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PERTURBATION OF THE FREE BOUNDARY IN ELLIPTIC
PROBLEM WITH DISCONTINUITIES

SABRI BENSID

Abstract. We study the discontinuous elliptic problem

−∆u = λH(u− µ) in Ω,

u = h on ∂Ω,

where Ω is a regular bounded domain of Rn, H is the Heaviside function, λ, µ

are a positive real parameters and h is a given function. We prove the existence
of solutions, and characterize the free boundaries {x ∈ Ω : u(x) = µ} using the

perturbation of the boundary condition and smooth boundary of the domain.

1. Introduction

Partial differential equations with discontinuous nonlinearities arise in models
from many concrete problems in mathematical physics like those of combustion
theory, porous media, plasma physics. In this article, we study the existence of
solutions for the problem

−∆u = λH(u− µ) in Ω,
u = h on ∂Ω,

(1.1)

where Ω is a smooth bounded domain of Rn, H is the Heaviside function

H(t) =

{
1 if t ≥ 0
0 if t < 0,

h is a given function, and λ, µ are a positive real parameters.
This problem can be reformulated as an equivalent free boundary problem: Find

u ∈ C2(Ω \ ∂w) ∩ C1(Ω) such that

−∆u = λ in w,

−∆u = 0 in Ω \ w,
u = h on ∂Ω,

(1.2)

where w = {x ∈ Ω : u(x) > µ} and ∂w is the free boundary to be determined. The
set {x ∈ Ω : u(x) = µ}, dividing the domain Ω into two (or more) regions where
−∆u = λ or ∆u = 0 is satisfied in the classical sense.
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To the best of our knowledge, no investigation has been devoted to establishing
the existence of solutions to such problem when Ω is a general domain using per-
turbation methods. Here, we give a positive answer to this study. The problem
(1.1) was investigated in the variational context when h = 0 by Ambrosetti and
Badial [3] and the extension to the results for p-Laplacian operator (p > 1) has
been studied by Arcoya and Calahorrano in [5]. Further works with the Neumann
boundary conditions can be found in [11, 14].

When h does not vanish identically, and the domain Ω is the unit ball of Rn, the
existence of positive solutions and the behavior of the corresponding free boundaries
with respect to h has been discussed by Alexander in [1]. In the case n = 2,
Alexander and Fleishman [2] studied the problem (1.1) when Ω is the unit square.
Recently, the authors in [6] and [7] studied the more general following problem
when Ω is the unit ball of Rn,

−∆u = f(u)H(u− µ) in Ω,
u = h on ∂Ω,

where f is a given function.
The methods used hinge on the parametrization of the free boundary which is

the unknown of our problem. This technique reduces the study to solve a nonlinear
integral equation and allows us to obtain positive result regarding the solvability
of the equation of the free boundary under perturbation of the boundary without
the additional requirement of the regularity of the boundary of the initial domain.
This will be the approach of this paper.

In general, the natural way to deal with the discontinuous elliptic problems
are the variational methods, see for instance [9, 10]. But one soon realizes that
the study entails serious difficulties mainly to characterize the variation of the
free boundary . Our goal is different, having a solution of the given problem, we
study the effect on the solutions under perturbations of the boundary conditions
and a smooth boundary of the domain Ω. We point out also that in this work,
we can not use the symmetry of solutions as in [1, 6, 7]. Hence, we have uses the
perturbation techniques to overcome the encountered difficulties. For more works on
the discontinuous elliptic problems, we invite the reader to consult [1, 3, 5, 6, 7, 15]
and the references given here.

Because the nonlinearity has a discontinuity at u = µ, so, a suitable concept of
solution is needed. We say that a function u ∈ W 2,p(Ω), (p > 1) is a solution of
problem (1.1) if −∆u = λH(u−µ) a.e in Ω and the trace of u on ∂Ω is equal to h.

