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PERRON’S METHOD FOR p-HARMONIOUS FUNCTIONS

DAVID HARTENSTINE, MATTHEW RUDD

Abstract. We show that Perron’s method produces continuous p-harmonious

functions for 1 < p < 2. Such functions approximate p-harmonic functions and

satisfy a functional equation involving a convex combination of the mean and
median, generalizing the classical mean-value property of harmonic functions.

Simple sufficient conditions for the existence of barriers are given. The p = 1

situation, in which solutions to the Dirichlet problem may not be unique, is
also considered. Finally, the relationship between 1-harmonious functions and

functions satisfying a local median value property is discussed.

1. Introduction

Let Ω ⊂ RN be a bounded domain, and let h > 0, q ∈ (0, 1), and g ∈ C(∂Ω) be
given. Consider the Dirichlet problem

u = Mh
q u in Ω ,

u = g on ∂Ω ,
(1.1)

where the statistical operator Mh
q : C(Ω)→ C(Ω) is defined by(

Mh
q ϕ
)

(x) := (1− q) median∂Bh
x
{ϕ}+ q

 
∂Bh

x

ϕ(y) dy , for x ∈ Ω, (1.2)

and the open balls Bhx ⊂ Ω are defined by

Bhx := B(x, rh(x)), with rh(x) :=

{√
2h if dist(x, ∂Ω) ≥

√
2h ,

dist(x, ∂Ω) otherwise .
(1.3)

We seek a solution u ∈ C(Ω). Because of their connection to p-harmonic functions,
functions satisfying u = Mh

q are called p-harmonious. In [10] we showed that C(Ω)
solutions to (1.1) are unique, and that a solution exists when there exist both a
subsolution v ∈ C(Ω) with v = g on ∂Ω and a supersolution w ∈ C(Ω) with w = g
on ∂Ω. When Ω is strictly convex, such a sub/supersolution pair can be found for
any g ∈ C(∂Ω) by solving Dirichlet problems for a Monge-Ampère equation. The
main difficulty in applying this result when Ω is not strictly convex is finding a
subsolution and supersolution. In this article, we show that a C(Ω) solution can
be produced using Perron’s method under less restrictive hypotheses.
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Note that if q = 1 in (1.1), a harmonic function u ∈ C(Ω) with boundary values
g is a solution. Thus, the equation u = Mh

q u is a generalization of the well-known
mean-value property of harmonic functions. However, note that if u = Mh

q u, u(x)
need only equal its nonlinear average over a single sphere centered at x, rather than
all such spheres contained in the domain.

We call solutions of (1.1) p-harmonious because, as h ↓ 0, the solutions uh
converge locally uniformly to the unique p-harmonic function u in Ω such that
u = g on ∂Ω, with p ∈ (1, 2) determined by q and N ; the convergence proofs in [10]
and [28] rely on averaging over spheres with the particular function rh(·) defined
above. The term p-harmonious first appeared in [24], where the authors employed
a convex combination of the mean and the midrange of ϕ over a ball B (defined
by (1/2)(supB ϕ+ infB ϕ))) instead of our convex combination of the median and
mean as in (1.2), thereby resulting in a different statistical functional equation.
Solutions of these equations approximate p-harmonic functions when p > 2 (see
also [10]). These equations are closely related to tug-of-war games, and have also
been studied in [21].

The game-theoretic approach to the p-Laplacian (1 ≤ p ≤ ∞), pioneered by
Kohn and Serfaty [15], Peres and Sheffield [26], and Peres, Schramm, Sheffield
and Wilson [25], has led to much recent activity and new insights about nonlinear
elliptic and parabolic equations, with potentially far-reaching consequences. See,
for example, [1, 2, 3, 20, 23, 8, 19, 17, 18, 6, 4, 5, 27].

Recall that u is p-harmonic in Ω if and only if it is a solution of the p-Laplace
equation [11, 16],

−∆pu = 0 in Ω ; (1.4)

for p ∈ (1,∞), the p-Laplacian −∆p is the operator defined formally by

−∆pϕ := −div
(
|Dϕ|p−2Dϕ

)
. (1.5)

Since the p-Laplacian is singular when p < 2 and degenerate when p > 2, solutions
of (1.4) must be defined in a weak sense; one can choose either the viscosity or the
variational definition, as Juutinen et al [12, 13] showed that these definitions are
equivalent.

