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NON-OSCILLATION OF PERIODIC HALF-LINEAR EQUATIONS
IN THE CRITICAL CASE

PETR HASIL, MICHAL VESELÝ

Abstract. Recently, it was shown that the Euler type half-linear differential
equations

[r(t)tp−1Φ(x′)]′ +
s(t)

t logp t
Φ(x) = 0

with periodic coefficients r, s are conditionally oscillatory and the critical os-

cillation constant was found. Nevertheless, the critical case remains unsolved.

The objective of this article is to study the critical case. Thus, we consider
the critical value of the coefficients and we prove that any considered equa-

tion is non-oscillatory. Moreover, we analyze the situation when the periods

of coefficients r, s do not need to coincide.

1. Introduction

In this article, we study the oscillation behaviour of the equation

[r−p/q(t)tp−1Φ(x′)]′ +
s(t)
t logp t

Φ(x) = 0, Φ(x) = |x|p−1 sgnx, (1.1)

where p > 1, log is the natural logarithm, r > 0 and s are continuous functions,
and q is the number conjugated with p, i.e., q = p/(p− 1). The main motivation of
the presented research comes from [25], where the equation

[r(t)tp−1Φ(x′)]′ +
s(t)
t logp t

Φ(x) = 0 (1.2)

is proved to be conditionally oscillatory. It means that there exists the so-called
critical oscillation constant, which is a positive value given by coefficients r and s
with the following property:

(1) If the coefficients indicate a value greater than the critical one, then (1.2)
is oscillatory ;

(2) If the coefficients indicate a value less than the critical one, then (1.2) is
non-oscillatory.

We point out that for the equations studied here, all solutions are oscillatory if and
only if a non-trivial solutions is oscillatory.

Note that, in [25], Equation (1.2) is considered without the power −p/q in the
first term. Nevertheless, since function r is positive, it does not have any impact.

2010 Mathematics Subject Classification. 34C10, 34C15.
Key words and phrases. Half-linear equations; Prüfer angle; oscillation theory;
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We consider (1.2) in the presented form only because of technical reasons, i.e., the
technical parts of our processes are more transparent. The described result from
[25] rewritten for (1.1) is explicitly mentioned in Theorem 4.2 below.

Since the case when the coefficients indicate exactly the critical value is open, the
aim of this article is to fill this gap. We will consider (1.1) with periodic continuous
coefficients. We will not require any common period for the coefficients r and s.

Now, let us give a short overview of the literature. The fundamental theory
concerning half-linear differential equations can be found in books [1, 5]. As ba-
sic papers about half-linear equations, we refer to [7, 8]. For the analyzed con-
ditional oscillation of half-linear differential equations, we mention, e.g., papers
[4, 11, 13, 23, 27] and the paper [25] which we have already mentioned as the pri-
mary motivation. The corresponding results dealing with difference equations and
with dynamic equations on time scales are also present in the literature, but they
are still behind the continuous case. See [24, 26] for the discrete equations and
[15] for the dynamic equations on time scales. In the linear case, there are many
relevant results. We mention at least the most relevant papers [9, 12, 18, 28].

This article is organized as follows. In the next section, we give only necessary
preliminaries including the half-linear trigonometric functions and the equation for
the Prüfer angle, which will allow us to investigate the (non-)oscillation of (1.1). In
Section 3, we prove auxiliary results and we mention the later used known results.
Finally, in Section 4, we formulate, prove, and illustrate by examples the main
result. To the best of our knowledge, the presented result is new in the linear case
as well (see Corollary 4.4 below).

2. Preliminaries

In this section, we describe the equation for the modified half-linear Prüfer angle
given by the studied type of equations. At first, we briefly recall the notion of
half-linear trigonometric functions.

The half-linear sine function denoted by sinp is introduced as the odd 2πp-
periodic extension of the solution of the initial problem

[Φ(x′)]′ + (p− 1)Φ(x) = 0, x(0) = 0, x′(0) = 1

on [0, πp], where

πp :=
2π

p sin(π/p)
.