We need the following assumptions in this work.
(H1) Assuming that the boundary ∂Ω of the domain Ω can be parameterized as

R+ β(θ) where β ∈ C2(S), θ ∈ S and R > 0 where S is the unit sphere.
(H2) For n = 2,

λ

µ
>

4e
R2

.

and for n ≥ 3,

λ

µ
> Mn(R) :=

1
R2

n(n− 2)

( 2
n )

2
n−2 − ( 2

n )
n
n−2

(H3) The function h is small enough with 0 ≤ ‖h‖∞ < µ where ‖h‖∞ =
maxx∈∂Ω |h(x)|.
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This article is organized as follows: Section 2 collects some known results for the
problem in a ball giving only slight information on the different methods of proof.
Section 3 contains the statement of the essential result. Section 4 provides an
approach for studying the problem (1.1). In Section 5, we treat the regularity of
free boundary and finally, we give an appendix which contains some useful results.

2. Existence results in a ball

In this section, we consider the problem
−∆u = λH(u− µ) in B(0, R),

u = h0 on ∂B(0, R),
(2.1)

We assume that the function h0 satisfies (H3).

Theorem 2.1 ([7]). Suppose that there exists µ > 0 such that
λ

µ
>

4e
R2

, for n = 2,

λ

µ
> Mn(R), for n ≥ 3,

then the problem (2.1) has at least two positive solutions and the free boundaries
are analytic hypersurfaces.

Remark 2.2. In [7], we have treat the case n ≥ 3 and the more general problem

−∆u = f(u)H(u− µ) in B(0, 1),

u = h0 on ∂B(0, 1),

There the assumptions are
(H4) The function f is k-Lipstchitzian, non-decreasing, positive and there exist

two strictly positive constants k, β > 0 such that f(s) ≤ ks + β with
k < min{λ1, 1}, where λ1 is the first eigenvalue of −∆ under homogeneous
Dirichlet boundary conditions.

(H5) The function f is differentiable and constant on the interval of the form
[0, c] where c > β

2n−k and the function h0 is small enough, ‖h‖∞ < µ where
‖h‖∞ = maxx∈∂B(0,1) |h(x)|.

(H6) There exists µ > 0 such that
f(µ)
µ

> Mn =
n(n− 2)

( 2
n )

2
n−2 − ( 2

n )
n
n−2

, for n ≥ 3.

In this paper, we put f(u) = λ to clarify the obtained the results. For n = 2, the
treatment is similar with the adequate modification. For the convenience of the
reader, we give some calculus related to the case Ω = B(0, R) in the appendix.

The proof of Theorem 2.1 is based on the transformation of our problem into an
equivalent nonlinear integral equation which is solved with respect to the unknown
free boundary {x ∈ Ω : u(x) = µ} by the application of the implicit function
theorem. We can find the complete proof in [7]. Here, we give some ideas of
demonstration that will be used throughout this paper. We will denoted the solution
of (2.1) by u0 and we consider the problem called the reduced problem

−∆u0 = λH(u0 − µ) in B(0, R),

u0 = 0 on ∂B(0, R),
(2.2)



4 S. BENSID EJDE-2016/132

We remark that since the Heaviside step function is monotone and not decreasing,
the result of Gidas, Ni and Nirenberg [12] shows that all positive solutions of (2.2)
are radial. Hence, we look for the free boundary in the form {(r0, θ), θ ∈ S} for
some r0 ∈ (0, R) and obtain all radial solutions of (2.2) by finding u0, λ and r0 so
that the differential equation

r1−n ∂

∂r
(rn−1 ∂u0

∂r
) = λ 0 < r < r0

r1−n ∂

∂r
(rn−1 ∂u0

∂r
) = 0 r0 < r < R,

u0(R) = 0,
∂u0

∂r
(0) = 0

(2.3)

is satisfied with the following transmission conditions on the free boundary

u0(r0) = µ and
∂u0

∂r
(r0 − 0) =

∂u0

∂r
(r0 + 0),

where ∂u0
∂r (r0− 0) denotes the left derivative of u and ∂u0

∂r (r0 + 0) denotes the right
derivative at the value r = r0.

