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MULTIPLE SIGN-CHANGING SOLUTIONS FOR KIRCHHOFF
TYPE PROBLEMS

CYRIL JOEL BATKAM

Abstract. This article concerns the existence of sign-changing solutions to
nonlocal Kirchhoff type problems of the form

−
“
a + b

Z
Ω
|∇u|2dx

”
∆u = f(x, u) in Ω, u = 0 on ∂Ω,

where Ω is a bounded domain in RN (N = 1, 2, 3) with smooth boundary,

a > 0, b ≥ 0, and f : Ω× R→ R is a continuous function. We first establish a

new sign-changing version of the symmetric mountain pass theorem and then
apply it to prove the existence of a sequence of sign-changing solutions with

higher and higher energy.

1. Introduction

In this article, we study the multiplicity of sign-changing solutions to nonlocal
Kirchhoff type problems of the form

−
(
a+ b

∫
Ω

|∇u|2dx
)

∆u = f(x, u) in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω is a bounded domain in RN (N = 1, 2, 3) with smooth boundary, a > 0,
b ≥ 0, and f : Ω×R→ R is a nonlinear function. We restrict N ≤ 3 because f(x, u)
will behave as |u|p with 4 ≤ p < 2?, where 2? = 2N/(N − 2) is the critical Sobolev
exponent. This will allow us to attack the problem using variational methods.

Problem (1.1) is related to the stationary analogue of the hyperbolic equation

utt −
(
a+ b

∫
Ω

|∇u|2dx
)

∆u = f(x, u),

which is a general version of the equation

ρ
∂2u

∂t2
−
(ρ0

h
+

E

2L

∫ L

0

∣∣∂u
∂x

∣∣2dx)∂2u

∂x2
= 0 (1.2)

proposed by Kirchhoff [12] as an extension of the classical D’Alembert’s wave equa-
tion for free vibrations of elastic strings. This model takes into account the changing
in length of the string produced by transverse vibrations. In (1.2), L is the length
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of the string, h is the area of the cross-section, E is the Young’s modulus of the
material, ρ is the mass density, and ρ0 is the initial tension.

When b > 0, problem (1.1) is said to be nonlocal. In that case, the first equation
in (1.1) is no longer a pointwise equality. This causes some mathematical difficulties
which make the study of such problems particularly interesting. Some early classical
studies of Kirchhoff type problems can be found in [7, 24]. However, problem
(1.1) received much attention only after the paper of Lions [13], where an abstract
framework to attack it was introduced. Some existence and multiplicity results can
be found in [6, 10, 14, 22] without any information on the sign of the solutions.
Recently, Alves et al [1], Ma and Rivera [18], and Cheng and Wu [8] obtained one
positive solution. In [9], He and Zou obtained infinitely many positive solutions.
The existence of sign-changing solutions to (1.1) was considered by Figuereido and
Nascimento [11], Perera and Zhang [23], Mao and Zhang [20], and Mao and Luan
[19]. But only one sign-changing solution was found in these papers. In case f is
a pure power type nonlinearity, Alves et al [1] related the number of solutions of
(1.1) to that of a local problem by using a scaling argument. As a consequence,
one can obtain in that particular case infinitely many sign-changing solutions (see
[27]). However, the scaling approach does not provide high energy solutions even
in the simple case of power type nonlinearity.

In this article, we develop a variational approach to study high-energy sign-
changing solutions to some classes of nonlocal problems.

Our result on (1.1) relies on the following standard conditions on the nonlinear
term f :

(H1) f : Ω× R→ R is continuous and there exists a constant c > 0 such that

|f(x, u)| ≤ c
(
1 + |u|p−1

)
,

where p > 4 for N = 1, 2 and 4 < p < 6 for N = 3.
(H2) f(x, u) = ◦(|u|), uniformly in x ∈ Ω, as u→ 0.
(H3) there exists µ > 4 such that 0 < µF (x, u) ≤ uf(x, u) for all u 6= 0 and for

a.e x ∈ Ω, where F (x, u) =
∫ u

0
f(x, s)ds.

(H4) f(x,−u) = −f(x, u) for all (x, u) ∈ Ω× R.
One can verify easily that the function f(x, u) = |u|p, with p as in condition (H1),
satisfies the above conditions.

Our result reads as follows:

Theorem 1.1. Let a > 0 and b ≥ 0. Assume that f satisfies the conditions (H1)–
(H4). Then (1.1) possesses a sequence (uk) of sign-changing solutions such that

a

2

∫
Ω

|∇uk|2dx+
b

4

(∫
Ω

|∇uk|2dx
)2

−
∫

Ω

F (x, uk)dx→ +∞, as k →∞.

If b = 0, we obtain the following consequence of the above result.

Corollary 1.2. Under assumptions (H1)–(H4), the semilinear problem

−∆u = f(x, u) in Ω,
u = 0 on ∂Ω,

(1.3)

possesses a sequence (uk) of sign-changing solutions such that
1
2

∫
Ω

|∇uk|2dx−
∫

Ω

F (x, uk)dx→ +∞, as k →∞.
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Note that Corollary 1.2 was obtained by Qian and Li [25] by means of the method
of invariant sets of descending flow. Earlier proofs were also given in [3, 16] under
the stronger assumption that f is smooth. The arguments of [25, 3, 16] rely on
sign-changing critical point theorems built only for functionals of the form

u ∈ H1
0 (Ω) 7→ 1

2
‖u‖2 −Ψ(u),

where Ψ′ is completely continuous, and cannot then be applied to (1.1) when b > 0.
Hence our result in Theorem 1.1 can be regarded as an extension of the classical
result for the semilinear problem (1.3) to the case of the nonlinear Kirchhoff type
problem (1.1). We also mention here that the result of Theorem 1.1 was more or
less expected. However, it seems that this paper is the first to provide a formal
proof. Moreover, we believe that the critical point theorem we will establish in the
next section is of independant interest and can be applied to many other nonlocal
problems (indeed, some applications by the author and collaborators will appear in
other journals).

