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MINIMAL WAVE SPEEDS OF DELAYED DISPERSAL
PREDATOR-PREY SYSTEMS WITH STAGE STRUCTURE

SHUXIA PAN

Abstract. This article concerns the minimal wave speed of delayed predator-
prey systems with nonlocal dispersal and stage structure. By the method of

upper and lower solutions, we prove the existence of positive traveling wave

solutions. With the help of a contracting rectangle, we establish the limit
behavior of traveling wave solutions. The nonexistence of traveling wave solu-

tions is obtained using the theory of asymptotic spreading, and therefore, the

minimal wave speed is obtained.

1. Introduction

In this article, we sutdy the delayed predator-prey systems with nonlocal disper-
sal and stage structure,
∂u(x, t)
∂t

= (D1u)(x, t) + αe−γτ1u(x, t− τ1)−mu2(x, t)− a1u(x, t)v(x, t),

∂v(x, t)
∂t

= (D2v)(x, t) + r1v(x, t) + a2u(x, t− τ2)v(x, t− τ2)− bv2(x, t),
(1.1)

in which all the parameters are positive and

(D1u)(x, t) =
∫

R
J1(x− y)[u(y, t)− u(x, t)]dy,

(D2v)(x, t) =
∫

R
J2(x− y)[v(y, t)− v(x, t)]dy,

herein J1, J2 : R→ R+ are integrable functions satisfying some conditions specified
later.

Zhang et al [29] gave this model with state structure and nonlocal dispersal.
Moreover, they also established the existence of traveling wave solutions connecting
the trivial steady state with the positive equilibrium if the wave speed is larger
than a threshold. Such a traveling wave solution could formulate the existence of
a transition zone moving from the steady state with no species to the steady state
with the coexistence of both species in mathematical biology [29].

Although the existence of traveling wave solutions could reflect some phenomena
of population dynamics, the minimal wave speed depending on the existence and
nonexistence of traveling wave solutions is one of the most important thresholds
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in mathematical biology. However, the estimation of minimal wave speed is not
an easy job. Before presenting our methods and results of minimal wave speeds,
we first recall some important results on the topic. After the pioneer works of
Fisher [8] and Kolmogorov et al [9] on traveling wave solutions of reaction-diffusion
equations, Aronson and Weinberger [1] studied the asymptotic spreading of some
population models with reaction and diffusion, which describes some dynamical
results different from those in [8, 9]. Besides some results for reaction-diffusion
systems, integral equations and integrodifference equations, there are some results
appealing to abstract monotone semiflows, see some results by Chen [3], Fang and
Zhao [7], Liang and Zhao [18], Weinberger [25], Weinberger et al [26], Yi et al [28]
and a survey paper by Zhao [30].

However, for non-cooperation systems, it is difficult to obtain the minimal wave
speed due to the deficiency of comparison principle appealing to cooperative sys-
tems. On the traveling wave solutions of predator-prey systems, some classical
conclusions were established about three decades ago by Dunbar [4, 5, 6], Gardner
and Smoller [10], Gardner and Jones [11]. After 2000, several investigators further
studied the problem by phase analysis, perturbation theory and fixed point theory,
we refer to some results by Huang et al [12], Huang [13], Hsu et al [14], Liang et
al [17], Lin [19], Lin et al [21] and Wang et al [24]. In particular, Zhang et al [29]
proved the existence of traveling wave solutions by constructing upper and lower
solutions if the wave speed is larger than the threshold, and we shall investigate
the existence or nonexistence of traveling wave solutions when the wave speed is
the threshold and smaller than the threshold.

To further study the existence of traveling wave solutions, we shall first present
a result via generalized upper and lower solutions motivated by Lin and Ruan
[20]. Then the asymptotic behavior will be established by the idea of contracting
rectangles [20] (see the definition of contracting rectangle for functional differential
equations by Smith [23]) as well as the theory of asymptotic spreading given by
Fang and Zhao [7], Jin and Zhao [15]. Finally, the nonexistence of traveling wave
solutions is confirmed by combining the asymptotic behavior of traveling wave
solutions with the theory of asymptotic spreading.

2. Main Results

In this section, we shall present our main results. We first give some notation and
definitions. In what follows, we use the standard partial ordering and order intervals
in R or R2, and apply ‖ · ‖ to denote the norm in R2. That is, for u = (u1, u2)
and v = (v1, v2), we denote u ≤ v if ui ≤ vi for i = 1, 2, and u < v if u ≤ v but
u 6= v. In particular, we denote u � v if u ≤ v but ui 6= vi for i = 1, 2. If u ≤ v,
we denote (u, v] = {w ∈ R2, u < w ≤ v}, [u, v) = {w ∈ R2, u ≤ w < v}, and
[u, v] = {w ∈ R2, u ≤ w ≤ v}.

Define

X = {U : U is a bounded and uniformly continuous function from R to R2},

then X is a Banach space equipped with the standard supremum norm. If a,b ∈ R2

with a ≤ b, then

X[a,b] = {U ∈ X : a ≤ U(ξ) ≤ b, ξ ∈ R}.
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C1(R,R2) is defined by

C1(R,R2) = {(u, v) : (u, v), (u′, v′) ∈ X}.