We denote the derivative of the half-linear sine function as cosp and we call it the
half-linear cosine function. It holds

| cosp a| ≤ 1, | sinp a| ≤ 1, a ∈ R. (2.1)

For more details about sinp and cosp, we refer to [5, Section 1.1.2].
Now, let us turn our attention to the half-linear equation

[r−p/q(t) tp−1Φ(x′)]′ +
s(t)
t logp t

Φ(x) = 0 (2.2)

and the corresponding equation for the Prüfer angle

ϕ′(t) =
1

t log t

[
r(t)| cosp ϕ(t)|p − Φ (cosp ϕ(t)) sinp ϕ(t) + s(t)

|sinp ϕ(t)|p

p− 1

]
, (2.3)

where r : R → R is a continuous, positive, and α-periodic function and s : R → R
is a continuous and β-periodic function.
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We use the Riccati type transformation

w(t) = r−p/q(t)tp−1Φ
(x′(t)
x(t)

)
to (2.2). This leads to the equation

w′(t) +
s(t)
t logp t

+ (p− 1)[r−p/q(t) tp−1]
1

1−p |w(t)|
p

p−1 = 0. (2.4)

Then, using the substitution

v(t) = (log t)
p
qw(t), t ∈ (e,∞),

in (2.4) and taking into account the modified Prüfer transformation

x(t) = ρ(t) sinp ϕ(t), [r−p/q(t) tp−1]q−1x′(t) =
ρ(t)
log t

cosp ϕ(t),

we easily obtain (2.3). The more comprehensive description of the derivation of
(2.3) is given in our previous paper [25].

Further, let us mention the definition of the mean value of an arbitrary periodic
function which is essential for our results.

Definition 2.1. The mean value M(f) of a periodic function f : R → R with
period P > 0 is defined as

M(f) :=
1
P

∫ P

0

f(τ) dτ.

Finally, for the upcoming use, we put

r̃ := sup{r(t) : t > e}, s̃ := sup{|s(t)| : t > e} (2.5)

and we denote 2% := min {p− 1, 1}.

3. Auxiliary results

Let ϑ > 0 be arbitrary. We define

ψ(t) :=
1√
t

∫ t+
√
t

t

ϕ(τ) dτ, t ≥ e + ϑ, (3.1)

where ϕ is a solution of (2.3) on [e +ϑ,∞). Now, we formulate and prove auxiliary
results concerning this function ψ.

Lemma 3.1. If ϕ is a solution of (2.3) on [e + ϑ,∞), then the function ψ :
[e + ϑ,∞)→ R defined by (3.1) satisfies

|ϕ(τ)− ψ(t)| ≤ C√
t log t

, t ≥ e + ϑ, τ ∈ [t, t+
√
t], (3.2)

for some constant C > 0.

Proof. The continuity of ϕ implies that, for any t ≥ e+ϑ, there exists t̃ ∈ [t, t+
√
t]

such that ψ(t) = ϕ(t̃). Hence, for all t ≥ e + ϑ, τ ∈ [t, t+
√
t], we obtain

|ϕ(τ)− ψ(t)| = |ϕ(τ)− ϕ(t̃)|

≤
∫ t+

√
t

t

|ϕ′(τ)| dτ
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≤ 1
t log t

[ ∫ t+
√
t

t

r(τ)| cosp ϕ(τ)|p + |Φ(cosp ϕ(τ)) sinp ϕ(τ)| dτ

+
∫ t+

√
t

t

| sinp ϕ(τ)|p

p− 1
|s(τ)| dτ

]
,

i.e., we obtain (see (2.1), (2.5))

|ϕ(τ)− ψ(t)| ≤ 1
t log t

∫ t+
√
t

t

(
r̃ + 1 +

s̃

p− 1
)
dτ ≤ C√

t log t
,

where
C := r̃ + 1 +

s̃

p− 1
. (3.3)

�

Lemma 3.2. The inequality∣∣∣ψ′(t)− 1
t log t

[ | cosp ψ(t)|p√
t

∫ t+
√
t

t

r(τ) dτ

− Φ(cosp ψ(t)) sinp ψ(t) +
| sinp ψ(t)|p

(p− 1)
√
t

∫ t+
√
t

t

s(τ) dτ
]∣∣∣

<
D

t1+% log t
holds for some D > 0 and for all t > e + ϑ.

