
Electronic Journal of Differential Equations, Vol. 2016 (2016), No. 117, pp. 1–10.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

EXISTENCE AND ASYMPTOTIC BEHAVIOR OF GLOBAL
REGULAR SOLUTIONS FOR A 3-D KAZHIKHOV-SMAGULOV

MODEL WITH KORTEWEG STRESS

MERIEM EZZOUG, EZZEDDINE ZAHROUNI

Abstract. In this article, we consider a 3-D multiphasic incompressible fluid

model, called the Kazhikhov-Smagulov model, with a specific Korteweg stress

tensor. We prove the existence of a global unique regular solution to the
Kazhikhov-Smagulov-Korteweg model provided that initial data and external

force are sufficiently small. Furthermore, in the absence of external forcing,

the solution decays exponentially in time to the equilibrium solution.

1. Introduction

In this article, we study a 3-D Kazhikhov-Smagulov-Korteweg (KSK) model
describing the motion of a viscous incompressible mixture of two fluids having
different densities. This type model can be derived from the compressible Navier-
Stokes system. Let Ω be a bounded open set in R3 with boundary Γ that is regular
enough. We denote by [0, T ] the time interval, for T > 0. The mixture of two
fluids is described by the density ρ(t,x) ≥ 0, the mass velocity field v(t,x) and
the pressure p(t,x), depending on the time and space variables (t,x) ∈ [0, T ] ×
Ω. According to Dunn and Serrin [8] (see also Bresch et al [6]), we consider the
compressible Navier-Stokes system

∂

∂t
(ρv) + div

(
ρv ⊗ v

)
= ρg + div

(
S + K

)
,

∂ρ

∂t
+ div(ρv) = 0,

(1.1)

where g stands for the gravity acceleration (but it can include further external
forces). The viscous stress tensor S and the Korteweg stress tensor K given by

S = (ν div v − p)I + 2µD(v),

K = (α∆ρ+ β|∇ρ|2)I + δ(∇ρ⊗∇ρ) + γD2
xρ,

(1.2)

where D(v) = (∇v +∇vT )/2 is the strain tensor and D2
xρ is the hessian matrix of

the density ρ. The pressure p and the coefficients α, β, γ, δ, ν and µ are functions
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of ρ. As in [9], choosing the viscosity coefficients ν and µ constants in the viscous
stress tensor S, we have

div S = ν∇(div v)−∇p+ 2µdiv
(
D(v)

)
. (1.3)

In the Korteweg stress tensor K, we consider the special case:

α = κρ, β =
κ

2
, δ = −κ, γ = 0,

for some constant κ > 0, called Korteweg’s constant. This choice corresponds
essentially to the Korteweg’s original assumptions connected with the variational
theory of Van Der Waals (see [10]). Therefore, the Korteweg stress tensor yields

K =
κ

2
(∆ρ2 − |∇ρ|2)I− κ(∇ρ⊗∇ρ), (1.4)

and we obtain
div K = κρ∇(∆ρ) = κ∇(ρ∆ρ)− κ∆ρ∇ρ. (1.5)

On another side, Fick’s law which relates the velocity to the derivatives of the
density (see [11, 1]), gives

v = u− λ∇ ln(ρ), (1.6)
with a volume velocity field u that is solenoidal (div u = 0) and λ > 0 is interpreted
as a diffusion coefficient. Consequently, we use (1.6) in the compressible Navier-
Stokes system (1.1), and after some calculations, we obtain the following system,
that we call the Kazhikhov-Smagulov-Korteweg (KSK) model,

ρ
(∂u
∂t

+ (u · ∇)u
)
− µ∆u− λ

(
∇ρ · ∇

)
u− λ

(
u · ∇

)
∇ρ

+∇P +
λ2

ρ

(
∆ρ∇ρ+

(
∇ρ · ∇

)
∇ρ− |∇ρ|

2

ρ
∇ρ
)

= ρg − κ∆ρ∇ρ,

∂ρ

∂t
+ u · ∇ρ = λ∆ρ,

div u = 0.

