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BLOW-UP CRITERIA OF SMOOTH SOLUTIONS TO A 3D
MODEL OF ELECTRO-KINETIC FLUIDS IN A BOUNDED

DOMAIN

MIAOCHAO CHEN, QILIN LIU

Abstract. We prove that a smooth solution of a 3D model for electro-kinetic

fluids in a bounded domain breaks down blows up at the same time as certain

norm of vorticity. This norm is weaker than bmo-norm.

1. Introduction

Let Ω ⊂ R3 be a bounded, simply connected domain with smooth boundary ∂Ω,
and ν is the unit outward normal vector to ∂Ω. We consider the following model
of electro-hydrodynamics in Ω× (0,∞) [1, 2]:

∂tu+ (u · ∇)u+∇π = ∆φ∇φ, (1.1)

div u = 0, (1.2)

∂tn+ u · ∇n = ∇ · (∇n− n∇φ), (1.3)

∂tp+ u · ∇p = ∇ · (∇p+ p∇φ), (1.4)

−∆φ = p− n,
∫

Ω

φdx = 0, (1.5)

u · ν = 0,
∂n

∂ν
=
∂p

∂ν
=
∂φ

∂ν
= 0 on ∂Ω× (0,∞), (1.6)

(u, n, p)(x, 0) = (u0, n0, p0)(x), x ∈ Ω ⊂ R3. (1.7)

The unknowns u, π, φ, n and p denote the velocity, pressure, electric potential,
anion concentration and cation concentration, respectively.

Equations (1.3)–(1.5) are known as the electro-chemical equations [3] or semi-
conductor equations [4, 5, 6], and electro-rheological systems [2, 7] when formally
setting u = 0.

Equations (1.1) and (1.2) are the Euler equations with the Lorentz force (n −
p)∇φ = ∆φ∇φ. Ogawa-Taniuchi [8] proved that a smooth solution breaks down if
a certain norm of vorticity blows up at the same time. Here this norm is weaker
than bmo-norm. Zhang and Yin [9] proved the global well-posedness of problem
(1.1)–(1.7) when Ω := R2.

Before presenting our results, we introduce some function spaces, and notation.
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Let η, φj , j = 0,±1,±2,±3, . . . be the Littlewood-Paley dyadic decomposition
of unity that satisfies

η ∈ C∞0 (B(0, 1)), φ ∈ C∞0 (B(0, 2) \B(0,
1
2

)),

φj(ξ) = φ(2−jξ), η(ξ) +
∞∑
j=0

φj(ξ) = 1

for all ξ ∈ R3, where B(x, r) denotes the ball centered at x of radius r. We first
recall the space of Besov type introduced by Vishik [10].

Definition 1.1 ([10]). Let Θ(α)(≥ 1) be a nondecreasing function on [1,∞). VΘ :=
{f ∈ S ′ : ‖f‖VΘ <∞} with the norm

‖f‖VΘ := sup
N=1,2,...

‖(nf̂)∨‖L∞ +
∑N
j=0 ‖(φj f̂)∨‖L∞

Θ(N)
,

where f̂ and f̌ denote the Fourier and inverse Fourier transforms.

We note that

‖f‖VΘ ≤ C‖f‖Bo∞,∞ ≤ C‖f‖bmo ≤ C‖f‖L∞ , if Θ(N) ≥ N.

Now let us introduce the space of bmo type used in [8].

Definition 1.2. Let β(r) be a positive function on (0, 1] and Ω ⊂ R3 be a domain
with ∂Ω ∈ C∞.

(1) bmoβ(R3) is defined as the set of functions f in L1
loc(R3) such that

‖f‖bmoβ(R3) := sup
0<r<1,x∈R3

1
|B(x, r)|β(r)

∫
B(x,r)

|f(y)− f̄B(x,r)|dy

+ sup
x∈R3

1
|B(x, 1)|

∫
B(x,1)

|f(y)|dy ≤ ∞,

where f̄B := 1
|B|
∫
B
f(y)dy.

(2) On Ω ⊂ R3 we define bmoβ as restrictions of the above space bmoβ(R3):

bmoβ(Ω) := {f |Ω; f ∈ bmoβ(R3)},
where f |Ω is the restriction of f on Ω. The norm of this space is defined by

‖f‖bmoβ(Ω) := inf
{
‖f̃‖bmoβ(R3); f̃ ∈ bmoβ(R3) with f̃ = f in Ω

}
.