The study of sign-changing solutions is related to several long-standing ques-
tions concerning the multiplicity of solutions for elliptic boundary value problems.
Compared with positive and negative solutions, sign-changing solutions have more
complicated qualitative properties and are more difficult to find. During the last
thirty years, several sophisticated techniques in calculus of variations and in critical
point theory were developed to study the multiplicity of sign-changing solutions to
nonlinear elliptic partial differential equations. In [3] and [16], the authors estab-
lished some multiplicity sign-changing critical point theorems in partially ordered
Hilbert spaces by using Morse theory and the method of invariant sets of descending
flow respectively. In [28], a parameter-depending sign-changing fountain theorem
was established without any Palais-Smale type assumption. More recently, a sym-
metric mountain pass theorem in the presence of invariant sets of the gradient flows
was introduced in [15]. However, it seems that all these powerful approaches are
not directly applicable to find multiple sign-changing solutions to (1.1).

Our approach in proving Theorem 1.1 relies on a new sign-changing critical point
theorem, also established in this paper, which is modelled on the fountain theorem
of Bartsch (see [26, Theorem 3.6]). An essential tool in the proof of this theorem
is a deformation lemma, which allows to lower sub-level sets of a functional, away
from its critical set. The main ingredient in the proof of the deformation lemma is
a suitable negative pseudo-gradient flow, a notion introduced by Palais [21]. Since
we are interesting in sign-changing critical points, the pseudo-gradient flow must be
constructed in such the way that it keeps the positive and negative cones invariant.
This invariance property makes the construction of the flow very complicated when
the problem contains nonlocal terms. In this paper, we borrow some ideas from
recent work by Liu, Liu and Wang [15] on the nonlinear Schödinger systems and by
Liu, Wang and Zhang [17] on the nonlinear Schödinger-Poisson system, where the
pseudo-gradient flows were constructed by using an auxiliary operator. However,
the critical point theorem used in [15, 17] cannot be applied to prove Theorem 1.1
because the corresponding auxiliary operator in the case of (1.1) is not compact.

The rest of this article is organized as follows. In Section 2, we state and prove
the new sign-changing critical point theorem. In Section 3, we provide the proof of
Theorem 1.1.
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Throughout this article, we denote by “→” the strong converge and by “⇀” the
weak convergence.

2. An abstract sign-changing critical point theorem for even
functionals

In this section, we present a variant of the symmetric mountain pass type theorem
which produces a sequence of sign-changing critical points with arbitrary large
energy.

Let Φ be a C1-functional defined on a Hilbert space X of the form

X := ⊕∞j=0Xj , with dimXj <∞. (2.1)

We introduce for k ≥ 2 and m > k + 2 the following notation:

Yk := ⊕kj=0Xj , Zk = ⊕∞j=kXj , Zmk = ⊕mj=kXj , Bk :=
{
u ∈ Yk : ‖u‖ ≤ ρk

}
,

Nk :=
{
u ∈ Zk : ‖u‖ = rk

}
, Nm

k :=
{
u ∈ Zmk : ‖u‖ = rk

}
, where 0 < rk < ρk,

Φm := Φ|Ym , Km :=
{
u ∈ Ym : Φ′m(u) = 0

}
, Em := Ym\Km.

Let Pm be a closed convex cone of Ym. For µm > 0 we set

±D0
m :=

{
u ∈ Ym : dist

(
u,±Pm

)
< µm

}
, Dm = D0

m ∪ (−D0
m), Sm := Ym\Dm.

We will also denote the α-neighborhood of S ⊂ Ym by

Vα(S) :=
{
u ∈ Ym |dist(u, S) ≤ α

}
, ∀α > 0.

Let us now state our critical point theorem. It is a version of the symmetric
mountain pass theorem of Ambrosetti and Rabinowitz [2], and we model it on the
fountain theorem of Bartsch [4].

Theorem 2.1 (Sign-changing fountain theorem). Let Φ ∈ C1(X,R) be an even
functional which maps bounded sets to bounded sets. If, for k ≥ 2 and m > k + 2,
there exist 0 < rk < ρk and µm > 0 such that

(H5) ak := maxu∈∂Bk Φ(u) ≤ 0 and bk := infu∈Nk Φ(u)→ +∞, as k →∞.
(H6) Nm

k ⊂ Sm.
(H7) There exists an odd locally Lipschitz continuous vector field B : Em → Ym

such that:
(i) B

(
(±D0

m) ∩ Em
)
⊂ ±D0

m;
(ii) there exists a constant α1 > 0 such that 〈Φ′m(u), u− B(u)〉 ≥ α1‖u−

B(u)‖2, for any u ∈ Em;
(iii) for a < b and α > 0, there exists β > 0 such that ‖u − B(u)‖ ≥ β if

u ∈ Ym is such that Φm(u) ∈ [a, b] and ‖Φ′m(u)‖ ≥ α.
(H8) Φ satisfies the (PS)?nod condition, that is:

(i) any Palais-Smale sequence of Φm is bounded;
(ii) any sequence (umj ) ⊂ X such that mj → ∞, umj ∈ Vµmj (Smj ),

sup Φ(umj ) <∞, and Φ′mj (umj ) = 0, has a subsequence converging to
a sign-changing critical point of Φ.