For a smooth function u with nonvanishing gradient, we define the 1-Laplacian
∆1 by ∆1u = |Du|div (Du/|Du|). Note that this definition of ∆1u differs by a
factor of |Du| from what is obtained in (1.5) with p = 1. With this definition, a
calculation shows that

∆pu = |Du|p−2 ( (p− 1)∆u+ (2− p)∆1u ) (1.6)

for any smooth u with nonvanishing gradient. A normalized 1-homogeneous p-
Laplacian defined by ∆N

p u = |Du|2−p∆pu is thus a linear combination of ∆u and
∆1u. This combination is convex when 1 ≤ p ≤ 2. Note that if Du is never zero,
∆pu = 0 if and only if ∆N

p u = 0. Furthermore, this equivalence holds in the weak
sense as well as the viscosity sense by the results of [13]. The connection between
p-harmonic functions and the statistical functional equations defining p-harmonious
functions arises from the relationship between ∆u(x) and

ffl
∂Bx

h
u and that between

∆1u(x) and median∂Bh
x
{u}, both of which follow from Taylor’s theorem. More

precisely, as shown in [9], a function is p-harmonic in two dimensions if and only if
it satisfies an asymptotic mean/median value property; combining the calculations
in [9] with those in [28] shows that this result holds in all dimensions N ≥ 2.
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This asymptotic description of p-harmonic functions was motivated by other
asymptotic statistical characterizations of p-harmonic functions [22], which rely
on a decomposition of the p-Laplacian that is different than (1.6). For a smooth
function with nonzero gradient, we define the ∞-Laplacian ∆∞ by

∆∞u = |Du|−2Σi,juiujuij .

Then the equation

∆pu = |Du|p−2(∆u+ (p− 2)∆∞u) (1.7)

holds for any smooth u with nonvanishing gradient. Again dividing by |Du|p−2

results in a normalized p-Laplacian, equal to the one given above. Exploiting the
connection between ∆∞u(x) and the midrange of u over a ball centered at x,
Manfredi, Parviainen and Rossi obtained that u is p-harmonic if and only if it is
equal, in an asymptotic sense, to a linear combination of its mean and midrange.
This combination is convex when p > 2. Thus, the median and midrange play
similar roles in the 1 < p < 2 and p > 2 realms respectively. We remark that the
normalized p-Laplacian can also be decomposed as ∆N

p u = ∆1u+(p−1)∆∞u. This
identity was used to obtain characterizations of p-harmonic functions for 1 ≤ p ≤ ∞
in terms of lower dimensional averages in [14].

If q is taken to be zero in (1.1), the situation is different. In [29], it was shown that
functions satisfying a local median value property are 1-harmonic in the viscosity
sense (this is using the definition of 1-harmonic that has the gradient factor in
front: ∆1u = |Du|div(Du/|Du|)). It was also demonstrated that solutions to the
Dirichlet problem for the local median value property may not exist, and when
they do exist, may fail to be unique. Elementary geometric reasoning shows that
the 1-parameter family of functions uα in [29] that satisfy the local median value
property are also 1-harmonious, at least for h sufficiently small. These functions all
agree on the boundary of their domain, so 1-harmonious functions are not uniquely
determined by their boundary values. This implies that a comparison principle for
the classes Sg and Sg as used below in Section 3 cannot hold when q = 0 (since it
would immediately imply uniqueness). However, in this case, the arguments used in
Section 3 do lead to the existence of weak solutions that bound any C(Ω) solutions
(Theorem 4.2).

The rest of the paper is organized as follows. In Section 2, we recall the defi-
nition and some fundamental properties of the median of a function and establish
properties of additional mean/median operators needed for the proofs of the main
results, Theorems 3.1 and 4.2. In the following section, the definitions of sub- and
supersolutions are expanded from those used in [10], the upper and lower Perron
solutions are defined, and Theorem 3.1, stating that when q > 0 and the upper
and lower Perron solutions, uP and uP respectively, are equal on ∂Ω they are equal
throughout Ω and solve (1.1), is proved. As in the classical Perron method, the
equality of uP and uP follows from the existence of barriers. However, it is not
obvious how to construct barriers for the problem considered here, due to the non-
local nature of the operator Mh

q . This issue is also discussed in Section 3. Section 4
concerns the situation when q = 0. The relationship between 1-harmonious func-
tions and those satisfying the local median value property is explored in Section 5,
where an example of a function satisfying the seemingly stronger requirements of
the local median value property but is not 1-harmonious for any h > 0 is given.
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2. Preliminaries

Throughout this article Ω ⊂ RN is a bounded domain. We begin by reviewing
some properties of medians. Recall the following definition [10, 31].