In particular if β(r) = 1, we write bmoβ(R3) = bmo(R3) and bmoβ(Ω) = bmo(Ω).
Obviously, bmo ⊂ bmoβ if β ≥ 1.

Definition 1.3. Let Θ(α)(≥ 1) be a nondecreasing function on [1,∞).

YΘ(Ω) := {f ∈ L1(Ω) : ‖f‖YΘ(Ω) <∞},
where

‖f‖YΘ(Ω) := sup
p≥1

‖f‖Lp
Θ(p)

.

MΘ(Ω) := {f ∈ L1(Ω) : ‖f‖MΘ(Ω) <∞},
where

‖f‖MΘ(Ω) := sup
p≥1

1
Θ(p)

sup
0<r<1,x∈R3

(
r−3+ 3

p

∫
B(x,r)∩Ω

|f(y)|dy
)
.
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We note that these spaces have the following relations.

‖f‖MΘ(Ω) ≤ C‖f‖YΘ(Ω) ≤ C‖f‖bmo(Ω). (1.8)

Let

β(r) :=
Θ(log(e+ 1

r ))
log(e+ 1

r )
.

In this article we use the following assumptions:

(H1) Θ(α) is a positive and nondecreasing function on [1,∞) satisfying∫ +∞ dα

Θ(α)
=∞, Θ(α) ≥ α. (1.9)

(H2) For all s ≥ 1 there exists C(s) such that

Θ(sα) ≤ C(s)Θ(α) for all α ≥ 1.

(H3) β(r) is a non-increasing function on (0, 1].

Ogawa-Taniuchi [8] proved the following blowup criterion∫ T

0

‖ω(t)‖bmoβ(Ω) + ‖ω(t)‖MΘ(Ωε)dt =∞, (1.10)

where ω := curlu and for all ε > 0 and Ωε := {x ∈ Ω; dist(x, ∂Ω) < ε} or∫ T

0

‖ω(t)‖bmoβ(Ω3ε) + ‖ω(t)‖MΘ(Ω3ε) + ‖ρω(t)‖VΘdt =∞, (1.11)

for all 0 < ε < ε0 and all ρ ∈ C∞(R3) with ρ ≡ 1 in Ω \Ωε and ρ ≡ 0 in R3 \Ω. ε0
is a small positive constant depending only on Ω.

Since β(r) ≥ 1, we have

‖f‖bmoβ(Ω) ≤ ‖f‖bmo(Ω).

By this inequality and (1.8), (1.10) implies∫ T

0

‖ω(t)‖bmo(Ω)dt =∞. (1.12)

The aim of this article is to prove a similar result for problem (1.1)–(1.7). It is
easy to show that (1.1)–(1.7) has a unique local smooth solution with u0 ∈ H3 and
(n0, p0) ∈ H2. Thus we omit the details here. However, the global regularity is still
open, which this paper aims to study. We will prove the following result.

Theorem 1.4. Let u0 ∈ H3, (n0, p0) ∈ H2, n0, p0 ≥ 0,div u0 = 0 in Ω, u0 · ν =
∂n0
∂ν = ∂p0

∂ν on ∂Ω and
∫

Ω
n0dx =

∫
Ω
p0dx. Suppose that (u, n, p) is a local smooth

solution to (1.1)–(1.7) on [0, T ). If T is maximal, then (1.10) and (1.11) hold.

In Section 2, we will give some preliminaries. Section 3 is devoted to the proof
of Theorem 1.4.
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2. Preliminaries

Lemma 2.1 ([11]). For any u ∈ W s,p with div u = 0 in Ω and u · ν = 0 on ∂Ω,
there holds

‖u‖W s,p ≤ C(‖u‖Lp + ‖ curlu‖W s−1,p)

for any s ≥ 1 and p ∈ (1,∞).

Lemma 2.2 ([12]). Let s ≥ 1.
(1) If f, g ∈ Hs(Ω) ∩ C(Ω), then

‖fg‖Hs(Ω) ≤ C
(
‖f‖Hs(Ω)‖g‖L∞(Ω) + ‖f‖L∞(Ω)‖g‖Hs(Ω)

)
.

(2) If f ∈ Hs(Ω) ∩ C1(Ω) and g ∈ Hs−1(Ω) ∩ C(Ω), then for |α| ≤ s,

‖Dα(fg)− fDαg‖L2(Ω) ≤ C
(
‖f‖Hs(Ω)‖g‖L∞(Ω) + ‖f‖W 1,∞(Ω)‖g‖Hs−1(Ω)

)
.

