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POSITIVE SOLUTIONS FOR SYSTEMS OF COMPETITIVE
FRACTIONAL DIFFERENTIAL EQUATIONS

MAJDA CHAIEB, ABDELWAHEB DHIFLI, MALEK ZRIBI

Abstract. Using potential theory arguments, we study the existence and
boundary behavior of positive solutions in the space of weighted continuous

functions, for the fractional differential system

Dαu(x) + p(x)ua1 (x)vb1 (x) = 0 in (0, 1), lim
x→0+

x1−αu(x) = λ > 0,

Dβv(x) + q(x)va2 (x)ub2 (x) = 0 in (0, 1), lim
x→0+

x1−βv(x) = µ > 0,

where α, β ∈ (0, 1), ai > 1, bi ≥ 0 for i ∈ {1, 2} and p, q are positive continuous

functions on (0, 1) satisfying a suitable condition relying on fractional potential
properties.

1. Introduction

Fractional differential equations involving Riemann-Liouville differential oper-
ators, Dα of fractional order 0 < α < 1, are gaining much importance and are
emerging as an interesting field of research. In fact, fractional calculus has numerous
applications in various disciplines of mathematical modeling of physical, biological
phenomena and engineering such as control of dynamical systems, porous media,
electrochemistry, viscoelasticity, electromagnetic, etc. Also it provides an excellent
tool to describe the hereditary properties of various materials and processes. Con-
cerning the development of theory methods and applications of fractional calculus,
we refer to [8, 10, 11, 13, 14, 16, 21, 22, 23, 25, 26].

Therefore, this theory has been developed very quickly and the interest in the
existence of solutions of fractional differential equations has recently attracted a
considerable attention of researchers (see for instance [4, 7, 13, 15, 22, 27, 30, 31, 32]
and the references therein).

The study of coupled systems with fractional differential equations is also im-
portant as such systems occur in various problems of applied nature (see [1, 6, 9,
12, 18, 28, 29] and references therein).

For a measurable function v, the Riemann-Liouville fractional integral Iαv and
derivative Dαv of order α > 0 are respectively defined by

Iαv(x) =
1

Γ(α)

∫ x

0

(x− t)α−1v(t)dt
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and

Dαv(x) =
1

Γ(n− α)
( d
dx

)n ∫ x

0

(x− t)n−α−1v(t)dt

=
( d
dx

)n
In−αv(x),

provided that the integrals exist. Here [α] means the integer part of the number α,
and Γ is the Euler Gamma function.

Moreover if v is an integrable function in (0, 1), we have

IαIβv(x) = Iα+βv(x) for x ∈ (0, 1], α+ β ≥ 1; (1.1)

DαIαv(x) = v(x), for a.e. x ∈ (0, 1), α > 0. (1.2)

See [13, 22] for more information on fractional derivatives and integrals.
The solvability of nonlinear fractional differential equation of order 0 < α < 1 of

the form
Dαu = ϕ(·, u), (1.3)

in (0,∞) or in an interval (0, h) with h > 0 and ϕ is a real function, has attracted
many researchers. Several existence and nonexistence results have appeared [7, 17,
30, 31, 32].

When ϕ is a nonnegative continuous function, many authors proved existence and
uniqueness results for (1.3) with suitable initial value condition limx→0+ x1−αu(x) =
λ, λ ∈ R, (see for example [7, 20, 31, 32]). In [20], the authors considered (1.3)
in (0, 1), with the nonlinearity ϕ(x, u) = p(x)uσ where p is a positive measurable
function on (0, 1) and σ < 1. More precisely, they studied the initial-value problem

Dαu = p(x)uσ, in (0, 1), σ < 1

lim
x→0+

x1−αu(x) = 0. (1.4)

Without the continuity condition on ϕ imposed in [7, 31, 32], the authors in [20]
proved the existence and uniqueness, and properties of the boundary behaviour of
a positive solution for problem (1.4) in the weighted space of continuous functions
C1−α([0, 1]).

In this article, we use the following notation: For r > 0, we use Cr([0, 1]) to
denote the set of functions f such that t 7→ trf(t) is continuous in [0, 1]. We endow
the set Cr([0, 1]) with the norm ‖f‖r = supt∈[0,1] t

r|f(t)|. We denote by C0((0, 1])
the class of all continuous functions in (0, 1] vanishing continuously at 0+.