Definition 2.1. If u is a real-valued integrable function on the measurable set
E ⊂ Rk and 0 < |E| <∞, then m is a median of u over E if and only if

|{x ∈ E : u(x) < m}| ≤ 1
2
|E| and |{x ∈ E : u(x) > m}| ≤ 1

2
|E| .

The set medianE {u} of all medians of u over E is a non-empty compact interval,

medianE {αu+ β} = αmedianE {u}+ β , for α, β ∈ R , (2.1)

and it is easy to construct examples of semicontinuous functions with multiple
medians over a given set. This does not happen when working with continuous
functions, since continuous functions have unique medians on compact connected
sets [10].

To deal with non-continuous functions, which do not necessarily have unique
medians, we introduce two new mean/median operators: Mq,h and Mq,h. For an
integrable function u : Ω→ R, q ∈ [0, 1] and h > 0, let

Mq,hu(x) = qmean∂Bh
x
u+ (1− q) min median∂Bh

x
u,

Mq,hu(x) = qmean∂Bh
x
u+ (1− q) max median∂Bh

x
u

(2.2)

for x ∈ Ω, and for x ∈ ∂Ω, let Mq,hu(x) = Mq,hu(x) = u(x). These operators
satisfy a natural monotonicity property.

Proposition 2.2. Let u and v be real-valued integrable functions on Ω with u ≤ v.
Then for any q ∈ [0, 1], Mq,hu(x) ≤ Mq,hv(x) and Mq,hu(x) ≤ Mq,hv(x) for all
x ∈ Ω.

Proof. We prove the claim for Mq,h; the one for Mq,h is similar. Since u ≤ v,
mean∂Bh

x
u ≤ mean∂Bh

x
v for any x and h, so the claim holds if min median∂Bh

x
u ≤

min median∂Bh
x
v. If this is not true, then there exist x ∈ Ω and a number m that

is a median of v that is too small to be a median of u on ∂Bhx . Because m is a
median of v,

|{y ∈ ∂Bhx : v(y) ≤ m}| ≥ (1/2)|∂Bhx |.
Since u ≤ v, {y ∈ ∂Bhx : v(y) ≤ m} ⊂ {y ∈ ∂Bhx : u(y) ≤ m}, so

|{y ∈ ∂Bhx : u(y) ≤ m}| ≥ (1/2)|∂Bhx |.

On the other hand, since m is too small to be a median of u in ∂Bhx , we must have
that

|{y ∈ ∂Bhx : u(y) ≤ m}| < (1/2)|∂Bhx |.
This is a clear contradiction and the claim holds. �

The next result shows that these operators preserve semicontinuity.

Proposition 2.3. If u ∈ LSC(Ω̄) ∩ L∞(Ω), then Mq,hu ∈ LSC(Ω̄), and if v ∈
USC(Ω̄) ∩ L∞(Ω), then Mq,hv ∈ USC(Ω̄).
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Proof. Let x ∈ Ω, and suppose {xn} ⊂ Ω is such that xn → x. Define the map
ρn : ∂Bhx → ∂Bhxn

by ρn(y) = xn + rh(xn)/rh(x)(y − x). Define un(y) = u(ρn(y))
for y ∈ ∂Bhx . Since ρn(y) → y as n → ∞ and u is lower semicontinuous at y, we
have that u(y) ≤ lim infn→∞ un(y) for all y ∈ ∂Bhx . Integrating this last inequality
and using Fatou’s Lemma (note that because u is bounded, we may assume that u
(and therefore un) is non-negative), we obtainˆ

∂Bh
x

u(y) dy ≤
ˆ
∂Bh

x

lim inf
n→∞

un(y) dy ≤ lim inf
n→∞

ˆ
∂Bh

x

un(y) dy. (2.3)

This implies that the function z → mean∂Bh
z
u is lower semicontinuous at x, and

hence in Ω.
We now turn to the minimal median. We begin by establishing that for any

α ∈ R,
|∂Bhx ∩ {u > α}| ≤ lim inf

n→∞
|∂Bhx ∩ {un > α}|. (2.4)

Let α ∈ R, and let fα = χ∂Bh
x∩{u>α} and fnα = χ∂Bh

x∩{un>α}. We have that
fα(y) ≤ lim infn→∞ fnα (y) for all y ∈ ∂Bhx , so (2.4) follows again by Fatou.

