MULTIPLE SIGN-CHANGING SOLUTIONS FOR KIRCHHOFF TYPE PROBLEMS

CYRIL JOEL BATKAM

Abstract

This article concerns the existence of sign-changing solutions to nonlocal Kirchhoff type problems of the form $$
-\left(a+b \int_{\Omega}|\nabla u|^{2} d x\right) \Delta u=f(x, u) \text { in } \Omega, \quad u=0 \text { on } \partial \Omega
$$ where Ω is a bounded domain in $\mathbb{R}^{N}(N=1,2,3)$ with smooth boundary, $a>0, b \geq 0$, and $f: \bar{\Omega} \times \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function. We first establish a new sign-changing version of the symmetric mountain pass theorem and then apply it to prove the existence of a sequence of sign-changing solutions with higher and higher energy.

1. Introduction

In this article, we study the multiplicity of sign-changing solutions to nonlocal Kirchhoff type problems of the form

$$
\begin{gather*}
-\left(a+b \int_{\Omega}|\nabla u|^{2} d x\right) \Delta u=f(x, u) \quad \text { in } \Omega \tag{1.1}\\
u=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

where Ω is a bounded domain in $\mathbb{R}^{N}(N=1,2,3)$ with smooth boundary, $a>0$, $b \geq 0$, and $f: \bar{\Omega} \times \mathbb{R} \rightarrow \mathbb{R}$ is a nonlinear function. We restrict $N \leq 3$ because $f(x, u)$ will behave as $|u|^{p}$ with $4 \leq p<2^{\star}$, where $2^{\star}=2 N /(N-2)$ is the critical Sobolev exponent. This will allow us to attack the problem using variational methods.

Problem (1.1) is related to the stationary analogue of the hyperbolic equation

$$
u_{t t}-\left(a+b \int_{\Omega}|\nabla u|^{2} d x\right) \Delta u=f(x, u)
$$

which is a general version of the equation

$$
\begin{equation*}
\rho \frac{\partial^{2} u}{\partial t^{2}}-\left(\frac{\rho_{0}}{h}+\frac{E}{2 L} \int_{0}^{L}\left|\frac{\partial u}{\partial x}\right|^{2} d x\right) \frac{\partial^{2} u}{\partial x^{2}}=0 \tag{1.2}
\end{equation*}
$$

proposed by Kirchhoff [12 as an extension of the classical D'Alembert's wave equation for free vibrations of elastic strings. This model takes into account the changing in length of the string produced by transverse vibrations. In $\sqrt{1.2}, L$ is the length

[^0]of the string, h is the area of the cross-section, E is the Young's modulus of the material, ρ is the mass density, and ρ_{0} is the initial tension.

When $b>0$, problem (1.1) is said to be nonlocal. In that case, the first equation in (1.1) is no longer a pointwise equality. This causes some mathematical difficulties which make the study of such problems particularly interesting. Some early classical studies of Kirchhoff type problems can be found in [7, 24]. However, problem (1.1) received much attention only after the paper of Lions [13, where an abstract framework to attack it was introduced. Some existence and multiplicity results can be found in [6, 10, 14, 22] without any information on the sign of the solutions. Recently, Alves et al [1, Ma and Rivera [18], and Cheng and Wu [8] obtained one positive solution. In [9, He and Zou obtained infinitely many positive solutions. The existence of sign-changing solutions to 1.1 was considered by Figuereido and Nascimento [11, Perera and Zhang [23, Mao and Zhang [20, and Mao and Luan [19]. But only one sign-changing solution was found in these papers. In case f is a pure power type nonlinearity, Alves et al [1] related the number of solutions of (1.1) to that of a local problem by using a scaling argument. As a consequence, one can obtain in that particular case infinitely many sign-changing solutions (see [27]). However, the scaling approach does not provide high energy solutions even in the simple case of power type nonlinearity.

In this article, we develop a variational approach to study high-energy signchanging solutions to some classes of nonlocal problems.

Our result on (1.1) relies on the following standard conditions on the nonlinear term f :
(H1) $f: \bar{\Omega} \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous and there exists a constant $c>0$ such that

$$
|f(x, u)| \leq c\left(1+|u|^{p-1}\right)
$$

where $p>4$ for $N=1,2$ and $4<p<6$ for $N=3$.
(H2) $f(x, u)=\circ(|u|)$, uniformly in $x \in \bar{\Omega}$, as $u \rightarrow 0$.
(H3) there exists $\mu>4$ such that $0<\mu F(x, u) \leq u f(x, u)$ for all $u \neq 0$ and for a.e $x \in \bar{\Omega}$, where $F(x, u)=\int_{0}^{u} f(x, s) d s$.
(H4) $f(x,-u)=-f(x, u)$ for all $(x, u) \in \bar{\Omega} \times \mathbb{R}$.
One can verify easily that the function $f(x, u)=|u|^{p}$, with p as in condition (H1), satisfies the above conditions.

Our result reads as follows:
Theorem 1.1. Let $a>0$ and $b \geq 0$. Assume that f satisfies the conditions (H1)(H4). Then 1.1 possesses a sequence $\left(u_{k}\right)$ of sign-changing solutions such that

$$
\frac{a}{2} \int_{\Omega}\left|\nabla u_{k}\right|^{2} d x+\frac{b}{4}\left(\int_{\Omega}\left|\nabla u_{k}\right|^{2} d x\right)^{2}-\int_{\Omega} F\left(x, u_{k}\right) d x \rightarrow+\infty, \quad \text { as } k \rightarrow \infty
$$

If $b=0$, we obtain the following consequence of the above result.
Corollary 1.2. Under assumptions (H1)-(H4), the semilinear problem

$$
\begin{gather*}
-\Delta u=f(x, u) \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega \tag{1.3}
\end{gather*}
$$

possesses a sequence $\left(u_{k}\right)$ of sign-changing solutions such that

$$
\frac{1}{2} \int_{\Omega}\left|\nabla u_{k}\right|^{2} d x-\int_{\Omega} F\left(x, u_{k}\right) d x \rightarrow+\infty, \quad \text { as } k \rightarrow \infty
$$

Note that Corollary 1.2 was obtained by Qian and Li 25] by means of the method of invariant sets of descending flow. Earlier proofs were also given in [3, 16] under the stronger assumption that f is smooth. The arguments of [25, 3, 16, rely on sign-changing critical point theorems built only for functionals of the form

$$
u \in H_{0}^{1}(\Omega) \mapsto \frac{1}{2}\|u\|^{2}-\Psi(u)
$$

where Ψ^{\prime} is completely continuous, and cannot then be applied to 1.1 when $b>0$. Hence our result in Theorem 1.1 can be regarded as an extension of the classical result for the semilinear problem (1.3) to the case of the nonlinear Kirchhoff type problem 1.1. We also mention here that the result of Theorem 1.1 was more or less expected. However, it seems that this paper is the first to provide a formal proof. Moreover, we believe that the critical point theorem we will establish in the next section is of independant interest and can be applied to many other nonlocal problems (indeed, some applications by the author and collaborators will appear in other journals).

The study of sign-changing solutions is related to several long-standing questions concerning the multiplicity of solutions for elliptic boundary value problems. Compared with positive and negative solutions, sign-changing solutions have more complicated qualitative properties and are more difficult to find. During the last thirty years, several sophisticated techniques in calculus of variations and in critical point theory were developed to study the multiplicity of sign-changing solutions to nonlinear elliptic partial differential equations. In [3] and [16], the authors established some multiplicity sign-changing critical point theorems in partially ordered Hilbert spaces by using Morse theory and the method of invariant sets of descending flow respectively. In [28, a parameter-depending sign-changing fountain theorem was established without any Palais-Smale type assumption. More recently, a symmetric mountain pass theorem in the presence of invariant sets of the gradient flows was introduced in [15]. However, it seems that all these powerful approaches are not directly applicable to find multiple sign-changing solutions to 1.1 .

Our approach in proving Theorem 1.1relies on a new sign-changing critical point theorem, also established in this paper, which is modelled on the fountain theorem of Bartsch (see [26, Theorem 3.6]). An essential tool in the proof of this theorem is a deformation lemma, which allows to lower sub-level sets of a functional, away from its critical set. The main ingredient in the proof of the deformation lemma is a suitable negative pseudo-gradient flow, a notion introduced by Palais 21]. Since we are interesting in sign-changing critical points, the pseudo-gradient flow must be constructed in such the way that it keeps the positive and negative cones invariant. This invariance property makes the construction of the flow very complicated when the problem contains nonlocal terms. In this paper, we borrow some ideas from recent work by Liu, Liu and Wang [15] on the nonlinear Schödinger systems and by Liu, Wang and Zhang [17] on the nonlinear Schödinger-Poisson system, where the pseudo-gradient flows were constructed by using an auxiliary operator. However, the critical point theorem used in [15, 17] cannot be applied to prove Theorem 1.1 because the corresponding auxiliary operator in the case of 1.1 is not compact.