Then Φ has a sequence (uk)k of sign-changing critical points in X such that Φ(uk)→
∞, as k →∞.

Condition (H8) is a version of the usual compactness condition in critical point
theory, namely the Palais-Smale condition. We recall that a sequence (un) ⊂ E
is a Palais-Smale sequence of a smooth functional J defined on a Banach space
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E if the sequence
(
J(un)

)
is bounded and J ′(un) → 0, as n → ∞. If every such

sequence possesses a convergent subsequence, then J is said to satisfy the Palais-
Smale condition.

We need a special deformation lemma to prove the above result. We first recall
the following helpful lemma.

Lemma 2.2 ([28, Lemma 2.2]). LetM be a closed convex subset of a Banach space
E. If H :M→ E is a locally Lipschitz continuous map such that

lim
β→0+

dist
(
u+ βH(u),M

)
β

= 0, ∀u ∈M,

then for any u0 ∈M, there exists δ > 0 such that the initial value problem

dσ(t, u0)
dt

= H
(
σ(t, u0)

)
, σ(0, u) = u0,

has a unique solution defined on [0, δ). Moreover, σ(t, u0) ∈M for all t ∈ [0, δ).

Now we state a quantitative deformation lemma.

Lemma 2.3 (Deformation lemma). Let Φ ∈ C1(X,R) be an even functional which
maps bounded sets to bounded sets. Fix m sufficiently large and assume that the
condition (H7) holds. Let c ∈ R and ε0 > 0 such that

∀u ∈ Φ−1
m

(
[c− 2ε0, c+ 2ε0]

)
∩ Vµm

2
(Sm) : ‖Φ′m(u)‖ ≥ ε0. (2.2)

Then for some ε ∈]0, ε0[ there exists η ∈ C
(
[0, 1]× Ym, Ym

)
such that

(i) η(t, u) = u for t = 0 or u /∈ Φ−1
m

(
[c− 2ε, c+ 2ε]

)
;

(ii) η
(
1,Φ−1

m (]−∞, c+ ε]) ∩ Sm
)
⊂ Φ−1

m

(
]−∞, c− ε]

)
;

(iii) Φm
(
η(·, u)

)
is not increasing, for any u;

(iv) η([0, 1]×Dm) ⊂ Dm;
(v) η(t, ·) is odd, for any t ∈ [0, 1].

Proof. Define V : Em → Ym by V (u) = u−B(u), where B is given by (H7). Then
there is δ > 0 such that V (u) ≥ δ for any u ∈ Φ−1

m

(
[c − 2ε0, c + 2ε0]

)
∩ Vµm

2
(Sm)(

in view (H7)-(iii)
)
. We take ε ∈]0,min(ε0,

δα1µm
8 )[ and we define

A1 := Φ−1
m

(
[c− 2ε, c+ 2ε]

)
∩ Vµm

2
(Sm), A2 := Φ−1

m

(
[c− ε, c+ ε]

)
∩ Vµm

4
(Sm),

χ(u) :=
dist(u, Ym\A1)

dist(u, Ym\A1) + dist(u,A2)
, u ∈ Ym

so that χ = 0 on Ym\A1, χ = 1 on A2, and 0 ≤ χ ≤ 1.
We consider the vector field

W (u) :=

{
χ(u)‖V (u)‖−2V (u), for u ∈ A1

0, for u ∈ Ym\A1.

Clearly W is odd and locally Lipschitz continuous. Moreover, by our choice of ε
above we have

‖W (u)‖ ≤ 1
δ
≤ α1µm

8ε
, ∀u ∈ Ym. (2.3)

It follows that the Cauchy problem
d

dt
σ(t, u) = −W (σ(t, u)), σ(0, u) = u ∈ Ym
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has a unique solution σ(·, u) defined on R+. Moreover, σ is continuous on R+×Ym
and the map σ(t, ·) : Ym → Ym is a homeomorphism for each t ≥ 0 (see, for instance
[26]). In view of (2.3), we have

‖σ(t, u)− u‖ ≤
∫ t

0

‖W (σ(s, u))‖ds ≤ α1µm
8ε

t, (2.4)

and by (H7)-(ii)

d

dt
Φm(σ(t, u)) = −〈Φ′m(σ(t, u)), χ(σ(t, u))‖V (σ(t, u))‖−2V (σ(t, u))〉

≤ −α1χ(σ(t, u)).
(2.5)

Define

η : [0, 1]× Ym → Ym, η(t, u) := σ
( 2ε
α1
t, u
)
.

Conclusion (i) of the lemma is clearly satisfied and by (2.5) above (iii) is also
satisfied. Since W is odd, (v) is a consequence of the uniqueness of the solution to
the above Cauchy problem.

We now verify (ii). Let v ∈ η(1,Φ−1
m (] −∞, c + ε]) ∩ Sm). Then v = η(1, u) =

σ( 2ε
α1
, u), where u ∈ Φ−1

m (]−∞, c+ ε]) ∩ Sm.
If there exists t ∈ [0, 2ε

α1
] such that Φm(σ(t, u)) < c − ε, then by (iii) we have

Φm(v) < c− ε.
Assume now that σ(t, u) ∈ Φ−1

m ([c− ε, c+ ε]) for all t ∈ [0, 2ε
α1

]. By (2.4) we have
‖σ(t, u) − u‖ ≤ µm

4 , which means, since u ∈ Sm, that σ(t, u) ∈ Vµm
4

(Sm). Hence
σ(t, u) ∈ A2 and since χ = 1 on A2, we deduce from (2.5) that

Φm
(
σ(

2ε
α1
, u)
)
≤ Φm(u)− α1

∫ 2ε
α1

0

χ(σ(t, u))dt = Φm(u)− 2ε.