Using assumption (H2), the resolution of (2.3) with the previous conditions gives
two r0 ∈ (0, R) says r1, r2. Hence, a simple calculus shows that the free boundaries
are spheres with radii r1, r2 ∈ (0, R).

Remark 2.3. Let r0 denote one of the values r1 or r2. Using hypothesis (H2),
r0 6= Re−1/2 for n = 2 and

r0 6=
( 2
nR2−n

) 1
n−2

for n ≥ 3.

See the Appendix.

Now, to study the problem
−∆u0 = λH(u0 − µ) in B(0, R),

u0 = h0 on ∂B(0, R),
(2.4)

we use the effect of perturbation on the solution in the boundary values. More
precisely, when h0 6= 0, we look for the free boundary in the form r0 + b(θ), θ ∈ S,
where b(θ) is the perturbation caused by h0. Let

w = {(r, θ) ∈ (0, R)× S, 0 ≤ r < r0 + b(θ), θ ∈ S}
Now, we denote by χw the characteristic function of w. In the following result, we
formulate a nonlinear equation for the unknown function b and we prove that by
solving it, we can solve the problem (2.4).

Proposition 2.4 ([7]). Under assumption (H2), the problem
−∆u = λχw(r, θ) in B(0, R),

u = h0 on ∂B(0, R)
(2.5)

has a unique solution u0 ∈ C1,α(Ω,R) with α = 1− n
p . Moreover if u0(r0+b(θ), θ) =

µ with 0 ≤ ‖h‖∞ < µ, then u0 is a solution of (2.4).

As in [7], we conclude with problem (2.4) by showing the existence of the function
b via the implicit function theorem. We can represent the solution of (2.5) in integral
form, and we check the hypothesis of previous theorem. For more details, we refer
the reader to [7]. In this article, we denote r0 + b(θ) := b0(θ), θ ∈ S.
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3. Perturbation of the free boundary

In this section, we are concerned with problem (1.1). We introduce some sets
necessary for the study using the perturbation of boundary. We assume that Ω is
diffeomorphic to a ball. Then, we can construct a curvilinear parametrisation (r, θ)
in a neighborhood of any set in Ω, r ∈ (0, R] and θ ∈ S.

Let Ωβ be a perturbation of B(0, R) in the sense that the boundary ∂Ωβ of
every smooth open set Ωβ close to the ball B(0, R) can be described by R + β(θ),
θ ∈ S and β ∈ C2(S). Hence, from now, Ω = Ωβ , and Ω0 = B(0, R). We denote
also by Ωβ the admissible perturbation of the ball B(0, R) and we define the set of
admissible surfaces in Ωβ by

Sβ = {f ∈ C(S) : (f(θ), θ) ∈ Ωβ for θ ∈ S}.
Now, for a function ψ ∈ Sβ , we define the set

Ωβ,ψ = {(r, θ) ∈ Ωβ , r < ψ(θ)}.
We seek a solution in W 2,p(Ωβ), p > 1, then the boundary value function h which
is a trace of W 2,p(Ωβ) function will be taken in the set

H = {h ∈W 2− 1
p ,p(∂Ωβ ,R), p > n}.

We denote by χΩβ,ψ the characteristic function of Ωβ,ψ, then, we have the following
result.

Proposition 3.1. Assume (H1), (H2) and that

λ

µ
>

4e
R2

for n = 2,

λ

µ
> Mn(R), for n ≥ 3.

Then the problem
−∆u = λχΩβ,ψ in Ωβ ,

u = h on ∂Ωβ
(3.1)

has a unique solution u ∈ C1,α(Ωβ ,R) with α = 1− n
p . Moreover, if u(ψ(θ), θ) = µ

with 0 ≤ ‖h‖∞ < µ then u is a solution of (1.1).

Proof. First, we see that λχΩβ,ψ ∈ Lp(Ωβ), p > 1. From [13, Theorem 9.15], there
exists a unique solution of (3.1) in W 2,p(Ωβ). For p > n, W 2,p(Ωβ) ⊂ C1,α(Ωβ ,R)
with α = 1− n

p . Now, we remark that u satisfies

−∆u = λ in Ωβ,ψ,

−∆u = 0 in Ωβ \ Ωβ,ψ,
u = h on ∂Ωβ .