Now let α = min median∂Bh
x
u. Then for any ε > 0, α − ε is too small to be a

median of u on ∂Bhx , so |∂Bhx ∩ {u > α− ε}| > (1/2)|∂Bhx | and by (2.4),

lim inf
n→∞

|∂Bhx ∩ {un > α− ε}| > (1/2)|∂Bhx |.

So for all but finitely many n, |∂Bhx ∩ {un > α − ε}| > (1/2)|∂Bhx |. For each such
n, α − ε is too small to be a median, so for these n, min median∂Bh

x
un ≥ α − ε.

Since this holds for all but finitely many n, we obtain

lim inf
n→∞

min median∂Bh
x
un ≥ α− ε.

Since ε is arbitrary, we conclude

lim inf
n→∞

min median∂Bh
x
un = lim inf

n→∞
min median∂Bh

xn
u ≥ α.

Recalling the definition of α, we see that the minimal median operator is lower
semicontinuous at x, and therefore in Ω.

To show Mq,hu ∈ LSC(Ω), we show that for any α ∈ R, {z ∈ Ω : Mq,hu(z) > α}
is open relative to Ω. We already have that Mq,hu is LSC in Ω, so if x ∈ Ω is such
that Mq,hu(x) > α, the same is true in a neighborhood of x in Ω. Now suppose
x ∈ ∂Ω is such that u(x) = Mq,hu(x) > α. Because u ∈ LSC(Ω), u > α in some
neighborhood N of x in Ω. Then for all y ∈ Ω sufficiently close to x, ∂Bhy ⊂ N , so
Mq,hu(y) > α. If y ∈ N ∩ ∂Ω, u(y) = Mq,hu(y) > α, so we see that x is an interior
point of {z ∈ Ω : Mq,hu(z) > α}, and the proof is complete. �

We also need the following result concerning the continuity of the minimal and
maximal mean and median operators with respect to monotone sequences of func-
tions.

Proposition 2.4. Suppose that {vn} ⊂ LSC(Ω) is a nondecreasing sequence of
bounded functions converging pointwise to the bounded function v ∈ LSC(Ω). Then
for all x ∈ Ω, Mh

q vn(x) → Mh
q v(x). Suppose that {wn} ⊂ USC(Ω) is a nonin-

creasing sequence of bounded functions converging pointwise to the bounded function
w ∈ USC(Ω). Then for all x ∈ Ω, M

h

qwn(x)→M
h

qw(x).
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Proof. Again, we prove the claim for Mh
q . By Proposition 2.2, for each x ∈ Ω, the

sequence {Mh
q vn(x)} is nondecreasing and bounded above by Mh

q v(x). Therefore
limn→∞Mh

q vn(x) exists and is less than or equal to Mh
q v(x). Fix x ∈ Ω and let

m = min median∂Bh
x
v. The means of vn over ∂Bhx converge to the mean of v on ∂Bhx

by the dominated convergence theorem (see the proof of [10, Theorem 3.2]), so the
claim holds if min median∂Bh

x
vn → min median∂Bh

x
v. Suppose that this is not the

case. Then there exists ε > 0 such that m− ε > m∗ := limn→∞min median∂Bh
x
vn.

The number m− ε is too small to be a median of v on ∂Bhx , so

|∂Bhx ∩ {v ≤ m− ε}| < (1/2)|∂Bhx |.
However, m− ε is not too small to be a median of vn on ∂Bhx so

|∂Bhx ∩ {vn ≤ m− ε}| ≥ (1/2)|∂Bhx |.
Note that this is true for all n, since min median∂Bh

x
vn ≤ m∗ for all n by the

monotonicity of {vn}. Therefore,

lim
n→∞

|∂Bhx ∩ {vn ≤ m− ε}| ≥ (1/2)|∂Bhx |.

But, again using the monotonicity of the sequence and continuity from above, we
have

lim
n→∞

|∂Bhx ∩ {vn ≤ m− ε}| = | ∩∞n=1 (∂Bhx ∩ {vn ≤ m− ε})|

= |∂Bhx ∩ {v ≤ m− ε}| < (1/2)|∂Bhx |,
contradicting the previous line. �

3. Perron method and barriers

In this section we assume that 0 < q ≤ 1. We begin by defining subsolutions and
supersolutions for the problem (1.1) and the Perron solutions. Let

Sg = {v ∈ C(Ω) : v ≤Mh
q v and v ≤ g on ∂Ω},

Sg = {w ∈ C(Ω) : w ≥Mh
q w and w ≥ g on ∂Ω}.