Since Φm(u) ≤ c + ε, this implies Φm(v) = Φm(σ( 2ε
α1
, u)) ≤ c − ε. Hence (ii) is

satisfied.
It remains to verify (iv). Since σ is odd in u, it suffices to show that

σ
(
[0,+∞)×D0

m

)
⊂ D0

m. (2.6)

We follow [28].

Claim: We have
σ([0,+∞)×D0

m) ⊂ D0
m. (2.7)

Assume by contradiction that (2.6) does not hold. Then there exist u0 ∈ D0
m and

t0 > 0 such that σ(t0, u0) /∈ D0
m. Choose a neighborhood Nu0 of u0 such that

Nu0 ⊂ D0
m. Then there is a neighborhood N0 of σ(t0, u0) such that σ(t0, ·) : Nu0 →

N0 is a homeomorphism (because σ(t0, ·) : Ym → Ym is a homeomorphism). Since
σ(t0, u0) /∈ D0

m, the set N0\D0
m is not empty. Hence there is w ∈ Nu0 such that

σ(t0, w) ∈ N0\D0
m, contradicting (2.7).

We now terminate by giving the proof of our above claim. By (H7)-(i) we have
B(D0

m ∩ Em) ⊂ D0
m, which implies that B(D0

m ∩ Em) ⊂ D0
m. Since Km ∩ A1 = ∅,

we have σ(t, u) = u for all t ∈ [0, 1] and u ∈ D0
m ∩Km.

Assume that u ∈ D0
m ∩ Em. If there is t1 ∈ (0, 1] such that σ(t1, u) /∈ D0

m,
then there would be s1 ∈ [0, t1) such that σ(s1, u) ∈ ∂D0

m and σ(t, u) /∈ D0
m for all
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t ∈ (s1, t1]. The Cauchy problem

d

dt
µ(t, σ(s1, u)) = −W

(
µ(t, σ(s1, u))

)
, µ(0, σ(s1, u)) = σ(s1, u) ∈ Ym

has σ(t, σ(s1, u)) as unique solution. Recalling that W = 0 on Ym\A1, we have
v −W (v) ∈ D0

m ∩ (Ym\A1) for any v ∈ D0
m ∩ (Ym\A1).

Assume that v ∈ A1∩D0
m. Since ‖V (u)‖ ≥ δ, we deduce that 1−βχ(v)‖V (v)‖−2 ≥

0 for all β such that 0 < β ≤ δ2. Recalling that v ∈ D0
m implies dist(v, Pm) ≤ µm,

that V (v) = v −B(v), and that aPm + bPm ⊂ Pm for all a, b ≥ 0
(
because Pm is a

cone
)
, we obtain for any β ∈]0, δ2]

dist
(
v − βW (v), Pm

)
= dist

(
v − βχ(v)‖V (v)‖−2V (v), Pm

)
= dist

(
v − βχ‖V (v)‖−2(v −B(v)), Pm

)
= dist

(
(1− βχ(v)‖V (v)‖−2)v + βχ(v)‖V (v)‖−2B(v), Pm

)
≤ dist

(
(1− βχ(v)‖V (v)‖−2)v + βχ(v)‖V (v)‖−2B(v),

βχ(u)‖V (v)‖−2Pm + (1− βχ(v)‖V (v)‖−2)Pm
)

≤ (1− βχ(v)‖V (v)‖−2) dist(v, Pm) + βχ(v)‖V (v)‖−2 dist(B(v), Pm)

≤ (1− βχ(v)‖V (v)‖−2)µm + βχ(v)‖V (v)‖−2µm = µm.

It follows that v − βW (v) ∈ D0
m for 0 < β ≤ δ2. This implies that

lim
β→0+

dist
(
v + β(−W (v)), D0

m

)
β

= 0, ∀u ∈ D0
m.

By Lemma 2.2 there exists δ0 > 0 such that σ
(
t, σ(s1, u)

)
∈ D0

m for all t ∈ [0, δ0).
This implies that σ

(
t, σ(s1, u)

)
= σ(t + s1, u) ∈ D0

m for all t ∈ [0, δ0), which
contradicts the definition of s1. This last contradiction assures that σ([0,+∞) ×
D0
m) ⊂ D0

m. �

Proof of Theorem 2.1. (H5) and (H6) imply that ak < bk ≤ infu∈Nmk Φm(u), for k
big enough. Let

Γmk :=
{
γ ∈ C(Bk, Ym) : γ is odd, γ|∂Bk = id and gamma(Dm) ⊂ Dm

}
.