If we prove the existence of a function ψ such that u(ψ(θ), θ) = µ, then u will be a
solution of

−∆u = λ in Ωβ,ψ,
u = µ on ∂Ωβ,ψ

−∆u = 0 in Ωβ \ Ωβ,ψ,
u = h on ∂Ωβ .
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In Ωβ,b, the function u satisfies

−∆u = λ in Ωβ,ψ,
u = µ on ∂Ωβ,ψ

The maximum principle implies

min
Ωβ,ψ

u = min
∂Ωβ,ψ

u = µ.

Hence, u > µ in Ωβ,ψ. In Ωβ \ Ωβ,b, we have

−∆u = 0 in Ωβ \ Ωβ,ψ,
u = µ on ∂Ωβ,ψ,
u = h on ∂Ωβ .

As 0 ≤ ‖h‖∞ < µ, then
max

Ωβ\Ωβ,ψ
u = max

∂Ωβ,ψ

u = µ

and consequently, u < µ in Ωβ \ Ωβ,ψ. Therefore, the function u satisfies

−∆u = λH(u− µ) in Ωβ ,
u = h on ∂Ωβ .

To conclude with the existence of solutions of problem (1.1), we need only to show
the existence of the function ψ satisfying the equation

u(ψ(θ), θ) = µ.

Now, since the solution u depend on the domain Ωβ , then we can not use the lo-
cal methods directly to prove the existence of ψ. The variation of the domain Ωβ
suggests to use an adequate transformation which maps the changing domain into
a fixed domain and solves the governing equations in the mapped domain. To ex-
clude this difficulties, we proceed as the following. To each admissible perturbation
(Ω0,Ωβ) of the domain Ω0 correspond a transformation Tβ of the domain Ωβ onto
the initial domain Ω0. Tβ : Ωβ → Ω0,

(r, θ)→ (r, θ) = (r + r
β

R
, θ)

where (r, θ) is the coordinates in Ωβ and (r, θ) the coordinates in Ω0. For a small
β, the transformation Tβ is a diffeomorphism of class C2 of the domain Ωβ into Ω0.
The mapping Tβ maps the class of admissible surfaces Sβ into S0. Hence,

Tβ(θ, ψ(θ)) = (θ, f(θ)) where f(θ) ∈ S0.

Using the relation
u(Tβ(r, θ)) = u(r, θ),

problem (3.1) with u(ψ(θ), θ) = µ is equivalent to the problem

−Lβu = λχΩβ,f in Ω0,

u = h on ∂Ω0
(3.2)

with the equation
u(f(θ), θ) = µ,

where Lβ is a linear operator with continuous coefficients depending on β. The
following lemma gives the exact expression of Lβ . �
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Lemma 3.2. The linear operator Lβ is given by Lβ = ∆ + δβ where δβ has the
form

δβ =
β

R
(2 +

β

R
)
∂2

∂r2 +
(n− 1)

r

β

R

∂

∂r

+
1
r2

[
aij(θ)

[ r
R

∂β

∂θj

( ∂2

∂r∂θi
+

1
R(1 + β

R )
∂β

∂θi

∂

∂r
+
r

R

∂β

∂θi

∂2

∂r2

)
+
r

R

∂2β

∂θj∂θi

∂

∂r
+
r

R

∂β

∂θi

∂2

∂θj∂r

]
+ bi(θ)

[ r
R

∂β

∂θi

∂

∂r

]]
and

∆ =
∂2

∂r2 +
(n− 1)

r

∂

∂r
+

1
r2 ∆θ

when ∆θ is the Beltrami-Laplace operator.

Remark 3.3. This formulas are obtained from the Laplacian in polar coordiantes.
More precisely, from

∆ =
∂2

∂r2
+

(n− 1)
r

∂

∂r
+

1
r2

∆θ (3.3)

where ∆θ = aij(θ) ∂2

∂θi∂θj
+ bi(θ) ∂

∂θi
.

