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AGE-STRUCTURED MODEL OF HEMATOPOIESIS DYNAMICS
WITH GROWTH FACTOR-DEPENDENT COEFFICIENTS

MOSTAFA ADIMY, YOUSSEF BOURFIA,

MY LHASSAN HBID, CATHERINE MARQUET

Abstract. We propose and analyze an age-structured partial differential model
for hematopoietic stem cell dynamics, in which proliferation, differentiation

and apoptosis are regulated by growth factor concentrations. By integrating
the age-structured system over the age and using the characteristics method,

we reduce it to a delay differential system. We investigate the existence and

stability of the steady states of the reduced delay differential system. By con-
structing a Lyapunov function, the trivial steady state, describing cell’s dying

out, is proven to be globally asymptotically stable when it is the only equilib-

rium of the system. The asymptotic stability of the positive steady state, the
most biologically meaningful one, is analyzed using the characteristic equation.

This study may be helpful in understanding the uncontrolled proliferation of

blood cells in some hematological disorders.

1. Introduction

Hematopoiesis is the physiological process that ensures the production and reg-
ulation of blood cells. It involves a pool of undifferentiated and self-renewing cells
called hematopoietic stem cells (HSCs), located in the bone marrow, from which
arises all differentiated blood cell lineages (red blood cells, white cells and platelets).

Proliferation, differentiation and apoptosis are processes occurring during hema-
topoiesis and are all mediated by a wide range of hormone-like molecules called
growth factors. The growth factors play an activator or inhibitor role in this pro-
cess and they act on every cell compartment: primitive stem cells, progenitors and
precursors. Their role to maintain homeostasis of blood cells is essential. The pro-
duction of red blood cells (erythropoiesis) and platelets (megakaryopoiesis) seems
to be regulated by specific growth factors whereas white blood cell production
(leukopoiesis) is more complicated and less clearly understood. For the red blood
cells, the erythropoietin (EPO) helps to regulate erythrocyte production (Adamson
[1]). A decrease in mature red blood cell count leads to a decrease in tissue p02

levels, which in turn increases the production of EPO by the kidneys and controls
erythropoiesis. For the platelets, it seems that their production and regulation
are controlled by feedback mechanisms involving specific cytokines such as throm-
bopoietin (TPO). However, it has been shown that the cytokine TPO affects other
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cell lines as well (Tanimukai et al [22]), which means that the three lines are prob-
ably not fully independent, and there is a feedback control from mature cells to
HSCs. Regulation of the multiple fates of HSCs, including quiescence, self-renewal,
differentiation and apoptosis, requires the cooperative actions of several growth
factors that bind to receptors on these cells. Many of the important players in this
regulation have been identified (Tanimukai et al [22]).

Due to the number of divisions, and the quantity of cells and cytokines involved
in hematopoiesis, issues may arise at different cellular levels and sometimes result
in disorders affecting blood cells. Among a wide variety of disorders affecting blood
cells, myeloproliferative diseases are of great interest. They are characterized by a
group of conditions that cause blood cells to grow abnormally. They include chronic
myelogenous leukemia, a cancer of white blood cells. In some cases, chronic myel-
ogenous leukemia exhibits periodic oscillations in all blood cell counts (see [19]).
Myeloproliferative disorders usually originate from the HSC compartment: an un-
controlled proliferation in the HSC compartment can perturb the entire system and
leads to a quick or slow proliferation. A low blood counts (white cell count, red cell
count, or platelet count) can be associated with many diseases and conditions that
cause the body to have too few blood cells. It can be associated to a bone marrow
failure, consecutive to disease of another organ (for example, liver or kidney), or
secondary to treatment with some drugs (for example, chemotherapy drugs).

Mathematical modeling of hematopoiesis dynamics has been the focus of a large
panel of researchers over the last four decades, with attempts to improve the un-
derstanding of the complex mechanisms regulating HSC functions, throughout the
course of normal and pathological hematopoiesis. One of the earliest mathematical
models that shed some light on this process was proposed by Mackey [14] in 1978
inspired by the work of Lajtha [13], and Burns and Tannock [8]. Mackey’s model
is a system of two delay differential equations describing the evolution of the HSC
population divided into proliferating and quiescent cells (also called resting cells).
This model has been studied, analyzed and applied to hematological diseases by
many authors (see for instance, [5, 16, 17, 19, 20, 21]). We refer the reader inter-
ested in this topic, in addition to the previous articles, to the review papers by
Adimy and Crauste [2], Haurie et al [11], Mackey et al [15], and the references
therein.

Mathematical models describing the action of growth factors on the hematopoiesis
process have been proposed by Bélair et al in 1995 [7], and Mahaffy et al in 1998
[18]. They considered an age-structured model of HSC dynamics, coupled with a
differential equation to describe the action of a growth factor on the reintroduction
rate from the resting phase to the proliferating one. In 2006, Adimy et al [6] pro-
posed a system of three delay differential equations describing the production of
blood cells under the action of growth factors assumed to act on the rate of reintro-
duction into the proliferating phase. Adimy and Crauste considered and analyzed
two models of hematopoiesis dynamics with: the influence of growth factors on
HSC apoptosis [3], and the action of growth factors on the apoptosis rate as well
as on the reintroduction rate into the proliferating phase [4].

In this paper, we consider the influence of growth factors on the apoptosis rate,
on the differentiation rates (of the proliferating and quiescent cells), as well as on
the reintroduction rate into the proliferating phase (see Figure 1). The resulting
system is composed by three age-structured partial differential equations for the



EJDE-2016/140 AGE-STRUCTURED MODEL OF HEMATOPOIESIS DYNAMICS 3

different compartments of cell population, coupled with a system of four differential
equations to describe the action of growth factors on different parameters of the
system. To our knowledge this model has never been considered in hematopoiesis
dynamics.