Proof. For all t > e + ϑ, we have

ψ′(t) =
(
1 +

1
2
√
t

)ϕ(t+
√
t)√

t
− ϕ(t)√

t
− 1

2
√
t3

∫ t+
√
t

t

ϕ(τ) dτ

=
1√
t

∫ t+
√
t

t

ϕ′(τ) dτ +
1
2t
ϕ(t+

√
t)− 1

2
√
t3

∫ t+
√
t

t

ϕ(τ) dτ

=
1√
t

∫ t+
√
t

t

1
τ log τ

[
r(τ)| cosp ϕ(τ)|p − Φ

(
cosp ϕ(τ)

)
sinp ϕ(τ)

+ s(τ)
|sinp ϕ(τ)|p

p− 1

]
dτ +

1
2
√
t3

∫ t+
√
t

t

[
ϕ(t+

√
t)− ϕ(τ)

]
dτ.

Since (see also (2.1), (2.5), and (3.3))∣∣∣ 1
2
√
t3

∫ t+
√
t

t

[ϕ(t+
√
t)− ϕ(τ)] dτ

∣∣∣
≤ 1

2
√
t3

∫ t+
√
t

t

∫ t+
√
t

τ

|ϕ′(σ)| dσ dτ

≤ 1
2
√
t3

∫ t+
√
t

t

∫ t+
√
t

τ

1
σ log σ

∣∣r(σ)| cosp ϕ(σ)|p − Φ (cosp ϕ(σ)) sinp ϕ(σ)

+ s(σ)
|sinp ϕ(σ)|p

p− 1

∣∣∣ dσ dτ
≤ 1

2
√
t5 log t

∫ t+
√
t

t

∫ t+
√
t

t

[r̃ + 1 +
s̃

p− 1
] dσ dτ
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≤ C

2
√
t3 log t

,

it suffices to consider

1√
t

∫ t+
√
t

t

1
τ log τ

[
r(τ)| cosp ϕ(τ)|p−Φ

(
cosp ϕ(τ)

)
sinp ϕ(τ) + s(τ)

|sinp ϕ(τ)|p

p− 1

]
dτ.

In fact, we will consider

1√
t3 log t

∫ t+
√
t

t

[
r(τ)| cosp ϕ(τ)|p − Φ (cosp ϕ(τ)) sinp ϕ(τ)

+ s(τ)
|sinp ϕ(τ)|p

p− 1

]
dτ,

(3.4)

because ∣∣∣ ∫ t+
√
t

t

1
τ log τ

[r(τ)| cosp ϕ(τ)|p − Φ(cosp ϕ(τ)) sinp ϕ(τ)] dτ

+
∫ t+

√
t

t

1
τ log τ

| sinp ϕ(τ)|p

p− 1
s(τ) dτ

−
∫ t+

√
t

t

1
t log t

[r(τ)| cosp ϕ(τ)|p − Φ(cosp ϕ(τ)) sinp ϕ(τ)] dτ

−
∫ t+

√
t

t

1
t log t

| sinp ϕ(τ)|p

p− 1
s(τ) dτ

∣∣∣
≤
∫ t+

√
t

t

[r̃ + 1 +
s̃

p− 1
][

1
t log t

− 1
τ log τ

] dτ

≤ C
√
t
(t+
√
t) log(t+

√
t)− t log t

t(t+
√
t) log(t+

√
t) log t

≤ KC

t log t
for all t ≥ e + ϑ, where K > 0 is such a constant that

(t+
√
t) log(t+

√
t)− t log t

log(t+
√
t)

≤ K
√
t, t ≥ e + ϑ.