Proof of Lemma 3.2. First, we have

u(r, θ) = u(r, θ) where r = r + r
β

R
,

∂u

∂r
=
∂u

∂r

∂r

∂r
+
∂u

∂θ

∂θ

∂r
=
∂u

∂r
+
∂u

∂r

β

R
:= Q ,

∂2u

∂r
=
∂Q

∂r

∂r

∂r
+
∂Q

∂θ

∂θ

∂r

=
∂2u

∂r2

(
1 +

β

R

)
+
∂2u

∂r2

β

R

(
1 +

β

R

)
=
∂2u

∂r2 +
β

R

(
2 +

β

R

)∂2u

∂r2 .

∂u

∂θi
=
∂u

∂r

∂r

∂θi
+
∂u

∂θi

∂θi
∂θi

=
r

R

∂β

∂θi

∂u

∂r
+
∂u

∂θi
:= Z

∂2u

∂θj∂θi
=
∂Z

∂θj
=
∂Z

∂r

∂r

∂θj
+
∂Z

∂θj

∂θi
∂θj

=
r

R

∂β

∂θj

∂

∂r

( ∂u
∂θi

+
r

R

∂β

∂θi

∂u

∂r

)
+
∂Z

∂θi

=
r

R

∂β

∂θj

( ∂2u

∂r∂θi
+

1
R(1 + β

R )
∂β

∂θi

∂u

∂r
+
r

R

∂β

∂θi

∂2u

∂r2

)
+

∂2u

∂θi∂θj
+
r

R

∂2β

∂θj∂θi

∂u

∂r
+
r

R

∂β

∂θi

∂2u

∂θj∂r
.

If we replace the previous terms in the expression (3.3), we find the formulas of
Lβ . �

Thus, to solve problem (1.1), it is sufficient to prove the existence of function f
such that

u(f(θ), θ) = µ.
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In fact, using the implicit function theorem, we prove that the equation

u(f(θ), θ)− µ = 0

is uniquely solvable in a given small neighborhood. This is the subject of the
following section. (See Theorem 4.2 below).

4. Solvability in the neighborhood of smooth free boundary

To each function f ∈ S0, we associate the solution u of problem (3.2). We have

−∆u− δβu = λχΩβ,f in Ω0,

u = h on ∂Ω0
(4.1)

The solution u corresponding to (4.1) has an integral representation which is well
defined [6, Theorem 4.1], given by

u(x) =
∫
S

P (x, y)h(y)dS − λ
∫

Ω0

G(x, y)χΩβ,f dy −
∫

Ω0

G(x, y)δβ(u)(y)dy.

Now, we consider polar coordinates and we define the operator J : H × S0 ×D →
C(S,R) by

J(h, f, β)(θ) = u(f(θ), θ)− µ,
where D is the neighborhood of zero in C(S); i.e.,

J(h, f, β)(θ) =
∫
∂Ω0

P (f(θ), θ, θ′)h(θ′)dθ′ − λ
∫

Ω0

G(f(θ), θ, r′, θ′)χΩβ,f (r′, θ′)dr′dθ′

−
∫

Ω0

δβ(u)(r′, θ′)G(f(θ), θ, r′, θ′)dr′dθ′ − µ.

Then we have the following result.

Lemma 4.1. The operator J is continuously differentiable with respect to the sec-
ond variable.

Proof. Let DjJ denote the Frechet derivative of J , with respect to the variable of
order j (j = 1, 2, 3). Let ϕ(θ) be a small perturbation of f(θ), then

J(h, f + ϕ, β)(θ)− J(h, f, β)(θ)−D2Jϕ(θ)