The paper is organized as follows. In section 2, we provide some biological back-
ground leading to an age-structured partial differential model for HSC dynamics.
In section 3, we use the method of characteristics to reduce the model to a system
of delay differential equations. In section 4, we establish some proprieties of the
solutions such as positivity and boundedness. In section 5, we investigate the exis-
tence of steady states. In section 6, we prove the global asymptotic stability of the
trivial steady state using a Lyapunov function. In section 7, we linearize the delay
system about each steady state and we deduce the delay-dependent characteristic
equation. Then, we obtain the local asymptotic stability of the positive steady
state.

2. Age-structured partial differential model

We consider two cell populations, HSC population (in the bone marrow) and
mature blood cell population (in the bloodstream), for instance red blood cells.
The HSC population is divided into proliferating and quiescent cells. Proliferating
cells are the ones performing the cell division (growth, DNA synthesis and mitosis).
Quiescent (or resting) HSCs are actually in a quiescent phase (G0-phase). HSCs
generate cells that undergo terminal differentiation resulting in mature circulating
blood cells. Mature blood cells control the HSC population through growth factors.
We denote respectively by n(t, a), p(t, a) and m(t, a) the cell population densities of
quiescent HSCs, proliferating HSCs and mature cells, with age a ≥ 0 at time t ≥ 0.
The age represents the time spent by a cell in one of the three compartments. A
schematic representation of this model is given in Figure 1. Details of the modeling
are presented hereafter.

Quiescent cells are assumed to die with a constant rate 0 ≤ δ ≤ 1, and they
can be introduced into the proliferating phase with a rate β in order to divide. We
suppose that β depends upon a growth factor concentration E1, that stimulates
the proliferative capacity of HSCs: the more growth factor, the more proliferation
of HSCs. Hence the feedback induced by the growth factor E1 is positive, and
the function β is supposed to be increasing, with β(0) = 0. As soon as a cell
enters the proliferating phase, it is committed to divide a time τ ≥ 0 later. We
assume that the duration of the proliferating phase is the same for all cells, so τ
is constant, and describes an average duration of the cell cycle. The population
of proliferating cells is controlled by apoptosis γ ≥ 0, which is a programmed cell
death that eliminates deficient cells and also maintains the homeostatic state of cell
population. We assume that the apoptosis rate γ depends upon the concentration
of growth factor E2 (for example, EPO, see [12]). Since an increase of the growth
factor concentration E2 leads to a decrease of the apoptosis rate, we assume that γ is
a decreasing function of E2 and limE2→+∞ γ(E2) = 0. The portion of quiescent cells
that differentiate to mature cells is denoted by KN ≥ 0 which, we assume, depends
upon a growth factor concentration denoted E3. Since an increase of growth factor
E3 leads to an increase of the differentiation, we suppose that E3 7→ KN (E3) is an
increasing function. Here, we only consider one kind of mature cells, for instance
red blood cells. Then, we can consider that 1− (δ+β+KN ) ≥ 0, the remainder of
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quiescent cells, differentiate to other cell lineages (for instance, white blood cells and
platelets). At the end of the proliferating phase, each cell divides into two daughter
cells. The daughter cells can either differentiate and enter the mature phase or
stay in HSC compartment and enter to the G0-phase. We assume that the part of
daughter cells α ≥ 0 that stay in HSC compartment is constant. This is important
because HSCs could maintain their characteristic properties of self-renewal and
lack of differentiation could provide an unlimited source of cells to maintain the
homeostasis. The portion of daughter cells entering the mature phase is denoted
by KP ≥ 0 which, we assume, depends upon a growth factor concentration denoted
E4. As for quiescent cells, we suppose that E4 7→ KP (E4) is an increasing function
and that the portion 1− (α +KP ) ≥ 0 of daughter cells differentiate to other cell
lineages. We suppose that the mature cells die with a constant rate µ ≥ 0. All the
growth factor concentrations E1, E2, E3 and E4 are controlled by the mature cells
through functions fi, i = 1, 2, 3, 4 acting as negative feedbacks of the mature blood
cells on the production of growth factors (see Figure 1).

Figure 1. Schematic representation of HSC dynamics. Solid ar-
rows represent the mechanisms taken into account: differentiation,
cell division, reintroduction into the proliferating phase, apopto-
sis and natural death. The dependency of the parameters upon
growth factors are represented by dashed lines. The dash-dotted
line represents the feedback control from mature cells to the growth
factors.
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The densities n(t, a), p(t, a) and m(t, a) satisfy, for t > 0, the system

∂n

∂t
+
∂n

∂a
= −(δ + β(E1(t)))n(t, a), a > 0,

∂p

∂t
+
∂p

∂a
= −γ(E2(t))p(t, a), 0 < a < τ,

∂m

∂t
+
∂m

∂a
= −µm(t, a), a > 0.

(2.1)

System (2.1) is completed by boundary conditions (for a = 0), that describe the
flux of cells entering each phase, and by initial conditions (for t = 0). Then the
boundary conditions of (2.1) are, for t > 0,

n(t, 0) = 2αp(t, τ),

p(t, 0) = β(E1(t))N(t),

m(t, 0) = KN (E3(t))N(t) + 2KP (E4(t))p(t, τ),
(2.2)

where

N(t) =
∫ +∞

0

n(t, a)da, P (t) =
∫ τ

0

p(t, a)da, M(t) =
∫ +∞

0

m(t, a)da,

and Ei(t), i = 1, 2, 3, 4, are growth factor concentrations. Initial conditions of (2.1)
are given by nonnegative L1-functions n0, p0 and m0, such that

n(0, a) = n0(a), m(0, a) = m0(a), for a ≥ 0,

p(0, a) = p0(a), for a ∈ [0, τ ].
(2.3)

In addition, we assume that

lim
a→+∞

n(t, a) = lim
a→+∞

m(t, a) = 0, for t ≥ 0.