Considering the form of (3.4), to finish the proof, it suffices to prove the following
inequalities∣∣∣ | cosp ψ(t)|p√

t

∫ t+
√
t

t

r(τ) dτ − 1√
t

∫ t+
√
t

t

r(τ)| cosp ϕ(τ)|p dτ
∣∣∣ ≤ E1√

t log t
, (3.5)

∣∣∣ 1√
t

∫ t+
√
t

t

Φ(cosp ψ(t)) sinp ψ(t) dτ − 1√
t

∫ t+
√
t

t

Φ(cosp ϕ(τ)) sinp ϕ(τ) dτ
∣∣∣

≤ E2

t% log2% t
,

(3.6)

∣∣∣ | sinp ψ(t)|p√
t

∫ t+
√
t

t

s(τ) dτ − 1√
t

∫ t+
√
t

t

s(τ)| sinp ϕ(τ)|p dτ
∣∣∣ ≤ E3√

t log t
(3.7)

for some constants E1, E2, E3 > 0 and for all t ≥ e + ϑ.
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From [5, pp. 4-5], we know that there exists A > 0 for which∣∣| cosp a|p − | cosp b|p
∣∣ ≤ A|a− b|, a, b ∈ R, (3.8)∣∣| sinp a|p − | sinp b|p∣∣ ≤ A|a− b|, a, b ∈ R, (3.9)∣∣ sinp a− sinp b

∣∣ ≤ A|a− b|, a, b ∈ R. (3.10)

In addition, directly from the definition of Φ and cosp, it follows the existence of
B > 0 such that

|Φ(cosp a)− Φ(cosp b)| ≤ [B|a− b|]min{1,p−1}, a, b ∈ R. (3.11)

At first, we consider inequality (3.5) which follows from (see also (2.5), (3.2),
and (3.8)) ∣∣∣ 1√

t

∫ t+
√
t

t

r(τ) (| cosp ψ(t)|p − | cosp ϕ(τ)|p) dτ
∣∣∣

≤ 1√
t

∫ t+
√
t

t

r(τ)A|ψ(t)− ϕ(τ)| dτ

≤ r̃AC√
t log t

, t ≥ e + ϑ.

Similarly, we can obtain (3.7) from (see (2.5), (3.2), and (3.9))∣∣∣ 1√
t

∫ t+
√
t

t

s(τ) (| sinp ψ(t)|p − | sinp ϕ(τ)|p) dτ
∣∣∣

≤ 1√
t

∫ t+
√
t

t

|s(τ)|A|ψ(t)− ϕ(τ)| dτ

≤ s̃AC√
t log t

, t ≥ e + ϑ.