The lower Perron solution is then

uP (x) = sup{v(x) : v ∈ Sg}
and the upper Perron solution is

uP (x) = inf{w(x) : w ∈ Sg}.
The Perron solutions are well-defined and finite at all x ∈ Ω. First note that

the constant functions min∂Ω g and max∂Ω g belong to Sg and Sg respectively so
these sets of functions are nonempty. By a simple modification of the proof of the
comparison principle (Theorem 3.1) in [10], we have that v ≤ w for all v ∈ Sg and
w ∈ Sg. It follows that uP ≤ uP in Ω and that both uP and uP are bounded
(by min∂Ω g and max∂Ω g). By construction we have that uP ∈ LSC(Ω) and
uP ∈ USC(Ω).

Observe that if (1.1) has a solution u ∈ C(Ω), then u ∈ Sg ∩ Sg, and that any
function in Sg ∩ Sg is a C(Ω) solution. Also note that if (1.1) has a solution, then
that solution must coincide with uP and uP . To see this, suppose u ∈ C(Ω) is a
solution of (1.1). Then u ∈ Sg, so that u ≤ uP . Similarly, u ∈ Sg, so u ≥ uP , but
uP ≤ uP , so we see u = uP = uP .
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The following theorem is the main result of this article.

Theorem 3.1. If uP = uP (= g) on ∂Ω, then uP = uP in Ω and the Perron
solutions solve (1.1).

Proof. By assumption, uP = g on ∂Ω. By Proposition 2.2 and the definition of uP ,
v ≤ Mh

q v = Mh
q v ≤ Mh

quP for any v ∈ Sg. Taking the sup over all v ∈ Sg, we get
uP ≤Mh

quP . We now define a sequence of LSC(Ω) functions by taking

u1 = uP and uj+1 = Mh
quj , j ≥ 1.

Each uj belongs to LSC(Ω) by Proposition 2.3, uj = g on ∂Ω by construction,
and the sequence {uj} is nondecreasing by Proposition 2.2. Furthermore, since
u1 ≤ max∂Ω g, we get that uj ≤ max∂Ω g for all j. Therefore uj converges pointwise
to some bounded function u ∈ LSC(Ω) with u = g on ∂Ω. By Proposition 2.4, we
have that Mh

quj →Mh
qu pointwise, so that

u(x) = lim
j→∞

uj+1(x) = lim
j→∞

Mh
quj(x) = Mh

qu(x)

for all x ∈ Ω. Thus u(x) = Mh
qu(x) for all x ∈ Ω. Similarly, define a sequence

Uj ∈ USC(Ω) by

U1 = uP and Uj+1 = M
h

qUj , j ≥ 1.

Letting U(x) = limj→∞ Uj(x), we get that U ∈ USC(Ω), U = M
h

qU in Ω and
U = g on ∂Ω. Note that by construction, uj ≤ Uj for all j, so that u ≤ U .
We are now in exactly the same situation as in the proof of [10, Theorem 3.2],
following equation (3.18) in that paper. Running precisely the same argument as
in that proof, we obtain u = U in Ω, which implies that they belong to C(Ω), and
therefore that u = Mh

q u = Mh
q U = U in Ω, so that u solves (1.1). Finally, this

implies that u ∈ Sg, and since uP ≤ u, we obtain that u = uP so that uP is in fact
a solution of (1.1). We note also that uP = uP . �

A natural question then is: Under what conditions can it be guaranteed that
uP = uP on ∂Ω? As in the classical Perron method, the existence of a solution in
C(Ω) can be reduced to the existence of barriers at each point. Let x ∈ ∂Ω. A
lower barrier at x is a function v ∈ Sg with v(x) = g(x), and an upper barrier at
x is a function w ∈ Sg with w(x) = g(x). If at each point of ∂Ω, there exist both
an upper and a lower barrier, then Theorem 3.1 can be applied to produce a C(Ω)
solution to (1.1). Due to the nonlocal nature of Mh

q , it is unclear how to produce
barriers in the standard way (by solving PDE problems). Note that while solutions
of the functional equation u = Mh

q u are related to p-harmonic functions, p-harmonic
functions in general do not solve this functional equation [9]. Furthermore, it is not
obvious how to use the solvability of (1.1) in balls contained in Ω, since the change
in domain required to do so also changes the operators.