The set Γmk is clearly non empty and for any γ ∈ Γmk the set U :=
{
u ∈ Bk :

‖γ(u)‖ < rk
}

is a bounded symmetric
(
i.e. −U = U

)
neighborhood of the origin

in Yk. Moreover, U is open. Indeed, U is an open subset of Bk (with respect to the
metric topology of Bk) and the conditions γ|∂Bk = id and rk < ρk imply that an
element of ∂Bk cannot belong to U . By the Borsuk-Ulam theorem the continuous
odd map Πk ◦ γ : ∂U ⊂ Yk → Yk−1 has a zero u0, where Πk : X → Yk−1 is the
orthogonal projection. Hence γ(u0) ∈ γ(Bk)∩Nm

k which implies that γ(Bk)∩Nm
k 6=

∅. Since Nm
k ⊂ Sm, we deduce that γ(Bk) ∩ Sm 6= ∅. This intersection property

implies that

ck,m := inf
γ∈Γmk

max
u∈γ(Bk)∩Sm

Φm(u) ≥ inf
u∈Nmk

Φ(u) ≥ bk.
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We would like to show that for any ε0 ∈]0, ck,m−ak2 [, there exists u ∈ Φ−1
m

(
[ck,m −

2ε0, ck,m + 2ε0]
)
∩ Vµm

2
(Sm) such that ‖Φ′m(u)‖ < ε0. Arguing by contradiction,

we assume that we can find ε0 ∈]0, ck,m−ak2 [ such that

‖Φ′m(u)‖ ≥ ε0, ∀u ∈ Φ−1
m

(
[ck,m − 2ε0, ck,m + 2ε0]

)
∩ Vµm

2
(Sm).

We apply Lemma 2.3 with c = ck,m and define, using the deformation η obtained,
the map

θ : Bk → Ym, θ(u) := η(1, γ(u)),

where γ ∈ Γmk satisfies

max
u∈γ(Bk)∩Sm

Φm(u) ≤ ck,m + ε, (2.8)

with ε also given by Lemma 2.3.
Using the properties of η (see Lemma 2.3), one can easily verify that θ ∈ Γmk .

On the other hand, we have

η
(
1, γ(Bk)

)
∩ Sm ⊂ η

(
1,Φ−1

m (]−∞, ck,m + ε]) ∩ Sm
)
. (2.9)

In fact, if u ∈ η
(
1, γ(Bk)

)
∩Sm then u = η

(
1, γ(v)

)
∈ Sm for some v ∈ Bk. Observe

that γ(v) ∈ Sm. Indeed, if this is not true then γ(v) ∈ Dm, and by (iv) of Lemma
2.3 we obtain u = η(1, γ(v)) ∈ Dm which contradicts the fact that u ∈ Sm. Now
(2.8) implies that γ(v) ∈ Φ−1

m (]−∞, ck,m+ ε]). It then follows, using (ii) of Lemma
2.3, that u = η(1, γ(v)) ∈ η

(
1, ] − ∞, ck,m + ε] ∩ Sm

)
. Hence (2.9) holds. Using

(2.9) and (ii) of Lemma 2.3, we obtain

max
u∈θ(Bk)∩Sm

Φm(u) = max
u∈η
(

1,γ(Bk)
)
∩Sm

Φm(u)

≤ max
u∈η
(

1,Φ−1
m (]−∞,ck,m+ε])∩Sm

)Φm(u)

≤ ck,m − ε,

contradicting the definition of ck,m.
The above contradiction assures that for any ε0 ∈]0, ck,m−ak2 [, there exists

u ∈ Φ−1
m

(
[ck,m − 2ε0, ck,m + 2ε0]

)
∩ Vµm

2
(Sm)

such that ‖Φ′m(u)‖ < ε0.
It follows that there is a sequence (unk,m)n ⊂ Vµm2 (Sm) such that

Φ′m(unk,m)→ 0 and Φm(unk,m)→ ck,m, as n→∞.

We deduce from (H8)-(i), using the fact Ym is finite-dimensional, that there exists
uk,m ∈ Vµm2 (Sm) such that

Φ′m(uk,m) = 0 and Φm(uk,m) = ck,m.

Noting that ck,m ≤ maxu∈Bk Φ(u), we deduce using (H8)-(ii) that Φ has a sign-
changing critical point uk such that bk ≤ Φ(uk) ≤ maxu∈Bk Φ(u). Since bk → ∞,
as k →∞, the conclusion follows. �
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3. Proof of the main result

Throughout this section, we assume that (H1)–(H4) are satisfied. We denote by
| · |q the usual norm of the Lebesgue space Lq(Ω). Let X := H1

0 (Ω) be the usual
Sobolev space endowed with the inner product

〈u, v〉 =
∫

Ω

∇u∇v dx

and norm ‖u‖2 = 〈u, u〉, for u, v ∈ H1
0 (Ω).

It is well known that solutions of (1.1) are critical points of the functional

Φ(u) =
a

2
‖u‖2 +

b

4
‖u‖4 −

∫
Ω

F (x, u)dx, u ∈ X := H1
0 (Ω). (3.1)

By a standard argument, one can easily verify that Φ is of class C1 and

〈Φ′(u), v〉 =
(
a+ b‖u‖2

) ∫
Ω

∇u∇vdx−
∫

Ω

vf(x, u)dx (3.2)

Let 0 < λ1 < λ2 < λ3 < · · · be the distinct eigenvalues of the problem

−∆u = λu in Ω, u = 0 on ∂Ω.

Then each λj has finite multiplicity. It is well known that the principal eigenvalue λ1

is simple with a positive eigenfunction e1, and the eigenfunctions ej corresponding
to λj (j ≥ 2) are sign-changing. Let Xj be the eigenspace associated to λj . We set
for k ≥ 2

Yk := ⊕kj=1Xj and Zk = ⊕∞j=kXj .

Lemma 3.1.
(1) For any u ∈ Yk we have Φ(u)→ −∞, as ‖u‖ → ∞.
(2) There exists rk > 0 such that

inf
u∈Zk‖u‖=rk

Φ(u)→∞, as k →∞.

