.2)

where α ∈ (1/2, 1], and 0D
α−1
t and tD

α−1
T are the left and right Riemann-Liouville

fractional integrals of order 1−α, where C
0 D

α
t (u(t)) and C

t D
α
T (u(t)) are the left and

right Caputo fractional derivatives of order α. By using a critical-point theorem
established by Bonanno, he proved the existence of a solution to this problem. We
mention also the works [5, 6, 7, 9], where by using critical point theory, the existence
and multiplicity of solutions have been established for the related problems.

In this article, we attempt to highlight the use of the Nehari method to prove
the existence of solutions to the problem

d

dt

(1
2 0D

−β
t (u′(t)) +

1
2 tD

−β
T (u′(t))

)
= f(t, u(t)) + λh(t)|u(t)|r−2u(t),

a.e. t ∈ [0, T ],

u(0) = u(T ) = 0,

(1.3)

where λ is a positive parameter, 1 < r < 2 < p and 0 < β < 1 ,0D
−β
t and tD

−β
T

are the left and right Riemann-Liouville fractional integrals of order β, respectively.
Our technical tool is the method of Nehari manifold (see [4, 5, 6, 7, 9, 15, 16, 23, 25]).
Our interest stems from the fact that this kind of problem is rarely solved by using
this method.

Throughout this article, we denote α = 1−β/2 and use the following conditions:
(H1) f ∈ C1(R× R) such that f(t, 0) = 0 = (∂f/∂s)(t, 0) for every t ∈ R.
(H2) There are constants a, b > 0 and 2 < p such that∣∣∂f

∂s
(t, s)

∣∣ ≤ a+ b|s|p−2, (1.4)

for every t ∈ R and s ∈ R.
(H3) There are constants µ > 0, M > 0 such that

0 < µF (t, s) ≤ sf(t, s) (1.5)

for all t ∈ R and |s| ≥M , where

F (t, s) =
∫ s

0

f(t, x)dx. (1.6)

(H4) The map t → t−1sf(x, ts) is increasing on (0,+∞), for every x ∈ R and
s ∈ R.

(H5) h is a nonnegative continuous function on Ω.
Our main result is the following.

Theorem 1.1. Assuming (H1)–(H5), boundary value problem (1.3) has at least
one weak solution.

This article is organized as follows. In Section 2, some preliminaries on the
fractional calculus are presented. In Section 3, we set up the variational framework
of problem (1.3) and give some necessary lemmas. Section 4 presents the proof of
the main result. An example is given in Section 5 to illustrate our main result.
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2. Preliminaries results and fractional calculus

In this section, we introduce some notation, definitions, and preliminary facts
on fractional calculus which are used throughout this paper.

Definition 2.1. Let f be a function defined on [a, b]. The left and right Riemann-
Liouville fractional integrals of order α for function f are defined, respectively,
by

aD
−α
t f(t) =

1
Γ(α)

∫ t

0

(t− s)α−1f(s)ds, t ∈ [a, b], α > 0,

tD
−α
b f(t) =

1
Γ(α)

∫ b

t

(t− s)α−1f(s)ds, t ∈ [a, b], α > 0,

provided that the right-hand side integral is pointwise defined on [a, b].

Definition 2.2. Let f be a function defined on [a, b]. The left and right Riemann-
Liouville fractional derivatives of order α for function f are defined, respectively,
by

aD
α
t f(t) =

dn

dtn a
Dα−n
t f(t)

=
1

Γ(α)
dn

dtn

∫ t

0

(t− s)n−α−1f(s)ds, t ∈ [a, b], α > 0,

tD
α
b f(t) = (−1)n

dn

dtn t
Dα−n
b f(t)

=
(−1)n

Γ(α)
dn

dtn

∫ t

b

(s− t)n−α−1f(s)ds, t ∈ [a, b], α > 0,

(2.1)

provided that the right-hand side integral is pointwise defined on [a, b].