The growth factor concentrations Ei(t), follow the evolution equations

E′i(t) = −kiEi(t) + fi(M(t)), (2.4)

where the coefficients ki > 0 are the degradation rates of the growth factors Ei.
We assume that the functions M 7→ fi(M) are positive, decreasing and satisfy
limM→+∞ fi(M) = 0.

3. Reduction to a delay differential system

The age-structured model (2.1)-(2.2)-(2.3)-(2.4) can be reduced to a delay dif-
ferential system. The method of characteristics implies, for t > 0 and a ∈ (0, τ),
that

p(t, a) =

p0(a− t) exp
(
−
∫ t
0
γ(E2(s))ds

)
, if 0 < t < a,

β(E1(t− a))N(t− a) exp
(
−
∫ t
t−a γ(E2(s))ds

)
, if 0 < a < t.

(3.1)

Integrating the first equation of (2.1) with respect to the age variable, we obtain

N ′(t) = −δN(t)− β(E1(t))N(t) + n(t, 0).

Using the first equation of (2.2), we obtain

N ′(t) = −(δ + β(E1(t)))N(t) + 2αp(t, τ).



6 M. ADIMY, Y. BOURFIA, M. L. HBID, C. MARQUET EJDE-2016/140

Thanks to (3.1), we obtain

N ′(t) = −(δ + β(E1(t)))N(t)

+ 2α

{
p0(a− t) exp(−

∫ t
0
γ(E2(s))ds), if t < τ,

β(E1(t− τ))N(t− τ) exp(−
∫ t
t−τ γ(E2(s)) ds), if t > τ.

(3.2)

Integrating the last equation of (2.1) with respect to the age variable, we obtain

M ′(t) = −µM(t) +m(t, 0). (3.3)

Then, using the last boundary condition of (2.2), we obtain

M ′(t) = −µM(t) +KN (E3(t))N(t) + 2KP (E4(t))p(t, τ).

We conclude that
M ′(t) = −µM(t) +KN (E3(t))N(t) + 2KP (E4(t))

×

{
p0(a− t) exp(−

∫ t
0
γ(E2(s))ds), if t < τ,

β(E1(t− τ))N(t− τ) exp(−
∫ t
t−τ γ(E2(s)) ds), if t > τ.

(3.4)

Note that, for t > τ , we have

P (t) =
∫ τ

0

β(E1(t− a))N(t− a) exp
(
−
∫ t

t−a
γ(E2(s))ds

)
da.

Then, the asymptotic behavior of P is related to E1, E2 and N . On the other
hand, N , M , and Ei, do not depend on P , then, we can focus on the study of
the solutions (N,M,Ei). One can notice that, on the interval [0, τ ] the functions
(N,M,Ei) satisfy a non-autonomous ordinary differential system, and for t > τ ,
they satisfy the delay differential system

N ′(t) = −(δ + β(E1(t)))N(t)

+ 2αβ(E1(t− τ))N(t− τ) exp
(
−
∫ t

t−τ
γ(E2(s)) ds

)
,

M ′(t) = −µM(t) +KN (E3(t))N(t)

+ 2KP (E4(t))β(E1(t− τ))N(t− τ) exp
(
−
∫ t

t−τ
γ(E2(s)) ds

)
,

E′i(t) = −kiEi(t) + fi(M(t)),

(3.5)

with initial conditions solutions of the ordinary differential system (2.4)-(3.2)-(3.4)
defined on the interval [0, τ ]. For each continuous initial condition, the system (3.5)
has a unique solution, defined for t > τ (see Hale and Verduyn Lunel [10]). From
now on, we make a translation of the initial conditions so as to define them on the
interval [−τ, 0], as it can be found in Hale and Verduyn Lunel [10].

4. Positivity and boundedness of solutions

We focus on the positivity and boundedness properties of the solutions (N,M,Ei)
of system (3.5). The following result states that all solutions of system (3.5) are
nonnegative, provided that initial conditions are nonnegative.

Proposition 4.1. The solutions of system (3.5) associated with nonnegative initial
conditions are nonnegative.
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Proof. Let (N(t),M(t), Ei(t)) be a solution of (3.5). Firstly, we check that N is
nonnegative. Assume that there exist t0 > 0 and ε ∈ (0, τ) such that N(t) > 0, for
0 < t < t0, N(t0) = 0 and N(t) < 0, for t ∈ (t0, t0 + ε). Let t ∈ (t0, t0 + ε). It
follows from (3.5), that

N ′(t0) = 2αβ(E1(t0 − τ))N(t0 − τ) exp
(
−
∫ t0

t0−τ
γ(E2(s)) ds

)
> 0.

This gives a contradiction. Consequently, N(t) is nonnegative for t ≥ 0. Using
a similar reasoning, we prove that M(t) is nonnegative. Finally, the positivity of
Ei(t) follows from the fact that fi is positive. �

We now concentrate on the boundedness properties of the solutions of system
(3.5). We start by proving the following lemma.

Lemma 4.2. The solution Ei(t) of (3.5) is strictly decreasing as long as Ei(t) >
fi(0)/ki, and either:

(i) Ei(t) > fi(0)/ki for all t ≥ 0 and then, limt→+∞Ei(t) = fi(0)/ki, or
(ii) there exists ti ≥ 0 such that Ei(ti) = fi(0)/ki and then, Ei(t) ≤ fi(0)/ki,

for all t ≥ ti.

Proof. Using the variation of constant formula, we can write

Ei(t) = e−kitEi(0) + e−kit
∫ t

0

ekisfi(M(s))ds, t ≥ 0.

Then, we deduce that

0 ≤ Ei(t) ≤ e−kitEi(0) +
fi(0)
ki

(1− e−kit) ≤ max
{
Ei(0),

fi(0)
ki

}
.

Therefore, Ei is bounded. Suppose that Ei(t) > fi(0)/ki. Then

E′i(t) = −kiEi(t) + fi(M(t)) < fi(0) + fi(M(t)) ≤ 0.