Proof. (1) It is well known that integrating (H3) yields the existence of two con-
stants c1, c2 > 0 such that F (x, u) ≥ c1|u|µ − c2. This together with the fact that
all norms are equivalent in the finite-dimensional subspace Yk imply that

Φ(u) ≤ a

2
‖u‖2 +

b

4
‖u‖4 − c3‖u‖µ + c4, ∀u ∈ Yk,

where c3, c4 are positive constant. Since µ > 4, it follows that Φ(u) → −∞, as
‖u‖ → ∞.

(2) Using (H1), we obtain

Φ(u) ≥ a

2
‖u‖2 − c5|u|pp − c6, ∀u ∈ X,

where c5, c6 are poisitive constant. Set

βk := sup
v∈Zk, |v‖=1

|v|p.

Then we obtain
Φ(u) ≥ a

(1
2
− 1
p

)(c5
a
pβpk

) 2
2−p − c6

for every u ∈ Zk such that

‖u‖ = rk :=
(c5
a
pβpk

) 1
2−p .
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We know from [26, Lemma 3.8] that βk → 0, as k →∞. This implies that rk →∞,
as k →∞. �

Now we fix k large enough, and for m > k + 2, we set

Φm := Φ|Ym , Km :=
{
u ∈ Ym : Φ′m(u) = 0

}
, Em := Ym\Km,

Pm :=
{
u ∈ Ym ; u(x) ≥ 0

}
, Zmk := ⊕mj=kXj , Nm

k :=
{
u ∈ Zmk | ‖u‖ = rk

}
.

We remark that for all u ∈ Pm\
{

0
}

we have
∫

Ω
ue1dx > 0, while for all u ∈ Zk,∫

Ω
ue1dx = 0, where e1 is the principal eigenfunction of the Laplacian. This implies

that Pm ∩ Zk =
{

0
}

. It then follows, since Nm
k is compact, that

δm := dist
(
Nm
k ,−Pm ∪ Pm

)
> 0. (3.3)

For u ∈ Ym fixed, we consider the functional

Iu(v) =
1
2
(
a+ b‖u‖2

) ∫
Ω

|∇v|2dx−
∫

Ω

vf(x, u)dx, v ∈ Ym. (3.4)

It is not difficult to see that Iu is of class C1, coercive, bounded below, weakly
lower semicontinuous, and strictly convex. Therefore Iu admits a unique minimizer
v = Au ∈ Ym, which is the unique solution to the problem

−
(
a+ b‖u‖2

)
∆v = f(x, u), v ∈ Ym.

Clearly, the set of fixed points of A coincide with Km. Moreover, the operator
A : Ym → Ym has the following important properties.

Lemma 3.2.
(1) A is continuous and maps bounded sets to bounded sets.
(2) For any u ∈ Ym we have

〈Φ′m(u), u−Au〉 ≥ a‖u−Au‖2, (3.5)

‖Φ′m(u)‖ ≤ (a+ b)
(
1 + ‖u‖2

)
‖u−Au‖. (3.6)

(3) There exists µm ∈]0, δm[ such that A(±D0
m) ⊂ ±D0

m, where δm is defined
by (3.3).

Proof. (1) Let (un) ⊂ Ym such that un → u. We set vn = Aun and v = Au. By
the definition of A we have for any w ∈ Ym,(

a+ b‖un‖2
) ∫

Ω

∇vn∇w dx =
∫

Ω

wf(x, un)dx (3.7)(
a+ b‖u‖2

) ∫
Ω

∇v∇w dx =
∫

Ω

wf(x, u)dx. (3.8)

Taking w = vn − v in (3.7) and in (3.8), and using the Hölder inequality and the
Sobolev embedding theorem, we obtain(

a+ b‖un‖2
)
‖vn − v‖2

= b
(
‖un‖2 − ‖u‖2

) ∫
Ω

∇v∇(vn − v)dx+
∫

Ω

(v − vn)
(
f(un)− f(u)

)
dx

≤ c1
∣∣‖un‖2 − ‖u‖2∣∣‖v‖‖vn − v‖+ c2‖vn − v‖|f(un)− f(u)| p

p−1
,

where c1, c2 > 0 are constant. By (H1) and [26, Theorem A.2], we have f(un) −
f(u)→ 0 in L

p
p−1 (Ω). Hence ‖Aun−Au‖ = ‖vn− v‖ → 0, that is, A is continuous.
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On the other hand, for any u ∈ Ym we have, taking v = w = Au in (3.8)(
a+ b‖u‖2

)
‖Au‖2 =

∫
Ω

Auf(x, u)dx.

By using (H1), the Hölder inequality, and the Sobolev embedding theorem, we
obtain

a‖Au‖ ≤ C
(
1 + ‖u‖p−1),

where C > 0 a constant. This shows that Au is bounded whenever u is bounded.
(2) Taking w = u−Au in (3.8), we obtain(

a+ b‖u‖2
) ∫

Ω

∇(Au)∇(u−Au)dx =
∫

Ω

(u−Au)f(x, u)dx,

which implies

〈Φ′m(u), u−Au〉 =
(
a+ b‖u‖2

)
‖u−Au‖2 ≥ a‖u−Au‖2.

On the other hand, using (3.8), we obtain

〈Φ′m(u), w〉 =
(
a+ b‖u‖2

) ∫
Ω

∇u∇wdx−
∫

Ω

wf(x, u)dx

=
(
a+ b‖u‖2

) ∫
Ω

∇(u−Au)∇wdx, ∀w ∈ Ym.