By scaling, it suffices to investigate

∂u(x, t)
∂t

= (D1u)(x, t) + αe−γτ1 [u(x, t− τ1)− u2(x, t)− au(x, t)v(x, t)],

∂v(x, t)
∂t

= (D2v)(x, t) + r1[v(x, t) + bu(x, t− τ2)v(x, t− τ2)− v2(x, t)],
(2.1)

A traveling wave solution of (2.1) is a special translation invariant solution of
the form

(u(x, t), v(x, t)) = (φ(ξ), ψ(ξ)), ξ = x+ ct,

in which (φ, ψ) ∈ C1 is the profiles of the wave that propagate through the one-
dimensional spatial domain at a constant velocity c > 0. If we substitute (φ, ψ)
into (2.1), then

cφ′(ξ) =
∫

R
J1(ξ − y)[φ(y)− φ(ξ)]dy

+ αe−γτ1 [φ(ξ − cτ1)− φ2(ξ)− aφ(ξ)ψ(ξ)],

cψ′(ξ) =
∫

R
J2(ξ − y)[ψ(y)− ψ(ξ)]dy

+ r1[ψ(ξ) + bφ(ξ − cτ2)ψ(ξ − cτ2)− ψ2(ξ)],

(2.2)

where ξ ∈ R. Same as that in [29], we also require that (φ, ψ) satisfy the asymptotic
boundary conditions

lim
ξ→−∞

(φ(ξ), ψ(ξ)) = (0, 0) and lim
ξ→∞

(φ(ξ), ψ(ξ)) = (k1, k2), (2.3)

where

k1 =
1− a
1 + ab

, k2 =
1 + b

1 + ab
provided that a < 1 which will be imposed throughout this paper.

For J1, J2, we assume that
(J1) Ji : R→ R+ is symmetric and Lebesgue measurable for each i = 1, 2;
(J2) for any λ ∈ R, 0 <

∫
R Ji(y)eλydy <∞, i = 1, 2.

Define

∆1(λ, c) =
∫ +∞

−∞
J1(y)(eλy − 1)dy − cλ+ αe−γτ1e−λcτ1 ,

∆2(λ, c) =
∫ +∞

−∞
J2(y)(eλy − 1)dy − cλ+ r1.

Using (J1) and (J2), we have the following results.

Lemma 2.1. There exists c∗ > 0 such that the following four items hold.
(i) For any given c > c∗, ∆1(λ, c) has two distinct positive roots λ1(c) and

λ3(c). Moreover, assume that 0 < λ1(c) < λ3(c) holds. Then

∆1(λ, c)

{
> 0 for 0 < λ < λ1(c) or λ > λ3(c),
< 0 for λ1(c) < λ < λ3(c).
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(ii) For any given c > c∗, ∆2(λ, c) has two distinct positive roots λ2(c) and
λ4(c). Moreover, assume that 0 < λ2(c) < λ4(c) holds. Then

∆2(λ, c)

{
> 0 for 0 < λ < λ2(c) or λ > λ4(c)
< 0 for λ2(c) < λ < λ4(c).

(iii) If c = c∗, then at least one of ∆1(λ, c) = 0,∆2(λ, c) = 0 has a double root.
(iv) If c < c∗, then at least one of ∆1(λ, c) and ∆2(λ, c) has no real root.

Remark 2.2. By Fang and Zhao [7], Liang and Zhao [18], Jin and Zhao [15], c∗

can also be defined as

c∗ = max
{

inf
λ>0

[∫ +∞
−∞ J1(y)(eλy − 1)dy + αe−γτ1e−λcτ1

λ

]
,

inf
λ>0

[∫ +∞
−∞ J2(y)(eλy − 1)dy + r1

λ

]}
.

Our main results reads as follows.

Theorem 2.3. Assume that (J1)–(J2) and

a(1 + b) < 1. (2.4)

(1) If c > c∗, then (2.2) has a positive solution satisfying (2.3).
(2) If

inf
λ>0

[∫ +∞
−∞ J1(y)(eλy − 1)dy + αe−γτ1e−λcτ1

λ

]
< c∗

and λ2 ≤ λ1(c∗), where λ2 is the positive root of ∆2(λ, c∗) = 0, then (2.2)
has a positive solution satisfying (2.3).

(3) If c < c∗, then (2.2) does not have a positive solution satisfying (2.3).

Remark 2.4. Zhang et al [29, Condition (3.2)] proved the existence of traveling
wave solutions when

1− a > a(1 + b). (2.5)

Clearly, (2.4) is weaker than (2.5).

Remark 2.5. Theorem 2.3 implies that c∗ is the minimal wave speed. However,
when c = c∗, the result needs further investigation.

3. Existence of traveling wave solutions: c ≥ c∗.

In this section, we shall prove the existence of positive solutions of (2.2) by
several lemmas throughout which (J1)-(J2) hold without further illustration.