(1.7)

With QT = (0, T ) × Ω and Σ = (0, T ) × Γ, the unknowns for the model (1.7) are
ρ : QT → R the density of the fluid, u : QT → R3 the incompressible velocity field
and P : QT → R the modified pressure. We attach to (1.7) the following boundary
and initial conditions:

u(t,x) = 0,
∂ρ

∂n
(t,x) = 0, (t,x) ∈ Σ, (1.8)

u(0,x) = u0(x), ρ(0,x) = ρ0(x), x ∈ Ω, (1.9)

with the compatibility condition div u0 = 0, where ρ0 : Ω → R and u0 : Ω → R3

are given functions. We denote by n the unit outward normal on the boundary Γ.
Throughout this work, we assume the hypothesis

0 < m ≤ ρ0(x) ≤M < +∞, x ∈ Ω. (1.10)

Let us mention some known results about the Kazhikhov-Smagulov model with-
out the Korteweg stress tensor. Taking κ = 0, many authors study the global
existence of solution for the so-called Kazhikhov-Smagulov model. We can refer
for instance to [1, 11, 7, 14]. In [2], Beirão da Veiga considered the same model
(1.7) without Korteweg term and proved the existence of a unique local solution
for arbitrary initial data and external force and the existence of a unique global
regular solution for small initial data and external force. Moreover, he proved that
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if g = 0, the solution decay exponentially in time to the equilibrium solution with
zero velocity field. In [5], Beirão da Veiga et al. have previously found the same
results obtained in [2], in the non-viscous case for an Euler system.

The aim of this work is to establish the same kind of results given in [2] for (1.7).
That is existence of a unique global in time regular solution of the Kazhikhov-
Smagulov-Korteweg model (1.7) for small initial data and external force. Also, we
study the longtime behavior of the solution and show that it converges to a constant
solution with zero velocity field.

We think that the results presented here can be extended if we replace the
Laplace operator by the p-Laplace operator div

(
|∇u|p−2∇u

)
, 1 < p < ∞, in the

momentum equation (1.7)1 [3]. Moreover, one aims to study the full regularity of
the steady KSK model in the framework of functional spaces C0,λ

α (Ω) introduced
recently by Beirão da Veiga in [4]. These will be investigated in future works.

The outline of the paper is as follows. In section 2 we present the functional
setting and the main result of this paper, that will be proved in section 3.

2. Functional setup and main results

Let us introduce the following functional spaces (see [12, 15] for their properties):

V = {u ∈ D(Ω)3 : div u = 0 in Ω},
V = {u ∈ H1

0(Ω) : div u = 0 in Ω},
H = {u ∈ L2(Ω) : div u = 0 in Ω, u · n = 0 on Γ}.

The spaces V and H are the closures of V in H1
0(Ω) and L2(Ω) respectively. Denot-

ing by P the orthogonal projection operator of L2(Ω) onto H, we define the Stokes
operator A = −P∆ on H2(Ω)∩V. The norms ‖u‖H1(Ω) and ‖∇u‖L2(Ω) are equiv-
alent in V, and the norms ‖u‖H2(Ω) and ‖Au‖L2(Ω) are equivalent in H2(Ω) ∩V.
Next, we consider the affine spaces

Hs
N = {ρ ∈ Hs(Ω) :

∂ρ

∂n
= 0 on Γ,

∫
Ω

ρ(x)dx =
∫

Ω

ρ0(x) dx}.

Evidently, Hs
N = ρ̂+Hs

N,0, where ρ̂ = 1
|Ω|
∫

Ω
ρ0(x)dx and

Hs
N,0 = {ρ ∈ Hs(Ω) :

∂ρ

∂n
= 0 on Γ,

∫
Ω

ρ(x) dx = 0}.