Lemma 2.3 ([8]). For all ε > 0, we have

‖∇u‖L∞(Ω)

≤ C
(
1 + ‖u‖L2(Ω) + ‖ curlu‖bmoβ(Ω) + ‖ curlu‖MΘ(Ωε)

)
Θ(log(e+ ‖u‖H3(Ω)))

for all u ∈ H3(Ω) with div u = 0 in Ω and u · ν = 0 on ∂Ω.

Lemma 2.4 ([8]). There exists a constant ε0 depending only on Ω such that: For
all 0 < ε < ε0 and for all ρ ∈ C∞(R3) with ρ ≡ 1 in Ω \ Ωε and ρ ≡ 0 in R3 \ Ω
there exists constant C depending only on ε, ρ,Ω and Θ such that

‖∇u‖L∞(Ω) ≤ C
(

1 + ‖u‖L2(Ω) + ‖ curlu‖bmoβ(Ω3ε) + ‖ curlu‖MΘ(Ω3ε)

+ ‖ρ curlu‖VΘ

)
Θ(log(e+ ‖u‖H3(Ω)))

for all u ∈ H3(Ω) with div u = 0 in Ω and u · ν = 0 on ∂Ω.

Lemma 2.5 ([13]). Let ψ be nonnegative function on (0, T ) with
∫ T

0
ψ(t)dt < ∞,

let Θ(α) be a positive and nondecreasing for α ≥ 1 and
∫ +∞ dα

Θ(α) = ∞. Assume
that v ∈ C([0, T )) and

0 ≤ v(t) ≤ v(0) +
∫ t

0

ψ(s)Θ(v(s))ds for all 0 ≤ t < T.

Then sup0≤t≤T v(t) <∞.

3. Proof of Theorem 1.4

Since the proof of (1.11) is similar to that of (1.10), we only need to prove (1.10).
By the standard argument of continuation of local solutions, it suffices to prove that
if ∫ T

0

‖ω(t)‖bmoβ(Ω) + ‖ω(t)‖MΘ(Ωε)dt <∞ for some ε > 0, (3.1)

then
u ∈ L∞(0, T ;H3), (n, p) ∈ L∞(0, T ;H2) ∩ L2(0, T ;H3). (3.2)

First, by the maximum principle, it is easy to prove that n, p ≥ 0 in Ω× (0,∞).
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Testing (1.3) by n and testing (1.4) by p, using (1.5), (1.2) and summing up the
resulting inequality, we easily get

1
2

∫
n2 + p2dx+

∫ T

0

∫
|∇n|2 + |∇p|2 +

1
2

(p− n)2(n+ p)dxdt ≤ 1
2

∫
u2

0 + p2
0dx,

whence
‖(n, p)‖L∞(0,T ;L2) + ‖(n, p)‖L2(0,T ;H1) ≤ C. (3.3)

Testing (1.3) by nk−1 and testing (1.4) by pk−1, using (1.2), (1.5) and n, p ≥ 0,
we find that ∫

nk + pkdx ≤
∫
nk0 + pk0 ≤

∫
(n0 + p0)kdx,

which gives
‖n‖Lk ≤ ‖n0 + p0‖Lk , ‖p‖Lk ≤ ‖n0 + p0‖Lk .

Taking k →∞, we obtain

‖(n, p)‖L∞(0,T ;L∞) ≤ C. (3.4)

Testing (1.1) by u, using (1.2)-(1.5), we infer that
1
2
d

dt

∫
u2 + |∇φ|2dx+

∫
|∆φ|2 + (n+ p)|∇φ|2dx = 0, (3.5)

which leads to
‖u‖L∞(0,T ;L2) ≤ C. (3.6)

It follows from (3.5), (3.4), (3.3) and (1.5) that

∇φ ∈ L∞(0, T ;H1 ∩ L∞) ∩ L2(0, T ;H2). (3.7)