The rest of this article is organized as follows. In Section 2, we state and prove the new sign-changing critical point theorem. In Section 3, we provide the proof of Theorem 1.1 .

Throughout this article, we denote by " \rightarrow " the strong converge and by " "" the weak convergence.

2. An abstract sign-CHANGing critical point theorem for even FUNCTIONALS

In this section, we present a variant of the symmetric mountain pass type theorem which produces a sequence of sign-changing critical points with arbitrary large energy.

Let Φ be a C^{1}-functional defined on a Hilbert space X of the form

$$
\begin{equation*}
X:=\overline{\oplus_{j=0}^{\infty} X_{j}}, \quad \text { with } \operatorname{dim} X_{j}<\infty \tag{2.1}
\end{equation*}
$$

We introduce for $k \geq 2$ and $m>k+2$ the following notation:

$$
\begin{gathered}
Y_{k}:=\oplus_{j=0}^{k} X_{j}, \quad Z_{k}=\overline{\oplus_{j=k}^{\infty} X_{j}}, \quad Z_{k}^{m}=\oplus_{j=k}^{m} X_{j}, \quad B_{k}:=\left\{u \in Y_{k}:\|u\| \leq \rho_{k}\right\}, \\
N_{k}:=\left\{u \in Z_{k}:\|u\|=r_{k}\right\}, \quad N_{k}^{m}:=\left\{u \in Z_{k}^{m}:\|u\|=r_{k}\right\}, \text { where } 0<r_{k}<\rho_{k}, \\
\Phi_{m}:=\left.\Phi\right|_{Y_{m}}, \quad K_{m}:=\left\{u \in Y_{m}: \Phi_{m}^{\prime}(u)=0\right\}, \quad E_{m}:=Y_{m} \backslash K_{m} .
\end{gathered}
$$

Let P_{m} be a closed convex cone of Y_{m}. For $\mu_{m}>0$ we set
$\pm D_{m}^{0}:=\left\{u \in Y_{m}: \operatorname{dist}\left(u, \pm P_{m}\right)<\mu_{m}\right\}, \quad D_{m}=D_{m}^{0} \cup\left(-D_{m}^{0}\right), \quad S_{m}:=Y_{m} \backslash D_{m}$.
We will also denote the α-neighborhood of $S \subset Y_{m}$ by

$$
V_{\alpha}(S):=\left\{u \in Y_{m} \mid \operatorname{dist}(u, S) \leq \alpha\right\}, \quad \forall \alpha>0
$$

Let us now state our critical point theorem. It is a version of the symmetric mountain pass theorem of Ambrosetti and Rabinowitz 2, and we model it on the fountain theorem of Bartsch (4).

Theorem 2.1 (Sign-changing fountain theorem). Let $\Phi \in C^{1}(X, \mathbb{R})$ be an even functional which maps bounded sets to bounded sets. If, for $k \geq 2$ and $m>k+2$, there exist $0<r_{k}<\rho_{k}$ and $\mu_{m}>0$ such that
(H5) $a_{k}:=\max _{u \in \partial B_{k}} \Phi(u) \leq 0$ and $b_{k}:=\inf _{u \in N_{k}} \Phi(u) \rightarrow+\infty$, as $k \rightarrow \infty$.
(H6) $N_{k}^{m} \subset S_{m}$.
(H7) There exists an odd locally Lipschitz continuous vector field $B: E_{m} \rightarrow Y_{m}$ such that:
(i) $B\left(\left(\pm D_{m}^{0}\right) \cap E_{m}\right) \subset \pm D_{m}^{0}$;
(ii) there exists a constant $\alpha_{1}>0$ such that $\left\langle\Phi_{m}^{\prime}(u), u-B(u)\right\rangle \geq \alpha_{1} \| u-$ $B(u) \|^{2}$, for any $u \in E_{m}$;
(iii) for $a<b$ and $\alpha>0$, there exists $\beta>0$ such that $\|u-B(u)\| \geq \beta$ if $u \in Y_{m}$ is such that $\Phi_{m}(u) \in[a, b]$ and $\left\|\Phi_{m}^{\prime}(u)\right\| \geq \alpha$.
(H8) Φ satisfies the $(P S)_{\text {nod }}^{\star}$ condition, that is:
(i) any Palais-Smale sequence of Φ_{m} is bounded;
(ii) any sequence $\left(u_{m_{j}}\right) \subset X$ such that $m_{j} \rightarrow \infty, u_{m_{j}} \in V_{\mu_{m_{j}}}\left(S_{m_{j}}\right)$, $\sup \Phi\left(u_{m_{j}}\right)<\infty$, and $\Phi_{m_{j}}^{\prime}\left(u_{m_{j}}\right)=0$, has a subsequence converging to a sign-changing critical point of Φ.
Then Φ has a sequence $\left(u_{k}\right)_{k}$ of sign-changing critical points in X such that $\Phi\left(u_{k}\right) \rightarrow$ ∞, as $k \rightarrow \infty$.

Condition (H8) is a version of the usual compactness condition in critical point theory, namely the Palais-Smale condition. We recall that a sequence $\left(u_{n}\right) \subset E$ is a Palais-Smale sequence of a smooth functional J defined on a Banach space
E if the sequence $\left(J\left(u_{n}\right)\right)$ is bounded and $J^{\prime}\left(u_{n}\right) \rightarrow 0$, as $n \rightarrow \infty$. If every such sequence possesses a convergent subsequence, then J is said to satisfy the PalaisSmale condition.

We need a special deformation lemma to prove the above result. We first recall the following helpful lemma.

Lemma $2.2([28$, Lemma 2.2]). Let \mathcal{M} be a closed convex subset of a Banach space E. If $H: \mathcal{M} \rightarrow E$ is a locally Lipschitz continuous map such that

$$
\lim _{\beta \rightarrow 0^{+}} \frac{\operatorname{dist}(u+\beta H(u), \mathcal{M})}{\beta}=0, \quad \forall u \in \mathcal{M}
$$

then for any $u_{0} \in \mathcal{M}$, there exists $\delta>0$ such that the initial value problem

$$
\frac{d \sigma\left(t, u_{0}\right)}{d t}=H\left(\sigma\left(t, u_{0}\right)\right), \quad \sigma(0, u)=u_{0}
$$

has a unique solution defined on $[0, \delta)$. Moreover, $\sigma\left(t, u_{0}\right) \in \mathcal{M}$ for all $t \in[0, \delta)$.
Now we state a quantitative deformation lemma.
Lemma 2.3 (Deformation lemma). Let $\Phi \in C^{1}(X, \mathbb{R})$ be an even functional which maps bounded sets to bounded sets. Fix m sufficiently large and assume that the condition (H7) holds. Let $c \in \mathbb{R}$ and $\varepsilon_{0}>0$ such that

$$
\begin{equation*}
\forall u \in \Phi_{m}^{-1}\left(\left[c-2 \varepsilon_{0}, c+2 \varepsilon_{0}\right]\right) \cap V_{\frac{\mu_{m}}{2}}\left(S_{m}\right):\left\|\Phi_{m}^{\prime}(u)\right\| \geq \varepsilon_{0} \tag{2.2}
\end{equation*}
$$

Then for some $\varepsilon \in] 0, \varepsilon_{0}\left[\right.$ there exists $\eta \in C\left([0,1] \times Y_{m}, Y_{m}\right)$ such that
(i) $\eta(t, u)=u$ for $t=0$ or $u \notin \Phi_{m}^{-1}([c-2 \varepsilon, c+2 \varepsilon])$;
(ii) $\left.\left.\left.\left.\eta\left(1, \Phi_{m}^{-1}(]-\infty, c+\varepsilon\right]\right) \cap S_{m}\right) \subset \Phi_{m}^{-1}(]-\infty, c-\varepsilon\right]\right)$;
(iii) $\Phi_{m}(\eta(\cdot, u))$ is not increasing, for any u;
(iv) $\eta\left([0,1] \times D_{m}\right) \subset D_{m}$;
(v) $\eta(t, \cdot)$ is odd, for any $t \in[0,1]$.