Definition 2.3. If α ∈ (n − 1, n) and f ∈ ACn([a, b],R), then the left and right
Caputo fractional derivatives of order α for function f are defined, respectively, by

C
aD

α
t f(t) =a D

α−n
t

dn

dtn
f(t)

=
1

Γ(α)

∫ t

0

(t− s)n−α−1fn(s)ds, t ∈ [a, b], α > 0,

C
t D

α
b f(t) = (−1)ntD

α−n
b

dn

dtn
f(t)

=
(−1)n

Γ(α)

∫ b

t

(s− t)n−α−1fn(s)ds, t ∈ [a, b], α > 0,

(2.2)

where t ∈ [a, b].

Lemma 2.4 ([7]). The left and right Riemann-Liouville fractional integral opera-
tors that is have the property of a semigroup; that is,∫

[aD−αt f(t)]g(t)dt =
∫

[tD−αb g(t)]f(t)dt, α > 0, (2.3)

provided f ∈ Lp([a, b],R), g ∈ Lq([a, b],R) and p ≥ q, q ≥ 1, 1/p + 1/q ≤ 1 + α or
p 6= 1, q 6= 1, 1/p+ 1/q = 1 + α.
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Lemma 2.5 ([7]). Assume that n− 1 < α < n and f ∈ Cn[a, b]. Then

aD
−α
t (CaD

α
t f(t)) = f(t)−

n−1∑
j=0

f (j)(a)
j!

(t− a)j , t ∈ [a, b] ,

tD
−α
b (Ct D

α
b f(t)) = f(t)−

n−1∑
j=0

(−1)jf (j)(b)
j!

(b− t)j , t ∈ [a, b] .

(2.4)

Lemma 2.6 ([7]). Assume that n− 1 < α < n. Then

C
aD

α
t f(t) =a D

α
t f(t)−

n−1∑
j=0

f (j)(a)
Γ(j − α+ 1)

(t− a)j−α, t ∈ [a, b] ,

C
t D

α
b f(t) =t D

α
b f(t)−

n−1∑
j=0

(−1)jf (j)(b)
Γ(j − α+ 1)

(b− t)j−α, t ∈ [a, b] .

(2.5)

3. A Variational Setting

To apply critical point theory for the existence of solutions for (1.3), we shall
state some basic notation and results [7], which will be used in the proof of our
main results.

Now we construct appropriate function spaces. Denote by C+∞
0 ([0, T ],R) the set

of all function u ∈ C+∞([0, T ],R) with u(0) = u(T ) = 0. The fractional derivative
space Eα,p0 is defined by the closure of C+∞

0 ([0, T ],R) with respect to the norm

‖u‖α,p =
(∫ T

0

|u(t)|pdt+
∫ T

0

|C0 Dα
t u(t)|pdt

)1/p

. (3.1)

Remark 3.1. If p = 2, we define Eα = Eα,20 as the closure of C+∞
0 ([0, T ],R) with

respect to the norm

‖u‖α,p =
(∫ T

0

|u(t)|2dt+
∫ T

0

|C0 Dα
t u(t)|2dt

)1/2

. (3.2)

The Set Eα is a reflexive and separable Hilbert space.

Remark 3.2. For any u ∈ Eα, noting that u(0) = 0, we have 0D
α
t u(t) = C

0 D
α
t u(t),

t ∈ [0, T ]

Lemma 3.3 ([6]). Let 0 < α ≤ 1 and 1 < p <∞. For all Eα = Eα,p0 , one has

‖u‖Lp ≤
Tα

Γ(α+ 1)
‖C0 Dα

t u‖Lp . (3.3)

Moreover, if α > 1/p and 1/p+ 1/q = 1, then

‖u‖∞ ≤
Tα−1/p

Γ(α)[(α− 1)q + 1]1/q
‖C0 Dα

t u‖Lp . (3.4)

According to (3.3), we can consider Eα equivalent norm with respect to the

‖u‖α,p = ‖C0 Dα
t u‖Lp , ‖u‖ = ‖C0 Dα

t u‖L2 . (3.5)

Lemma 3.4 ([6]). Let 0 < α ≤ 1 and 1 < p < ∞. Assume that α > 1/p and
the sequence uk converge weakly to u in Eα,p0 ; that is, uk ⇀ u. Then uk → u in
C([0, T ], R); that is, ‖u− uk‖ −∞ → 0 as k →∞.
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Similar to the proof of [17, Proposition 4.1], we have the following property.