Lemma 3.1. Assume that there exist Φ = (φ, ψ) ∈ C[0,M ] and Φ = (φ, ψ) ∈ C[0,M ]

with M = (1, 1 + b) satisfy

(1) for T = {Ti ∈ R, i = 1, . . . ,m}, Φ
′

and Φ′ exist and are bounded for
t ∈ R\T;
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(2) for ξ ∈ R\T, Φ
′

and Φ′ satisfy

cφ
′
(ξ) ≥

∫
R
J1(ξ − y)[φ(y)− φ(ξ)]dy

+ αe−γτ1 [φ(ξ − cτ1)− φ2
(ξ)− aφ(ξ)ψ(ξ)],

cψ
′
(ξ) ≥

∫
R
J2(ξ − y)[ψ(y)− ψ(ξ)]dy

+ r1[ψ(ξ) + bφ(ξ − cτ2)ψ(ξ − cτ2)− ψ2
(ξ)]

(3.1)

and

cφ′(ξ) ≤
∫

R
J1(ξ − y)[φ(y)− φ(ξ)]dy

+ αe−γτ1 [φ(ξ − cτ1)− φ2(ξ)− aφ(ξ)ψ(ξ)],

cψ′(ξ) ≤
∫

R
J2(ξ − y)[ψ(y)− ψ(ξ)]dy

+ r[ψ(ξ) + bφ(ξ − cτ2)ψ(ξ − cτ2)− ψ2(ξ)].

(3.2)

Then (2.2) has a positive solution (φ(ξ), ψ(ξ)) satisfying

(φ(ξ), ψ(ξ)) ≤ (φ(ξ), ψ(ξ)) ≤ (φ(ξ), ψ(ξ)), ξ ∈ R.

The proof of the above lemma is similar to that in Pan [22, Theorem 3.2], so
we omit it here. Different from that in Zhang et al [29], we do not require the
asymptotic behavior when ξ → ∞. Of course, this leads to a weaker result than
that in [29].

Lemma 3.2. If c > c∗, then (2.2) has a positive solution (φ(ξ), ψ(ξ)) ∈ C[0,M ].

Proof. Define continuous functions as follows

φ(ξ) = min{eλ1(c)ξ, 1}, ψ(ξ) = min{eλ2(c)ξ + p1e
ηλ2(c)ξ, 1 + b},

φ(ξ) = max{eλ1(c)ξ − p2e
ηλ1(c)ξ, 0}, ψ(ξ) = max{eλ2(c)ξ − p3e

ηλ3(c)ξ, 0},
where p1, p2, p3 are constants which will be defined later, and η is a constant satis-
fying

1 < η < min
{λ3(c)
λ1(c)

,
λ4(c)
λ2(c)

, 2
}
.

We shall prove that these functions satisfy (3.1) and (3.2) by eight steps.
Step 1. If φ(ξ) = eλ1(c)ξ < 1, then∫

R
J1(ξ − y)[φ(y)− φ(ξ)]dy + αe−γτ1

[
φ(ξ − cτ1)− φ2

(ξ)− aφ(ξ)ψ(ξ)
]

≤
∫

R
J1(ξ − y)[φ(y)− φ(ξ)]dy + αe−γτ1φ(ξ − cτ1)

≤
∫

R
J1(ξ − y)[eλ1(c)y − eλ1(c)ξ]dy + αe−γτ1eλ1(c)(ξ−cτ1)

= eλ1(c)ξ
[ ∫

R
J1(y)[eλ1(c)y − 1]dy + αe−γτ1e−λ1(c)cτ1

]
= cλ1(c)eλ1(c)ξ

= cφ
′
(ξ).
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Step 2. If φ(ξ) = 1 < eλ1(c)ξ, then∫
R
J1(ξ − y)[φ(y)− φ(ξ)]dy + αe−γτ1

[
φ(ξ − cτ1)− φ2

(ξ)− aφ(ξ)ψ(ξ)
]

≤
∫

R
J1(ξ − y)[φ(y)− φ(ξ)]dy + αe−γτ1

[
φ(ξ − cτ1)− φ2

(ξ)
]

≤ αe−γτ1
[
φ(ξ − cτ1)− φ2

(ξ)
]

≤ 0 = cφ
′
(ξ).

Step 3. If ψ(ξ) = 1 + b < eλ2(c)ξ + p1e
ηλ2(c)ξ, then∫

R
J2(ξ − y)[ψ(y)− ψ(ξ)]dy + r1

[
ψ(ξ) + bφ(ξ − cτ2)ψ(ξ − cτ2)− ψ2

(ξ)
]

≤ r1

[
ψ(ξ) + bφ(ξ − cτ2)ψ(ξ − cτ2)− ψ2

(ξ)
]

≤ r1

[
ψ(ξ) + bψ(ξ − cτ2)− ψ2

(ξ)
]

≤ 0 = cψ
′
(ξ).