It remains to show (3.6). We have (see (2.1))∣∣∣ 1√
t

∫ t+
√
t

t

[Φ(cosp ψ(t)) sinp ψ(t)− Φ(cosp ϕ(τ)) sinp ϕ(τ)] dτ
∣∣∣

≤ 1√
t

∫ t+
√
t

t

∣∣Φ(cosp ψ(t)) sinp ψ(t)− Φ(cosp ψ(t)) sinp ϕ(τ)
∣∣ dτ

+
1√
t

∫ t+
√
t

t

∣∣Φ(cosp ψ(t)) sinp ϕ(τ)− Φ(cosp ϕ(τ)) sinp ϕ(τ)
∣∣ dτ

≤ 1√
t

∫ t+
√
t

t

| sinp ψ(t)− sinp ϕ(τ)| dτ

+
1√
t

∫ t+
√
t

t

|Φ(cosp ψ(t))− Φ(cosp ϕ(τ))| dτ

for all t ≥ e + ϑ and, using (3.2), (3.10), and (3.11), we obtain∣∣∣ 1√
t

∫ t+
√
t

t

[Φ(cosp ψ(t)) sinp ψ(t)− Φ(cosp ϕ(τ)) sinp ϕ(τ)] dτ
∣∣∣

≤ 1√
t

∫ t+
√
t

t

A|ψ(t)− ϕ(τ)| dτ



EJDE-2016/120 NON-OSCILLATION OF PERIODIC HALF-LINEAR EQUATIONS 7

+
1√
t

∫ t+
√
t

t

[B|ψ(t)− ϕ(τ)|]min{1,p−1} dτ

≤ 1√
t

∫ t+
√
t

t

AC√
t log t

+
[ BC√

t log t

]min{1,p−1}
dτ

≤ AC√
t log t

+
( BC√

t log t

)min{1,p−1}

for all t ≥ e + ϑ, i.e., (3.6) is valid for

E2 := AC + [BC]min{1,p−1}.

The proof is complete. �

Now we recall a known result and we provide its direct consequence which we
will use in the proof of Theorem 4.1 in the next section.

Theorem 3.3. If M,N > 0 are such that Mp−1N = q−p, then the equation[(
M +

1
t

)−p/qΦ(x′)
]′

+
1
tp
(
N +

1
t

)
Φ(x) = 0 (3.12)

is non-oscillatory.

For a proof of the above theorem, see [3].

Corollary 3.4. If M,N > 0 are such that Mp−1N = q−p, then the equation[(
M +

1
log t

)−p/q
tp−1Φ(x′)

]′
+
N + 1

log t

t logp t
Φ(x) = 0 (3.13)

is non-oscillatory.

Proof. Let us consider (3.13), where x = x(t) and (·)′ = d
dt . Using the transforma-

tion of the independent variable s = log t when x(t) = y(s), we have

1
t

d

ds

[(
M +

1
s

)−p/q
tp−1Φ

(1
t

dy

ds

)]′
+

1
tsp
(
N +

1
s

)
Φ(y) = 0.

This equation can be easily simplified into the form[(
M +

1
s

)−p/qΦ(y′)
]′

+
1
sp
(
N +

1
s

)
Φ(y) = 0. (3.14)

Hence (cf. (3.12) and (3.14)), it suffices to apply Theorem 3.3. �

4. Results

Applying Lemma 3.2 and Corollary 3.4, we prove the following theorem.

Theorem 4.1. Let α, β > 0. If r : R→ R is α-periodic and s : R→ R is β-periodic
such that [ 1

α

∫ α

0

r(τ) dτ
]p−1 1

β

∫ β

0

s(τ) dτ = [M(r)]p−1M(s) = q−p, (4.1)

then (2.2) is non-oscillatory.
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Proof. In this proof, we consider the equation for the Prüfer angle ϕ and the cor-
responding equation for ψ. The used method is based on the fact that the non-
oscillation of solutions of (2.2) is equivalent to the boundedness from above of a
solution ϕ of (2.3). We can refer to [25] or also to the papers [3, 4, 16, 17, 22]. In
addition, Lemma 3.1 implies that a solution ϕ : [e +ϑ,∞)→ R of (2.3) is bounded
from above if and only if ψ given by (3.1) is bounded from above.

From Lemma 3.2, we have

ψ′(t) <
1

t log t

[ | cosp ψ(t)|p√
t

∫ t+
√
t

t

r(τ) dτ − Φ (cosp ψ(t)) sinp ψ(t)

+
| sinp ψ(t)|p

(p− 1)
√
t

∫ t+
√
t

t

s(τ) dτ +
D

t%

]
for all t > e + ϑ and for some D. Especially,

ψ′(t) <
1

t log t

[ | cosp ψ(t)|p√
t

∫ t+
√
t

t

r(τ) dτ − Φ (cosp ψ(t)) sinp ψ(t)

+
| sinp ψ(t)|p

(p− 1)
√
t

∫ t+
√
t

t

s(τ) dτ +
D

log2 t

] (4.2)

for all t > e +ϑ. Then, using the periodicity of coefficients r, s, we obtain (see (2.5)
and (4.2))