While necessary and sufficient conditions on g and Ω for the solvability of (1.1)
are not known at this time, it is possible to give some simple sufficient conditions.
Any linear function L satisfies L = Mh

q L for any h > 0 and any q ∈ [0, 1], so
linear functions are possible barriers. If g is such that at every x ∈ ∂Ω we can find
upper and lower linear barriers, then uP = uP = g on ∂Ω, and (1.1) has a solution.
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More generally, if the convex and concave envelopes of g coincide on ∂Ω, (1.1) has
a solution. The convex envelope of g, defined for x ∈ Ω, is

g∗(x) = sup{v(x) ∈ C(Ω) : v is convex, v ≤ g on ∂Ω},
and the concave envelope g∗ is defined similarly. If Ω is not convex, we consider
v ∈ C(Ω) to be convex if v is the restriction of a convex function defined on a
convex domain to Ω. It was shown in [10] that a convex (concave) function u (v)
satisfies u ≤ Mh

q u (v ≥ Mh
q v) for any h > 0 and any q ∈ [0, 1]. Thus g∗ ≤ uP and

g∗ ≥ uP , so that if g∗ = g∗ on ∂Ω the hypotheses of Theorem 3.1 are met. We also
see that regardless of whether g∗ = g∗ on ∂Ω, if u ∈ C(Ω) is a solution of (1.1),
g∗ ≤ u ≤ g∗ in Ω.

Remark 3.2. We note that if uP 6= uP , the above method still produces weak
solutions to (1.1). Namely by iterating uP as in the proof of Theorem 3.1, we
produce u ∈ LSC(Ω) with u = Mh

qu in Ω and u(x) = supv∈Sg
v(x) for x ∈ ∂Ω.

Similarly, there exists U ∈ USC(Ω) with U = M
h

qU in Ω and U(x) = infw∈Sg w(x)
for x ∈ ∂Ω.

4. Perron method when q = 0

While the results of Section 2 apply when q = 0, some of the arguments in Sec-
tion 3 do not. As indicated near the end of Section 1, C(Ω) solutions of (1.1) in the
q = 0 case, when they exist, need not be unique. This non-uniqueness demonstrates
the impossibility of a comparison principle of the type used in Section 3. This com-
parison principle was used to obtain the boundedness of the Perron solutions as
well as the inequality uP ≤ uP . Thus, while the Perron solutions can be defined
in the q = 0 case in precisely the same way as in the previous section (note that
Sg and Sg are nonempty since they contain the constant functions min∂Ω g and
max∂Ω g respectively), we do not know a priori that they are finite. In this sec-
tion, we show that the Perron solutions are bounded and that the method used in
Section 3 produces weak solutions to (1.1) that bound all possible C(Ω) solutions.
These weak solutions need only be semicontinuous and satisfy functional equations
involving the minimal or maximal median operator.

The following maximum and minimum principle immediately implies the finite-
ness of the Perron solutions.

Proposition 4.1. If v ∈ C(Ω) satisfies v ≤ Mh
0 v in Ω, then maxΩ v = max∂Ω v.

If w ∈ C(Ω) satisfies w ≥Mh
0 w in Ω, then minΩ w = min∂Ω w.

We remark that the corresponding result also holds when q > 0 and can be
proved more easily by a standard argument.

Proof. We prove the statement for a subsolution v by contradiction. If the claim
is not true, there exists v ∈ C(Ω) that attains a maximum T , where T > max∂Ω v,
and satisfies v ≤Mh

0 v in Ω. The set ΩT = {x ∈ Ω : v(x) = T} is nonempty, closed
and disjoint from ∂Ω. Consider the convex hull of ΩT , denoted conv ΩT . This set
is compact, convex, and equal to the convex hull of its extreme points. Note that
conv ΩT need not be a subset of Ω if Ω is not convex. Clearly ΩT ⊂ (conv ΩT )∩Ω.