=
∫
∂Ω0

P (f(θ) + ϕ(θ), θ, θ′)h(θ′)dθ′

− λ
∫

Ω0

G(f(θ) + ϕ(θ), θ, r′, θ′)χΩf+ϕ(r, θ′)dr′dθ′

−
∫

Ω0

lβ(u)(r′, θ′)G(f(θ) + ϕ(θ), θ, r′, θ′)dr′dθ′ −
∫
∂Ω0

P (f(θ), θ, θ′)h(θ′)dθ′

+ λ

∫
Ω0

G(f(θ), θ, r′, θ′)χΩf (r′, θ′)dr′dθ′ +
∫

Ω0

lβ(u)(r′, θ′)G(f(θ), θ, r′, θ′)dr′dθ′

+ λ

∫
Ω0

G(f(θ) + ϕ(θ), θ, r′, θ′)χΩf dr
′dθ′

− λ
∫

Ω0

G(f(θ) + ϕ(θ), θ, r′, θ′)χΩf dr
′dθ′

−
∫
∂Ω0

∂P

∂r
(f(θ′), θ, θ′)h(θ′)ϕ(θ)dθ′
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+ λ

∫
S

∫ f

0

(r′)n−1 ∂G

∂r
(f(θ), θ, r′, θ′)ϕ(θ)dr′dθ′

+ λ

∫
S

fn−1(θ)G(f(θ), θ, f(θ′), θ′)ϕ(θ′)dθ′

+
∫

Ω0

lβ(u)(r′, θ′)
∂G

∂r
((fθ), θ, r′, θ′)ϕ(θ)dθ′

Hence,

J(h, f + ϕ, β)(θ)− J(h, f, β)(θ)−D2Jϕ(θ) = I1 + I2 + I3 + I4

where

I1 =
∫
∂Ω0

P (f(θ) + ϕ(θ), θ, θ′)h(θ′)dθ′ −
∫
∂Ω0

P (f(θ), θ, θ′)h(θ′)dθ′

−
∫
∂Ω0

∂P

∂r
(f(θ′), θ, θ′)h(θ′)ϕ(θ)dθ′

I2 = −λ
∫

Ω0

G(f(θ) + ϕ(θ), θ, r′, θ′)χΩf dr
′dθ′

+ λ

∫
Ω0

G(f(θ), θ, r′, θ′)χΩf (r′, θ′)dr′dθ′

+ λ

∫
S

∫ f

0

(r′)n−1 ∂G

∂r
(f(θ), θ, r′, θ′)ϕ(θ)dr′dθ′

I3 = −
∫

Ω0

lβ(u)(r′, θ′)G(f(θ) + ϕ(θ), θ, r′, θ′)dr′dθ′

+
∫

Ω0

lβ(u)(r′, θ′)G(f(θ), θ, r′, θ′)dr′dθ′

+
∫

Ω0

lβ(u)(r′, θ′)
∂G

∂r
((fθ), θ, r′, θ′)ϕ(θ)dθ′

I4 = λ

∫
Ω0

G(f(θ) + ϕ(θ), θ, r′, θ′)[χΩf − χΩf+ϕ ]dr′dθ′

+ λ

∫
S

fn−1(θ)G(f(θ), θ, f(θ′), θ′)ϕ(θ′)dθ′

= −λ
∫
S

dθ′
[ ∫ f+ϕ

f

(r′)n−1G(f(θ) + ϕ(θ), θ, r′, θ′)dr′

− fn−1(θ)G(f(θ), θ, f(θ′), θ′)ϕ(θ′)
]

Using Taylor’s theorem, we have I1, I2, I3, I4 = o(‖ϕ‖∞) when ‖ϕ‖∞ → +∞.
Hence,

D2J(h, f, β)ϕ(θ) =
∂u

∂r
(f(θ), θ)ϕ(θ)− λ

∫
S

fn−1(θ′)G(f(θ), θ, f(θ′), θ′)ϕ(θ′)dθ′.

Now, to solve the equation J(h, f, β)(θ) = 0, for θ ∈ S, in the neighborhood of
(h0, b0, 0). we need to know the invertibility of J . We recall the reader that we
consider here a general domain and that causes some difficulties to build clear
conditions so that the operator D2J(h0, b0, 0) either invertible of S0 into C(S) or
not. We refer to [6] to see explicit conditions such that the proper operator is
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invertible when the domain is a ball.
Let the operator

D2J(h0, b0, 0)ϕ(θ) =
∂u

∂r
(b0(θ), θ)ϕ(θ)− λ

∫
S

bn−1
0 (θ′)G(b0(θ), θ, b0(θ′), θ′)ϕ(θ′)dθ′.