ψ′(t) <
1

t log t

[
| cosp ψ(t)|p

(
M(r) +

r̃α√
t

)
− Φ

(
cosp ψ(t)

)
sinp ψ(t)

+
| sinp ψ(t)|p

p− 1

(
M(s) +

s̃β√
t

)
+

D

log2 t

] (4.3)

for all t > e + ϑ. Indeed, for any periodic continuous function f with period P > 0
and positive mean value M(f), we have

1√
t

∫ t+
√
t

t

f(τ) dτ =
1√
t

(∫ t+Pn

t

f(τ) dτ +
∫ t+

√
t

t+Pn

f(τ) dτ
)

≤ 1
Pn

∫ t+Pn

t

f(τ) dτ +
1√
t

∫ t+P (n+1)

t+Pn

|f(τ)| dτ ≤M(f) +
f̃P√
t
,

where f̃ := max{|f(t)| : t ∈ [0, P ]} and n ∈ N∪ {0} is such that Pn ≤
√
t and that

P (n+ 1) >
√
t.

For R := max{1, p − 1}, the well-known Pythagorean identity (see, e.g., [5,
Section 1.1.2]) gives

R
(
| cosp a|p +

| sinp a|p

p− 1

)
≥ 1, a ∈ R. (4.4)

Considering (4.3) and (4.4), we have

ψ′(t) <
1

t log t

[
| cosp ψ(t)|p

(
M(r) +

r̃α√
t

+
RD

log2 t

)
− Φ (cosp ψ(t)) sinp ψ(t) +

| sinp ψ(t)|p

p− 1

(
M(s) +

s̃β√
t

+
RD

log2 t

)]
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for all t > e + ϑ and, consequently, we have

ψ′(t) <
1

t log t

[
| cosp ψ(t)|p

(
M(r) +

1
log t

)
− Φ (cosp ψ(t)) sinp ψ(t) +

| sinp ψ(t)|p

p− 1

(
M(s) +

1
log t

)] (4.5)

for all large t.
The equation

ϕ′(t) =
1

t log t

[
| cosp ϕ(t)|p

(
M(r) +

1
log t

)
− Φ (cosp ϕ(t)) sinp ϕ(t)

+
| sinp ϕ(t)|p

p− 1

(
M(s) +

1
log t

)] (4.6)

has the form of the equation for the Prüfer angle ϕ which corresponds to (3.13),
where M = M(r) and N = M(s). Therefore (see (4.1)), Corollary 3.4 guarantees
that any solution ϕ : [e + ϑ,∞) → R of (4.6) is bounded from above. Comparing
(4.5) with (4.6) and considering the 2πp-periodicity of the half-linear trigonometric
functions, we know that the considered function ψ is bounded from above. This
means that any non-zero solution of (2.2) is non-oscillatory. �

Now we explicitly mention a result which is the basic motivation for our current
research.

Theorem 4.2. Let r, s : R→ R be periodic.
(i) If [M(r)]p−1M(s) > q−p, then (2.2) is oscillatory.

(ii) If [M(r)]p−1M(s) < q−p, then (2.2) is non-oscillatory.

The statements of the above theorem can be obtained immediately from the
main results of [25]. Using Theorem 4.2, we can generalize Theorem 4.1 as follows.

Theorem 4.3. Let r, s : R → R be periodic. Equation (2.2) is oscillatory if and
only if [M(r)]p−1M(s) > q−p.

We get a new result even for linear equations. Thus, we formulate the corollary
below.

Corollary 4.4. Let r : R → R be continuous, positive, and periodic function and
let s : R→ R be continuous and periodic function. The equation[ t

r(t)
x′
]′

+
s(t)
t log2 t

x = 0 (4.7)

is oscillatory if and only if 4M(r)M(s) > 1.

To illustrate the presented results, we give some examples of equations whose
oscillation properties do not follow from previously known oscillation criteria. First,
we mention an example to illustrate Theorem 4.1.