Testing (1.3) by −∆n, using (1.2), (1.5), (1.6), (3.4) and (3.7), we have
1
2
d

dt

∫
|∇n|2dx+

∫
|∆n|2dx

=
∫

(u · ∇)n ·∆ndx+
∫

(n∆φ+∇n · ∇φ)∆ndx

=
∑
i,j

∫
ui∂in∂

2
jndx+

∫
(n∆φ+∇n · ∇φ)∆ndx

= −
∑
i,j

∫
∂jui∂in∂jndx+

∫
(n(n− p) +∇n · ∇φ)∆ndx

≤ C‖∇u‖L∞‖∇n‖2L2 + C‖∆n‖L2 + C‖∇n‖L2‖∇φ‖L∞‖∆n‖L2

≤ 1
2
‖∆n‖2L2 + C‖∇u‖L∞‖∇n‖2L2 + C + C‖∇n‖2L2 ,

which implies
d

dt

∫
|∇n|2dx+

∫
|∆n|2dx ≤ C + C‖∇n‖2L2 + C‖∇u‖L∞‖∇n‖2L2 . (3.8)

Similarly for the p-equation, we have
d

dt

∫
|∇p|2dx+

∫
|∆p|2dx ≤ C + C‖∇p‖2L2 + C‖∇u‖L∞‖∇p‖2L2 . (3.9)

Equations (1.3) and (1.6) can be rewritten as

∆n = f := ∂tn+ u · ∇n+∇ · (n∇φ), in Ω× (0,∞)
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∂n

∂ν
= 0, on ∂Ω× (0,∞).

By the classical regularity theory of elliptic equation, using (3.6), (3.4) and (3.7),
we deduce that
‖n‖H3 ≤ C‖f‖H1

≤ C‖∂tn‖H1 + C‖u · ∇n‖H1 + C‖∇ · (n∇φ)‖H1

≤ C‖∂tn‖H1 + C‖u‖L2‖∇n‖L∞ + C‖u‖L6‖∆n‖L3

+ C‖∇u‖L∞‖∇n‖L2 + C‖n∆φ‖L2 + C‖∇n · ∇φ‖L2

+ C‖n‖L∞‖∇∆φ‖L2 + C‖∇n‖L∞‖∇2φ‖L2 + C‖∇φ‖L6‖∆n‖L3

≤ C‖∂tn‖H1 + C‖∇n‖L∞ + C‖u‖L6‖∆n‖L3

+ C‖∇u‖L∞‖∇n‖L2 + C + C‖∇n‖L2

+ C‖∇(n− p)‖L2 + C‖∆n‖L3 .

(3.10)

Now we use the following Gagliardo-Nirenberg inequalities:

‖∇n‖L∞ ≤ C‖n‖1/3L∞‖n‖
2/3
H3 , (3.11)

‖∇n‖L3 ≤ C‖n‖1/3L∞‖n‖
2/3
H3 , (3.12)

‖u‖3L6 ≤ C‖u‖2L2‖u‖H3 . (3.13)

It follows from (3.10), (3.11), (3.12), (3.13), (3.6), (3.4) and the Young inequality
that

‖n‖H3 ≤ C‖∂tn‖H1 + C + C‖u‖H3 + C‖∇u‖L∞‖∇n‖L2

+ C‖∇n‖L2 + C‖∇p‖L2 .
(3.14)

Similarly to the p- equation, we have
‖p‖H3 ≤ C‖∂tp‖H1 + C + C‖u‖H3 + C‖∇u‖L∞‖∇p‖L2

+ C‖∇n‖L2 + C‖∇p‖L2 .
(3.15)

Applying the curl to (1.1), using (1.2), we obtain

∂tω + u · ∇ω = ω · ∇u+ curl(∆φ∇φ). (3.16)

Applying ∆ to (3.16), testing by ∆ω, using (1.2), we find that
1
2
d

dt

∫
|∆ω|2dx = −

∫
(∆(u · ∇ω)− u∇∆ω)∆ωdx

+
∫

∆(ω · ∇u) ·∆ωdx+
∫

∆ curl(∆φ∇φ) ·∆ωdx

≤
(
‖∆(u · ∇ω)− u∇∆ω‖L2 + ‖∆(ω · ∇u)‖L2

+ ‖∆ curl(∆φ∇φ)‖L2

)
‖∆ω‖L2

=: (I1 + I2 + I3)‖∆ω‖L2 .

(3.17)

Using (1.2) and Lemma 2.2, I1 and I2 can be bounded as follows.