Lemma 3.5. If 1/2 < α ≤ 1, for any u ∈ Eα, one has

| cos(πα)|‖u‖2 ≤ −
∫ T

0

(C0 D
α
t u(t),Ct D

α
Tu(t))dt ≤ 1

| cos(πα)|
‖u‖2. (3.6)

To obtain a weak solution of boundary-value problem (1.3), we assume that u
is a sufficiently smooth solution of (1.3). Multiplying (1.3) by an arbitrary v ∈
C∞0 (0, T ), we have

−
∫ T

0

( d
dt

(1
2 0
D−βt (u′(t)) +

1
2 t
D−βT (u′(t))

)
, v(t)

)
dt

=
∫ T

0

(f(t, u(t), v(t))dt+ λ

∫ T

0

(h(t)|u(t)|r−2u(t), v(t))dt.

(3.7)

Observe that

− 1
2

∫ T

0

( d
dt

(
0
D−βt u′(t) +t D

−β
T u′(t)

)
, v(t)

)
dt

=
1
2

∫ T

0

(
(0D

−β
t u′(t), v′(t)) + (tD

−β
T u′(t), v′(t))

)
dt

=
1
2

∫ T

0

(
(0D

−β/2
t u′(t),tD

−β/2
T v′(t)) + (tD

−β/2
T u′(t),0D

−β/2
t v′(t))

)
dt.

(3.8)

As u(0) = u(T ) = v(0) = v(T ) = 0, we have

0D
−β/2
t u′(t) =0 D

1−β/2
t u(t),

tD
−β/2
T u′(t) = −tD1−β/2

T u(t),

0D
−β/2
t v′(t) =0 D

1−β/2
t v(t),

tD
−β/2
T v′(t) = −tD1−β/2

T v(t).

(3.9)

Then (3.7) is equivalent to∫ T

0

−1
2

[(0Dα
t u(t),tDα

T v(t)) + (tDα
Tu(t),0Dα

t v(t))]dt

=
∫ T

0

(f(t, u(t), v(t))dt+ λ

∫ T

0

(h(t)|u(t)|r−2u(t), v(t))dt.

(3.10)

Since (3.10) is well defined for u, v ∈ Eα, we define weak solution of (1.3) as follows.

Definition 3.6. u is a weak solution of (1.3) if∫ T

0

−1
2

[(0Dα
t u(t),tDα

T v(t)) + (tDα
Tu(t),0Dα

t v(t))]dt

=
∫ T

0

(f(t, u(t), v(t))dt+ λ

∫ T

0

((t)|u(t)|r−2u(t), v(t))dt.

(3.11)

for every v ∈ Eα.

We consider the functional I : Eα → R, defined by

I(u) =
∫ T

0

[
− 1

2
(0Dα

t u(t),tDα
Tu(t))− F (t, u(t))− λ

r
h(t)|u(t)|r

]
dt, (3.12)
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where F (t, u) =
∫ u
0
f(t, s)ds.