Proof. Define $V: E_{m} \rightarrow Y_{m}$ by $V(u)=u-B(u)$, where B is given by (H7). Then there is $\delta>0$ such that $V(u) \geq \delta$ for any $u \in \Phi_{m}^{-1}\left(\left[c-2 \varepsilon_{0}, c+2 \varepsilon_{0}\right]\right) \cap V_{\frac{\mu_{m}}{2}}\left(S_{m}\right)$ (in view (H7)-(iii)). We take $\varepsilon \in] 0, \min \left(\varepsilon_{0}, \frac{\delta \alpha_{1} \mu_{m}}{8}\right)$ [and we define

$$
\begin{gathered}
A_{1}:=\Phi_{m}^{-1}([c-2 \varepsilon, c+2 \varepsilon]) \cap V_{\frac{\mu_{m}}{2}}\left(S_{m}\right), \quad A_{2}:=\Phi_{m}^{-1}([c-\varepsilon, c+\varepsilon]) \cap V_{\frac{\mu_{m}}{4}}\left(S_{m}\right), \\
\chi(u):=\frac{\operatorname{dist}\left(u, Y_{m} \backslash A_{1}\right)}{\operatorname{dist}\left(u, Y_{m} \backslash A_{1}\right)+\operatorname{dist}\left(u, A_{2}\right)}, \quad u \in Y_{m}
\end{gathered}
$$

so that $\chi=0$ on $Y_{m} \backslash A_{1}, \chi=1$ on A_{2}, and $0 \leq \chi \leq 1$.
We consider the vector field

$$
W(u):= \begin{cases}\chi(u)\|V(u)\|^{-2} V(u), & \text { for } u \in A_{1} \\ 0, & \text { for } u \in Y_{m} \backslash A_{1}\end{cases}
$$

Clearly W is odd and locally Lipschitz continuous. Moreover, by our choice of ε above we have

$$
\begin{equation*}
\|W(u)\| \leq \frac{1}{\delta} \leq \frac{\alpha_{1} \mu_{m}}{8 \varepsilon}, \quad \forall u \in Y_{m} \tag{2.3}
\end{equation*}
$$

It follows that the Cauchy problem

$$
\frac{d}{d t} \sigma(t, u)=-W(\sigma(t, u)), \quad \sigma(0, u)=u \in Y_{m}
$$

has a unique solution $\sigma(\cdot, u)$ defined on \mathbb{R}_{+}. Moreover, σ is continuous on $\mathbb{R}_{+} \times Y_{m}$ and the map $\sigma(t, \cdot): Y_{m} \rightarrow Y_{m}$ is a homeomorphism for each $t \geq 0$ (see, for instance [26]). In view of (2.3), we have

$$
\begin{equation*}
\|\sigma(t, u)-u\| \leq \int_{0}^{t}\|W(\sigma(s, u))\| d s \leq \frac{\alpha_{1} \mu_{m}}{8 \varepsilon} t \tag{2.4}
\end{equation*}
$$

and by (H7)-(ii)

$$
\begin{align*}
\frac{d}{d t} \Phi_{m}(\sigma(t, u)) & =-\left\langle\Phi_{m}^{\prime}(\sigma(t, u)), \chi(\sigma(t, u))\|V(\sigma(t, u))\|^{-2} V(\sigma(t, u))\right\rangle \tag{2.5}\\
& \leq-\alpha_{1} \chi(\sigma(t, u))
\end{align*}
$$

Define

$$
\eta:[0,1] \times Y_{m} \rightarrow Y_{m}, \quad \eta(t, u):=\sigma\left(\frac{2 \varepsilon}{\alpha_{1}} t, u\right)
$$

Conclusion (i) of the lemma is clearly satisfied and by 2.5 above (iii) is also satisfied. Since W is odd, (v) is a consequence of the uniqueness of the solution to the above Cauchy problem.

We now verify (ii). Let $\left.\left.v \in \eta\left(1, \Phi_{m}^{-1}(]-\infty, c+\varepsilon\right]\right) \cap S_{m}\right)$. Then $v=\eta(1, u)=$ $\sigma\left(\frac{2 \varepsilon}{\alpha_{1}}, u\right)$, where $\left.\left.u \in \Phi_{m}^{-1}(]-\infty, c+\varepsilon\right]\right) \cap S_{m}$.

If there exists $t \in\left[0, \frac{2 \varepsilon}{\alpha_{1}}\right]$ such that $\Phi_{m}(\sigma(t, u))<c-\varepsilon$, then by (iii) we have $\Phi_{m}(v)<c-\varepsilon$.

Assume now that $\sigma(t, u) \in \Phi_{m}^{-1}([c-\varepsilon, c+\varepsilon])$ for all $t \in\left[0, \frac{2 \varepsilon}{\alpha_{1}}\right]$. By 2.4 we have $\|\sigma(t, u)-u\| \leq \frac{\mu_{m}}{4}$, which means, since $u \in S_{m}$, that $\sigma(t, u) \in V_{\frac{\mu_{m}}{4}}\left(S_{m}\right)$. Hence $\sigma(t, u) \in A_{2}$ and since $\chi=1$ on A_{2}, we deduce from 2.5 that

$$
\Phi_{m}\left(\sigma\left(\frac{2 \varepsilon}{\alpha_{1}}, u\right)\right) \leq \Phi_{m}(u)-\alpha_{1} \int_{0}^{\frac{2 \varepsilon}{\alpha_{1}}} \chi(\sigma(t, u)) d t=\Phi_{m}(u)-2 \varepsilon
$$

Since $\Phi_{m}(u) \leq c+\varepsilon$, this implies $\Phi_{m}(v)=\Phi_{m}\left(\sigma\left(\frac{2 \varepsilon}{\alpha_{1}}, u\right)\right) \leq c-\varepsilon$. Hence (ii) is satisfied.

It remains to verify (iv). Since σ is odd in u, it suffices to show that

$$
\begin{equation*}
\sigma\left([0,+\infty) \times D_{m}^{0}\right) \subset D_{m}^{0} \tag{2.6}
\end{equation*}
$$

We follow 28 .
Claim: We have

$$
\begin{equation*}
\sigma\left([0,+\infty) \times \overline{D_{m}^{0}}\right) \subset \overline{D_{m}^{0}} \tag{2.7}
\end{equation*}
$$

Assume by contradiction that (2.6) does not hold. Then there exist $u_{0} \in D_{m}^{0}$ and $t_{0}>0$ such that $\sigma\left(t_{0}, u_{0}\right) \notin D_{m}^{0}$. Choose a neighborhood $N_{u_{0}}$ of u_{0} such that $N_{u_{0}} \subset D_{m}^{0}$. Then there is a neighborhood N_{0} of $\sigma\left(t_{0}, u_{0}\right)$ such that $\sigma\left(t_{0}, \cdot\right): N_{u_{0}} \rightarrow$ N_{0} is a homeomorphism (because $\sigma\left(t_{0}, \cdot\right): Y_{m} \rightarrow Y_{m}$ is a homeomorphism). Since $\sigma\left(t_{0}, u_{0}\right) \notin D_{m}^{0}$, the set $N_{0} \backslash \overline{D_{m}^{0}}$ is not empty. Hence there is $w \in N_{u_{0}}$ such that $\sigma\left(t_{0}, w\right) \in N_{0} \backslash \overline{D_{m}^{0}}$, contradicting (2.7).

We now terminate by giving the proof of our above claim. By (H7)-(i) we have $B\left(D_{m}^{0} \cap E_{m}\right) \subset D_{m}^{0}$, which implies that $B\left(\overline{D_{m}^{0}} \cap E_{m}\right) \subset \overline{D_{m}^{0}}$. Since $K_{m} \cap A_{1}=\emptyset$, we have $\sigma(t, u)=u$ for all $t \in[0,1]$ and $u \in \overline{D_{m}^{0}} \cap K_{m}$.

Assume that $u \in \overline{D_{m}^{0}} \cap E_{m}$. If there is $t_{1} \in(0,1]$ such that $\sigma\left(t_{1}, u\right) \notin \overline{D_{m}^{0}}$, then there would be $s_{1} \in\left[0, t_{1}\right)$ such that $\sigma\left(s_{1}, u\right) \in \partial \overline{D_{m}^{0}}$ and $\sigma(t, u) \notin \overline{D_{m}^{0}}$ for all
$t \in\left(s_{1}, t_{1}\right]$. The Cauchy problem

$$
\frac{d}{d t} \mu\left(t, \sigma\left(s_{1}, u\right)\right)=-W\left(\mu\left(t, \sigma\left(s_{1}, u\right)\right)\right), \quad \mu\left(0, \sigma\left(s_{1}, u\right)\right)=\sigma\left(s_{1}, u\right) \in Y_{m}
$$

has $\sigma\left(t, \sigma\left(s_{1}, u\right)\right)$ as unique solution. Recalling that $W=0$ on $Y_{m} \backslash A_{1}$, we have $v-W(v) \in \overline{D_{m}^{0}} \cap\left(Y_{m} \backslash A_{1}\right)$ for any $v \in \overline{D_{m}^{0}} \cap\left(Y_{m} \backslash A_{1}\right)$.