Thus, Hs
N,0, for s = 2, 3, is a closed subspace of Hs

N . The norms ‖ρ‖H2(Ω) and
‖∆ρ‖L2(Ω) are equivalent in H2

N , and the norms ‖ρ‖H3(Ω) and ‖∇∆ρ‖L2(Ω) are
equivalent in H3

N .
Next we state and prove the main result of this article.

Theorem 2.1. Let u0 ∈ V, ρ0 ∈ H2(Ω) satisfy (1.10), T > 0, g ∈ L2
(
0, T ; L2(Ω)

)
and

ρ̂ =
1
|Ω|

∫
Ω

ρ0(x) dx.

There exist positive constants γ1, γ2, γ3 depending on Ω, λ, µ, κ, M , m, such that
if

‖∇u0‖2L2(Ω) + ‖ρ0 − ρ̂‖2H2(Ω) ≤ γ1,

‖g‖2L∞(0,+∞;L2(Ω)) ≤ γ2,
(2.1)
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then there exists a unique regular solution (u, ρ) of problem (1.7), (1.8), (1.9), global
in time such that

u ∈ L2
(
0, T ; H2(Ω)

)
∩ C
(
[0, T ]; V

)
,

ρ ∈ L2
(
0, T ;H3

N

)
∩ C
(
[0, T ];H2

N

)
.

Moreover if g = 0, the solution (u, ρ) decays exponentially in time to the equilibrium
solution (0, ρ̂), such that ∀t ≥ 0,

‖∇u(t)‖2L2(Ω) + ‖ρ(t)− ρ̂‖2H2(Ω) ≤
(
‖∇u0‖2L2(Ω) + ‖ρ0 − ρ̂‖2H2(Ω)

)
e−γ3t. (2.2)

3. Proof of Theorem 2.1

Intermediate results. In this section we present some results to be used in prov-
ing Theorem 2.1. First of all, integrating the convection-diffusion equation (1.7)2

over Ω, we see that
d

dt

∫
Ω

ρ(t,x) dx = 0,

and we note that the mean value of ρ is conserved:∫
Ω

ρ(t,x) dx =
∫

Ω

ρ0(x) dx.

Therefore, we set
σ = ρ− ρ̂, (3.1)

such that ρ̂ = 1
|Ω|
∫

Ω
ρ0(x) dx and

∫
Ω
σ(t,x) dx = 0.

Next, the KSK model (1.7) is equivalent to find (u, σ) satisfying

P
(
ρ
∂u
∂t

)
− µP∆u = F(u, σ),

∂σ

∂t
− λ∆σ = G(u, σ),

div u = 0,

(3.2)

where

F(u, σ) = P
(
ρg − κ∆ρ∇ρ− ρ

(
u · ∇

)
u + λ

(
∇ρ · ∇

)
u + λ

(
u · ∇

)
∇ρ

− λ2

ρ
∆ρ∇ρ− λ2

ρ

(
∇ρ · ∇

)
∇ρ+ λ2 |∇ρ|2

ρ2
∇ρ
)
,

G(u, σ) = −u · ∇σ,

(3.3)

Problem (3.2) is coupled with the boundary and initial conditions

u(t,x) = 0,
∂σ

∂n
(t,x) = 0, (t,x) ∈ Σ,

u(0,x) = u0(x), σ(0,x) = σ0(x), x ∈ Ω,

where σ0(x) = ρ0(x)− ρ̂. We introduce the spaces:

X1 =
{

ū : ū ∈ L2
(
0, T ; H2(Ω)

)
∩ C
(
[0, T ]; V

)
;
∂ū
∂t
∈ L2

(
0, T ; H

)
; ū(0) = u0;

‖ū‖2C([0,T ];V) + ‖ū‖2L2(0,T ;H2(Ω)) + ‖∂ū
∂t
‖2L2(0,T ;H) ≤ 2C4‖∇u0‖2L2(Ω)

}
and

X2 =
{
σ̄ : σ̄ ∈ L2

(
0, T ;H3

N,0

)
∩ C
(
[0, T ];H2

N,0

)
;
∂σ̄

∂t
∈ L2

(
0, T ;H1(Ω)

)
;
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σ̄(0) = σ0; ‖σ̄‖2C([0,T ];H2(Ω)) + ‖σ̄‖2L2(0,T ;H3(Ω)) ≤ 2‖σ0‖2H2(Ω);

‖∂σ̄
∂t
‖2L2(0,T ;H1(Ω)) ≤ K0; ‖σ̄ − σ0‖C(Q̄T ) ≤

m

2

}
.