From [6, Theorem 4.1], we can get that if 1/2 < α ≤ 1, then the functional I is
continuously differentiable on Eα. Since I is continuously differentiable on Eα, we
have

〈I ′(u), v〉 = −
∫ T

0

1
2

[(0Dα
t u(t),tDα

T v(t)) + (tDα
Tu(t),0Dα

t v(t))]dt

−
∫ T

0

(f(t, u(t), v(t))dt− λ
∫ T

0

(h(t)|u(t)|r−2u(t), v(t))dt ,

(3.13)

for u, v ∈ Eα. Hence, a critical point of I is a weak solution of (1.3). To study
the solvability of (1.3), we use the so-called Nehari method. There is one-to-one
correspondence between the critical points of I and weak solutions of (1.3). Now,
we define

N = {u ∈ Eα\{0} : 〈I ′(u), u〉 = 0}. (3.14)

Then we know that any nonzero critical point of I must be in N . Define

φ(u) = 〈I ′(u), u〉

= −
∫ T

0

(0Dα
t u(t),tDα

Tu(t))dt−
∫ T

0

(f(t, u(t), u(t))dt

− λ
∫ T

0

(h(t)|u(t)|r−2u(t), u(t))dt.

(3.15)

Lemma 3.7. Assume (H1)–(H5) are satisfied. If u ∈ N is critical point of I|N ,
then I ′(u) = 0.

Proof. For u ∈ N , together with (H4)

〈φ′(u), u〉

= −
∫ T

0

2(0Dα
t u(t),tDα

Tu(t))dt

−
∫ T

0

(
∂

∂u
f(t, u(t))u2(t) + f(t, u(t))u(t))dt− λr

∫ T

0

h(t)|u(t)|rdt

=
∫ T

0

2(f(t, u(t), u(t))dt−
∫ T

0

(
∂

∂u
f(t, u(t))u2(t) + f(t, u(t))u(t))dt

+ 2λ
∫ T

0

h(t)|u(t)|rdt− λr
∫ T

0

h(t)|u(t)|rdt

=
∫ T

0

(f(t, u(t))u(t)− ∂

∂u
f(t, u(t)).u2(t))dt− λ(2− r)

∫ T

0

h(t)|u(t)|rdt

< 0.

(3.16)

If u ∈ N is a critical point of I|N , there exists a Lagrange multiplier λ ∈ R, such
that I ′(u) = λφ′(u). Then we have

〈I ′(u), u〉 = λ〈φ′(u), u〉 = 0. (3.17)

From (3.16) we obtain λ = 0. Consequently I ′(u) = 0. The proof is complete. �
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4. Proof of main result

The proof is done in two steps.

Step 1: For any u ∈ Eα \ {0}, there is a unique y = y(u) such that y(u)u ∈ N
and one has I(yu) = maxz I(zu) > 0. Indeed, we claim that there exist constants
δ > 0, ρ > 0 such that I(u) > 0 for all u ∈ Bρ(0) \ {0} and I(u) ≥ δ for all
u ∈ ∂Bρ(0). That is, 0 is a strict local minimizer of I. In fact, by (H3) we obtain
that for all ε > 0 there exists Cε > 0 such that

|F (t, u)| ≤ ε

2
|u|2 + Cε|u|p. (4.1)

Then from Lemmas 3.3 and 3.5, we have

I(u) = −1
2

∫ T

0

(C0 D
α
t u(t),Ct D

α
Tu(t))dt−

∫ T

0

F (t, u(t))dt− λ

r

∫ T

0

h(t)|u(t)|rdt

≥ −1
2

∫ T

0

(C0 D
α
t u(t),Ct D

α
Tu(t))dt− ε

2

∫ T

0

|u|2dt− Cε
∫ T

0

|u|pdt

− λ

r
T‖h‖∞‖u‖r∞ (4.2)

≥ 1
2
| cos(πα)|‖u‖2 − ε

2

∫ T

0

|u|2dt− Cε
∫ T

0

|u|pdt− Cλ‖u‖r (4.3)

≥
(1

2
| cos(πα)| − ε

2
T 2α

Γ2(α+ 1)

)
‖u‖2 − Cε

( T p+α−1/2

Γ(α)[(α− 1)2 + 1]1/2

)p
‖u‖p

− Cλ
( T r+α−1/2

Γ(α)[(α− 1)2 + 1]1/2

)r
‖u‖r. (4.4)