Assume that $v \in A_{1} \cap \overline{D_{m}^{0}}$. Since $\|V(u)\| \geq \delta$, we deduce that $1-\beta \chi(v)\|V(v)\|^{-2} \geq$ 0 for all β such that $0<\beta \leq \delta^{2}$. Recalling that $v \in \overline{D_{m}^{0}} \operatorname{implies} \operatorname{dist}\left(v, P_{m}\right) \leq \mu_{m}$, that $V(v)=v-B(v)$, and that $a P_{m}+b P_{m} \subset P_{m}$ for all $a, b \geq 0$ (because P_{m} is a cone), we obtain for any $\left.\beta \in] 0, \delta^{2}\right]$

$$
\begin{aligned}
& \operatorname{dist}\left(v-\beta W(v), P_{m}\right) \\
& =\operatorname{dist}\left(v-\beta \chi(v)\|V(v)\|^{-2} V(v), P_{m}\right) \\
& =\operatorname{dist}\left(v-\beta \chi\|V(v)\|^{-2}(v-B(v)), P_{m}\right) \\
& =\operatorname{dist}\left(\left(1-\beta \chi(v)\|V(v)\|^{-2}\right) v+\beta \chi(v)\|V(v)\|^{-2} B(v), P_{m}\right) \\
& \leq \operatorname{dist}\left(\left(1-\beta \chi(v)\|V(v)\|^{-2}\right) v+\beta \chi(v)\|V(v)\|^{-2} B(v)\right. \\
& \left.\quad \beta \chi(u)\|V(v)\|^{-2} P_{m}+\left(1-\beta \chi(v)\|V(v)\|^{-2}\right) P_{m}\right) \\
& \leq\left(1-\beta \chi(v)\|V(v)\|^{-2}\right) \operatorname{dist}\left(v, P_{m}\right)+\beta \chi(v)\|V(v)\|^{-2} \operatorname{dist}\left(B(v), P_{m}\right) \\
& \leq\left(1-\beta \chi(v)\|V(v)\|^{-2}\right) \mu_{m}+\beta \chi(v)\|V(v)\|^{-2} \mu_{m}=\mu_{m} .
\end{aligned}
$$

It follows that $v-\beta W(v) \in \overline{D_{m}^{0}}$ for $0<\beta \leq \delta^{2}$. This implies that

$$
\lim _{\beta \rightarrow 0^{+}} \frac{\operatorname{dist}\left(v+\beta(-W(v)), \overline{D_{m}^{0}}\right)}{\beta}=0, \quad \forall u \in \overline{D_{m}^{0}}
$$

By Lemma 2.2 there exists $\delta_{0}>0$ such that $\sigma\left(t, \sigma\left(s_{1}, u\right)\right) \in \overline{D_{m}^{0}}$ for all $t \in\left[0, \delta_{0}\right)$. This implies that $\sigma\left(t, \sigma\left(s_{1}, u\right)\right)=\sigma\left(t+s_{1}, u\right) \in \overline{D_{m}^{0}}$ for all $t \in\left[0, \delta_{0}\right)$, which contradicts the definition of s_{1}. This last contradiction assures that $\sigma([0,+\infty) \times$ $\left.\overline{D_{m}^{0}}\right) \subset \overline{D_{m}^{0}}$.

Proof of Theorem 2.1. (H5) and (H6) imply that $a_{k}<b_{k} \leq \inf _{u \in N_{k}^{m}} \Phi_{m}(u)$, for k big enough. Let

$$
\Gamma_{k}^{m}:=\left\{\gamma \in C\left(B_{k}, Y_{m}\right): \gamma \text { is odd, }\left.\gamma\right|_{\partial B_{k}}=i d \text { and } \operatorname{gamma}\left(D_{m}\right) \subset D_{m}\right\}
$$

The set Γ_{k}^{m} is clearly non empty and for any $\gamma \in \Gamma_{k}^{m}$ the set $U:=\left\{u \in B_{k}\right.$: $\left.\|\gamma(u)\|<r_{k}\right\}$ is a bounded symmetric (i.e. $-U=U$) neighborhood of the origin in Y_{k}. Moreover, U is open. Indeed, U is an open subset of B_{k} (with respect to the metric topology of B_{k}) and the conditions $\left.\gamma\right|_{\partial B_{k}}=i d$ and $r_{k}<\rho_{k}$ imply that an element of ∂B_{k} cannot belong to U. By the Borsuk-Ulam theorem the continuous odd map $\Pi_{k} \circ \gamma: \partial U \subset Y_{k} \rightarrow Y_{k-1}$ has a zero u_{0}, where $\Pi_{k}: X \rightarrow Y_{k-1}$ is the orthogonal projection. Hence $\gamma\left(u_{0}\right) \in \gamma\left(B_{k}\right) \cap N_{k}^{m}$ which implies that $\gamma\left(B_{k}\right) \cap N_{k}^{m} \neq$ \emptyset. Since $N_{k}^{m} \subset S_{m}$, we deduce that $\gamma\left(B_{k}\right) \cap S_{m} \neq \emptyset$. This intersection property implies that

$$
c_{k, m}:=\inf _{\gamma \in \Gamma_{k}^{m}} \max _{u \in \gamma\left(B_{k}\right) \cap S_{m}} \Phi_{m}(u) \geq \inf _{u \in N_{k}^{m}} \Phi(u) \geq b_{k}
$$

We would like to show that for any $\left.\varepsilon_{0} \in\right] 0, \frac{c_{k, m}-a_{k}}{2}\left[\right.$, there exists $u \in \Phi_{m}^{-1}\left(\left[c_{k, m}-\right.\right.$ $\left.\left.2 \varepsilon_{0}, c_{k, m}+2 \varepsilon_{0}\right]\right) \cap V_{\frac{\mu_{m}}{2}}\left(S_{m}\right)$ such that $\left\|\Phi_{m}^{\prime}(u)\right\|<\varepsilon_{0}$. Arguing by contradiction, we assume that we can find $\left.\varepsilon_{0} \in\right] 0, \frac{c_{k, m}-a_{k}}{2}$ [such that

$$
\left\|\Phi_{m}^{\prime}(u)\right\| \geq \varepsilon_{0}, \quad \forall u \in \Phi_{m}^{-1}\left(\left[c_{k, m}-2 \varepsilon_{0}, c_{k, m}+2 \varepsilon_{0}\right]\right) \cap V_{\frac{\mu_{m}}{2}}\left(S_{m}\right) .
$$

We apply Lemma 2.3 with $c=c_{k, m}$ and define, using the deformation η obtained, the map

$$
\theta: B_{k} \rightarrow Y_{m}, \quad \theta(u):=\eta(1, \gamma(u)),
$$

where $\gamma \in \Gamma_{k}^{m}$ satisfies

$$
\begin{equation*}
\max _{u \in \gamma\left(B_{k}\right) \cap S_{m}} \Phi_{m}(u) \leq c_{k, m}+\varepsilon, \tag{2.8}
\end{equation*}
$$

with ε also given by Lemma 2.3
Using the properties of η (see Lemma 2.3), one can easily verify that $\theta \in \Gamma_{k}^{m}$. On the other hand, we have

$$
\begin{equation*}
\left.\left.\eta\left(1, \gamma\left(B_{k}\right)\right) \cap S_{m} \subset \eta\left(1, \Phi_{m}^{-1}(]-\infty, c_{k, m}+\varepsilon\right]\right) \cap S_{m}\right) \tag{2.9}
\end{equation*}
$$

In fact, if $u \in \eta\left(1, \gamma\left(B_{k}\right)\right) \cap S_{m}$ then $u=\eta(1, \gamma(v)) \in S_{m}$ for some $v \in B_{k}$. Observe that $\gamma(v) \in S_{m}$. Indeed, if this is not true then $\gamma(v) \in D_{m}$, and by (iv) of Lemma 2.3 we obtain $u=\eta(1, \gamma(v)) \in D_{m}$ which contradicts the fact that $u \in S_{m}$. Now (2.8) implies that $\left.\gamma(v) \in \Phi_{m}^{-1}(]-\infty, c_{k, m}+\varepsilon\right]$). It then follows, using (ii) of Lemma 2.3. that $\left.\left.u=\eta(1, \gamma(v)) \in \eta(1]-,\infty, c_{k, m}+\varepsilon\right] \cap S_{m}\right)$. Hence (2.9) holds. Using (2.9) and (ii) of Lemma 2.3. we obtain

$$
\begin{aligned}
\max _{u \in \theta\left(B_{k}\right) \cap S_{m}} \Phi_{m}(u) & =\max _{u \in \eta\left(1, \gamma\left(B_{k}\right)\right) \cap S_{m}} \Phi_{m}(u) \\
& \leq \max _{\left.\left.u \in \eta\left(1, \Phi_{m}^{-1}(]-\infty, c_{k, m}+\varepsilon\right]\right) \cap S_{m}\right)} \Phi_{m}(u) \\
& \leq c_{k, m}-\varepsilon,
\end{aligned}
$$

contradicting the definition of $c_{k, m}$.
The above contradiction assures that for any $\left.\varepsilon_{0} \in\right] 0, \frac{c_{k, m}-a_{k}}{2}[$, there exists

$$
u \in \Phi_{m}^{-1}\left(\left[c_{k, m}-2 \varepsilon_{0}, c_{k, m}+2 \varepsilon_{0}\right]\right) \cap V_{\frac{\mu_{m}}{2}}\left(S_{m}\right)
$$

such that $\left\|\Phi_{m}^{\prime}(u)\right\|<\varepsilon_{0}$.
It follows that there is a sequence $\left(u_{k, m}^{n}\right)_{n} \subset V_{\frac{\mu_{m}}{2}}\left(S_{m}\right)$ such that

$$
\Phi_{m}^{\prime}\left(u_{k, m}^{n}\right) \rightarrow 0 \text { and } \Phi_{m}\left(u_{k, m}^{n}\right) \rightarrow c_{k, m}, \text { as } n \rightarrow \infty .
$$