Also, we refer to B+((0, 1)) the collection of all nonnegative measurable functions
in (0, 1) and L1((0, 1)) the collection of all integrable functions in (0, 1).

For α ∈ (0, 1), we put ωα the function defined in (0, 1] by ωα(x) = xα−1 and we
enter the functional class

Hα = {f ∈ B+((0, 1)) : x→ x1−α(Iαf)(x) ∈ C0((0, 1])}.
As typical example of functions in Hα, we have

Example 1.1. Let λ < 1 and f be an integrable function in (0, 1) such that
0 ≤ f ≤ ct−λ, c > 0 then f ∈ Hα, for each α ∈ (0, 1).

Remark 1.2. By [7], we remark that for α ∈ (0, 1), the function ωα is the unique
solution in C1−α([0, 1]) of the Dirichlet fractional problem

Dαu = 0, in (0, 1),
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lim
x→0+

x1−αu(x) = 1.

In this article, we analyze (1.3), when ϕ is a nonpositive measurable function, of
the form ϕ(x, u) = −p(x)uσ, where σ > 1 and p satisfies the assumption:

(H1) p is a nonnegative measurable function in (0, 1) such that pωσα ∈ Hα, α ∈
(0, 1).

More precisely, we study the semilinear problem
Dαu+ p(x)uσ = 0, in (0, 1)

lim
x→0+

x1−αu(x) = λ,
(1.5)

where λ > 0, σ > 1 and p satisfies (H1). Our first goal is to prove the following
result.

Theorem 1.3. Under assumption (H1), problem (1.5) has a unique solution u in
C1−α([0, 1]). Moreover, for each x ∈ (0, 1], we have

c0λωα(x) ≤ u(x) ≤ λωα(x),

where c0 = exp(−σλσ−1‖Iα(pωσα)‖1−α).

Motivated by recent works dealing with coupled systems with fractional differ-
ential equations, our second goal is to study, the semilinear fractional system

Dαu+ p(x)ua1vb1 = 0, in (0, 1)

Dβv + q(x)va2ub2 = 0, in (0, 1)

lim
x→0+

x1−αu(x) = λ > 0,

lim
x→0+

x1−βv(x) = µ > 0,

(1.6)

where α, β ∈ (0, 1), ai > 1, bi ≥ 0 for i ∈ {1, 2} and p, q satisfy the assumption
(H2) p, q ∈ C((0, 1]) such that pωa1

α ω
b1
β ∈ Hα and qωb2α ω

a2
β ∈ Hβ .

An iterative argument combined with Theorem 1.3 yields to the second main result.

Theorem 1.4. Under assumption (H2), system (1.6) has a positive continuous
solution (u, v) in C1−α([0, 1]) × C1−β([0, 1]). Moreover, there exist c1, c2 ∈ (0, 1)
such that for each x ∈ (0, 1], we have

c1λωα(x) ≤ u(x) ≤ λωα(x),

c2µωβ(x) ≤ v(x) ≤ µωβ(x).

The outline of this article is as follows. In section 2, we give some preliminary
results related to potential theory associated with Dα. In section 3, we prove
Theorem 1.3 by converting problem (1.5) into a suitable integral equation and then
using potential theory tools. In the last section, inspired by techniques used in [2]
and using Theorem 1.3, we prove Theorem 1.4.

Throughout this paper, the letter c is a generic positive constant which may vary
from line to line.

2. Potential theory associated with Dα

In this section We present some well known properties, pertaining with potential
theory associated with Dα. For more details see [3, 7, 20, 24].
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2.1. The semi-group (Pαt )t>0. Let (Pt)t>0 be the semi group of translation to
the left, defined on B+((0, 1)) by

Ptf(x) = 1[0,x)(t)f(x− t), x ∈ (0, 1).

The infinitesimal generator of (Pt)t>0 is the derivative operator d
dx .

Let (ηαt )t>0 be the convolution semi group of probability measures defined on
(0,∞) and satisfying for every t, s > 0,∫ ∞

0

ηαt (u)e−sudu = e−ts
α

and
∫ ∞

0

ηαs (t)ds =
1

Γ(α)
tα−1.

Subordinating (Pt)t>0 by means of (ηαt )t>0, we obtain the semi group (Pαt )t>0

defined on B+((0, 1)) by

Pαt f(x) =
∫ ∞

0

Psf(x)ηαt (s)ds, x ∈ (0, 1).