Here C4 is a positive constant depending on µ, M̄ , m̄ and we denote by K0 a
positive constant depending on norms of initial data ‖∇u0‖L2(Ω) and ‖σ0‖H2(Ω).

Now, we define the linearized problem as follows:
Given (ū, σ̄) ∈ X1 × X2 such that σ̄ = ρ̄ − ρ̂, find (u, σ) ∈ X1 × X2 such that

σ = ρ− ρ̂ satisfying

P
(
ρ̄
∂u
∂t

)
+ µAu = F(ū, σ̄),

∂σ

∂t
− λ ∆σ = G(ū, σ̄),

div u = 0,∫
Ω

σ(t,x) dx = 0,

(3.4)

For (ū, σ̄) ∈ X1 ×X2, we define the map

Φ : X1 ×X2 → X1 ×X2,

such that Φ(ū, σ̄) = (u, σ) defined by (3.4). Since (3.4) is a linear problem with
respect to u and σ, it is clear that Φ is well defined (see [2, §2], [13, Vol.I, Chap.1,
Theorem 3.1] and [13, Vol.II, Chap.4, Theorem 5.2]).

Analogously as in [2], we can prove the existence of a local regular solution in time
to (1.7) for arbitrary initial data and external force in the three-dimensional case.
For this, we consider the linearized problem (3.4) and we prove via an application
of Schauder fixed point theorem, the existence of a fixed point (ū, σ̄) ∈ X1×X2 for
the map Φ, such that

(ū, σ̄) = (u, σ).
(See [2] for a detailed study.) To prove the main result of this article, Theorem 2.1,
we need some useful results. On one hand, from the estimate (1.10) for the initial
density ρ0 follows a similar estimate for ρ̄.

Proposition 3.1. Let σ̄ ∈ X2. Then the function ρ̄ = σ̄ + ρ̂ satisfies

m̄ ≡ m

2
≤ ρ̄(t,x) ≤M +

m

2
≡ M̄, (t,x) ∈ QT . (3.5)

On the other hand, the right-hand side F(ū, σ̄) of (3.4), defined by (3.3), satisfies
the following property.

Proposition 3.2. Let g ∈ L2
(
0, T,L2(Ω)

)
and (ū, σ̄) ∈ X1 × X2. Then F(ū, σ̄)

defined by (3.3), satisfies

‖F(ū, σ̄)‖2L2(Ω) ≤ C
(
‖∇ū‖2(1+β)

L2(Ω) ‖∇ū‖2(1−β)
H1(Ω) + ‖∇σ̄‖2(1+β)

H1(Ω) ‖∆σ̄‖
2(1−β)
H1(Ω)

+ ‖∇∇σ̄‖2βL2(Ω)‖∇∇σ̄‖
2(1−β)
H1(Ω) ‖∇ū‖2L2(Ω) + ‖∇σ̄‖6H1(Ω)

+ ‖∇ū‖2βL2(Ω)‖∇ū‖2(1−β)
H1(Ω) ‖∇σ̄‖

2
H1(Ω) + ‖g‖2L2(Ω)

)
,

(3.6)

where C = C
(
λ, κ, M̄ , m̄

)
, and

β =

{
1/2 if d = 2,
1/4 if d = 3.
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Lemma 3.3. Let (ū, σ̄) ∈ X1 × X2 and F(ū, σ̄) ∈ L2(Ω) satisfy (3.3). Then a
solution (u, σ) of the linearized problem (3.4) satisfies the following estimates:

µ

2
d

dt
‖∇u‖2L2(Ω) +

µε0

2
‖Au‖2L2(Ω) +

(3m
4
− ε0M

2

µ

)
‖∂u
∂t
‖2L2(Ω)

≤
( 1
m

+
ε0

µ

)
‖F(ū, σ̄)‖2L2(Ω),

(3.7)

d

dt
‖∆σ‖2L2(Ω) + λ‖∇∆σ‖2L2(Ω)

≤ C1ε1

(
‖∇ū‖2H1(Ω) + ‖∇∇σ̄‖2H1(Ω)

)
+ 2C2ε

−kd
1

(
‖ū‖kd+3

H1(Ω) + ‖∇σ̄‖kd+3
H1(Ω)

)
,

(3.8)

where ε0, ε1 being arbitrary, C1, C2 are positive constants depending only on Ω,
and

kd =

{
3 if d = 2,
7 if d = 3.

Global solutions. Let (u, ρ) be a local solution of (1.7), such that ρ = σ+ ρ̂. We
will prove that this local solution is, in fact, a global solution. On the one hand,
we choose ε0 = mµ

4M2 in (3.7) to obtain

µ

2
d

dt
‖∇u‖2L2(Ω) +

m

2
‖∂u
∂t
‖2L2(Ω) +

mµ2

8M2
‖Au‖2L2(Ω) ≤

( 1
m

+
m

4M2

)
‖F‖2L2(Ω).

Next, we use (3.6) for β = 1
4 as follows:

‖F‖2L2(Ω) ≤ C
(
‖∇u‖5/2L2(Ω)‖∇u‖3/2H1(Ω) + ‖∇σ‖5/2H1(Ω)‖∆σ‖

3/2
H1(Ω)

+ ‖∇u‖1/2L2(Ω)‖∇u‖3/2H1(Ω)‖∇σ‖
2
H1(Ω) + ‖∇σ‖6H1(Ω)

+ ‖∇∇σ‖1/2L2(Ω)‖∇∇σ‖
3/2
H1(Ω)‖∇u‖2L2(Ω) + ‖g‖2L2(Ω)

)
.

Applying the Young inequality
(
ab ≤ a5

5 + 4
5b

5/4
)
, we obtain

‖F‖2L2(Ω) ≤ C
((
‖∇u‖5/2L2(Ω) + ‖∇σ‖5/2H1(Ω)

)(
‖∇u‖3/2H1(Ω) + ‖∆σ‖3/2H1(Ω)

)
+ ‖g‖2L2(Ω) + ‖∇σ‖6H1(Ω)

)
.

Consequently,

µ

2
d

dt
‖∇u‖2L2(Ω) +

m

2
‖∂u
∂t
‖2L2(Ω) +

mµ2

8M2
‖Au‖2L2(Ω)

≤ C
(
‖∇u‖5/2L2(Ω) + ‖∇σ‖5/2H1(Ω)

)(
‖∇u‖3/2H1(Ω) + ‖∆σ‖3/2H1(Ω)

)
+ C‖∇σ‖6H1(Ω) + C‖g‖2L2(Ω),

(3.9)

where C = C(λ, κ,M,m). On the other hand, using (3.8) for kd = 7 and taking
ε1 = min

(
λ

2C1
, mµ2

32M2C1

)
, we obtain

d

dt
‖∆σ‖2L2(Ω) +

λ

2
‖∇∆σ‖2L2(Ω)

≤ mµ2

32M2
‖∇u‖2H1(Ω) + C

(
‖u‖10

H1(Ω) + ‖∇σ‖10
H1(Ω)

)
,

(3.10)
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where C = C(λ, µ,M,m,Ω). From (3.9) and (3.10), and recalling the equivalent
norms ‖u‖H2(Ω) and ‖Au‖L2(Ω) in H2(Ω) ∩V, it follows easily that

d

dt

(µ
2
‖∇u‖2L2(Ω) + ‖∆σ‖2L2(Ω)