Step 4. If ψ(ξ) = eλ2(c)ξ + p1e
ηλ2(c)ξ < 1 + b, then

ξ <
ln 1+b

p1

ηλ2(c)
and ∫

R
J2(ξ − y)[ψ(y)− ψ(ξ)]dy + r1

[
ψ(ξ) + bφ(ξ − cτ2)ψ(ξ − cτ2)− ψ2

(ξ)
]

≤
∫

R
J2(ξ − y)[eλ2(c)y + p1e

ηλ2(c)y − eλ2(c)ξ − p1e
ηλ2(c)ξ]dy

+ r1

[[
eλ2(c)ξ + p1e

ηλ2(c)ξ
]

+ beλ1(c)ξ
[
eλ2(c)ξ + p1e

ηλ2(c)ξ
]

−
(
eλ2(c)ξ + p1e

ηλ2(c)ξ
)2]

≤
∫

R
J2(ξ − y)[eλ2(c)y + p1e

ηλ2(c)y − eλ2(c)ξ − p1e
ηλ2(c)ξ]dy

+ r1

[
eλ2(c)ξ + p1e

ηλ2(c)ξ
]

+ beλ1(c)ξ
[
eλ2(c)ξ + p1e

ηλ2(c)ξ
]

=
[
∆2(λ2(c), c) + cλ2(c)

]
eλ2(c)ξ + p1

[
∆2(ηλ2(c), c) + cηλ2(c)

]
eηλ2(c)ξ

+ be(λ1(c)+λ2(c))ξ + bp1e
(η+1)λ2(c)ξ

= cλ2(c)eλ2(c)ξ + p1cηλ2(c)eηλ2(c)ξ

+ p1∆2(ηλ2(c), c)eηλ2(c)ξ + be(λ1(c)+λ2(c))ξ + bp1e
(η+1)λ2(c)ξ

≤ cλ2(c)eλ2(c)ξ + p1cηλ2(c)eηλ2(c)ξ

= cψ
′
(ξ)

if
p1∆2(ηλ2(c), c)eηλ2(c)ξ + be(λ1(c)+λ2(c))ξ + bp1e

(η+1)λ2(c)ξ ≤ 0. (3.3)
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Clearly, (3.3) holds provided that

p1∆2(ηλ2(c), c)eηλ2(c)ξ + 2be(λ1(c)+λ2(c))ξ ≤ 0, (3.4)

p1∆2(ηλ2(c), c)eηλ2(c)ξ + 2bp1e
(η+1)λ2(c)ξ ≤ 0. (3.5)

Note that ηλ2(c) < λ1(c) + λ2(c), then (3.4) is true if

p1 > 1− 2b
∆2(ηλ2(c), c)

> 1.

At the same time, (3.5) is true if ξ < 0 and

λ2(c)ξ ≤ ln
2b

−∆2(ηλ2(c), c)
,

which holds provided that

ln
1 + b

p1
≤ 0 ≤ η ln

2b
−∆2(ηλ2(c), c)

;

that is,

p1 ≥ (1 + b)
[( 2b
−∆2(ηλ2(c), c)

)η
+ 1
]

+ 1− 2b
∆2(ηλ2(c), c)

:= p1.

What we have done implies that if p1 = p1, then (3.1) is true.
Step 5. If φ(ξ) = eλ1(c)ξ − p2e

ηλ1(c)ξ > 0, then∫
R
J1(ξ − y)[φ(y)− φ(ξ)]dy + αe−γτ1

[
φ(ξ − cτ1)− φ2(ξ)− aφ(ξ)ψ(ξ)

]
≥
∫

R
J1(ξ − y)[eλ1(c)y − p2e

ηλ1(c)y − eλ1(c)ξ + p2e
ηλ1(c)ξ]dy

+ αe−γτ1
[
eλ1(c)(ξ−cτ1) − (eλ1(c)ξ − p2e

ηλ1(c)ξ)2
]

− aαe−γτ1(eλ1(c)ξ − p2e
ηλ1(c)ξ)(eλ2(c)ξ + p1e

ηλ2(c)ξ)

≥ cλ1(c)eλ1(c)ξ − cηp2λ1(c)eηλ1(c)ξ − p2∆1(ηλ1(c), c)eηλ1(c)ξ

− αe−γτ1e2λ1(c)ξ − aαe−γτ1e(λ1(c)+λ2(c))ξ − aαe−γτ1p1e
(λ1(c)+ηλ2(c))ξ

≥ cλ1(c)eλ1(c)ξ − cηp2λ1(c)eηλ1(c)ξ = cφ′(ξ)

provided that

− p2∆1(ηλ1(c), c)eηλ1(c)ξ

≥ e2λ1(c)ξ + aαe−γτ1e(λ1(c)+λ2(c))ξ + aαe−γτ1p1e
(λ1(c)+ηλ2(c))ξ,

which holds when

p2 =
1 + aαe−γτ1 + aαe−γτ1p1

−∆1(ηλ1(c), c)
+ 1 > 1.

Step 6. If φ(ξ) = 0 > eλ1(c)ξ − p2e
ηλ1(c)ξ, then the result is clear.

Step 7. If ψ(ξ) = eλ2(c)ξ − p3e
ηλ3(c)ξ > 0, then∫

R
J2(ξ − y)[ψ(y)− ψ(ξ)]dy + r1[ψ(ξ) + bφ(ξ − cτ2)ψ(ξ − cτ2)− ψ2(ξ)]

≥
∫

R
J2(ξ − y)[ψ(y)− ψ(ξ)]dy + r1[ψ(ξ)− ψ2(ξ)]
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≥
∫

R
J2(ξ − y)[eλ2(c)y − p3e

ηλ3(c)y − eλ2(c)ξ + p3e
ηλ3(c)ξ]dy

+ r1[eλ2(c)ξ − p3e
ηλ3(c)ξ]− r1(eλ2(c)ξ − p3e

ηλ3(c)ξ)2

≥ cλ2(c)eλ2(c)ξ − p3cηλ2(c)eηλ2(c)ξ − p3∆2(ηλ2(c), c)eηλ2(c)ξ − r1e
2λ2(c)ξ

≥ cλ2(c)eλ2(c)ξ − p3cηλ2(c)eηλ2(c)ξ

= cψ′(ξ)

provided that p3 = r1
−∆2(ηλ2(c),c) + 1, and so (3.2) holds.