The infinitesimal generator associated with the semi group (Pαt )t>0 is the fractional
power ( d

dx

)α = Dα.

Indeed, it is known from [24] that for every function φ of class C∞ with compact
support in (0, 1).( d

dx

)α
φ(x) =

α

Γ(1− α)

∫ ∞
0

t−α−1(φ(x)− Ptφ(x))dt,

which means that( d
dx

)α
φ(x) =

−α
Γ(1− α)

∫ ∞
0

t−α−1
(∫ t

0

d

ds
Psφ(x)ds

)
dt.

Then by Fubini’s theorem, we deduce that( d
dx

)α
φ(x) =

−1
Γ(1− α)

∫ ∞
0

s−α
d

ds
Psφ(x)ds

=
−1

Γ(1− α)

∫ x

0

s−α
d

ds
φ(x− s)ds

=
1

Γ(1− α)

∫ x

0

s−αφ′(x− s)ds

=
1

Γ(1− α)

∫ x

0

(x− t)−αφ′(t)dt

= I1−αφ′(x).

On the other hand, we know that Dαφ(x) = I1−αφ′(x). Hence we obtain that( d
dx

)α
φ(x) = Dαφ(x).

In what follows, we recall the definition of excessive functions with respect to
(Pαt )t>0.

Definition 2.1. A function v in B+((0, 1)) is said to be excessive with respect to
(Pαt )t>0 if v satisfies

Pαt v(x) ≤ v(x), t > 0, x ∈ (0, 1)

and limt↓0 P
α
t v(x) = v(x).
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We use Sα to denote the cone of all excessive functions with respect to (Pαt )t>0.

Example 2.2. The function wα is excessive with respect to (Pαt )t>0. Indeed, for
x ∈ (0, 1) we have

1
Γ(α)

Pαt wα(x) =
1

Γ(α)

∫ ∞
0

Pswα(x)ηαt (s)ds

=
1

Γ(α)

∫ x

0

(x− s)α−1ηαt (s)ds

= Iαηαt (x)

=
∫ ∞

0

Pαs η
α
t (x)ds

=
∫ ∞

0

(∫ ∞
0

Pzη
α
t (x)ηαs (z)dz

)
ds

=
∫ ∞

0

( ∫ x

0

ηαt (x− z)ηαs (z)dz
)
ds

=
∫ ∞

0

ηαt+s(x)ds

=
∫ ∞
t

ηαs (x)ds.

Then it follows that Pαt wα(x) ≤ Γ(α)
∫∞
0
ηαs (x)ds = wα(x) and limt→0 P

α
t wα(x) =

wα(x).

2.2. The potential kernel Iα. Let f ∈ B+((0, 1)). The potential of f associated
with (Pαt )t>0 is given by∫ ∞

0

Pαt f(x)dt =
∫ 1

0

Gα(x, y)f(y)dy,

where Gα(x, y) is the Green function associated with (Pαt )t>0 given on (0, 1)×(0, 1)
by

Gα(x, y) =
1

Γ(α)
1(0,x)(y)(x− y)α−1.

So we deduce that the potential kernel associated with (Pαt )t>0 is none other the
operator Iα on B+((0, 1)).

It is clear that the Green function Gα is lower semi-continuous on (0, 1)× (0, 1),
which implies that for f ∈ B+((0, 1)), Iαf is also lower semi-continuous on (0, 1].
Moreover, since for y ∈ (0, 1), the function x 7→ Gα(x, y) is in Sα (see [3]), it is the
same for Iαf , for f ∈ B+((0, 1)).

Proposition 2.3 ([7]). Let f be a function in C((0, 1])∩L1((0, 1)) such that Dαf
belongs to C((0, 1])∩L1((0, 1)). Then there exists a unique constant c such that for
x ∈ (0, 1]

IαDαf(x) = f(x) + cωα(x).

Proposition 2.4. If f and g are in B+((0, 1)) such that g ≤ f and Iαf ∈ C((0, 1]),
then Iαg is also in C((0, 1]).