This implies
‖Φ′m(u)‖ ≤

(
a+ b‖u‖2

)
‖u−Au‖.

(3) It follows from (H1) and (H2) that for each ε > 0 there exists cε > 0 such
that

|f(x, t)| ≤ ε|t|+ cε|t|p−1, ∀t ∈ R. (3.9)
Let u ∈ Ym and let v = Au. As usual we denote w± = max{0,±w}, for any w ∈ X.
Taking w = v+ in (3.8) and using the Hölder inequality, we obtain(

a+ b‖u‖2
)
‖v+‖2 =

∫
Ω

v+f(x, u)dx ≤ ε|u+|2|v+|2 + cε|u+|p−1
p |v+|p,

which implies

‖v+‖2 ≤ 1
a

(
ε|u+|2|v+|2 + cε|u+|p−1

p |v+|p
)
. (3.10)

On the other hand it is not difficult to see that |u+|q ≤ |u − w|q for all w ∈ −Pm
and 1 ≤ q ≤ 2?. Hence there is a constant c1 = c1(q) > 0 such that |u+|q ≤
c1 dist(u,−Pm). It is obvious that dist(v,−Pm) ≤ ‖v+‖. So we deduce from (3.10)
and the Sobolev embedding theorem that

dist(v,−Pm)‖v+‖ ≤ ‖v+‖2

≤ c2
(
εdist(u,−Pm) + cε dist(u,−Pm)p−1

)
‖v+‖,

where c2 > 0 is constant. This implies

dist(v,−Pm) ≤ c2
(
εdist(u,−Pm) + cε dist(u,−Pm)p−1

)
.

Similarly one can show that

dist(v, Pm) ≤ c3
(
εdist(u, Pm) + cε dist(u, Pm)p−1

)
,

for some constant c3 > 0.
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Choosing ε small enough, we can then find µm ∈]0, δm[ such that

dist(v,±Pm) ≤ 1
2

dist(u,±Pm)

whenever dist(u,±Pm) < µm. �

Using the µm obtained above, we define

±D0
m :=

{
u ∈ Ym : dist

(
u,±Pm

)
< µm

}
,

Dm = D0
m ∪ (−D0

m), Sm := Ym\Dm.

Remark 3.3. Note that µm < δm implies Nm
k ⊂ Sm.

The vector field A : Ym → Ym does not satisfy the assumption (H7) of Theorem
2.1 as it is not locally Liptschitz continuous. However, it will be used in the spirit
of [5] to construct a vector field which will satisfy the above mentioned condition.

Lemma 3.4. There exists an odd locally Lipschitz continuous operator B : Em →
Ym such that

(1) 〈Φ′(u), u−B(u)〉 ≥ 1
2‖u−A(u)‖2, for any u ∈ Em.

(2) 1
2‖u−B(u)‖ ≤ ‖u−A(u)‖ ≤ 2‖u−B(u)‖, for any u ∈ Em.

(3) B
(
(±D0

m) ∩ Em
)
⊂ ±D0

m.

The proof of this lemma follows the lines of [5]. We provide a sketch of the proof
here for completeness.

Proof. We define ∆1,∆2 : Em → R as

∆1(u) =
1
2
‖u−Au‖ and ∆2(u) =

a

2(a+ b)
(1 + ‖u‖2)−1‖u−Au‖. (3.11)

For any u ∈ Em we choose γ(u) > 0 such that

‖A(v)−A(w)‖ < min
{

∆1(v),∆1(w),∆2(v),∆2(w)
}

(3.12)

holds for every v, w ∈ N(u) :=
{
z ∈ Ym ; ‖z − u‖ < γ(u)

}
.

Let V be a locally finite open refinement of
{
N(u) ; u ∈ Em

}
and define

V? :=
{
V ∈ V : D0

m ∩ V 6= ∅, −D0
m ∩ V 6= ∅, −D0

m ∩D0
m ∩ V 6= ∅

}
,

U :=
⋃

V ∈V\V?

{
V
}
∪
⋃
V ∈V?

{
V \D0

m, V \(−D0
m)
}
.

By construction U is a locally finite open refinement of
{
N(u) : u ∈ Em

}
and has

a property that any U ∈ U is such that

U ∩D0
m 6= ∅ and U ∩ (−D0

m) 6= ∅ =⇒ U ∩D0
m ∩ (−D0

m) 6= ∅. (3.13)

Let
{

ΠU : U ∈ U
}

be the partition of unity subordinated to U defined by

ΠU (u) :=
αU (u)∑
v∈U αU (v)

, where αU (u) = dist
(
u,Em\U

)
.

For any u ∈ U choose aU such that if U ∩ (±D0
m) 6= ∅ then aU ∈ U ∩ (±D0

m)
(
such

an element exists in view of (3.13)
)
. Define B : Em → Ym by

B(u) :=
1
2
(
H(u)−H(−u)

)
, where H(u) =

∑
U∈U

ΠU (u)A(aU ).

We then conclude as in [5] by using Lemma 3.2-(3), (3.11), (3.12), and (3.5). �
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Remark 3.5. Lemmas 3.2 and 3.4 imply that

〈Φ′m(u), u−B(u)〉 ≥ 1
8
‖u−B(u)‖2 and

‖Φ′m(u)‖ ≤ 2(a+ b)(1 + ‖u‖2)‖u−B(u)‖,

for all u ∈ Em.