)
+
m

2
‖∂u
∂t
‖2L2(Ω)

+
3mµ2

32M2
‖Au‖2L2(Ω) +

λ

2
‖∇∆σ‖2L2(Ω)

≤ C
(
‖∇u‖10

L2(Ω) + ‖∆σ‖10
L2(Ω)

)
+ C

(
‖∇u‖5/2L2(Ω) + ‖∆σ‖5/2L2(Ω)

)
×
(
‖Au‖3/2L2(Ω) + ‖∇∆σ‖3/2L2(Ω)

)
+ C‖∆σ‖6L2(Ω) + C‖g‖2L2(Ω).

(3.11)

Using the Young inequality
(
ab ≤ a4

4 + 3
4b

4/3
)
, inequality (3.11) is rewritten as

d

dt

(µ
2
‖∇u‖2L2(Ω) + ‖∆σ‖2L2(Ω)

)
+
m

2
‖∂u
∂t
‖2L2(Ω)

+
mµ2

16M2
‖Au‖2L2(Ω) +

λ

4
‖∇∆σ‖2L2(Ω)

≤ C
(
‖∇u‖10

L2(Ω) + ‖∆σ‖10
L2(Ω) + ‖g‖2L2(Ω) + ‖∆σ‖6L2(Ω)

)
,

where C = C(λ, µ, κ,M,m,Ω). Then, put α = min(µ2 , 1) and we write the above
inequality as

d

dt

(
‖∇u‖2L2(Ω) + ‖∆σ‖2L2(Ω)

)
+
m

2α
‖∂u
∂t
‖2L2(Ω)

+
mµ2

16M2α
‖Au‖2L2(Ω) +

λ

4α
‖∇∆σ‖2L2(Ω)

≤ C

α

(
‖∇u‖2L2(Ω) + ‖∆σ‖2L2(Ω)

)4(‖∇u‖2L2(Ω) + ‖∆σ‖2L2(Ω)

)
+
C

α

(
‖∇u‖2L2(Ω) + ‖∆σ‖2L2(Ω)

)2(‖∇u‖2L2(Ω) + ‖∆σ‖2L2(Ω)

)
+
C

α
‖g‖2L2(Ω).

Since ‖Au‖L2(Ω) ≥ CΩ‖∇u‖L2(Ω) and ‖∇∆σ‖L2(Ω) ≥ CΩ‖∆σ‖L2(Ω), it follows
that for some positive constants c1, c2 depending on Ω, λ, µ, κ, M , m, we have

d

dt

(
‖∇u‖2L2(Ω) + ‖∆σ‖2L2(Ω)

)
≤ c2‖g‖2L2(Ω) −

[
c1 − c2

(
‖∇u‖2L2(Ω) + ‖∆σ‖2L2(Ω)

)4
− c2

(
‖∇u‖2L2(Ω) + ‖∆σ‖2L2(Ω)

)2](‖∇u‖2L2(Ω) + ‖∆σ‖2L2(Ω)

)
.

(3.12)

Integrating in time from 0 to t < T1, and taking into account that (u, σ) ∈ X1×X2,
we find for every t ∈ [0, T1),

‖∇u(t)‖2L2(Ω) + ‖∆σ(t)‖2L2(Ω)

≤ ‖∇u0‖2L2(Ω) + ‖∆σ0‖2L2(Ω) − 2
(
C4‖∇u0‖2L2(Ω) + ‖∆σ0‖2L2(Ω)

)
×
[
c1 − 16c2

(
C4‖∇u0‖2L2(Ω) + ‖∆σ0‖2L2(Ω)

)4 − 4c2
(
C4‖∇u0‖2L2(Ω)

+ ‖∆σ0‖2L2(Ω)

)2]
T1 + c2‖g‖2L∞(0,T1,L2(Ω))T1.