Let x be an extreme point of conv ΩT . Then x cannot be written as a nontrivial
convex combination of points in conv ΩT (in other words, x 6= ty+ (1− t)z for any
0 < t < 1 and y, z ∈ conv ΩT ). By the definition of convex hull, x must be a convex
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combination of elements of ΩT . But, because this convex combination cannot be
nontrivial (because ΩT is contained in conv ΩT ), x must belong to ΩT . Because x
is an extreme point of conv ΩT , there exists a supporting hyperplane H to conv ΩT
such that H ∩ conv ΩT = {x}. This implies that the functional inequality v ≤Mh

0 v
cannot hold at x. This is not hard to see: because conv ΩT \ {x} lies (strictly) on
one side of H, the measure of ∂Bhx ∩ conv ΩT is strictly less than half the measure
of ∂Bhx . Recalling that ΩT ⊂ conv ΩT , we see that v < T on more than half of
∂Bhx so that median∂Bh

x
v < T = v(x). For the facts and definitions from convex

geometry used above, we refer to the books [7] and [30]. �

Consider the problem (1.1) when q = 0 and define the classes Sg and Sg as in the
previous section. As in the q > 0 case, any function in Sg ∩ Sg is a C(Ω) solution
to the Dirichlet problem (1.1), and any C(Ω) solution must belong to Sg ∩ Sg.
However, as mentioned in Section 1, we don’t generally expect Sg ∩Sg to consist of
a single element when nonempty. The next result shows that when the upper and
lower Perron solutions coincide on the boundary, they solve (1.1) in a weak sense
and bound all possible C(Ω) solutions.

Theorem 4.2. If uP = uP (= g) on ∂Ω, then there exist u ∈ LSC(Ω) and
U ∈ USC(Ω), both equal to g on ∂Ω, such that u = Mh

0u in Ω and U = M
h

0U in
Ω. Furthermore, if u is a C(Ω) solution of (1.1) with q = 0, then U ≤ u ≤ u.

Proof. The proof of Theorem 3.1 produces the functions u and U with the claimed
properties. The part of the argument establishing that u = U does not apply when
q = 0 however. Suppose that u is a C(Ω) solution of (1.1). Then u ∈ Sg ∩ Sg. It
follows that u ≤ uP by the definition of uP and since u is produced by monotone
iteration starting with uP (see the proof of Theorem 3.1), we have that u ≤ u.
Similarly, since u ∈ Sg, we get that u ≥ U , proving the last claim. �

If (1.1) has multiple C(Ω) solutions, the inequality in Theorem 4.2 shows that
u and U (and therefore uP and uP ) do not coincide. An analogous statement to
Remark 3.2 also holds when q = 0.

It was also shown in [29] that the Dirichlet problem for the local median value
property may not have a C(Ω) solution. 1-harmonious functions need not satisfy the
local median value property (since the defining property for 1-harmonious functions
requires that u(x) equal its median over a single sphere centered at x and not all
such spheres with sufficiently small radius as is the case for the local median value
property, see the next section). However, this suggests that it may be possible for
Sg∩Sg to be empty, so that there is no C(Ω) 1-harmonious function in that domain
equal to g on the boundary.

5. Local median value property and 1-harmonious functions

Functions satisfying a local median value property were studied in [29]. It was
shown there that such functions are (normalized) 1-harmonic in the viscosity sense.
A function u ∈ C(Ω) satisfies the local median value property if u(x) is equal to
its median on ∂Bε(x) for all ε < R(x) where R : Ω → R is positive, continuous
and satisfies R(x) ≤ dist(x, ∂Ω). This property appears to be stronger than the
condition defining 1-harmonious functions since it requires that u(x) equal its me-
dian over all sufficiently small spheres centered at x, whereas to satisfy u = Mh

0 u,
u(x) need only equal its median on the single sphere ∂Bhx . However, for any given
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h > 0, a function can satisfy the local median value property without satisfying
u = Mh

0 u, since R(x) could be smaller than rh(x) defined in (1.3). Thus, while
these conditions are clearly related, there is no obvious connection between them.
Furthermore, as the following example demonstrates, a function u can possess the
local median value property without satisfying u = Mh

0 u for any h > 0.
Let ρ > 0 be small (ρ < 1 is sufficient, but it is easier to see the claim when

ρ ≈ 0). Let Ω = B1((1, 0)) ⊂ R2. Define u ∈ C(Ω) by

u(x, y) =


0 if − ρx ≤ y ≤ ρx,
ε if y = ρx+ ε for ε > 0,
−ε if y = −ρx+ ε for ε < 0.