Consequently, Ei(t) is decreasing as long as Ei(t) > fi(0)/ki.
(i) Suppose that Ei(t) > fi(0)/ki, for all t ≥ 0. Then, Ei(t) is decreasing on

[0,+∞), and Li := limt→+∞Ei(t) exists. Assume by contradiction that Li >
fi(0)/ki. Then

E′i(t) + kiEi(t) = fi(M(t)) ≤ fi(0), t ≥ 0.

By taking the limit in this last equation, we obtain kiLi ≤ fi(0). This gives a
contradiction. We conclude that limt→+∞Ei(t) = fi(0)/ki.

(ii) Suppose there exists ti ≥ 0 such that Ei(ti) = fi(0)/ki. Then

E′i(ti) = −fi(0) + fi(M(ti)) ≤ 0.

Our objective is to prove that Ei(t) ≤ fi(0)/ki, for all t ≥ ti. If we suppose the
existence of ε > 0 such that Ei(ti+ε) > fi(0)/ki, we obtain a contradiction, because
the function Ei(t) is strictly decreasing as long as Ei(t) > fi(0)/ki. �

Next, we state and prove a result regarding the boundedness property of the
solutions of (3.5). In the rest of the paper, we suppose that δ > 0. The case δ = 0
should be treated separately, and so it will not be considered here.



8 M. ADIMY, Y. BOURFIA, M. L. HBID, C. MARQUET EJDE-2016/140

Proposition 4.3. Assume that(
2α exp

(
−τγ

(f2(0)
k2

))
− 1
)
β
(f1(0)
k1

)
< δ. (4.1)

Then the solutions of system (3.5) are bounded.

Proof. A direct application of Lemma 4.2 implies that Ei are always bounded.
Furthermore, it is not difficult to see that the boundedness of N implies the bound-
edness of M . Then, we concentrate on the boundedness of N .

By (4.1) and the continuity of γ and β, we can take ε > 0 small enough such
that (

2α exp
(
−τγ

(f2(0)
k2

+ ε
))
− 1
)
β
(f1(0)
k1

+ ε
)
< δ. (4.2)

Lemma 4.2 implies that there exits tε ≥ 0 such that Ei(t) ≤ fi(0)/ki + ε, for all
t ≥ tε. Consider the function

Zε(t) = N(t) + 2α exp
(
−τγ

(f2(0)
k2

+ ε
))(∫ t

t−τ
β(E1(θ))N(θ) dθ

)
, t ≥ tε + τ.

It follows that

Z ′ε(t) = N ′(t) + 2α exp
(
−τγ

(f2(0)
k2

+ ε
))(

β(E1(t))N(t)

− β(E1(t− τ))N(t− τ)
)
,

= −(δ + β(E1(t)))N(t)

+ 2αβ(E1(t− τ))N(t− τ) exp
(
−
∫ t

t−τ
γ(E2(s))ds

)
+ 2α exp

(
−τγ

(f2(0)
k2

+ ε
))
β(E1(t))N(t)

− 2α exp
(
−τγ

(f2(0)
k2

+ ε
))
β(E1(t− τ))N(t− τ).

This implies

Z ′ε(t)

= −
[
δ −

(
2α exp

(
−τγ

(f2(0)
k2

+ ε
))
− 1
)
β(E1(t))

]
N(t)

− 2α
(

exp(−τγ
(f2(0)
k2

+ ε
)
)− exp(−

∫ t

t−τ
γ(E2(s)) ds)

)
β(E1(t− τ))N(t− τ).

As the function γ is decreasing, we have

exp
(
−
∫ t

t−τ
γ(E2(s))ds

)
≤ exp

(
−τγ

(f2(0)
k2

+ ε
))
, t ≥ tε + τ.

Then

Z ′ε(t) ≤ −
(
δ −

(
2α exp

(
−τγ

(f2(0)
k2

+ ε
))
− 1
)
β(E1(t))

)
N(t).

We have to consider two cases. Suppose that

2α exp
(
−τγ

(f2(0)
k2

+ ε
))
≤ 1.
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Then Z ′ε(t) ≤ 0.
Now, suppose that

2α exp
(
−τγ

(f2(0)
k2

+ ε
))

> 1.

Since β is increasing, we have

β(E1(t)) < β
(f1(0)
k1

+ ε
)
.

Thanks to (4.2), we obtain

δ >
(

2α exp
(
−τγ

(f2(0)
k2

+ ε
))
− 1
)
β(E1(t)).

This implies Z ′ε(t) ≤ 0 for t ≥ tε+τ . We conclude that Zε is bounded. Consequently,
N is also bounded. �

5. Existence of steady states

In this section, we study the existence of steady states of (3.5). Let (N,M,Ei)
be a steady state of (3.5). Then, it satisfies

(δ + β(E1))N = 2αβ(E1)Ne−τγ(E2),

µM = KN (E3)N + 2KP (E4)β(E1)Ne−τγ(E2),

kiEi = fi(M).

(5.1)

One can easily see that (0, 0, fi(0)/ki) is always a steady state (the trivial steady
state). A nontrivial steady state (N,M,Ei) 6= (0, 0, fi(0)/ki), satisfies

δ = (2αe−τγ(E2) − 1)β(E1),

N =
µM

KN (E3) + 2KP (E4)β(E1)e−τγ(E2)
,

Ei =
fi(M)
ki

.

(5.2)

It is clear that, the existence and uniqueness of nontrivial steady state is equivalent
to finding M > 0, a solution of the equation

δ =
(

2α exp
(
−τγ

(f2(M)
k2

))
− 1
)
β(
f1(M)
k1

). (5.3)

Proposition 5.1. Assume that

δ <
(

2α exp
(
−τγ

(f2(0)
k2

))
− 1
)
β
(f1(0)
k1

)
. (5.4)

Then there exists a unique nontrivial steady state (N,M,Ei) of (3.5). If (5.4) does
not hold, then (0, 0, fi(0)/ki) is the only steady state of (3.5).