Consequently, for every t ∈ [0, T1),

‖∇u(t)‖2L2(Ω) + ‖∆σ(t)‖2L2(Ω) ≤ ‖∇u0‖2L2(Ω) + ‖∆σ0‖2L2(Ω),
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provided that

C4‖∇u0‖2L2(Ω) + ‖∆σ0‖2L2(Ω) <
1
2

(√ c1
2c2

+ 1− 1

2

)1/2

,

c2‖g‖2L∞(0,+∞;L2(Ω)) <
7
8
c1

(√ c1
2c2

+ 1− 1

2

)1/2

.

(3.13)

Finally, we conclude that (u, σ), such that σ = ρ− ρ̂, is a global solution of (3.2),
and for all T > 0, we have

u ∈ L2
(
0, T ; H2(Ω)

)
∩ C
(
[0, T ]; V

)
,

ρ− ρ̂ ∈ L2
(
0, T ;H3

N,0

)
∩ C
(
[0, T ];H2

N,0

)
.

Uniqueness. Let (u1, ρ1), (u2, ρ2) be two solutions of (1.7) such that u1(0,x) =
u2(0,x) = u0(x) and ρ1(0,x) = ρ2(0,x) = ρ0(x). We put u = u1 − u2 and
ρ = ρ1 − ρ2. The system verified by (u, ρ) reads

P
(
ρ1
∂u
∂t

)
+ P

(
ρ
∂u2

∂t

)
+ µAu = F1 − F2,

∂ρ

∂t
+ u1 · ∇ρ+ u · ∇ρ2 = λ∆ρ,

div u = 0,

u(0,x) = 0, ρ(0,x) = 0,

(3.14)

where

F1 ≡ F(u1, ρ1)

= P
(
ρ1 g − κ∆ρ1∇ρ1 − ρ1(u1 · ∇)u1 + λ(∇ρ1 · ∇)u1

+ λ(u1 · ∇)∇ρ1 −
λ2

ρ1
∆ρ1∇ρ1 −

λ2

ρ1

(
∇ρ1 · ∇

)
∇ρ1 + λ2 |∇ρ1|2

ρ2
1

∇ρ1

)
,

F2 ≡ F(u2, ρ2)

= P
(
ρ2g − κ∆ρ2∇ρ2 − ρ2(u2 · ∇)u2 + λ(∇ρ2 · ∇)u2

+ λ(u2 · ∇)∇ρ2 −
λ2

ρ2
∆ρ2∇ρ2 −

λ2

ρ2

(
∇ρ2 · ∇

)
∇ρ2 + λ2 |∇ρ2|2

ρ2
2

∇ρ2

)
.

First, taking the inner product of (3.14)1 with u in H, we have(
P
(
ρ1
∂u
∂t

)
,u
)

+
(
P
(
ρ
∂u2

∂t

)
,u
)

+ µ
(
Au,u

)
=
(
F1 − F2,u

)
.

Then, by using the definition of operator P, such that(
Pu,v

)
=
(
u,v

)
, ∀u ∈ L2(Ω), ∀v ∈ H,

we have (
ρ1
∂u
∂t
,u
)

=
1
2
d

dt

(
ρ1u,u

)
− 1

2

(∂ρ1

∂t
u,u

)
.

Since ρ1 is a solution of the convection-diffusion equation (1.7)2, we obtain

1
2
d

dt

(
ρ1u,u

)
+ µ‖∇u‖2L2(Ω)
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=
λ

2

(
∆ρ1,u2

)
− 1

2

(
u1 · ∇ρ1,u2

)
−
(
ρ
∂u2

∂t
,u
)

+
(
F1 − F2,u

)
.

By using Green’s theorem and Cauchy-Schwarz and Young inequalities, we arrive
at

1
2
d

dt

(
ρ1u,u

)
+
µ

2
‖∇u‖2L2(Ω)

≤ λ

4
‖∆ρ‖2L2(Ω) +

(C
λ
‖∂u2

∂t
‖2L2(Ω) +

Cλ2

2µ
‖∇ρ1‖2L∞(Ω)

+
1
2
‖∇ρ1‖L∞(Ω)‖u1‖L∞(Ω)

)
‖u‖2L2(Ω) +

(
F1 − F2,u

)
.