In other words, u is zero in the part of Ω between the lines y = ρx and y = −ρx.
Outside of this sector, u > 0 and is constant along lines parallel to the line y = ρx
above y = ρx and along lines parallel to the line y = −ρx below y = −ρx. It is
not hard to see that u satisfies the local median value property since its level sets
are either line segments or the region bounded by the lines y = ρx and y = −ρx.
Given any h > 0, there exists ε > 0 such that B := Bh(ε,0) is tangent to Ω at the
origin. Then u(ε, 0) = 0, but because ρ < 1, |∂B ∩ {u > 0}| > (1/2)|∂B|, so that
median∂B u > 0, and u is not 1-harmonious.
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[8] Ivana Gómez and Julio D. Rossi; Tug-of-war games and the infinity Laplacian with spatial
dependence, Commun. Pure Appl. Anal. 12 (2013), no. 5, 1959–1983. MR 3015666

[9] David Hartenstine, Matthew Rudd; Asymptotic statistical characterizations of p-harmonic
functions of two variables, Rocky Mountain J. Math. 41 (2011), no. 2, 493–504. MR 2794450

(2012c:31007)



EJDE-2016/123 PERRON’S METHOD FOR p-HARMONIOUS FUNCTIONS 11

[10] David Hartenstine, Matthew Rudd; Statistical functional equations and p-harmonious func-

tions, Adv. Nonlinear Stud. 13 (2013), no. 1, 191–207. MR 3058215
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[19] Rafael López-Soriano, José C. Navarro-Climent, Julio D. Rossi; The infinity Laplacian with
a transport term, J. Math. Anal. Appl. 398 (2013), no. 2, 752–765. MR 2990098

[20] Hannes Luiro, Mikko Parviainen, Eero Saksman; Harnack’s inequality for p-harmonic func-

tions via stochastic games, Comm. Partial Differential Equations 38 (2013), no. 11, 1985–
2003. MR 3169768

[21] Hannes Luiro, Mikko Parviainen, Eero Saksman; On the existence and uniqueness of
p-harmonious functions, Differential Integral Equations 27 (2014), no. 3-4, 201–216.

MR 3161602

[22] Juan J. Manfredi, Mikko Parviainen, Julio D. Rossi; An asymptotic mean value charac-
terization for p-harmonic functions, Proc. Amer. Math. Soc. 138 (2010), no. 3, 881–889.

MR 2566554 (2010k:35200)

[23] Juan J. Manfredi, Mikko Parviainen, Julio D. Rossi; Dynamic programming principle for
tug-of-war games with noise, ESAIM Control Optim. Calc. Var. 18 (2012), no. 1, 81–90.

MR 2887928

[24] Juan J. Manfredi, Mikko Parviainen, Julio D. Rossi; On the definition and properties of p-
harmonious functions, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 11 (2012), no. 2, 215–241.

MR 3011990

[25] Yuval Peres, Oded Schramm, Scott Sheffield, David B. Wilson; Tug-of-war and the infinity
Laplacian, J. Amer. Math. Soc. 22 (2009), no. 1, 167–210. MR 2449057 (2009h:91004)

[26] Yuval Peres, Scott Sheffield; Tug-of-war with noise: a game-theoretic view of the p-Laplacian,
Duke Math. J. 145 (2008), no. 1, 91–120. MR 2451291 (2010i:35100)

[27] Julio D. Rossi; Tug-of-war games and PDEs, Proc. Roy. Soc. Edinburgh Sect. A 141 (2011),

no. 2, 319–369. MR 2786683 (2012f:35207)
[28] Matthew B. Rudd; Statistical exponential formulas for homogeneous diffusion, Commun.

Pure Appl. Anal. 14 (2015), no. 1, 269–284.
[29] Matthew B. Rudd, Heather A. Van Dyke; Median values, 1-harmonic functions, and func-

tions of least gradient, Commun. Pure Appl. Anal. 12 (2013), no. 2, 711–719. MR 2982785

[30] Rolf Schneider; Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics

and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993. MR 1216521
(94d:52007)

[31] William P. Ziemer; Weakly differentiable functions, Graduate Texts in Mathematics, vol.
120, Springer-Verlag, New York, 1989, Sobolev spaces and functions of bounded variation.
MR 1014685 (91e:46046)



12 D. HARTENSTINE, M. RUDD EJDE-2016/123

David Hartenstine

Department of Mathematics, Western Washington University, Bellingham, WA 98225,

USA
E-mail address: david.hartenstine@wwu.edu

Matthew Rudd
Department of Mathematics, The University of the South, Sewanee, TN 37383, USA

E-mail address: mbrudd@sewanee.edu


	1. Introduction
	2. Preliminaries
	3. Perron method and barriers
	4. Perron method when q=0
	5. Local median value property and 1-harmonious functions
	Acknowledgements

	References