Proof. We define the function

Ψ(x) = ξ(x)η(x), x ≥ 0,

where

ξ(x) = 2α exp
(
−τγ(

f2(x)
k2

)
)
− 1, η(x) = β

(f1(x)
k1

)
, x ≥ 0.
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Then equation (5.3) becomes Ψ(x) = δ and inequality (5.4) can be written as
δ < Ψ(0). Note that limx→+∞ fi(x) = 0 and β(0) = 0. Then limx→+∞Ψ(x) = 0.
We conclude that (5.3) has at least one solution if and only if δ < Ψ(0). To prove
the uniqueness, we note that β is increasing, fi and γ are decreasing. Then, the
functions ξ and η are decreasing and satisfy limx→+∞ ξ(x) = 2αe−τγ(0) − 1 and
limx→+∞ η(x) = 0. Firstly, we suppose that 2αe−τγ(0) − 1 ≥ 0. Then, ξ(0) > 0.
Consequently, Ψ is positive, decreasing on [0,+∞) and satisfies limx→+∞Ψ(x) = 0.
We conclude that (5.3) has a unique positive solution M if and only if δ < Ψ(0).
Secondly, we suppose that 2αe−τγ(0) − 1 < 0 and ξ(0) > 0. Then, there exists
a unique M̃ > 0 such that Ψ(M̃) = 0, Ψ(x) > 0 for 0 ≤ x < M̃ and Ψ(x) < 0
for x > M̃ . Consequently, Ψ is positive and decreasing on the interval [0, M̃ ] with
Ψ(M̃) = 0. Then (5.3) has a unique solution M ∈ (0, M̃) if and only if δ < Ψ(0).
The existence and uniqueness of Ei and N follow immediately from (5.2). This
completes the proof. �

Note that condition (5.4) is equivalent to

1 ≥ α > αmin :=
δ + β(f1(0)/k1)

2β(f1(0)/k1)
=

1
2

+
δ

2β(f1(0)/k1)
,

0 ≤ τ < τmax :=
1

γ(f2(0)/k2)
ln
( 2αβ(f1(0)/k1)
δ + β(f1(0)/k1)

)
.

(5.5)

In the next section, we analyze the asymptotic behavior of the solutions of system
(3.5) by studying the asymptotic stability of its steady states.

6. Global asymptotic stability of trivial steady state

We assume, throughout this section, that the function β is continuously dif-
ferentiable on [0,+∞). We begin by establishing the global asymptotic stability
of the trivial steady state (0, 0, fi(0)/ki). First let us recall a useful lemma (see
Gopalsamy [9]), that will allow us to establish the next result.

Lemma 6.1. Let f : (a,+∞) → R, a ∈ R, be a differentiable function. If
limt→+∞ f(t) exists and f ′(t) is uniformly continuous on (a,+∞), then

lim
t→+∞

f ′(t) = 0.

Lemma 6.2. Let (N(t),M(t), Ei(t)) be a bounded solution of (3.5). Then, the
following three statements are equivalent

lim
t→+∞

N(t) = 0, lim
t→+∞

M(t) = 0, lim
t→+∞

Ei(t) = fi(0)/ki, i = 1, 2, 3, 4.

Proof. We begin by proving that limt→+∞N(t) = 0 if and only if limt→+∞M(t) =
0. We first assume that limt→+∞N(t) = 0. We have M ′(t) = −µM(t)+F (t), with

F (t) = KN (E3(t))N(t) + 2KP (E4(t))β(E1(t− τ))

×N(t− τ) exp
(
−
∫ t

t−τ
γ(E2(s)) ds

)
.

Then limt→+∞ F (t) = 0. Using the variation of constant formula, we can write

M(t) = e−µtM(0) + e−µt
∫ t

0

eµsF (s)ds, t ≥ 0.
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Let ε > 0 be fixed. Since N(t) tends to zero when t tends to +∞, there exits tε > 0
such that

F (t) <
µε

2
, e−µt

(
M(0) +

∫ tε

0

eµsF (s)ds
)
<
ε

2
, for t ≥ tε.

Then, for t ≥ tε, we have

M(t) ≤ e−µt
(
M(0) +

∫ tε

0

eµsF (s)ds
)

+ e−µt
(∫ t

tε

eµsF (s)ds
)
,

with

e−µt
(∫ t

tε

eµsF (s)ds
)
≤ ε

2
(
1− eµ(tε−t)

)
≤ ε

2
.

Consequently, M(t) < ε for t ≥ tε. We have proved that limt→+∞M(t) = 0.
Secondly, we assume that limt→+∞M(t) = 0. Then the solution (N,M,Ei) is

bounded, and the derivative (N ′,M ′, E′i) is also bounded. Furthermore, M ′(t) is
differentiable for t > τ , and since N , M , Ei, N ′, M ′, E′i are bounded for t > τ ,
M ′′ is bounded. Then M ′ is uniformly continuous. Consequently, Lemma 6.1
implies that limt→+∞M ′(t) = 0. From the equation satisfied by M , we deduce
that limt→+∞ F (t) = 0. In particular, limt→+∞KN (E3(t))N(t) = 0. Suppose
that limt→+∞KN (E3(t)) = 0. That means that limt→+∞E3(t) = 0. Then, from
the equation satisfied by E3, we deduce that limt→+∞ f3(M(t)) = 0. This gives a
contradiction because limt→+∞M(t) = 0 and f3(0) > 0. Then, we conclude that
limt→+∞N(t) = 0.
Thirdly, we assume that limt→+∞M(t) = 0 and we will prove that limt→+∞Ei(t) =
fi(0)/ki. Thanks to Lemma 4.2, it suffices to prove the result for the case Ei(t) <
fi(0)/ki for all t > t̄. Without loss of generality, we can choose t̄ = 0. We put
Fi(t) = fi(0)/ki − Ei(t) and Gi(t) = fi(0) − fi(M(t)). Then, Fi satisfies the
following differential equation

F ′i (t) = −kiFi(t) +Gi(t),

with Fi(t) > 0 and Gi(t) > 0 for all t ≥ 0 and limt→+∞Gi(t) = 0. Then, using
the same argument as in the first part of this proof, we obtain limt→+∞ Fi(t) = 0.
This means that limt→+∞Ei(t) = fi(0)/ki.