We deduce from (H8)-(i), using the fact Y_{m} is finite-dimensional, that there exists $u_{k, m} \in V_{\frac{\mu_{m}}{2}}\left(S_{m}\right)$ such that

$$
\Phi_{m}^{\prime}\left(u_{k, m}\right)=0 \text { and } \Phi_{m}\left(u_{k, m}\right)=c_{k, m} .
$$

Noting that $c_{k, m} \leq \max _{u \in B_{k}} \Phi(u)$, we deduce using (H8)-(ii) that Φ has a signchanging critical point u_{k} such that $b_{k} \leq \Phi\left(u_{k}\right) \leq \max _{u \in B_{k}} \Phi(u)$. Since $b_{k} \rightarrow \infty$, as $k \rightarrow \infty$, the conclusion follows.

3. Proof of the main result

Throughout this section, we assume that (H1)-(H4) are satisfied. We denote by $|\cdot|_{q}$ the usual norm of the Lebesgue space $L^{q}(\Omega)$. Let $X:=H_{0}^{1}(\Omega)$ be the usual Sobolev space endowed with the inner product

$$
\langle u, v\rangle=\int_{\Omega} \nabla u \nabla v d x
$$

and norm $\|u\|^{2}=\langle u, u\rangle$, for $u, v \in H_{0}^{1}(\Omega)$.
It is well known that solutions of (1.1) are critical points of the functional

$$
\begin{equation*}
\Phi(u)=\frac{a}{2}\|u\|^{2}+\frac{b}{4}\|u\|^{4}-\int_{\Omega} F(x, u) d x, \quad u \in X:=H_{0}^{1}(\Omega) \tag{3.1}
\end{equation*}
$$

By a standard argument, one can easily verify that Φ is of class C^{1} and

$$
\begin{equation*}
\left\langle\Phi^{\prime}(u), v\right\rangle=\left(a+b\|u\|^{2}\right) \int_{\Omega} \nabla u \nabla v d x-\int_{\Omega} v f(x, u) d x \tag{3.2}
\end{equation*}
$$

Let $0<\lambda_{1}<\lambda_{2}<\lambda_{3}<\cdots$ be the distinct eigenvalues of the problem

$$
-\Delta u=\lambda u \text { in } \Omega, \quad u=0 \text { on } \partial \Omega
$$

Then each λ_{j} has finite multiplicity. It is well known that the principal eigenvalue λ_{1} is simple with a positive eigenfunction e_{1}, and the eigenfunctions e_{j} corresponding to $\lambda_{j}(j \geq 2)$ are sign-changing. Let X_{j} be the eigenspace associated to λ_{j}. We set for $k \geq 2$

$$
Y_{k}:=\oplus_{j=1}^{k} X_{j} \quad \text { and } \quad Z_{k}=\overline{\oplus_{j=k}^{\infty} X_{j}}
$$

Lemma 3.1.

(1) For any $u \in Y_{k}$ we have $\Phi(u) \rightarrow-\infty$, as $\|u\| \rightarrow \infty$.
(2) There exists $r_{k}>0$ such that

$$
\inf _{u \in Z_{k}\|u\|=r_{k}} \Phi(u) \rightarrow \infty, \text { as } k \rightarrow \infty .
$$

Proof. (1) It is well known that integrating (H3) yields the existence of two constants $c_{1}, c_{2}>0$ such that $F(x, u) \geq c_{1}|u|^{\mu}-c_{2}$. This together with the fact that all norms are equivalent in the finite-dimensional subspace Y_{k} imply that

$$
\Phi(u) \leq \frac{a}{2}\|u\|^{2}+\frac{b}{4}\|u\|^{4}-c_{3}\|u\|^{\mu}+c_{4}, \quad \forall u \in Y_{k}
$$

where c_{3}, c_{4} are positive constant. Since $\mu>4$, it follows that $\Phi(u) \rightarrow-\infty$, as $\|u\| \rightarrow \infty$.
(2) Using (H1), we obtain

$$
\Phi(u) \geq \frac{a}{2}\|u\|^{2}-c_{5}|u|_{p}^{p}-c_{6}, \quad \forall u \in X
$$

where c_{5}, c_{6} are poisitive constant. Set

$$
\beta_{k}:=\sup _{v \in Z_{k}, \mid v \|=1}|v|_{p} .
$$

Then we obtain

$$
\Phi(u) \geq a\left(\frac{1}{2}-\frac{1}{p}\right)\left(\frac{c_{5}}{a} p \beta_{k}^{p}\right)^{\frac{2}{2-p}}-c_{6}
$$

for every $u \in Z_{k}$ such that

$$
\|u\|=r_{k}:=\left(\frac{c_{5}}{a} p \beta_{k}^{p}\right)^{\frac{1}{2-p}}
$$

We know from [26, Lemma 3.8] that $\beta_{k} \rightarrow 0$, as $k \rightarrow \infty$. This implies that $r_{k} \rightarrow \infty$, as $k \rightarrow \infty$.

Now we fix k large enough, and for $m>k+2$, we set

$$
\begin{gathered}
\Phi_{m}:=\left.\Phi\right|_{Y_{m}}, \quad K_{m}:=\left\{u \in Y_{m}: \Phi_{m}^{\prime}(u)=0\right\}, \quad E_{m}:=Y_{m} \backslash K_{m} \\
P_{m}:=\left\{u \in Y_{m} ; u(x) \geq 0\right\}, \quad Z_{k}^{m}:=\oplus_{j=k}^{m} X_{j}, \quad N_{k}^{m}:=\left\{u \in Z_{k}^{m} \mid\|u\|=r_{k}\right\} .
\end{gathered}
$$

We remark that for all $u \in P_{m} \backslash\{0\}$ we have $\int_{\Omega} u e_{1} d x>0$, while for all $u \in Z_{k}$, $\int_{\Omega} u e_{1} d x=0$, where e_{1} is the principal eigenfunction of the Laplacian. This implies that $P_{m} \cap Z_{k}=\{0\}$. It then follows, since N_{k}^{m} is compact, that

$$
\begin{equation*}
\delta_{m}:=\operatorname{dist}\left(N_{k}^{m},-P_{m} \cup P_{m}\right)>0 . \tag{3.3}
\end{equation*}
$$

For $u \in Y_{m}$ fixed, we consider the functional

$$
\begin{equation*}
I_{u}(v)=\frac{1}{2}\left(a+b\|u\|^{2}\right) \int_{\Omega}|\nabla v|^{2} d x-\int_{\Omega} v f(x, u) d x, \quad v \in Y_{m} \tag{3.4}
\end{equation*}
$$

It is not difficult to see that I_{u} is of class C^{1}, coercive, bounded below, weakly lower semicontinuous, and strictly convex. Therefore I_{u} admits a unique minimizer $v=A u \in Y_{m}$, which is the unique solution to the problem

$$
-\left(a+b\|u\|^{2}\right) \Delta v=f(x, u), \quad v \in Y_{m}
$$

Clearly, the set of fixed points of A coincide with K_{m}. Moreover, the operator $A: Y_{m} \rightarrow Y_{m}$ has the following important properties.

Lemma 3.2.