Example 4.5. For any p > 1, the equation[(2 + sin(
√
qt)

2q

)−p/q
tp−1Φ(x′)

]′
+
p− 1 + cos(pt)

pt logp t
Φ(x) = 0 (4.8)

is in the critical case because

M(r) = M
(2 + sin(

√
qt)

2q

)
=

1
q

= M
(p− 1 + cos (pt)

p

)
= M(s).
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Hence, [M(r)]p−1M(s) = q−p and (4.8) is non-oscillatory due to Theorem 4.1.

Of course, the oscillation behaviour of (4.8) is solvable in many slightly modified
situations as well. For example, its coefficients may involve parameters. Thus, we
can apply Theorem 4.3 as follows.

Example 4.6. Let a > 1 and b, c, d 6= 0 be real parameters. We consider the
equation [(a+ sin(ct)

q

)−p/q
tp−1Φ(x′)

]′
+
p− 1 + cos(dt)

bt logp t
Φ(x) = 0 (4.9)

with

M(r) = M
(a+ sin(ct)

q

)
=
a

q
,

M(s) = M
(p− 1 + cos(dt)

b

)
=
p− 1
b

.

Therefore, by Theorem 4.3, Equation (4.9) is oscillatory for ap−1p/b > 1 and non-
oscillatory for ap−1p/b ≤ 1.

Finally, we mention the following simple example of linear equations whose os-
cillation properties are solvable by Corollary 4.4.

Example 4.7. Consider the equation[ t

a1 + b1 sin(c1t) + d1 cos(c1t)
x′
]′

+
a2 + b2 sin(c2t) cos(c2t) + d2 arcsin[cos(c2t)]

t log2 t
x = 0,

(4.10)

where ai, bi, ci, di ∈ R, ci 6= 0, i ∈ {1, 2}, a1 > |b1|+ |d1|. It is seen that M(r) = a1

and M(s) = a2 (cf. (4.7) and (4.10)). Hence, (4.10) is oscillatory for a1a2 > 1/4
and non-oscillatory for a1a2 ≤ 1/4. We emphasize that this conclusion remains
valid even for, e.g., c1 = 1 and c2 = π or c2 =

√
2, when r and s do not possess any

common period.

As a final remark, we consider again the critical case. In this paper, we deal
with the critical case of equations with periodic coefficients. It is not possible
to categorize as oscillatory and non-oscillatory equations in the critical case for
“too general” coefficients. We can illustrate this fact by the Euler type half-linear
equations

[r(t)Φ(x′)]′ +
s(t)
tp

Φ(x) = 0.

We refer to [3, 6, 14, 22]. Concerning equations of the form given by (2.2), we
conjecture that the critical case is not generally solvable even for almost periodic
functions r, s (for the definition of almost periodicity, see, e.g., [2, 10]). This con-
jecture is based on constructions in [20] (see also [19, 21]).
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[16] H. Krüger, G. Teschl; Effective Prüfer angles and relative oscillation criteria. J. Differ. Equ.

245 (2008), no. 12, pp. 3823–3848.

[17] K. M. Schmidt; Critical coupling constant and eigenvalue asymptotics of perturbed periodic
Sturm-Liouville operators. Commun Math. Phys. 211 (2000), pp. 465–485.

[18] K. M. Schmidt; Oscillation of perturbed Hill equation and lower spectrum of radially periodic

Schrödinger operators in the plane. Proc. Amer. Math. Soc. 127 (1999), pp. 2367–2374.
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[22] M. Veselý, P. Hasil; Conditional oscillation of Riemann-Weber half-linear differential equa-
tions with asymptotically almost periodic coefficients. Studia Sci. Math. Hungar. 51 (2014),
no. 3, pp. 303–321.
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Kotlářská 2, CZ 611 37 Brno, Czech Republic
E-mail address: michal.vesely@mail.muni.cz


	1. Introduction
	2. Preliminaries
	3. Auxiliary results
	4. Results
	Acknowledgements

	References