Finally, we suppose that limt→+∞Ei(t) = fi(0)/ki. Then by Lemma 6.1, we
have limt→+∞E′i(t) = 0. We deduce that limt→+∞ fi(M(t)) = fi(0). As the
function fi is continuous and strictly decreasing from [0,+∞) into (0, fi(0)], we
conclude that limt→+∞M(t) = 0. This completes the proof. �

Next, we prove a result dealing with the global asymptotic stability of the trivial
steady state (0, 0, fi(0)/ki).

Theorem 6.3. Assume that (4.1) holds. That is to say that (0, 0, fi(0)/ki) is
the only steady state. Then, all solutions (N(t),M(t), Ei(t)) of (3.5) converge to
(0, 0, fi(0)/ki), i = 1, 2, 3, 4.

Proof. As in the proof of Proposition 4.3, we take ε > 0 small enough such that(
2α exp

(
−τγ

(f2(0)
k2

+ ε
))
− 1
)
β
(f1(0)
k1

+ ε
)
< δ,
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and tε ≥ 0 such that Ei(t) ≤ fi(0)/ki + ε, for all t ≥ tε. Consider the functional
Vε : (C([tε, tε + τ ],R+))6 → R+, Defined by

Φ = (ϕ,ψ, χ1, χ2, χ3, χ4),

Vε(Φ) = ϕ(tε + τ) + 2α exp
(
− τγ

(f2(0)
k2

+ ε
))

×
∫ 0

−τ
β(χ1(θ + tε + τ))ϕ(θ + tε + τ) dθ.

The composition with the solution X(t) := (N(t),M(t), Ei(t)) of equation (3.5)
leads, for t ≥ tε + τ , to the function

t 7→ Vε(Xt) = N(t) + 2α exp
(
− τγ

(f2(0)
k2

+ ε
)) ∫ t

t−τ
β(E1(s))N(s)ds.

Then, the derivative along the solution of system (3.5) gives
d

dt
Vε(Xt)

= N ′(t) + 2α exp
(
− τγ

(f2(0)
k2

+ ε
))[

β(E1(t))N(t)− β(E1(t− τ))N(t− τ)
]
,

= −(δ + β(E1(t)))N(t)

+ 2αβ(E1(t− τ))N(t− τ) exp
(
−
∫ t

t−τ
γ(E2(s)) ds

)
+ 2α exp(−τγ

(f2(0)
k2

+ ε
)
)[β(E1(t))N(t)− β(E1(t− τ))N(t− τ)],

= −
(
δ −

[
2α exp(−τγ

(f2(0)
k2

+ ε
)
)− 1

]
β(E1(t)))N(t)

− 2α
[

exp(−τγ
(f2(0)
k2

+ ε
)
)− exp(−

∫ 0

−τ
γ(E2(t+ s)) ds)

]
× β(E1(t− τ))N(t− τ).

Let −τ ≤ s ≤ 0. Since t ≥ tε + τ , then Ei(t + s) < fi(0)
ki

+ ε. Consequently,

−γ(E2(s+ t)) < −γ( f2(0)k2
+ ε) and β(E1(t)) < β( f1(0)k1

+ ε). This implies

exp
(
− τγ

(f2(0)
k2

+ ε
))

> exp
(
−
∫ 0

−τ
γ(E2(s+ t)) ds

)
,

δ >
[
2α exp

(
− τγ

(f2(0)
k2

+ ε
))
− 1
]
β(E1(t)).

Thus,
V̇ε(Φ) ≤ 0, for all Φ ∈ (C([tε, tε + τ ],R+))6,

where V̇ε is the derivative of Vε along the solutions of (3.5). Now, let

S := {Φ ∈ (C([tε, tε + τ ],R+))6 : V̇ε(Φ) = 0}.
We deduce that

S = {Φ ∈ (C([tε, tε + τ ],R+))6 : ϕ(tε + τ) = ϕ(tε) = 0}.
We also consider the set Ω, defined as the largest set in S which is invariant with
respect to system (3.5). Let Xt be a solution of (3.5) associated with an initial
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condition Φ ∈ Ω. Then, Xt ∈ Ω for all t ≥ tε + τ is equivalent to N(t) = 0 for all
t ≥ tε + τ . Consequently,

Ω = {0} × (C([tε, tε + τ ],R+))5.

From Hale and Verduyn Lunel [10, page 143], all bounded solutions Xt of (3.5)
converge to Ω as t tends to +∞. From Proposition 4.1, all solutions of (3.5) are
bounded provided that (4.1) holds. Then, all solutions Xt converge to Ω. We
deduce that for all Φ ∈ (C([tε, tε + τ ],R+))6,

lim
t→+∞

N(t) = 0.

Then, from Lemma 6.2, we conclude that

lim
t→+∞

M(t) = 0 and lim
t→+∞

Ei(t) = fi(0)/ki, i = 1, 2, 3, 4.

This completes the proof. �

Next, we linearize system (3.5) about its steady states, and we determine the
characteristic equation. Let (N,M,Ei) be a steady state of (3.5). We set

X(t) = N(t)−N, Y (t) = M(t)−M, Zi(t) = Ei(t)− Ei.