Choose ε such that ε/2(T 2α/Γ2(α+ 1)) = (1/4)| cos(πα)|; then

I(u) ≥ 1
4
| cos(πα)|‖u‖2 −

(
Cε

( T p+α−1/2

Γ(α)[(α− 1)2 + 1]1/2

)p
+ Cλ

( T r+α−1/2

Γ(α)[(α− 1)2 + 1]1/2

)r)
‖u‖r

= ‖u‖2
(

(1/4)| cos(πα)| −
(
Cε

( T p+α−1/2

Γ(α)[(α− 1)2 + 1]1/2

)p
+ Cλ

( T r+α−1/2

Γ(α)[(α− 1)2 + 1]1/2

)r)
‖u‖r−2

)
(4.5)

Choose ρ > 0, such that(
Cε

(T p+α−1/2

Γ(α)
[(α− 1)2 + 1]1/2

)p
+ Cλ

(T r+α−1/2

Γ(α)
[(α− 1)2 + 1]1/2

)r)
ρp−2

=
1
8
| cos(πα)‖u‖2.

Then we have I(u) ≥ (1/8)| cos(πα)‖u‖2. Let δ = (1/8)| cos(πα)‖u‖2; then we have
get that there exist constants δ > 0, ρ > 0 such that I(u) > 0 for all u ∈ Bρ(0)\{0}
and I(u) ≥ δ for all u ∈ ∂Bρ(0).

Next, we claim that I(yu) → −∞, as y → ∞. In fact, by (H4), there exists a
constant A > 0 such that F (t, u) ≥ A|u|µ for |u| ≥M . On the other hand, we can
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easily get that there exists a constant B such that F (t, u) ≥ B for |u| ≤ M . Then
together with Lemma 3.5, we have

I(yu) ≤ y2

2| cos(πα)|
‖u‖2 −Ayµ

∫ T

0

|u|µdt−B − λ

r
yr
∫ T

0

h(t)|u(t)|rdt.

Then, we can get that I(yu)→ −∞, as y →∞. Let g(y) := I(yu) for y > 0. From
what we have proved, there hat at least one yu = y(u) > 0 such that

g(yu) = max
z≥0

g(z) = max
z≥0

I(zu) = I(yuu). (4.6)

We prove next that g(y) has a unique critical point for y > 0. Consider a critical
point

g′(y) = 〈I ′(yu), u〉

= −
∫ T

0

y(0Dα
t u,tD

α
Tu)dt−

∫ T

0

f(t, yu)u dt− λyr
∫ T

0

h(t)|u|rdt

= 0

(4.7)

Then,from (H5), we have

g′′(y) = −
∫ T

0

(0Dα
t u,tD

α
Tu)−

∫ T

0

∂f(t, yu)
∂(yu)

u2dt− λryr−1

∫ T

0

h(t)|u|rdt

=
∫ T

0

f(t, yu)u
y

dt−
∫ T

0

∂f(t, yu)
∂(yu)

u2dt− λryr−1

∫ T

0

h(t)|u|rdt < 0.

So we know that if y is a critical point of g, then it must be a strict local maximum.
This implies the uniqueness. Finally, from

g′(y) = 〈I ′(yu), u〉 =
1
y
〈I ′(yu), yu〉, (4.8)

we see y is critical point if yu ∈ N . Define m = infN I. Then we can get that
m ≥ inf∂Bρ(0) I ≥ δ > 0.

Step 2: There exists u ∈ N such that I(u) = m. We claim that both I and φ are
weakly lower semicontinuous. In fact, according to Lemma 3.4, if uk ⇀ u in Eα,
then uk → u in C([0, T ],R). Therefore, F (t, uk(t))→ F (t, u(t)) a.e. t ∈ [0, T ]. By
the Lebesgue dominated convergence theorem, we have∫ T

0

F (t, uk(t))dt→
∫ T

0

F (t, u(t))dt

which means that the functional u →
∫ T
0
F (t, u(t))dt is weakly continuous on

Eα. Similarly u →
∫ T
0
f(t, u(t))u(t)dt is weakly continuous on Eα. Furthermore,∫ T