Step 8. If ψ(ξ) = 0 > eλ2(c)ξ − p3e
ηλ3(c)ξ, then the result is clear.

By Lemma 3.1, the proof is complete. �

By Carr and Chmaj [2], Li et al. [16] and Wu and Ruan [27], we have the
following result of scalar equations.

PAGE 7

Lemma 3.3. Assume that

inf
λ>0

[∫ +∞
−∞ J1(y)(eλy − 1)dy + αe−γτ1e−λcτ1

λ

]
< inf
λ>0

[∫ +∞
−∞ J2(y)(eλy − 1)dy + r1

λ

]
.

Then when c = c∗, the scalar equation

cψ′(ξ) =
∫

R
J2(ξ − y)[ψ(y)− ψ(ξ)]dy + r1ψ(ξ)− ψ2(ξ), ξ ∈ R (3.6)

has a strictly positive solution satisfying

lim
ξ→−∞

ψ(ξ) = 0, lim
ξ→∞

ψ(ξ) = r1, lim
ξ→−∞

ψ(ξ)
ξe−λ2ξ

= −1.

Lemma 3.4. Assume that

inf
λ>0

[∫ +∞
−∞ J1(y)(eλy − 1)dy + αe−γτ1e−λcτ1

λ

]
< inf
λ>0

[∫ +∞
−∞ J2(y)(eλy − 1)dy + r1

λ

]
= c∗.

If λ2 ≤ λ1(c∗), then (2.2) with c = c∗ has a positive solution (φ(ξ), ψ(ξ)) ∈ C[0,M ].

Proof. We shall construct continuous functions satisfying (3.1) and (3.2). Let

φ(ξ) = min{eλ1(c)ξ, 1}, φ(ξ) = max{eλ1(c)ξ − p2e
ηλ1(c)ξ, 0},

where p2 > 1 is a positive constants specified later and η satisfies

1 < ηλ1(c) < min{λ3(c), λ1(c) + λ2/4, 3λ1(c)/2}.
Define

ψ(ξ) = ψ̃(ξ),

where ψ̃(ξ) is the positive solution of (3.6) and satisfies Lemma 3.3. Further define

ψ(ξ) =

{
1 + b, ξ ≥ ξ1,
(M − 2ξ)eλ2ξ, ξ < ξ1,

where M > 0 is a constant clarified later. Clearly, if M > 1 + 1/b is large, then
(M − 2ξ)eλ2ξ = 1 + b has two real roots, and here ξ1 is the smaller root.
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We now verify that these functions satisfy (3.1) and (3.2). In particular, the
inequalities about φ(ξ), ψ(ξ) are clear. Moreover, if ξ < ξ1, then

bφ(ξ − cτ2)ψ(ξ − cτ2)− ψ2(ξ) < 0

and the inequalities on ψ(ξ) is true.
Moreover p2 > 1 such that

eλ1(c)ξ − p2e
ηλ1(c)ξ > 0

implies that ξ < ξ1 and

0 < (M − 2ξ)eλ2ξ < eλ2ξ/2.

Similar to that in Lemma 3.2, we see that∫
R
J1(ξ − y)[φ(y)− φ(ξ)]dy + αe−γτ1

[
φ(ξ − cτ1)− φ2(ξ)− aφ(ξ)ψ(ξ)

]
≥ c∗φ′(ξ)

if p2 > 1 is large enough. By Lemma 3.1, the result follows. �

4. Nonexistence of traveling wave solutions: c < c∗

In this section, we shall prove that if c < c∗, then (2.2) does not have a positive
solution satisfying (2.3). We first consider the following initial value problem by
Fang and Zhao [7], Jin and Zhao [15]

∂w(x, t)
∂t

=
∫

R
J(x− y)[w(y, t)− w(x, t)]

+ dw(x, t− τ) + fw(x, t)− gw2(x, t), t > 0,

w(x, s) = ϕ(x, s), s ∈ [−τ, 0],

(4.1)

where x ∈ R, τ ≥ 0, d ≥ 0, d + f > 0, g > 0 and ϕ(x, s) is bounded and uniformly
continuous in (x, s) ∈ R× [−τ, 0].

Lemma 4.1. Assume that J satisfies (J1) and (J2). Define

c0 = inf
λ>0

[∫ +∞
−∞ J(y)(eλy − 1)dy + de−λcτ + f

λ

]
.

If ϕ(x, s) has nonempty support for each s ∈ [−τ, 0], then

lim
t→∞

sup
|x|≤ct

w(x, t) = lim
t→∞

inf
|x|≤ct

w(x, t) =
g

d+ f

for each c < c0.