(1) A is continuous and maps bounded sets to bounded sets.
(2) For any $u \in Y_{m}$ we have

$$
\begin{gather*}
\left\langle\Phi_{m}^{\prime}(u), u-A u\right\rangle \geq a\|u-A u\|^{2} \tag{3.5}\\
\left\|\Phi_{m}^{\prime}(u)\right\| \leq(a+b)\left(1+\|u\|^{2}\right)\|u-A u\| \tag{3.6}
\end{gather*}
$$

(3) There exists $\left.\mu_{m} \in\right] 0, \delta_{m}\left[\right.$ such that $A\left(\pm D_{m}^{0}\right) \subset \pm D_{m}^{0}$, where δ_{m} is defined by (3.3).
Proof. (1) Let $\left(u_{n}\right) \subset Y_{m}$ such that $u_{n} \rightarrow u$. We set $v_{n}=A u_{n}$ and $v=A u$. By the definition of A we have for any $w \in Y_{m}$,

$$
\begin{align*}
\left(a+b\left\|u_{n}\right\|^{2}\right) \int_{\Omega} \nabla v_{n} \nabla w d x & =\int_{\Omega} w f\left(x, u_{n}\right) d x \tag{3.7}\\
\left(a+b\|u\|^{2}\right) \int_{\Omega} \nabla v \nabla w d x & =\int_{\Omega} w f(x, u) d x \tag{3.8}
\end{align*}
$$

Taking $w=v_{n}-v$ in (3.7) and in (3.8), and using the Hölder inequality and the Sobolev embedding theorem, we obtain

$$
\begin{aligned}
& \left(a+b\left\|u_{n}\right\|^{2}\right)\left\|v_{n}-v\right\|^{2} \\
& =b\left(\left\|u_{n}\right\|^{2}-\|u\|^{2}\right) \int_{\Omega} \nabla v \nabla\left(v_{n}-v\right) d x+\int_{\Omega}\left(v-v_{n}\right)\left(f\left(u_{n}\right)-f(u)\right) d x \\
& \leq c_{1}\left|\left\|u_{n}\right\|^{2}-\|u\|^{2}\right|\|v\|\left\|v_{n}-v\right\|+c_{2}\left\|v_{n}-v\right\|\left|f\left(u_{n}\right)-f(u)\right|_{\frac{p}{p-1}}
\end{aligned}
$$

where $c_{1}, c_{2}>0$ are constant. By (H1) and [26, Theorem A.2], we have $f\left(u_{n}\right)-$ $f(u) \rightarrow 0$ in $L^{\frac{p}{p-1}}(\Omega)$. Hence $\left\|A u_{n}-A u\right\|=\left\|v_{n}-v\right\| \rightarrow 0$, that is, A is continuous.

On the other hand, for any $u \in Y_{m}$ we have, taking $v=w=A u$ in 3.8

$$
\left(a+b\|u\|^{2}\right)\|A u\|^{2}=\int_{\Omega} A u f(x, u) d x
$$

By using (H1), the Hölder inequality, and the Sobolev embedding theorem, we obtain

$$
a\|A u\| \leq C\left(1+\|u\|^{p-1}\right)
$$

where $C>0$ a constant. This shows that $A u$ is bounded whenever u is bounded.
(2) Taking $w=u-A u$ in (3.8), we obtain

$$
\left(a+b\|u\|^{2}\right) \int_{\Omega} \nabla(A u) \nabla(u-A u) d x=\int_{\Omega}(u-A u) f(x, u) d x
$$

which implies

$$
\left\langle\Phi_{m}^{\prime}(u), u-A u\right\rangle=\left(a+b\|u\|^{2}\right)\|u-A u\|^{2} \geq a\|u-A u\|^{2}
$$

On the other hand, using (3.8), we obtain

$$
\begin{aligned}
\left\langle\Phi_{m}^{\prime}(u), w\right\rangle & =\left(a+b\|u\|^{2}\right) \int_{\Omega} \nabla u \nabla w d x-\int_{\Omega} w f(x, u) d x \\
& =\left(a+b\|u\|^{2}\right) \int_{\Omega} \nabla(u-A u) \nabla w d x, \quad \forall w \in Y_{m}
\end{aligned}
$$

This implies

$$
\left\|\Phi_{m}^{\prime}(u)\right\| \leq\left(a+b\|u\|^{2}\right)\|u-A u\|
$$

(3) It follows from (H1) and (H2) that for each $\varepsilon>0$ there exists $c_{\varepsilon}>0$ such that

$$
\begin{equation*}
|f(x, t)| \leq \varepsilon|t|+c_{\varepsilon}|t|^{p-1}, \quad \forall t \in \mathbb{R} \tag{3.9}
\end{equation*}
$$

Let $u \in Y_{m}$ and let $v=A u$. As usual we denote $w^{ \pm}=\max \{0, \pm w\}$, for any $w \in X$. Taking $w=v^{+}$in 3.8 and using the Hölder inequality, we obtain

$$
\left(a+b\|u\|^{2}\right)\left\|v^{+}\right\|^{2}=\int_{\Omega} v^{+} f(x, u) d x \leq \varepsilon\left|u^{+}\right|_{2}\left|v^{+}\right|_{2}+c_{\varepsilon}\left|u^{+}\right|_{p}^{p-1}\left|v^{+}\right|_{p}
$$

which implies

$$
\begin{equation*}
\left\|v^{+}\right\|^{2} \leq \frac{1}{a}\left(\varepsilon\left|u^{+}\right|_{2}\left|v^{+}\right|_{2}+c_{\varepsilon}\left|u^{+}\right|_{p}^{p-1}\left|v^{+}\right|_{p}\right) \tag{3.10}
\end{equation*}
$$

On the other hand it is not difficult to see that $\left|u^{+}\right|_{q} \leq|u-w|_{q}$ for all $w \in-P_{m}$ and $1 \leq q \leq 2^{\star}$. Hence there is a constant $c_{1}=c_{1}(q)>0$ such that $\left|u^{+}\right|_{q} \leq$ $c_{1} \operatorname{dist}\left(u,-P_{m}\right)$. It is obvious that $\operatorname{dist}\left(v,-P_{m}\right) \leq\left\|v^{+}\right\|$. So we deduce from 3.10) and the Sobolev embedding theorem that

$$
\begin{aligned}
\operatorname{dist}\left(v,-P_{m}\right)\left\|v^{+}\right\| & \leq\left\|v^{+}\right\|^{2} \\
& \leq c_{2}\left(\varepsilon \operatorname{dist}\left(u,-P_{m}\right)+c_{\varepsilon} \operatorname{dist}\left(u,-P_{m}\right)^{p-1}\right)\left\|v^{+}\right\|
\end{aligned}
$$

where $c_{2}>0$ is constant. This implies

$$
\operatorname{dist}\left(v,-P_{m}\right) \leq c_{2}\left(\varepsilon \operatorname{dist}\left(u,-P_{m}\right)+c_{\varepsilon} \operatorname{dist}\left(u,-P_{m}\right)^{p-1}\right)
$$

Similarly one can show that

$$
\operatorname{dist}\left(v, P_{m}\right) \leq c_{3}\left(\varepsilon \operatorname{dist}\left(u, P_{m}\right)+c_{\varepsilon} \operatorname{dist}\left(u, P_{m}\right)^{p-1}\right)
$$

for some constant $c_{3}>0$.

Choosing ε small enough, we can then find $\left.\mu_{m} \in\right] 0, \delta_{m}[$ such that

$$
\operatorname{dist}\left(v, \pm P_{m}\right) \leq \frac{1}{2} \operatorname{dist}\left(u, \pm P_{m}\right)
$$

whenever $\operatorname{dist}\left(u, \pm P_{m}\right)<\mu_{m}$.
Using the μ_{m} obtained above, we define

$$
\begin{gathered}
\pm D_{m}^{0}:=\left\{u \in Y_{m}: \operatorname{dist}\left(u, \pm P_{m}\right)<\mu_{m}\right\} \\
D_{m}=D_{m}^{0} \cup\left(-D_{m}^{0}\right), \quad S_{m}:=Y_{m} \backslash D_{m}
\end{gathered}
$$

Remark 3.3. Note that $\mu_{m}<\delta_{m}$ implies $N_{k}^{m} \subset S_{m}$.
The vector field $A: Y_{m} \rightarrow Y_{m}$ does not satisfy the assumption (H7) of Theorem 2.1 as it is not locally Liptschitz continuous. However, it will be used in the spirit of [5] to construct a vector field which will satisfy the above mentioned condition.

Lemma 3.4. There exists an odd locally Lipschitz continuous operator $B: E_{m} \rightarrow$ Y_{m} such that
(1) $\left\langle\Phi^{\prime}(u), u-B(u)\right\rangle \geq \frac{1}{2}\|u-A(u)\|^{2}$, for any $u \in E_{m}$.
(2) $\frac{1}{2}\|u-B(u)\| \leq\|u-A(u)\| \leq 2\|u-B(u)\|$, for any $u \in E_{m}$.
(3) $B\left(\left(\pm D_{m}^{0}\right) \cap E_{m}\right) \subset \pm D_{m}^{0}$.