0
h(t)|uk(t)|rdt →

∫ T
0
h(t)|u(t)|rdt. Since Eα is Hilbert space, from (3.5) and

Lemma 3.5, we can easily obtain that −
∫ T
0

(C0 D
α
t u(t),Ct D

α
Tu(t))dt is weakly lower

semicontinuous on Eα. Then both I and φ are weakly lower semicontinuous.
Since µF (t, u) − uf(t, u) is continuous for t ∈ [0, T ] and |x| ≤ M , there exists

B > 0, such that

F (t, u) ≤ 1
µ
f(t, u) +B, t ∈ [0, T ], |x| ≤M. (4.9)
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From (H4) we obtain

F (t, u) ≤ 1
µ
f(t, u) +B, t ∈ [0, T ], x ∈ R. (4.10)

Let {uk} ∈ N be a minimizing sequence; that is, I(uk)→ m, I ′(uk)→ 0 as k →∞.
Then

m+ o(1)

= I(uk)

= −1
2

∫ T

0

(C0 D
α
t uk(t),Ct D

α
Tuk(t))dt−

∫ T

0

F (t, uk(t))dt− λ

r

∫ T

0

h(t)|uk(t)|rdt,

≥ −1
2

∫ T

0

(C0 D
α
t uk(t),Ct D

α
Tuk(t))dt− 1

µ

∫ T

0

ukf(t, uk)dt−BT − Cλ‖uk‖r,

=
( 1
µ
− 1

2
) ∫ T

0

(C0 D
α
t uk(t),Ct D

α
Tuk(t))dt+

1
µ
〈I ′(uk), uk〉 −BT − Cλ‖uk‖r,

≥
(1

2
− 1
µ

)
| cos(πα)|‖uk‖2 −

1
µ
‖I ′(uk)‖‖uk‖ −BT − Cλ‖uk‖r.

By µ > 2 > r and I ′(uk)→ 0, we obtain that uk is bounded in Eα. Since Eα is a
reflexive space, going to a subsequence if necessary, we may assume that uk → u in
C([0, T ],R). Since φ is weakly lower semicontinuous and uk ∈ N , we first have

φ(u) ≤ lim inf
k→∞

φ(uk) = 0. (4.11)

Then we have u 6= 0. In fact, if u = 0, then uk → u in C([0, T ],R). By φ(uk) = 0,
we obtain ‖uk‖ → 0. This is a contradiction with uk ∈ N .

Then from Step 1, there exists a unique y > 0 such that yu ∈ N . From this and
I being weakly lower semicontinuous, we have

m ≤ I(yu) ≤ lim inf
k→∞

I(yuk) ≤ lim
k→∞

I(yuk) ≤ lim
k→∞

I(uk) = m

Then we obtain that m is achieved at yu ∈ N .
Finally, from Step 1 and Step2, we obtain u ∈ N such that I(u) = m = infN I

which is a critical point of I|N . On the other hand from Lemma 3.7 we have
I ′(u) = 0. Consequently (1.3) has a weak solution such that I(u) = m. The proof
is complete.

5. An example

In this section, we give an example to illustrate our results. Let g and h be two
nonnegative continuous functions on [0, T ], we consider the problem

d

dt

(1
2 0
D
− 1

2
t (u′(t)) +

1
2 t
D
− 1

2
T (u′(t))

)
= g(t)|u(t)|p−2u(t) + λh(t)|u(t)|r−2u(t),

a.e. t ∈ [0, T ],

u(0) = u(T ) = 0,

where 1 < r < 2 < p. It is easily seen that f(t, u) = g(t)|u(t)|p−2u(t) satisfies
hypothesis (H1)–(H3). On the other hand for all x ∈ Ω and s ∈ R we have
t−1sf(x, ts) = g(t)|t|p−2sp which is increasing with respect to t. So, hypothesis
(H4) is satisfied. From Theorem 1.1, it follows the existence of a weak solution.
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