(3.15)

Second, taking the inner product of (3.14)2 with −∆ρ in L2(Ω), we obtain

1
2
d

dt
‖∇ρ‖2L2(Ω) +

λ

2
‖∆ρ‖2L2(Ω)

≤ 1
λ
‖u1‖2L∞(Ω)‖∇ρ‖

2
L2(Ω) +

1
λ
‖∇ρ2‖2L∞(Ω)‖u‖

2
L2(Ω).

(3.16)

By adding (3.15) and (3.16), it follows that

d

dt

((
ρ1u,u

)
+ ‖∇ρ‖2L2(Ω)

)
+ µ‖∇u‖2L2(Ω) +

λ

2
‖∆ρ‖2L2(Ω)

≤ Ψ1(t)
(
m‖u‖2L2(Ω) + ‖∇ρ‖2L2(Ω)

)
+ 2
(
F1 − F2,u

)
,

(3.17)

where Ψ1 ∈ L1
(
[0, T ]

)
dependent on u1, u2, ρ1, ρ2. In particular, applying Cauchy-

Schwarz and Young inequalities
(
ab ≤ εa2 + b2

ε

)
, the embedding H2(Ω) ⊂ L∞(Ω)

and the equivalent norms, we obtain the inequality

2
∣∣∣(F1 − F2,u

)∣∣∣ ≤ Ψ2(t)
(
m‖u‖2L2(Ω) + ‖∇ρ‖2L2(Ω)

)
+ ε
(
‖u‖2H1(Ω) + ‖ρ‖2H2(Ω)

)
,

where Ψ2 ∈ L1
(
[0, T ]

)
dependent on ε, u1, u2, ρ1, ρ2, g, with ε > 0 being arbitrary.

Therefore, using this last estimate in (3.17) and choosing ε > 0 such that ε <
min

(
µ, λ2

)
, we arrive at

d

dt

((
ρ1u,u

)
+ ‖∇ρ‖2L2(Ω)

)
≤
(

Ψ1(t) + Ψ2(t)
)(
m‖u‖2L2(Ω) + ‖∇ρ‖2L2(Ω)

)
.

Since ρ1 is a solution of (1.7) satisfying the maximum principle, we have ‖u‖2L2(Ω) ≤
m−1

(
ρ1u,u

)
and we obtain

d

dt

((
ρ1u,u

)
+ ‖∇ρ‖2L2(Ω)

)
≤
(

Ψ1(t) + Ψ2(t)
)((

ρ1u,u
)

+ ‖∇ρ‖2L2(Ω)

)
.

Finally, from the Gronwall Lemma and from u(0) = 0, ρ(0) = 0, we deduce the
uniqueness of the solution of (1.7).

Asymptotic behavior. Let us prove the inequality (2.2) in Theorem 2.1. Assume
that g = 0. Then under hypothesis (3.13)1, the inequality (3.12) is rewritten as

d

dt

(
‖∇u‖2L2(Ω) + ‖∆σ‖2L2(Ω)

)
≤ −7

8
c1

(
‖∇u‖2L2(Ω) + ‖∆σ‖2L2(Ω)

)
.

Consequently, since σ = ρ− ρ̂ and from Gronwall Lemma, we obtain (2.2). Finally,
from this inequality (2.2), we conclude that the solution (u, ρ) of (1.7), converges
to a constant solution as t→ +∞:

u(t,x)→ 0 in V,
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ρ(t,x)→ ρ̂ in H2
N .

The convergence is exponential in time. The proof of Theorem 2.1 is complete.
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densité, Archives Néerlandaises des Sciences Exactes et Naturelles, Séries II, 6 (1901), 1–24.
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