The linearized system of (3.5) around (N,M,Ei) is

X ′(t) = −(δ + β(E1))X(t)− β′(E1)NZ1(t)

+ 2αβ(E1)e−τγ(E2)X(t− τ) + 2αNβ′(E1)e−τγ(E2)Z1(t− τ)

− 2ταNβ(E1)γ′(E2)e−τγ(E2)

∫ 0

−τ
Z2(t+ s) ds,

Y ′(t) = −µY (t) +KN (E3)X(t) +K ′N (E3)NZ3(t)

+ 2KP (E4)β(E1)e−τγ(E2)X(t− τ) + 2K ′P (E4)β(E1)Ne−τγ(E2)Z4(t)

+ 2KP (E4)β′(E1)Ne−τγ(E2)Z1(t− τ)

− 2τKP (E4)β(E1)Nγ′(E2)e−τγ(E2)

∫ 0

−τ
Z2(t+ s) ds,

Z ′i(t) = −kiZi(t) + f ′i(M)Y (t).
(6.1)

The above system has the form

U ′(t) = AU(t) +BU(t− τ) + C(
∫ 0

−τ
U(t+ s) ds), (6.2)

with U(t) = (X(t), Y (t), Zi(t))T ∈ R6, where

A =



−(δ + β(E1)) 0 −β′(E1)N 0 0 0
KN (E3) −µ 0 0 K ′N (E3)N NH4

0 f ′1(M) −k1 0 0 0
0 f ′2(M) 0 −k2 0 0
0 f ′3(M) 0 0 −k3 0
0 f ′4(M) 0 0 0 −k4

 ,
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B =


H0 0 N H1 0 0 0
H0 0 N H1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , C =


0 0 0 N H2 0 0
0 0 0 N H2 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,

with

H0 := 2αβ(E1)e−τγ(E2) ≥ 0,

H1 :=
dH0

dE1

= 2αβ′(E1)e−τγ(E2) ≥ 0,

H2 :=
dH0

dE2

= −2ταβ(E1)γ′(E2)e−τγ(E2) ≥ 0,

and

H0 := 2KP (E4)β(E1)e−τγ(E2) ≥ 0,

H1 :=
dH0

dE1

= 2KP (E4)β′(E1)e−τγ(E2) ≥ 0,

H2 :=
dH0

dE2

= −2τKP (E4)β(E1)γ′(E2)e−τγ(E2) ≥ 0,

H4 :=
dH0

dE4

= 2K ′P (E4)β(E1)e−τγ(E2) ≥ 0.

The relationship between the expressions H0 and H0 is given by

αH0 = KP (E4)H0.

The characteristic equation associated to the steady state (N,M,Ei) is

∆(λ) = det
(
λI −A−Be−λτ − C

∫ 0

−τ
eλθ ds

)
= 0. (6.3)

Then, we have the following result.

Theorem 6.4. The trivial steady state of (3.5) is unstable when (5.4) holds.

Proof. When (N,M,Ei) = (0, 0, fi(0)/ki) system (6.2) becomes

U ′(t) = AU(t) +BU(t− τ), (6.4)

with U(t) = (X(t), Y (t), Zi(t))T ∈ R6,

A =


−(δ + β(f1(0)/k1)) 0 0 0 0 0
KN (f3(0)/k3) −µ 0 0 0 0

0 f ′1(0) −k1 0 0 0
0 f ′2(0) 0 −k2 0 0
0 f ′3(0) 0 0 −k3 0
0 f ′4(0) 0 0 0 −k4

 ,
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and

B = 2β(
f1(0)
k1

) exp
(
−τγ

(f2(0)
k2

))


α 0 0 0 0 0
KP (f4(0)/k4) 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .

The characteristic equation (6.3) becomes

∆(λ) = det(λI −A−Be−λτ ) = 0.

Then

∆(λ) = (λ+ µ)
4∏
i=1

(λ+ ki)∆(λ),

where

∆(λ) = λ+ δ + β(
f1(0)
k1

)− 2αβ(
f1(0)
k1

) exp
(
− τ(λ+ γ(

f2(0)
k2

))
)
.

The eigenvalues of (6.4) are λ = −µ < 0, λ = −ki < 0, i ∈ 1, 2, 3, 4 and roots of
the equation ∆(λ) = 0.

Let λ ∈ R. We have

∆
′
(λ) = 1 + 2ατβ(

f1(0)
k1

) exp
(
− τ(λ+ γ(

f2(0)
k2

))
)
> 0,

∆(0) = δ − 2α
(

exp
(
− τγ(

f2(0)
k2

)
)
− 1
)
β
(f1(0)
k1

)
,

lim
λ→+∞

∆(λ) = +∞.

Thanks to (5.4), we have ∆(0) < 0. Thus, there exists λ0 > 0 such that ∆(λ0) = 0.
Hence, the instability of the trivial steady state holds. �

The last theorem completes the global asymptotic stability of the trivial steady
state (0, 0, fi(0)/ki) obtained in Theorem 6.3, and allows us to entirely determine
its dynamics.

7. Local asymptotic stability of the positive steady state

We assume throughout this section, that condition (5.4) is satisfied, or equiv-
alently (5.5), to ensure the existence and uniqueness of the positive steady state
(N,M,Ei) of (3.5). The nature of the characteristic equation associated to the
linearized system around (N,M,Ei) induces some technical difficulties. To avoid
these difficulties, we make the following assumption

ki = k, fi = f, Ei = E, i = 1, 2, 3, 4.
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Then system (3.5) becomes

N ′(t) = −(δ + β(E(t)))N(t)

+ 2αβ(E(t− τ))N(t− τ) exp
(
−
∫ t

t−τ
γ(E(s)) ds

)
,

M ′(t) = −µM(t) +KN (E(t))N(t)

+ 2KP (E(t))β(E(t− τ))N(t− τ) exp
(
−
∫ t

t−τ
γ(E(s)) ds

)
,

E′(t) = −kE(t) + f(M(t)).