Lemma 4.2. Assume that J satisfies (J1) and (J2). If w(x, t) satisfies

∂w(x, t)
∂t

≥
∫

R
J(x− y)[w(y, t)− w(x, t)]

+ dw(x, t− τ) + fw(x, t)− gw2(x, t), t > 0,

w(x, s) ≥ ϕ(x, s), s ∈ [−τ, 0]

(4.2)

for x ∈ R, then
w(x, t) ≥ w(x, t), x ∈ R, t > 0.

By analysis, we have the following result.
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Lemma 4.3. Assume that (φ(ξ), ψ(ξ)) is a bounded positive solution of (2.2). If
φ(ξ1) > 0 for some ξ1 ∈ R, then φ(ξ) > 0 for all ξ ∈ R, if ψ(ξ2) > 0 for some
ξ2 ∈ R, then ψ(ξ) > 0 for all ξ ∈ R. Moreover, φ(ξ), ψ(ξ) satisfy

0 ≤ φ(ξ) ≤ 1, 0 ≤ ψ(ξ) ≤ 1 + b, ξ ∈ R.

Theorem 4.4. If c < c∗, then (2.2) does not have a positive solution satisfying
(2.3).

Proof. Were the statement false, then for some c1 < c∗, (2.2) has a positive solution
satisfying (2.3). That is, there exist (φ(ξ), ψ(ξ)) satisfying

c1φ
′(ξ) =

∫
R
J1(ξ − y)[φ(y)− φ(ξ)]dy

+ αe−γτ1 [φ(ξ − cτ1)− φ2(ξ)− aφ(ξ)ψ(ξ)],

c1ψ
′(ξ) =

∫
R
J2(ξ − y)[ψ(y)− ψ(ξ)]dy

+ r1[ψ(ξ) + bφ(ξ − cτ2)ψ(ξ − cτ2)− ψ2(ξ)],

(4.3)

and
lim

ξ→−∞
(φ(ξ), ψ(ξ)) = (0, 0), lim

ξ→∞
(φ(ξ), ψ(ξ)) = (k1, k2). (4.4)

If

c∗ = inf
λ>0

[∫ +∞
−∞ J1(y)(eλy − 1)dy + αe−γτ1e−λcτ1

λ

]
,

then there exists ε ∈ (0, αe−γτ1) such that

c1 < inf
λ>0

[∫ +∞
−∞ J1(y)(eλy − 1)dy + αe−γτ1e−λcτ1 − 2ε

λ

]
=: c2.

By (4.4), there exists T ∈ R such that

aαe−γτ1ψ(ξ) < ε, ξ ≤ T,
and so

αe−γτ1 [φ(ξ − cτ1)− φ2(ξ)− aφ(ξ)ψ(ξ)]

≥ αe−γτ1φ(ξ − cτ1)− εφ(ξ)− αe−γτ1φ2(ξ), ξ ≤ T.
If ξ > T , then (4.4) and Lemma 4.3 imply that there exists M > 0 such that

aαe−γτ1φ(ξ)ψ(ξ) < Mφ2(ξ).

Therefore, ψ(ξ) satisfies

c1φ
′(ξ) ≥

∫
R
J1(ξ−y)[φ(y)−φ(ξ)]dy+αe−γτ1φ(ξ−cτ1)−εφ(ξ)−(M+αe−γτ1)φ2(ξ)

for all ξ ∈ R. Since ξ = x+ c1t, we have
∂u(x, t)
∂t

≥ (D1u)(x, t) + αe−γτ1u(x, t− τ1)− εu(x, t)

− (M + αe−γτ1)u2(x, t)], t > 0,

u(x,−s) = φ(x+ c1s), s ∈ [−τ1, 0].

(4.5)

By Lemmas 4.1 and 4.2, we have

lim
t→∞

inf
|x|≤c2t

u(x, t) ≥ e−γτ1 − ε
M + αe−γτ1

> 0.



EJDE-2016/121 MINIMAL WAVE SPEEDS OF PREDATOR-PREY SYSTEMS 11

On the other hand, letting −x = c2t, we have

x+ c1t = (c1 − c2)t→ −∞, t→∞
and so u(−c2t, t) = φ(−c2t+ c1t)→ 0, as t→∞, which is a contradiction.

If

c∗ = inf
λ>0

[∫ +∞
−∞ J2(y)(eλy − 1)dy + r1

λ

]
,

then there exists ι ∈ (0, 1) such that

c1 < inf
λ>0

[∫ +∞
−∞ J2(y)(eλy − 1)dy + r1(1− ι)

λ

]
:= c3.

At the same time, ψ(x+ c1t) = v(x, t) satisfies

∂v(x, t)
∂t

≥ (D2v)(x, t) + r1[v(x, t)− v2(x, t)], t > 0,

v(x, 0) = ψ(x),
(4.6)

where x ∈ R. By Lemmas 4.1 and 4.2, we see that

lim
t→∞

inf
|x|≤c3t

v(x, t) ≥ 1 > 0.

On the other hand, letting −x = c3t, we have

x+ c1t = (c1 − c3)t→ −∞, t→∞
and so v(−c3t, t) = φ(−c3t + c1t) → 0, as t → ∞, which is also a contradiction.
The proof is complete. �

By the same process as above, we can obtain the following result.