First, note that u satisfies the equation

−∆u = λH(u− µ) in B(0, R),

u = h0 on ∂B(0, R).

Then, when h0 is small, the solution u is close in C1,α to the solution of

−∆u = λH(u− µ) in B(0, R),

u = 0 on ∂B(0, R).

Since, ∂u
∂r (r0, θ) < 0 for r0 ∈ (0, R), θ ∈ S, then ∂u

∂r (b0(θ), θ) < 0 for b0 caused by
the small perturbation h. For the other part, let

Kϕ(θ) = λ

∫
S

bn−1
0 (θ′)G(b0(θ), θ, b0(θ′), θ′)ϕ(θ′)dθ′.

Let L2
b0

(S) the space of functions belonging to the space L2(S) with the inner
product

〈u, v〉 =
∫
S

bn−1
0 u(θ)v(θ)dθ. (4.2)

We remark that the operator K is negative definite in the space L2
b0

(S), (The Green
function G is negative). Since, the function b0 is bounded in S, the inner product
(4.2) is equivalent to the standard product in the space L2(S).

In [6], we have proved that the operator D2J(0, r0, 0) is invertible (note that
b0 = r0 when h0 = 0 on ∂Ω). In this case, we use the explicit eigenvalue of the
operator K to conclude the nondegeneracy of the operator D2J(0, r0, 0). For more
details, see [6].

Finally, using the fact that D2J(0, r0, 0) is invertible in L2
r0(S), we can be sure

that D2J(h0, b0, 0) is invertible in L2
b0

(S) with the previous inner product. The
preceding argument shows that D2J(h0, b0, 0) is invertible in L2(S). Hence, using
the implicit function theorem, we have the following result. �

Theorem 4.2. Under assumptions (H1)–(H3), there exist a neighborhood V of
(h0, 0) in H × C2(S) and a continuous mapping B : V → C(S) such that

(i) B(h0, 0) = b0,
(ii) J(h,B(h, β), β) = 0.

We recall that h0 is a given function satisfying (H3) and b0(θ) := r0 +b(θ), where
r0 ∈ (0, 1), b ∈ C1,α(S), α = 1− n

p and θ ∈ S.

Proof of Theorem 4.2. Because the operator J is invertible in the neighborhood
of (h0, b0, 0) and J(h0, b0, 0)(θ) = 0 for θ ∈ S, then the implicit function theorem
implies the existence of function B depending on h and β such that B(h, β) satisfies
J(h,B(h, β), β) = 0. �
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5. Regularity of the free boundary

Theorem 5.1. If ‖h‖∞ and ‖β‖∞ are small enough, then the free boundary {x ∈
Ω/u(x) = µ} is an analytic hypersurface.

Proof. First, let u be a solution of (4.1) and let

Γ : = {x ∈ Ω/u(x) = µ}
= {(r, θ) ∈ (0, R)× S, u(r, θ) = µ}
= {(f(θ), θ), for θ ∈ S}.

when β is sufficiently close to 0 in C2(S) and f is close to b0 in C(S), then the
solution u is close to u in C1,α(Ω), α ∈ (0, 1). Since

∂u

∂r
(b0(θ), θ) 6= 0,

then
∂u

∂r
(f(θ), θ) 6= 0 for θ ∈ S.

The implicit function theorem gives that f ∈ C1,α(S). Hence, the free boundary
Γ is an hypersurface of class C1,α. Now, we conclude that the free boundary Γ is
analytic by the application of Hodograph transformation. This method was using
by the author in [7]. �

Final remarks. (1) So far, the problem (1.1) has been studied for a few class of
domain, in particular the ball for uses the notion of symmetry. Hence, the main
results of this paper remain true when Ω is a ring shaped domain.