(7.1)

The linearized system of (7.1) around the positive steady state (N,M,E) has the
form

U ′(t) = AU(t) +BU(t− τ) + C
(∫ 0

−τ
U(t+ s) ds

)
, (7.2)

with U(t) = (X(t), Y (t), Z(t))T ∈ R3,

A =

−(δ + β(E)) 0 −β′(E)N
KN (E) −µ K ′N (E)N + 2K ′P (E)β(E)Ne−τγ(E)

0 f ′(M) −k

 ,

B =

 2αβ(E)e−τγ(E) 0 2αNβ′(E)e−τγ(E)

2KP (E)β(E)e−τγ(E) 0 2KP (E)β′(E)Ne−τγ(E)

0 0 0

 ,

C =

0 0 −2ταNβ(E)γ′(E)e−τγ(E)

0 0 −2τKP (E)β(E)Nγ′(E)e−τγ(E)

0 0 0

 .

The associated characteristic equation becomes

∆(λ) = det
(
λI −A−Be−λτ − C

∫ 0

−τ
eλθ ds

)
= 0. (7.3)

The condition (5.5) becomes

1 ≥ α > αmin :=
1
2

+
δ

2β(f(0)/k)
,

0 ≤ τ < τmax :=
1

γ(f(0)/k)
ln
( 2αβ(f(0)/k)
δ + β(f(0)/k)

)
.

(7.4)

First, let us suppose that τ = 0. Then (7.2) becomes

U ′(t) = (A+B)U(t), (7.5)

where

A+B =

−(δ − (2α− 1)β(E)) 0 (2α− 1)β′(E)N
Λ(E) −µ Λ′(E)N

0 f ′(M) −k

 ,

with Λ(E) = KN (E) + 2KP (E)β(E). In fact, under condition (7.4), the steady
state (N,M,E) satisfies

(2α− 1)β(E) = δ, Λ(E)N = µM, kE = f(M).
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Then the characteristic equation of (7.5),

det(λI −A−B) = 0,

becomes

λ
[
(λ+ µ)(λ+ k)− f ′(M)Λ′(E)N

]
− (2α− 1)Λ(E)f ′(M)β′(E)N = 0.

This is equivalent to

λ3 + a1λ
2 + a2λ+ a3 = 0, (7.6)

where

a1 = µ+ k > 0, a2 = µk − f ′(M)Λ′(E)N > 0,

a3 = −(2α− 1)Λ(E)f ′(M)β′(E)N > 0.

We have

a1a2 − a3 = µk(µ+ k)−Nf ′(M)[(µ+ k)Λ′(E)− (2α− 1)Λ(E)β′(E)].

Then, by applying the Ruth-Hurwitz criterion, we obtain the following lemma.

Lemma 7.1. All roots of (7.6) have negative real parts if and only if

µk(µ+ k)−Nf ′(M)
[
(µ+ k)Λ′(E)− (2α− 1)Λ(E)β′(E)

]
> 0. (7.7)

We also have the following lemma.

Lemma 7.2. Assume that

µ+ k >
(2α− 1)Λ(β−1(δ/2α− 1))β′(β−1(δ/2α− 1))

Λ′(β−1(δ/2α− 1))
, (7.8)

Then, all roots of (7.6) have negative real parts.

Proof. Since f ′(M) < 0, Λ′(E) > 0 and β′(E) > 0, the hypothesis

(µ+ k)Λ′(E) > (2α− 1)Λ(E)β′(E)

implies that (7.7) is satisfied. Furthermore, we have E = β−1(δ/2α− 1). Then,
(7.8) implies (7.7). Consequently, if (7.8) is satisfied, then all roots of (7.6) have
negative real parts. �

Theorem 7.3. Assume that (5.4) and (7.7) hold. Then there exists τ∗ ∈ [0, τmax)
such that the positive steady state (N,M,E) is locally asymptotically stable for
τ ∈ [0, τ∗).

Proof. A direct application of Lemma 7.1 implies that (N,M,E) is locally asymp-
totically stable when τ = 0. Furthermore, ∆ := ∆(λ, τ) given by (7.3) is analytic in
λ and τ . Then, as τ varies the zeros of λ 7→ ∆(λ, τ) stay in the open left half-plane
for τ small enough. If instability occurs for a particular value of τ , a characteristic
root must intersect the imaginary axis. Then, there exists τ∗ ∈ [0, τmax) such that
for τ ∈ [0, τ∗), all the roots of (7.3) have negative real parts. �
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8. Numerical illustrations

In this section, we perform some numerical simulations to illustrate the behavior
of the steady states. Let us choose the functions β, γ , KP , KN and the negative
feedback f as follows

β(E) =
β̂E

1 + E
, γ(E) =

γ0

1 + Ea
, KP (E) =

K̂PE

1 + E
,

KN (E) =
K̂NE

1 + E
, f(M) =

f0
1 +M b

,

with
δ + β̂ + K̂N ≤ 1 and α+ K̂P ≤ 1.

From (5.5) the positive steady state (N,M,E) exists if and only if

1 ≥ α > αmin :=
1
2

+
δ

2β(f1(0)/k1)
,

0 ≤ τ < τmax :=
1

γ(f2(0)/k2)
ln
( 2αβ(f1(0)/k1)
δ + β(f1(0)/k1)

)
.

We fix all the parameters except the delay τ . The values of the fixed parameters
are δ = 0.08, µ = 0.05, k = 0.6, α = 0.8, β̂ = 0.8, γ0 = 0.2, a = 3, K̂P = 0.18,
K̂N = 0.1, f0 = 1, b = 7. With these values, we have τmax = 9.052 and αmin = 0.58.
Then, the above condition of existence of positive steady state becomes 0 ≤ τ <
9.052.
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Figure 2. Global asymptotic stability of the trivial steady state
(N = 0,M = 0). When τ = 9.5 > τmax = 9.052, the trivial steady
state is the only steady state and it is globally asymptotically sta-
ble.
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