Proof. Let θ ∈ B+((0, 1)) such that f = g + θ. So, we have Iαf = Iαg + Iαθ.
Now since Iαθ and Iαg are lower semi-continuous in (0, 1], we deduce that Iαg ∈
C((0, 1]). �
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The potential kernel Iα satisfies the complete maximum principle. That is, for
each function f ∈ B+((0, 1)) and v ∈ Sα such that Iαf ≤ v in {f > 0}, we have
Iαf ≤ v in (0, 1); see [3, chap.2, proposition 7.1]. Consequently, we deduce the
following result.

Proposition 2.5. Let h ∈ B+((0, 1)) and v ∈ Sα. Let ω be a Borel measurable
function in (0, 1) such that Iα(h|ω|) <∞ and v = ω + Iα(hω). Then ω satisfies

0 ≤ ω ≤ v.

Proof. Put ω+ = sup(ω, 0) and ω− = sup(−ω, 0). Since Iα(h|ω|) <∞, we have

Iα(hω+) ≤ v + Iα(hω−) in {ω > 0} = {ω+ > 0}.

Then we deduce by the complete maximum principle that

Iα(hω+) ≤ v + Iα(hω−) in (0, 1).

That is,
Iα(hω) ≤ v = ω + Iα(hω).

Hence, we obtain 0 ≤ ω ≤ ω + Iα(hω) = v. �

2.3. The resolvent (V αh )h. Let (Xα
t , t > 0) be the Markov process associated

with the semigroup (Pαt )t>0 and Ex is the expectation with respect to (Xα
t , t > 0)

starting from x. For h ∈ B+((0, 1)) , we define the potential kernel V αh by

V αh f(x) :=
∫ ∞

0

Ex(e−
R t
0 h(X

α
s )dsf(Xα

t ))dt, x ∈ (0, 1). (2.1)

We note that for h = 0, we find again the potential kernel Iα. In the remaining of
the paper, we use the notation

V α := V α0 = Iα.

If h ∈ B+((0, 1)) satisfies V αh <∞, we have the following resolvent equation (see
[5, 19])

V α = V αh + V αh (hV α) = V αh + V α(hV αh ). (2.2)

In particular, for each function u in B+((0, 1)) such that V α(hu) <∞, we have

(I − V αh (h.))(I + V α(h.))u = (I + V α(h.))(I − V αh (h.))u = u. (2.3)

Lemma 2.6. Let h ∈ B+((0, 1)) such that V αh < ∞ and v ∈ Sα. Then for each
x ∈ (0, 1) such that 0 < v(x) <∞, we have

exp
(
−
(V α(hv)

v

)
(x)
)
v(x) ≤ v(x)− V αh (hv)(x) ≤ v(x).

In particular, if supx∈(0,1)(
V α(hv)

v )(x) <∞, then

mv(x) ≤ v(x)− V αh (hv)(x) ≤ v(x),

where m = exp
(
− supx∈(0,1)(

V α(hv)
v )(x)

)
.

Proof. Let v be a function in Sα, then by [3], there exists a sequence of functions
vn in B+((0, 1)) such that v = supn V αvn. Let x ∈ (0, 1) satisfying 0 < v(x) <∞,
then there exists n0 ∈ N such that 0 < V αvn(x) < ∞, for each n > n0. Now fix
n > n0 and consider the function θ defined on [0,∞) by θ(t) = V αthvn(x). Then by
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(2.1), the function θ is completely monotone on [0,∞) and so log θ is convex on
[0,∞). Therefore,

θ(0) ≤ θ(1) exp
(
− θ′(0)
θ(0)

)
.

Which implies

V αvn(x) ≤ V αh vn(x) exp
(V α(hV αvn)(x)

V αvn(x)

)
.

Hence by (2.2)) we obtain

exp
(
− V α(hV αvn)(x)

V αvn(x)

)
V αvn(x) ≤ V αh vn(x)

= V αvn(x)− V αh (hV αvn)(x) ≤ V αvn(x).

The result holds by letting n→∞. �

3. Proof of Theorem 1.3

Let p be a function satisfying (H1). We divide the proof into three steps.

3.1. Converting to integral equation. We shall convert problem (1.5) into a
suitable integral equation. This follows by the following Lemma.

Lemma 3.1. Suppose that p satisfies (H1) and let u be a positive function in
C1−α([0, 1]). Then u is a solution of problem (1.5) if and only if u satisfies the
integral equation

u(x) + V α(puσ)(x) = λωα(x), x ∈ (0, 1]. (3.1)

Proof. Suppose that u satisfies (3.1). Then u ≤ λωα and so V α(puσ) ≤ λσV α(pωσα).
Using (H1), this implies that limx→0+

V α(puσ)(x)
ωα(x) = 0 and∫ 1

0

(puσ)(t)dt ≤
∫ 1

0

(1− t)α−1(puσ)(t)dt <∞.