The proof of this lemma follows the lines of [5]. We provide a sketch of the proof here for completeness.
Proof. We define $\Delta_{1}, \Delta_{2}: E_{m} \rightarrow \mathbb{R}$ as

$$
\begin{equation*}
\Delta_{1}(u)=\frac{1}{2}\|u-A u\| \quad \text { and } \quad \Delta_{2}(u)=\frac{a}{2(a+b)}\left(1+\|u\|^{2}\right)^{-1}\|u-A u\| . \tag{3.11}
\end{equation*}
$$

For any $u \in E_{m}$ we choose $\gamma(u)>0$ such that

$$
\begin{equation*}
\|A(v)-A(w)\|<\min \left\{\Delta_{1}(v), \Delta_{1}(w), \Delta_{2}(v), \Delta_{2}(w)\right\} \tag{3.12}
\end{equation*}
$$

holds for every $v, w \in N(u):=\left\{z \in Y_{m} ;\|z-u\|<\gamma(u)\right\}$.
Let \mathcal{V} be a locally finite open refinement of $\left\{N(u) ; u \in E_{m}\right\}$ and define

$$
\begin{gathered}
\mathcal{V}^{\star}:=\left\{V \in \mathcal{V}: D_{m}^{0} \cap V \neq \emptyset,-D_{m}^{0} \cap V \neq \emptyset,-D_{m}^{0} \cap D_{m}^{0} \cap V \neq \emptyset\right\} \\
\mathcal{U}:=\bigcup_{V \in \mathcal{V} \backslash \mathcal{V}^{\star}}\{V\} \cup \bigcup_{V \in \mathcal{V}^{\star}}\left\{V \backslash D_{m}^{0}, V \backslash\left(-D_{m}^{0}\right)\right\}
\end{gathered}
$$

By construction \mathcal{U} is a locally finite open refinement of $\left\{N(u): u \in E_{m}\right\}$ and has a property that any $U \in \mathcal{U}$ is such that

$$
\begin{equation*}
U \cap D_{m}^{0} \neq \emptyset \text { and } U \cap\left(-D_{m}^{0}\right) \neq \emptyset \Longrightarrow U \cap D_{m}^{0} \cap\left(-D_{m}^{0}\right) \neq \emptyset \tag{3.13}
\end{equation*}
$$

Let $\left\{\Pi_{U}: U \in \mathcal{U}\right\}$ be the partition of unity subordinated to \mathcal{U} defined by

$$
\Pi_{U}(u):=\frac{\alpha_{U}(u)}{\sum_{v \in \mathcal{U}} \alpha_{U}(v)}, \text { where } \alpha_{U}(u)=\operatorname{dist}\left(u, E_{m} \backslash U\right)
$$

For any $u \in \mathcal{U}$ choose a_{U} such that if $U \cap\left(\pm D_{m}^{0}\right) \neq \emptyset$ then $a_{U} \in U \cap\left(\pm D_{m}^{0}\right)$ (such an element exists in view of (3.13). Define $B: E_{m} \rightarrow Y_{m}$ by

$$
B(u):=\frac{1}{2}(H(u)-H(-u)), \quad \text { where } H(u)=\sum_{U \in \mathcal{U}} \Pi_{U}(u) A\left(a_{U}\right)
$$

We then conclude as in [5] by using Lemma 3.2 (3), 3.11, 3.12, and 3.5.

Remark 3.5. Lemmas 3.2 and 3.4 imply that

$$
\begin{gathered}
\left\langle\Phi_{m}^{\prime}(u), u-B(u)\right\rangle \geq \frac{1}{8}\|u-B(u)\|^{2} \text { and } \\
\left\|\Phi_{m}^{\prime}(u)\right\| \leq 2(a+b)\left(1+\|u\|^{2}\right)\|u-B(u)\|
\end{gathered}
$$

for all $u \in E_{m}$.
Lemma 3.6. Let $c<d$ and $\alpha>0$. For all $u \in Y_{m}$ such that $\Phi_{m}(u) \in[c, d]$ and $\left\|\Phi_{m}^{\prime}(u)\right\| \geq \alpha$, there exists $\beta>0$ such that $\|u-B(u)\| \geq \beta$.

Proof. By the definition of the operator A, we have for any $u \in Y_{m}$,

$$
\left(a+b\|u\|^{2}\right) \int_{\Omega} \nabla(A u) \nabla u d x=\int_{\Omega} u f(x, u) d x
$$

It follows that

$$
\begin{aligned}
& \Phi_{m}(u)-\frac{1}{\mu}\left(a+b\|u\|^{2}\right) \int_{\Omega} \nabla u \nabla(u-A u) d x \\
& =a\left(\frac{1}{2}-\frac{1}{\mu}\right)\|u\|^{2}+b\left(\frac{1}{4}-\frac{1}{\mu}\right)\|u\|^{4}+\int_{\Omega}\left(\frac{1}{\mu} u f(x, u)-F(x, u)\right) d x
\end{aligned}
$$

which implies, using (H3) and Lemma 3.4 (2), that

$$
\begin{align*}
b\left(\frac{1}{4}-\frac{1}{\mu}\right)\|u\|^{4} & \leq\left|\Phi_{m}(u)\right|+\frac{1}{\mu}\left(a+b\|u\|^{2}\right)\|u\|\|u-A u\| \\
& \leq\left|\Phi_{m}(u)\right|+\frac{2}{\mu}\left(a+b\|u\|^{2}\right)\|u\|\|u-B u\| . \tag{3.14}
\end{align*}
$$

Suppose that there exists a sequence $\left(u_{n}\right) \subset Y_{m}$ such that: $\Phi_{m}\left(u_{n}\right) \in[c, d]$, $\left\|\Phi_{m}^{\prime}\left(u_{n}\right)\right\| \geq \alpha$ and $\left\|u_{n}-B u_{n}\right\| \rightarrow 0$. By (3.14) we see that $\left(\left\|u_{n}\right\|\right)$ is bounded. It follows from Remark 3.5 above that $\Phi_{m}^{\prime}\left(u_{n}\right) \rightarrow 0$, which is a contradiction.

Now we verify the compactness condition for Φ.
Lemma 3.7. Φ satisfies the $(P S)_{\text {nod }}^{\star}$ condition, that is:

- any Palais-Smale sequence of Φ_{m} is bounded,
- any sequence $\left(u_{m_{j}}\right) \subset X$ such that: $m_{j} \rightarrow \infty, u_{m_{j}} \in V_{\frac{\mu_{m_{j}}}{2}}\left(S_{m_{j}}\right)$, $\sup \Phi\left(u_{m_{j}}\right)<\infty$, and $\Phi_{m_{j}}^{\prime}\left(u_{m_{j}}\right)=0$, has a subsequence converging to a sign-changing critical point of Φ.

Proof. For any $u \in Y_{m}$ we have, in view of (H3),

$$
\begin{align*}
& \Phi_{m}(u)-\frac{1}{\mu}\left\langle\Phi_{m}^{\prime}(u), u\right\rangle \\
& =a\left(\frac{1}{2}-\frac{1}{\mu}\right)\|u\|^{2}+b\left(\frac{1}{4}-\frac{1}{\mu}\right)\|u\|^{4}+\int_{\Omega}\left(\frac{1}{\mu} u f(x, u)-F(x, u)\right) d x \tag{3.15}\\
& \geq a\left(\frac{1}{2}-\frac{1}{\mu}\right)\|u\|^{2}+b\left(\frac{1}{4}-\frac{1}{\mu}\right)\|u\|^{4}
\end{align*}
$$

It then follows that any sequence $\left(u_{n}\right) \subset Y_{m}$ such that $\sup _{n} \Phi_{m}\left(u_{n}\right)<\infty$ and $\Phi_{m}^{\prime}\left(u_{n}\right) \rightarrow 0$ is bounded.

Now let $\left(u_{m_{j}}\right) \subset X$ be such that

$$
m_{j} \rightarrow \infty, \quad u_{m_{j}} \in \frac{V_{m_{j}}}{}\left(S_{m_{j}}\right), \quad \sup \Phi\left(u_{m_{j}}\right)<\infty, \quad \Phi_{m_{j}}^{\prime}\left(u_{m_{j}}\right)=0
$$

In view of 3.15 the sequence $\left(u_{m_{j}}\right)$ is bounded. Hence, up to a subsequence, $u_{m_{j}} \rightharpoonup u$ in X and $u_{m_{j}} \rightarrow u$ in $L^{p}(\Omega)$. Observe that the condition $\Phi_{m_{j}}^{\prime}\left(u_{m_{j}}\right)=0$ is weaker than $\Phi^{\prime}\left(u_{m_{j}}\right)=0$. Therefore, the fact that $\left(u_{m_{j}}\right)$ converges strongly, up to a subsequence, to u in X does not follow from the usual standard argument.