Corollary 4.5. If c < c∗, then (2.2) does not have a positive solution satisfying

lim
ξ→−∞

(φ(ξ), ψ(ξ)) = (0, 0), lim inf
ξ→∞

(φ(ξ), ψ(ξ))� (0, 0).

5. Asymptotic behavior of traveling wave solutions

In this section, we study the asymptotic behavior of the traveling wave solutions
obtained in Section 3. The method is based on the idea of contracting rectangles,
which was earlier used by Lin and Ruan [20] in studying the asymptotic behavior of
traveling wave solutions of delayed reaction-diffusion systems. For s ∈ [0, 1], define

a(s) = sk1 + (1− s)(1− ab)(1− a)(1− ε1),

a(s) = sk1 + (1− s)(1− a)(1 + ε2),

b(s) = sk2 + (1− s)(1− ε3),

b(s) = sk2 + (1− s)(1 + b(1− a))(1 + ε4),

where ε1, ε2, ε3, ε4 ∈ (0, 1) with

(1− ab)(1− a)ε1 = 2a(1 + b(1− a))ε4, (5.1)

(1 + b(1− a))ε4 = 2b(1− a)ε2, (5.2)

(1− a)ε2 = 2aε3. (5.3)

We now illustrate that ε1, ε2, ε3, ε4 ∈ (0, 1) are admissible. Let ε1 = 1 and

ε4 =
(1− ab)(1− a)
2a(1 + b(1− a))

, ε2 =
(1 + b(1− a))

2b(1− a)
ε4, ε3 =

1− a
2a

ε2.
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For any c > 0, then
(ε1, ε2, ε3, ε4) = (c, cε2, cε3, cε4)

satisfy (5.1)-(5.3). Clearly, ε1, ε2, ε3, ε4 ∈ (0, 1) if c > 0 is small enough.

Lemma 5.1. For each s ∈ (0, 1), we have

1− a(s)− ab(s) > 0, (5.4)

1− a(s)− ab(s) < 0, (5.5)

1 + ba(s)− b(s) > 0, (5.6)

1 + ba(s)− b(s) < 0. (5.7)

Proof. If s ∈ (0, 1), then

1− a(s)− ab(s) = 1− sk1 − (1− s)(1− ab)(1− a)(1− ε1)

− ask2 − a(1− s)(1 + b(1− a))(1 + ε4)

= (1− s)[1− (1− ab)(1− a)(1− ε1)− a(1 + b(1− a))(1 + ε4)]

> (1− s)[(1− ab)(1− a)ε1 − a(1 + b(1− a))ε4]

= (1− s)a(1 + b(1− a))ε4 > 0,

by (1− ab)(1− a)ε1 = 2a(1 + b(1− a))ε4. The above inequality implies (5.4).
Since 2aε3 = (1− a)ε2, we have

1− a(s)− ab(s) = 1− sk1 − (1− s)(1− a)(1 + ε2)− ask2 − a(1− s)(1− ε3)

= (1− s)[1− (1− a)(1 + ε2)− a(1− ε3)]

= (1− s) [aε3 − (1− a)ε2]

= −(1− s)aε3 < 0,

which implies (5.5).
Moreover, (5.6) holds since

1 + ba(s)− b(s) = 1− sk2 − (1− s)(1− ε3) + bsk1

+ b(1− s)(1− ab)(1− a)(1− ε1)

= (1− s)(ε3 + b(1− ab)(1− a)(1− ε1)) > 0.

Note that 2b(1− a)ε2 = (1 + b(1− a))ε4. Then

1 + ba(s)− b(s) = 1− sk2 − (1− s)(1 + b(1− a))(1 + ε4) + sbk1

+ b(1− s)(1− a)(1 + ε2)

= (1− s)(1− (1 + b(1− a))(1 + ε4) + b(1− a)(1 + ε2))

= (1− s)(b(1− a)ε2 − (1 + b(1− a))ε4)

= −(1− s)b(1− a)ε2 < 0,

which implies (5.7). The proof is complete. �

Lemma 5.2. If (φ(ξ), ψ(ξ)) is a positive solution of (2.2), then

(1− ab)(1− a) ≤ lim inf
ξ→∞

φ(ξ) ≤ lim sup
ξ→∞

φ(ξ) ≤ 1− a,

1 ≤ lim inf
ξ→∞

ψ(ξ) ≤ lim sup
ξ→∞

ψ(ξ) ≤ 1 + b(1− a).
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Proof. By the definition, ψ(x+ ct) = v(x, t) satisfies

∂v(x, t)
∂t

≥ (D2v)(x, t) + r1[v(x, t)− v2(x, t)], t > 0,

v(x, 0) = ψ(x),
(5.8)

where x ∈ R. By Lemmas 4.1 and 4.2, we have

lim inf
t→∞

v(0, t) ≥ 1 > 0.

which implies
lim inf
ξ→∞

ψ(ξ) ≥ 1.