Returning to (3.1), we deduce that limx→0+ x1−αu(x) = λ. On the other hand
applying Dα on both sides of (3.1), we conclude by (1.2) and Remark 1.2 that the
function u satisfies the fractional equation Dαu + puσ = 0. Hence u is a positive
solution of problem (1.5)

Conversely, suppose that u is a positive solution of problem (1.5) in C1−α([0, 1]).
Then there exists a positive constant c such that u ≤ cωα on [0, 1]. Using (H1),
we obtain that puσ ∈ L1((0, 1)) and limx→0+

V α(puσ)(x)
ωα(x) = 0. So the function

u+ V α(puσ) satisfies

Dα
(
u+ V α(puσ)

)
= 0, in (0, 1),

lim
x→0+

x1−α(u+ V α(puσ)
)
(x) = λ.

Using again Remark 1.2, we deduce that u satisfies (3.1). This completes the
proof. �
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3.2. Existence result. We aim to show an existence result for the integral equa-
tion (3.1). We define the function θ by θ(x) := σλσ−1p(x)ωσ−1

α (x), for x ∈ (0, 1).
Using (H1), we deduce that V α(θωα)

ωα
is a positive function in C0((0, 1]). This implies

in particular that
V α(θ)(x) ≤ x1−αV α(θωα)(x) <∞

Consider the closed convex set

Γ = {u ∈ B+((0, 1)) : c0λωα ≤ u ≤ λωα},
where c0 is the constant given in Theorem 1.3. Let T be the operator defined on Γ
by

Tu = λ(ωα − V αθ (θωα)) + V αθ (θu− puσ).
We claim that Γ is invariant under the operator T . Indeed, for u ∈ Γ, we have
u ≤ λωα and consequently Tu ≤ λωα − V αθ (puσ) ≤ λωα. Now since for each
x ∈ (0, 1], the function t → θ(x)t − p(x)tσ is nondecreasing on [0, λωα(x)], we
deduce that θu − puσ ≥ 0. This implies that Tu ≥ λωα − V αθ (λθωα). Now, since
ωα ∈ Sα we obtain by Lemma 2.6 that

c0ωα(x) ≤ ωα(x)− V αθ (θωα)(x) ≤ ωα(x), x ∈ (0, 1].

Hence Tu ≥ c0λωα. This shows that TΓ ⊂ Γ.
Next, we prove that the operator T has a fixed point in Γ. Let u and v be

functions in Γ such that u ≥ v. Then we have V αθ (θu−puσ) ≥ V αθ (θv−pvσ), which
implies that Tu ≥ Tv. Thus T is nondecreasing on Γ.

Now, consider the sequence (un) defined by

u0 = c0λωα and un+1 = Tun for , n ∈ N.
Then, using that Γ is invariant under T and the monotonicity of T , we deduce that

c0λωα ≤ u0 ≤ u1 ≤ · · · ≤ un ≤ λωα.
Hence the sequence (un) converges to a measurable function u in Γ. By the mono-
tone convergence theorem, we deduce that u satisfies the equation

u = λωα − V αθ (λθωα) + V αθ (θu− puσ);

that is,
(I − V αθ (θ.))u+ V αθ (puσ) = (I − V αθ (θ.))(λωα). (3.2)

Applying the operator (I + V α(θ.)) on both sides of (3.2), we deduce by (2.2) and
(2.3) that u satisfies (3.1).

Since u ≤ λωα, we deduce by (H1) and Proposition 2.4, that V α(puσ) ∈
C1−α([0, 1]). Hence according to (3.1), the function u ∈ C1−α([0, 1]). Finally,
by Lemma 3.1, we conclude that u is a positive continuous solution of (1.5).

3.3. Uniqueness result. Let u, v ∈ C1−α([0, 1]) be two positive solutions of (1.5).
Put

f(x) :=

{
p(x)u

σ(x)−vσ(x)
u(x)−v(x) if u(x) 6= v(x)

0 if u(x) = v(x).