Lemma 3.6. Let c < d and α > 0. For all u ∈ Ym such that Φm(u) ∈ [c, d] and
‖Φ′m(u)‖ ≥ α, there exists β > 0 such that ‖u−B(u)‖ ≥ β.

Proof. By the definition of the operator A, we have for any u ∈ Ym,(
a+ b‖u‖2

) ∫
Ω

∇(Au)∇udx =
∫

Ω

uf(x, u)dx.

It follows that

Φm(u)− 1
µ

(
a+ b‖u‖2

) ∫
Ω

∇u∇(u−Au)dx

= a
(1

2
− 1
µ

)
‖u‖2 + b

(1
4
− 1
µ

)
‖u‖4 +

∫
Ω

( 1
µ
uf(x, u)− F (x, u)

)
dx

which implies, using (H3) and Lemma 3.4-(2), that

b
(1

4
− 1
µ

)
‖u‖4 ≤ |Φm(u)|+ 1

µ

(
a+ b‖u‖2

)
‖u‖‖u−Au‖

≤ |Φm(u)|+ 2
µ

(
a+ b‖u‖2

)
‖u‖‖u−Bu‖.

(3.14)

Suppose that there exists a sequence (un) ⊂ Ym such that: Φm(un) ∈ [c, d],
‖Φ′m(un)‖ ≥ α and ‖un −Bun‖ → 0. By (3.14) we see that (‖un‖) is bounded. It
follows from Remark 3.5 above that Φ′m(un)→ 0, which is a contradiction. �

Now we verify the compactness condition for Φ.

Lemma 3.7. Φ satisfies the (PS)?nod condition, that is:
• any Palais-Smale sequence of Φm is bounded,
• any sequence (umj ) ⊂ X such that: mj →∞, umj ∈ Vµmj

2
(Smj ),

sup Φ(umj ) < ∞, and Φ′mj (umj ) = 0, has a subsequence converging to a
sign-changing critical point of Φ.

Proof. For any u ∈ Ym we have, in view of (H3),

Φm(u)− 1
µ
〈Φ′m(u), u〉

= a
(1

2
− 1
µ

)
‖u‖2 + b

(1
4
− 1
µ

)
‖u‖4 +

∫
Ω

( 1
µ
uf(x, u)− F (x, u)

)
dx

≥ a
(1

2
− 1
µ

)
‖u‖2 + b

(1
4
− 1
µ

)
‖u‖4.

(3.15)

It then follows that any sequence (un) ⊂ Ym such that supn Φm(un) < ∞ and
Φ′m(un)→ 0 is bounded.

Now let (umj ) ⊂ X be such that

mj →∞, umj ∈ Vµmj
2

(Smj ), sup Φ(umj ) <∞, Φ′mj (umj ) = 0.
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In view of (3.15) the sequence (umj ) is bounded. Hence, up to a subsequence,
umj ⇀ u in X and umj → u in Lp(Ω). Observe that the condition Φ′mj (umj ) = 0
is weaker than Φ′(umj ) = 0. Therefore, the fact that (umj ) converges strongly, up
to a subsequence, to u in X does not follow from the usual standard argument.

Let us denote by Πmj : X → Ymj the orthogonal projection. Then it is clear
that Πmju→ u in X, as mj →∞. We have

〈Φ′mj (umj ), umj −Πmju〉

=
(
a+ b‖umj‖2

)
〈umj , umj −Πmju〉 −

∫
Ω

(
umj −Πmju

)
f(x, umj )dx.

(3.16)

Since (umj ) is bounded, we deduce from (H1) that
(
|f(x, umj )|p/p−1

)
is bounded.

We then obtain by using the Hölder inequality∣∣ ∫
Ω

(
umj −Πmju

)
f(x, umj )dx

∣∣ ≤ |umj −Πmju|p|f(x, umj )| p
p−1
→ 0.

Recalling that Φ′mj (umj ) = 0, we deduce from (3.16) that

〈umj , umj −Πmju〉 = ‖umj‖2 − 〈umj , u〉+ 〈umj , u−Πmju〉 = ◦(1).

It then follows that ‖umj‖ → ‖u‖ which implies, since X is uniformly convex, that
umj → u in X. It is readily seen that u is a critical point of Φ.

To show that the limit u is sign-changing, we first observe that

〈Φ′mj (umj ), u
±
mj 〉 = 0 ⇔

(
a+ b‖umj‖2

)
‖u±mj‖

2 =
∫

Ω

u±mjf(x, umj )dx

⇒ a‖u±mj‖
2 ≤

∫
Ω

u±mjf(x, u±mj )dx.

By using (3.9) and the Sobolev embedding theorem, we obtain

a‖u±mj‖
2 ≤

∫
Ω

u±mjf(x, u±mj )dx ≤ c
(
ε‖u±mj‖

2 + cε‖u±mj‖
p
)
,

where c > 0 is a constant. Since umj is sign-changing, u±mj are not equal to 0.
Choosing ε small enough

(
for instance ε < a

2c

)
, we see that (‖u±mj‖) are bounded

below by strictly positive constants which do not depend on mj . This implies that
the limit u of the sequence (umj ) is also sign-changing. �

We are now in a position for proving our main result.

Proof Theorem 1.1. By Lemmas 3.1, 3.4, 3.6, and 3.7, and Remarks 3.3 and 3.5,
conditions (H5), (H6), (H7) and (H8) of Theorem 2.1 are satisfied. It then suffices
to apply Theorem 2.1 to conclude. �
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