(2) The advantage of the perturbation procedure described in this paper is the
the explicit formula of behavior of the free boundary with respect to h. For example,
in dimension 2, taking Ω := {(r, θ)/r < 2 + sin(2θ), θ ∈ S} and h(x) = cos(x), we
can give an explicit formulation of the solution of problem (1.1) and the shape of
free boundary.

(3) When n = 1, the problem (1.1) becomes the following second order differen-
tial equation. For example, we can see easily that under a suitable conditions, the
problem

−u′′ = λH(u− µ) for |x| ≤ a,
u(±a) = 0, (a ∈ R+).

(5.1)

admits multiple solutions. See [15]. In the other part, the problem

−u′′ = λH(µ− u) for |x| ≤ a,
u(±a) = 0, (a ∈ R+).

(5.2)

has a unique positive solution when the set {x ∈ Ω, u(x) = µ} is a given segment
included in |x| ≤ a. In fact, the form of the discontinuity in the second member
has a surprising effects on the set of solutions and their free boundaries. In higher
dimensions, the result stays true also,we can see [8] for more details.

(4) The regularity of the free boundary is preserved after perturbations. One of
the important questions is when will the free boundary develop singularities.

(5) It is also interesting to studied the bifurcation phenomenon. In the case when
Ω is the unit ball, the study is in [7].
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6. Appendix

In this section, we give the proof that the condition in assumption (H6) in
Remark 2.2 becomes

λ

µ
>

4e
R2

, for n = 2,

λ

µ
> Mn(R) :=

1
R2

n(n− 2)

( 2
n )

2
n−2 − ( 2

n )
n
n−2

, for n ≥ 3,

as in Theorem 2.1 when Ω = B(0, R) and f(u) = λ. Now, define a function u that
satisfies

−∆u = λH(u− µ) in Ω,
u = 0 on ∂Ω.

(6.1)

Since H(u − µ) is monotone and not decreasing, the result of [12] shows that all
positive solutions are radial. Hence, by the maximum principle, a positive radial
solution u take on the value µ at only one value say r0. Then we obtain all radial
solutions of (2.2) by finding λ, u and r0 so that the two problems

−r1−n ∂

∂r
(rn−1 ∂u

∂r
) = λ for 0 < r < r0,

u′(0) = 0, u(r0) = µ
(6.2)

and

−r1−n ∂

∂r
(rn−1 ∂u

∂r
) = 0 for r0 < r < R,

u(R) = 0, u(r0) = µ
(6.3)

are satisfied. When n = 2 and from the problems (6.2), (6.3), we have

u(r) =

{
λ
4 (r2

0 − r2) + µ 0 < r ≤ r0,

µ ln(R/r)
ln(R/r0) r0 ≤ r < R.

Since u ∈ C1,α(Ω), we have

∂u

∂r
(r−0 ) =

∂u

∂r
(r+

0 ).

We obtain
λ

2
r0 =

µ

r0(ln(R/r0))
which implies

2µ
λ

= r2
0 ln(R/r0) := g(r0). (6.4)

Now, by considering the function g(ρ) in (0, R), we have that f has a maximum
value R2

2e at ρ = Re−
1
2 . Hence, the equation (6.4) has two roots when λ

µ >
4e
R2 .

Similarly, we treat the case n ≥ 3. The solution u is given by

u(r) =


λ
2n (r2

0 − r2) + µ 0 < r ≤ r0,

µr2−n

r2−n0 −R2−n −
µR2−n

r2−n0 −R2−n r0 ≤ r < R.

The transmission conditions imply that
∂u

∂r
(r+

0 ) =
∂u

∂r
(r−0 ),
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so
(2− n)µr1−n

0

r2−n
0 −R2−n

= −λr0

n
.

Hence,
λ

µ
=

n(n− 2)
r2
0 − rn0R2−n := g(r0

It follows that the function g has a minimum value

Mn(R) =
1
R2

n(n− 2)

( 2
n )

2
n−2 − ( 2

n )
n
n−2

(6.5)

reached at the point ( 2
nR2−n )

1
n−2 which implies that the equation (6.5) has two

roots when λ
µ > Mn(R).
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