It is clear that f ∈ B+((0, 1)). Using Lemma 3.1 we have that u, v ≤ λωα and the
function h = u− v satisfies

h+ V α(fh) = 0.
Since V α(f |h|) ≤ 2λσV α(pωσα) <∞, it follows by Proposition 2.5 that u = v. This
completes the proof.



EJDE-2016/133 SYSTEMS OF COMPETITIVE FRACTIONAL DIFFERENTIAL EQUATIONS 9

4. Proof of Theorem 1.4

Suppose that the functions p and q satisfy (H2). We put

p̃ = a1λ
a1−1µb1pωa1−1

α ωb1β , q̃ = a2µ
a2−1λb2qωb2α ω

a2−1
β .

Using hypothesis (H2), the functions V α(p̃ωα) and V β(q̃ωβ) are in C1−α([0, 1]) and
C1−β([0, 1]), respectively. Then the constants

c1 = exp(−‖V α(p̃ωα)‖1−α) and c2 = exp(−‖V β(q̃ωβ)‖1−β)

are positive. We consider the closed convex set Λ defined by

Λ =
{

(u, v) ∈ (C([0, 1]))2 : c1λ ≤ u ≤ λ, c2µ ≤ v ≤ µ,
lim
x→0+

u(x) = λ, lim
x→0+

v(x) = µ
}
,

endowed with the norm ‖(u, v)‖ = ‖u‖∞ + ‖v‖∞.
Let (u, v) ∈ Λ, then the functions pωb1β v

b1 ∈ Hα and qωb2α u
b2 ∈ Hβ . So by

Theorem 1.3, the following two problems

Dαy + (pωb1β v
b1)(x)ya1 = 0, in (0, 1)

lim
x→0+

x1−αy(x) = λ

and

Dβz + (qωb2α u
b2)(x)za2 = 0, in (0, 1)

lim
x→0+

x1−βz(x) = µ.

have respectively a unique positive solution y ∈ C1−α([0, 1]) and z ∈ C1−β([0, 1])
satisfying for x ∈ (0, 1] the following inequalities

c1λωα(x) ≤ y(x) ≤ λωα(x) and c2µωβ(x) ≤ z(x) ≤ µωβ(x).

Let T be the operator defined on Λ by

T (u, v) := (
y

ωα
,
z

ωβ
).

Then T is well defined and obviously TΛ ⊂ Λ.
We aim to show that T has a fixed point in Λ. Let us prove that TΛ is relatively

compact in ((C([0, 1]))2, ‖·‖). First, we show that TΛ is equicontinuous on [0, 1]. Let
(u, v) ∈ Λ and let (y, z) ∈ C1−α([0, 1])× C1−β([0, 1]) such that T (u, v) = ( y

ωα
, z
ωβ

).
Using Lemma 3.1, we have

y = λωα − V α(pωb1β v
b1ya1),

z = µωβ − V β(qωb2α u
b2za2).

Let m > 0 and x1, x2 ∈ (0, 1] be such that m < x1 < x2 ≤ 1. Then

|x1−α
1 y(x1)− x1−α

2 y(x2)|

= |x1−α
1 V α(pωb1β v

b1ya1)(x1)− x1−α
2 V α(pωb1β v

b1ya1)(x2)|

≤ µb1λa1

Γ(α)

∫ x1

0

|x1−α
1 (x1 − t)α−1 − x1−α

2 (x2 − t)α−1|(pωb1β ω
a1
α )(t)dt

+ x1−α
2

∫ x2

x1

(x2 − t)α−1(pωb1β ω
a1
α )(t)dt
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≤ µb1λa1

Γ(α)
( ∫ x1

0

|(1− t

x1
)α−1 − (1− t

x2
)α−1|(pωb1β ω

a1
α )(t)dt

+
∫ x2

x1

(1− t

x2
)α−1(pωb1β ω

a1
α )(t)dt

)
.