Let β > 0. Note that φ(ξ) and ψ(ξ) are bounded and positive, then there exists
β > 0 such that

βφ(s)− φ(s)
∫

R
J1(y)dy + αe−γτ1 [φ(s− cτ1)− φ2(s)− aφ(s)ψ(s)]

is monotone increasing in φ(s) and

βψ(s)− ψ(s)
∫

R
J2(y)dy + r1[ψ(s)− ψ2(s) + bφ(s− cτ2)ψ(s− cτ2)]

is monotone increasing in ψ(s). Moreover, φ(ξ) and ψ(ξ) also satisfy

φ(ξ) =
1
c

∫ ξ

−∞
e−

β(ξ−s)
c

∫
R
J1(s− y)[φ(y)− φ(s)]dyds

+
∫ ξ

−∞

{
βφ(s) + αe−γτ1 [φ(s− cτ1)− φ2(s)− aφ(s)ψ(s)]

}
ds,

ψ(ξ) =
1
c

∫ ξ

−∞
e−

β(ξ−s)
c

∫
R
J2(s− y)[ψ(y)− ψ(s)]dyds

+
∫ ξ

−∞

{
βψ(s) + r1[ψ(s)− ψ2(s) + bφ(s− cτ2)ψ(s− cτ2)]

}
ds.

Since lim infξ→∞ ψ(ξ) ≥ 1. Applying Fatou’s lemma in the integral equation of
φ(ξ), we see that

αe−γτ1
[

lim sup
ξ→∞

φ(ξ)− (lim sup
ξ→∞

φ(ξ))2 − a lim sup
ξ→∞

φ(ξ)
]
≥ 0;

then the boundedness of lim supξ→∞ φ(ξ) indicates that

lim sup
ξ→∞

φ(ξ) ≤ 1− a.

Further applying Fatou’s lemma in the integral equation of ψ(ξ), we see that
lim supξ→∞ ψ(ξ) ≥ 1, and

lim sup
ξ→∞

ψ(ξ)−
(

lim sup
ξ→∞

ψ(ξ)
)2

+ b(1− a) lim sup
ξ→∞

ψ(ξ) ≥ 0,

which leads to
lim sup
ξ→∞

ψ(ξ) ≤ 1 + b(1− a).

Returning to the integral equation of φ(ξ), we see that

lim inf
ξ→∞

φ(ξ) ≥ (1− ab)(1− a)
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if lim infξ→∞ φ(ξ) > 0. In fact, by Lemma 4.3, we see that φ(ξ) satisfies

cφ′(ξ) ≥
∫

R
J1(ξ − y)[φ(y)− φ(ξ)]dy + αe−γτ1 [φ(ξ − cτ1)− a(1 + b)φ(ξ)− φ2(ξ)].

That is, u(x, t) = φ(x+ ct) satisfies

∂u(x, t)
∂t

= (D1u)(x, t) + αe−γτ1 [u(x, t− τ1)− a(1 + b)u(x, t)− u2(x, t)], t > 0,

u(x, s) = φ(x+ cs), s ∈ [−τ1, 0],

where x ∈ R. By Lemmas 4.1 and 4.2, we see that

lim inf
t→∞

u(0, t) ≥ 1− a(1 + b) > 0,

which implies that
lim inf
ξ→∞

φ(ξ) > 1− a(1 + b) > 0

by the invariant form of traveling wave solutions. The proof is complete. �

Lemma 5.3. If (φ(ξ), ψ(ξ)) is a positive solution of (2.2), then

lim
ξ→∞

(φ(ξ), ψ(ξ)) = (k1, k2).

Proof. By Lemma 5.2, we see that there exists s1 ∈ (0, 1) such that

a(s) ≤ lim inf
ξ→∞

φ(ξ) ≤ lim sup
ξ→∞

φ(ξ) ≤ a(s),

b(s) ≤ lim inf
ξ→∞

ψ(ξ) ≤ lim sup
ξ→∞

ψ(ξ) ≤ b(s)
(5.9)

for all s ≤ s1 since a(s), a(s), b(s), b(s) are continuous and monotone, and

a(0) < (1− ab)(1− a) ≤ 1− a < a(0),

b(0) < 1 < 1 + b(1− a) < b(0).

Define
s0 = sup

s∈(0,1]

{(5.9) hold}.

Then s0 is well defined.
If s0 = 1, then the result is true. We now assume that s0 < 1. Without loss of

generality, we suppose that

a(s0) = lim inf
ξ→∞

φ(ξ),

a(s0) = lim inf
ξ→∞

φ(ξ) ≤ lim sup
ξ→∞

φ(ξ) ≤ a(s0),

b(s0) ≤ lim inf
ξ→∞

ψ(ξ) ≤ lim sup
ξ→∞

ψ(ξ) ≤ b(s0).

(5.10)

By the definition of lim inf, there exist a sequence {ξm} such that

lim
m→∞

ξm =∞, lim
m→∞

φ(ξm) = a(s0), lim
m→∞

φ′(ξm) = 0,

lim inf
m→∞

[∫
R
J1(ξm − y)[φ(y)− φ(ξm)]dy

]
≥ 0.

At the same time, (5.4) implies that

lim inf
m→∞

αe−γτ1 [φ(ξm − cτ1)− φ2(ξm)− aφ(ξm)ψ(ξm)]
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≥ αe−γτ1 [a(s0)− a2(s0)− aa(s0)b(s0)]

= αe−γτ1a(s0)[1− a(s0)− ab(s0)] > 0 .

This is a contradiction, so s0 = 1. The proof is complete. �
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