Let us denote by $\Pi_{m_{j}}: X \rightarrow Y_{m_{j}}$ the orthogonal projection. Then it is clear that $\Pi_{m_{j}} u \rightarrow u$ in X, as $m_{j} \rightarrow \infty$. We have

$$
\begin{align*}
& \left\langle\Phi_{m_{j}}^{\prime}\left(u_{m_{j}}\right), u_{m_{j}}-\Pi_{m_{j}} u\right\rangle \\
& =\left(a+b\left\|u_{m_{j}}\right\|^{2}\right)\left\langle u_{m_{j}}, u_{m_{j}}-\Pi_{m_{j}} u\right\rangle-\int_{\Omega}\left(u_{m_{j}}-\Pi_{m_{j}} u\right) f\left(x, u_{m_{j}}\right) d x . \tag{3.16}
\end{align*}
$$

Since $\left(u_{m_{j}}\right)$ is bounded, we deduce from (H1) that $\left(\left|f\left(x, u_{m_{j}}\right)\right|_{p / p-1}\right)$ is bounded. We then obtain by using the Hölder inequality

$$
\left|\int_{\Omega}\left(u_{m_{j}}-\Pi_{m_{j}} u\right) f\left(x, u_{m_{j}}\right) d x\right| \leq\left|u_{m_{j}}-\Pi_{m_{j}} u\right|_{p}\left|f\left(x, u_{m_{j}}\right)\right|_{\frac{p}{p-1}} \rightarrow 0
$$

Recalling that $\Phi_{m_{j}}^{\prime}\left(u_{m_{j}}\right)=0$, we deduce from 3.16 that

$$
\left\langle u_{m_{j}}, u_{m_{j}}-\Pi_{m_{j}} u\right\rangle=\left\|u_{m_{j}}\right\|^{2}-\left\langle u_{m_{j}}, u\right\rangle+\left\langle u_{m_{j}}, u-\Pi_{m_{j}} u\right\rangle=\circ(1) .
$$

It then follows that $\left\|u_{m_{j}}\right\| \rightarrow\|u\|$ which implies, since X is uniformly convex, that $u_{m_{j}} \rightarrow u$ in X. It is readily seen that u is a critical point of Φ.

To show that the limit u is sign-changing, we first observe that

$$
\begin{aligned}
\left\langle\Phi_{m_{j}}^{\prime}\left(u_{m_{j}}\right), u_{m_{j}}^{ \pm}\right\rangle=0 & \Leftrightarrow\left(a+b\left\|u_{m_{j}}\right\|^{2}\right)\left\|u_{m_{j}}^{ \pm}\right\|^{2}=\int_{\Omega} u_{m_{j}}^{ \pm} f\left(x, u_{m_{j}}\right) d x \\
& \Rightarrow a\left\|u_{m_{j}}^{ \pm}\right\|^{2} \leq \int_{\Omega} u_{m_{j}}^{ \pm} f\left(x, u_{m_{j}}^{ \pm}\right) d x
\end{aligned}
$$

By using (3.9) and the Sobolev embedding theorem, we obtain

$$
a\left\|u_{m_{j}}^{ \pm}\right\|^{2} \leq \int_{\Omega} u_{m_{j}}^{ \pm} f\left(x, u_{m_{j}}^{ \pm}\right) d x \leq c\left(\varepsilon\left\|u_{m_{j}}^{ \pm}\right\|^{2}+c_{\varepsilon}\left\|u_{m_{j}}^{ \pm}\right\|^{p}\right)
$$

where $c>0$ is a constant. Since $u_{m_{j}}$ is sign-changing, $u_{m_{j}}^{ \pm}$are not equal to 0 . Choosing ε small enough (for instance $\varepsilon<\frac{a}{2 c}$), we see that ($\left\|u_{m_{j}}^{ \pm}\right\|$) are bounded below by strictly positive constants which do not depend on m_{j}. This implies that the limit u of the sequence $\left(u_{m_{j}}\right)$ is also sign-changing.

We are now in a position for proving our main result.
Proof Theorem 1.1. By Lemmas 3.1, 3.4, 3.6, and 3.7, and Remarks 3.3 and 3.5 , conditions (H5), (H6), (H7) and (H8) of Theorem 2.1 are satisfied. It then suffices to apply Theorem 2.1 to conclude.

Acknowledgements. We express our warm gratitude to the anonymous referee for comments which contributed to a significant improvement of the paper. This research was supported by The Fields Institute for Research in Mathematical Sciences and The Perimeter Institute for Theoretical Physics. Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Research and Innovation.

References

[1] C. O. Alves, F. J. S. A. Corrêa, T. F. Ma; Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl. 49, 85-93 (2005).
[2] A. Ambrosetti, P. H. Rabinowitz; Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349-381 (1973).
[3] T. Bartsch; Critical point theory on partially ordered Hilbert spaces, J. Funct. Anal. 186, 117-152 (2001).
[4] T. Bartsch; Infinitely many solutions of a symmetric Dirichlet problem, Nonlinear Anal. 20, 1205-1216 (1993).
[5] T. Bartsch, Z. Liu; Multiple sign changing solutions of a quasilinear elliptic eigenvalue problem involving the p-Laplacian, Comm. Contemp. Math. 6, 245-258 (2004).
[6] C. J. Batkam; Ground state solution of a nonlocal boundary-value problem, Electron. J. Differential Equations, No. 257, 8 pp (2013).
[7] S. Bernstein; Sur une classe d'équations fonctionnelles aux dérivées partielles, Bull. Acad. Sci. URSS. Sér. Math. [Izvestia Akad. Nauk SSSR] 4, 17-26 (1940).
[8] B. Cheng, X. Wu; Existence results of positive solutions of Kirchhoff type problems, Nonlinear Anal. 71, 4883-4892 (2009).
[9] X. He, W. Zou; Infinitely many positive solutions for Kirchhoff-type problems, Nonlinear Anal. 70, 1407-1414 (2009).
[10] X. He, W. Zou, Multiplicity of solutions for a class of Kirchhoff type problems, Acta Math. Appl. Sinica 26, 387-394 (2010).
[11] G. M. Figueiredo, R. G. Nascimento; Existence of a nodal solution with minimal energy for a Kirchhoff equation, Math. Nachr., 1-13 (2014).
[12] G. Kirchhoff; Mechanik, Teubner, Leipzig, 1883.
[13] J. L. Lions; On some questions in boundary value problems of mathematical physics, International Symposium on Continuum, Mechanics and Partial Differential Equations, Rio de Janeiro (1977), Mathematics Studies, Vol. 30, North-Holland, Amsterdam, (1978), 284-346.
[14] W. Liu, X. He; Multiplicity of high energy solutions for superlinear Kirchhoff equations, J. Appl. Math. Comput. 39, 473-487 (2012).
[15] J. Liu, X. Liu, Z.-Q. Wang; Multiple mixed states of nodal solutions for nonlinear Schrödinger systems, Calc. Var. 52, 565-586 (2015).
[16] S. Li, Z.-Q. Wang; Ljusternik-Schnirelman theory in partially ordered Hilbert spaces, Trans. Amer. Math. Soc. 354, 3207-3227 (2002).
[17] Z. Liu, Z.-Q. Wang, J. Zhang; Infinitely many sign-changing solutions for the nonlinear Schrödinger-Poisson system, arXiv:1408.6870.
[18] T. F. Ma, J. E. Muñoz Rivera; Positive solutions for a nonlinear nonlocal elliptic transmission problem, Appl. Math. Lett. 16, 243-248 (2003).
[19] A. Mao, S. Yuan; Sign-changing solutions of a class of nonlocal quasilinear elliptic boundary value problems, J. Math. Anal. Appl. 383, 239-243 (2011).
[20] A. Mao, Z. Zhang; Sign-changing and multiple solutions of Kirchhoff type problems without the PS condition, Nonlinear Anal. 70, 1275-1287 (2009).
[21] R. Palais; Lusternik-Schnirelman theory on Banach manifolds, Topology 5, 115-132 (1966).
[22] K. Perera, Z. Zhang; Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differ. Equ. 221, 246-255 (2006).
[23] K. Perera, Z. Zhang; Sign-changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl. 317, 456-463 (2006).
[24] S. I. Pohožaev; A certain class of quasilinear hyperbolic equations, Mat. Sb. (N.S.), 96(138), 152-166, 168, 1975.
[25] A. Qian, S. Li; Multiple nodal solutions for elliptic equations, Nonlinear Anal. 57, 615-632 (2004).
[26] M. Willem; Minimax Theorems, Birkhauser, Boston (1996).
[27] Y. Wu, Y. Huang, Z. Liu; On a Kirchhoff type problem in \mathbb{R}^{N}, J. Math. Anal. Appl. 425, 548-564 (2015).
[28] W. Zou; On finding sign-changing solutions, J. Funct. Anal. 234, 364-419 (2006).

Cyril Joel Batkam
HEC Montreal, 3000 Chemin de la Cate-Sainte-Catherine, Montrel, QC, H3T 2B1, CANADA

E-mail address: cyril-joel.batkam@hec.ca, cyril.joel.batkam@usherbrooke.ca

[^0]: 2010 Mathematics Subject Classification. 35J60, 35A15, 35J20, 35J25.
 Key words and phrases. Kirchhoff type equation; sign-changing solution; multiple solutions; critical point theorem.
 © 2016 Texas State University.
 Submitted December 17, 2015. Published June 7, 2016.