Using the fact that for t > 0, the function x 7→ (1 − t
x )α−1 is non-increasing in

(t,∞), we obtain

|x1−α
1 y(x1)− x1−α

2 y(x2)|

≤ µb1λa1

Γ(α)
[ ∫ x1

0

((1− t

x1
)α−1 − (1− t

x2
)α−1)(pωb1β ω

a1
α )(t)dt

+
∫ x2

x1

(1− t

x2
)α−1(pωb1β ω

a1
α )(t)dt

]
= µb1λa1

(
x1−α

1 V α(pωa1
α ω

b1
β )(x1)− x1−α

2 V α(pωa1
α ω

b1
β )(x2)

)
+

2µb1λa1

Γ(α)

∫ x2

x1

(1− t

x2
)α−1(pωb1β ω

a1
α )(t)dt

≤ µb1λa1
(
x1−α

1 V α(pωa1
α ω

b1
β )(x1)− x1−α

2 V α(pωa1
α ω

b1
β )(x2)

)
+

2µb1λa1

αΓ(α)
x2(1− x1

x2
)α sup

[m,1]

(pωb1β ω
a1
α ).

Now by (H2), we deduce that |x1−α
1 y(x1) − x1−α

2 y(x2)| → 0 as |x1 − x2| → 0,
uniformly in (u, v) ∈ Λ. Similarly we prove that |x1−β

1 z(x1) − x1−β
2 z(x2)| → 0 as

|x1 − x2| → 0 uniformly in (u, v) ∈ Λ.
On the other hand, for x ∈ (0, 1], we have

|x1−αy(x)− λ| ≤ µb1λa1x1−αV α(pωa1
α ω

b1
β )(x),

|x1−βz(x)− µ| ≤ λb2µa2x1−βV β(qωb2α ω
a2
β )(x).

Then using again (H2), we deduce that |x1−αy(x)−λ| → 0 and |x1−βz(x)−µ| → 0
as x → 0+ uniformly in (u, v) ∈ Λ. Hence, we conclude that the family TΛ is
equicontinuous in [0, 1].

Since TΛ is uniformly bounded, we deduce by Ascoli’s theorem that TΛ is rela-
tively compact in ((C([0, 1]))2, ‖ · ‖).

Next, we prove the continuity of T in Λ. Let (uk, vk) be a sequence in Λ that
converges to (u, v) ∈ Λ with respect to ‖ · ‖. Let (yk, zk) and (y, z) in C1−α([0, 1])×
C1−β([0, 1]) such that T (uk, vk) = ( ykωα ,

zk
ωβ

) and T (u, v) = ( y
ωα
, z
ωβ

). Then

yk − y = V α(pωb1β v
b1ya1)− V α(p(ωb1β vk

b1ya1
k )

= V α(pωb1β v
b1(ya1 − ya1

k )) + V α(pωb1β y
a1
k (vb1 − vb1k )).

Now using that

ξa1 − νa1 = a1(ξ − ν)
∫ 1

0

(tξ + (1− t)ν)(a1−1)dt, for ν, ξ ≥ 0,

we deduce that (
I + V α(pk.)

)
(yk − y) = V α(pωb1β y

a1
k (vb1 − vb1k )), (4.1)

where pk(x) = a1p(x)ωb1β (x)vb1(x)
∫ 1

0
(ty(x) + (1− t)yk(x))(a1−1)dt.
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Since p satisfies (H2) and the functions yk
ωα

, y
ωα

, v are in Λ, it follows that
V α(pk(yk−y)) <∞. So by applying (I−V αpk(pk.)) on both sides of equation (4.1),
we obtain from equations (2.3) and (2.2) that

yk − y = V αpk(pωb1β y
a1
k (vb1 − vb1k )).

On the other hand, for x ∈ (0, 1], we have

V αpk(pωb1β y
a1
k |v

b1 − vb1k |)(x) ≤ V α(pωb1β y
a1
k |v

b1 − vb1k |)(x)

≤ b1λa1µb1−1c
min(b1−1,0)
2 ‖v − vk‖∞V α(pωb1β ω

a1
α )(x).

Hence, by using (H2), we deduce that there exists c > 0 such that

‖ yk
ωα
− y

ωα
‖∞ ≤ c‖v − vk‖∞.

This implies ‖ ykωα −
y
ωα
‖∞ → 0 as k →∞. Similarly we prove that ‖ zkωβ −

z
ωβ
‖∞ → 0

as k →∞. So, we obtain

‖T (uk, vk)− T (u, v)‖ → 0 as k →∞.

Finally, the Schauder fixed point theorem implies the existence of (u, v) ∈ Λ such
that T (u, v) = (u, v). It follows that (y, z) = (ωαu, ωβv) is a positive solution in
C1−α([0, 1])× C1−β([0, 1]) of system (1.6). This completes the proof.
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