I1 =
∑
i

‖∆∂i(uiω)− ui∂i∆ω‖L2

≤ C‖∇u‖L∞‖∆ω‖L2 + C‖ω‖L∞‖∇3u‖L2

≤ C‖∇u‖L∞‖u‖H3 ,

I2 ≤ C‖ω‖L∞‖u‖H3 + C‖∇u‖L∞‖ω‖H2 ≤ C‖∇u‖L∞‖u‖H3 .
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Noting that

∆φ · ∇φ =
∑
i,j

∂j(∂jφ∂iφ)− 1
2

∑
i,j

∂i(∂jφ)2,

using Lemma 2.2 and (3.7), we have

I3 ≤ C‖∇φ‖L∞‖∇φ‖H4 ≤ C‖∇φ‖H4 ≤ C‖φ‖H5 ≤ C‖n− p‖H3 .

Inserting the above estimates into (3.17), we obtain

1
2
d

dt

∫
|∆ω|2dx ≤ C(‖∇u‖L∞‖u‖H3 + ‖n− p‖H3)‖∆ω‖L2 . (3.18)

Testing (1.1) by ∂tu, using (1.2), (3.6), (3.7) and (3.13), we infer that

‖∂tu‖L2 ≤ ‖∆φ∇φ‖L2 + ‖u · ∇u‖L2

≤ ‖∇φ‖L∞‖∆φ‖L2 + ‖u‖L6‖∇u‖L3

≤ C + C‖u‖2/3L2 ‖u‖1/3H3 ‖u‖1/2L2 ‖u‖1/2H3

≤ C + C‖u‖5/6H3 .

(3.19)

Here we have used the Gagliardo-Nirenberg inequality

‖∇u‖2L3 ≤ C‖u‖L2‖u‖H3 .

Applying ∂t to (1.3), we see that

∂2
t n+ u · ∇∂tn−∆∂tn = −∂tu · ∇n−∇ · ∂t(n∇φ).

Testing the above equation by ∂tn, using (1.2), (1.6), (3.4), (3.7), (3.19) and (1.5),
we derive

1
2
d

dt

∫
(∂tn)2dx+

∫
|∇∂tn|2dx

= −
∫

(∂tu · ∇)n · ∂tndx+
∫
∂t(n∇φ) · ∇∂tndx

=
∫
∂tu · n∇∂tndx+

∫
∂t(n∇φ) · ∂tndx

≤ (‖n‖L∞‖∂tu‖L2 + ‖∇φ‖L∞‖∂tn‖L2 + ‖n‖L∞‖∇∂tφ‖L2) ‖∇∂tn‖L2

≤ C(‖∂tu‖L2 + ‖∂tn‖L2 + ‖∂t(n− p)‖L2)‖∇∂tn‖L2

≤ 1
2
‖∇∂tn‖2L2 + C + C‖u‖2H3 + C‖∂tn‖2L2 + C‖∂tp‖2L2 ,

whence
d

dt

∫
|∂tn|2dx+

∫
|∇∂tn|2dx ≤ C + C‖u‖2H3 + C‖∂t(n, p)‖2L2 . (3.20)

Similarly, for the p-equation, we have

d

dt

∫
(∂tp)2dx+

∫
|∇∂tp|2dx ≤ C + C‖u‖2H3 + C‖∂t(n, p)‖2L2 . (3.21)

Combining (3.8), (3.9), (3.14), (3.15), (3.18), (3.20) and (3.21), using (3.6), Lemma
2.1, Lemma 2.3, and Lemma 2.5, we conclude that (3.2) holds. This completes the
proof.



8 M. CHEN, Q. LIU EJDE-2016/128

Acknowledgements. The author is indebted to the referees for their valuable
suggestions. This work is supported by the Natural Science Foundation of Chaohu
University (No. XLY-201503), the University Natural Science Foundation of Anhui
(No. KJ2015A270).

References

[1] M. Bazant, T. Squires; Induced-charge electro-kinetic phenomena, theory and microfluidic

applications. Phys. Rev. Lett. 92 (2004), 066101.
[2] R. E. Problestein; Physicochemical Hydrodynamics, An introduction. John Wiley and Sons,

INC., 1994.

[3] K. Chu, M. Bazant; Electrochemical thin films at and above the classical limiting current.
SIAM J. Appl. Math. 65 (2005), 1485-1505.

[4] M. Kurokiba, T. Ogawa; Lp well-posedness for the drift-diffusion system arising from the
semiconductor device simulation. J. Math. Anal. Appl. 342 (2008), 1052-1067.

[5] P. Biler, W. Hebisch, T. Nadzieja; The Debye system: existence and large time behavior of

solutions. Nonlinear Anal. TMA 23 (1994), 1189-1209.
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