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PERIODIC SOLUTIONS FOR NONLINEAR DIRAC EQUATION
WITH SUPERQUADRATIC NONLINEARITY

JIAN ZHANG, QIMING ZHANG, XIANHUA TANG, WEN ZHANG

Abstract. This article concerns the periodic solutions for a nonlinear Dirac
equation. Under suitable assumptions on the nonlinearity, we show the exis-

tence of nontrivial and ground state solutions.

1. Introduction and statement of main results

In this article we sutdy the existence of periodic states to the stationary Dirac
equation

− i
3∑
k=1

αk∂ku+ aβu+ V (x)u = Fu(x, u) (1.1)

for x = (x1, x2, x3) ∈ R3, where ∂k = ∂
∂xk

, a > 0 is a constant, α1, α2, α3 and β are
the 4× 4 Pauli-Dirac matrices:

β =
(
I 0
0 −I

)
, αk =

(
0 σk
σk 0

)
, k = 1, 2, 3,

with

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Such problem arises in the study of standing wave solutions to the nonlinear Dirac
equation which describes the self-interaction in quantum electrodynamics and has
been used as effective theories in atomic, nuclear and gravitational physics (see
[19]). Its most general form is

− i~∂tψ = ic~
3∑
k=1

αk∂kψ −mc2βψ −M(x)ψ +Rψ(x, ψ). (1.2)

where ψ represents the wave function of the state of an electron, c denotes the speed
of light, m > 0, the mass of the electron, ~ is Planck’s constant. Assuming that
R(x, eiθψ) = R(x, ψ) for all θ ∈ [0, 2π], a standing wave solutions of is a solution
of form ψ(t, x) = e

iθt
~ u(x). It is clear that ψ(t, x) solves (1.2) if and only if u(x)

solves (1.1) with a = mc/~, V (x) = M(x)/c~ + θI4/~ and F (x, u) = R(x, u)/c~.
There are many papers focused on the existence of standing wave solutions of

Dirac equation under various hypotheses on the external field and nonlinearity, see
[1, 2, 3, 4, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 23, 24, 25, 26, 27, 28, 29] and their

2010 Mathematics Subject Classification. 35Q40, 49J35.
Key words and phrases. Nonlinear Dirac equation; periodic solutions; variational method.
c©2016 Texas State University.

Submitted August 6, 2015. Published June 10, 2016.
1



2 J. ZHANG, Q. ZHANG, X. TANG, W. ZHANG EJDE-2016/141

references. It is worth pointing out that in these papers the solutions u are in
L2(R3,C4). However, to the best of our knowledge, there is only a little works
concerning on periodic solutions to the nonlinear Dirac equation. Here we say
that a solution u of problem (1.1) is called periodic if u(x + k) = u(x) for any
k ∈ Z3. Recently, Ding and Liu [7, 8] first studied the subject for superquadratic,
subquadratic and concave-convex nonlinearities case, respectively. The authors
obtained the existence of the sequence of periodic solutions with large and small
energy by using variational method.

Motivated by the above papers, in the present paper we will continue to consider
the existence of periodic solutions of problem (1.1) under conditions different from
those previously assumed in [7, 8], and we use a general superquadratic condition
instead of the Ambrosetti-Rabinowitz condition. Moreover, the existence of ground
state solution is also explored. Before going further, for notation convenience, we
denote Ω = [0, 1] × [0, 1] × [0, 1], if u is a solution of problem (1.1), its energy will
be denoted by

Φ(u) =
∫

Ω

(1
2

(−i
3∑
k=1

αk∂ku+ aβu+ V (x)u) · u− F (x, u)
)
dx,

where (and in the following) by u · v we denote the scalar product in C4 of u and
v. To state our results, we need the following assumptions:

(A1) V ∈ C(R3, [0,∞)), and V (x) is 1-periodic in xi, i = 1, 2, 3;
(A2) F ∈ C1(R3 × C4, [0,∞)) is 1-periodic in xi, i = 1, 2, 3, and |Fu(x, u)| ≤

c(1 + |u|p−1) for some c > 0, 2 < p < 3;
(A3) |F (x, u)| ≤ 1

2η|u|
2 if |u| < δ for some 0 < η < µ1, where δ > 0 and µ1 will

be defined later in (2.1);
(A4) F (x,u)

|u|2 →∞ as |u| → ∞ uniformly in x;

(A5) F (x, u+z)−F (x, u)− rFu(x, u) ·z+ (r−1)2

2 Fu(x, u) ·u ≥ −W (x), r ∈ [0, 1],
W (x) ∈ L1(Ω).

On the existence of nontrivial periodic solutions we have the following result.

Theorem 1.1. Let (A1)–(A5) be satisfied. Then (1.1) has at least one nontrivial
periodic solution.

Let
K := {u ∈ E : Φ′(u) = 0, u 6= 0}

be the critical points set of Φ and let

m := inf{Φ(u), u ∈ K \ {0}},

where E is a set to be defined later. On the existence of ground state solutions we
have the following result.

Theorem 1.2. Let (A1)–(A5) be satisfied, and |Fu(x, u)| = o(|u|) as |u| → 0
uniformly in x. Then (1.1) has one ground state solution u such that Φ(u) = m.

For the nonlinearity F (x, u), it is not difficult to find that there exist some func-
tions satisfying conditions (A2)–(A5) if we take 0 ≤W (x) ∈ L1(Ω), for example:

(1) Let F (x, u) = q(x)|u|p, where p ∈ (2, 3), q(x) > 0 is 1-periodic with respect
to xi, i = 1, 2, 3.
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(2) Let F (x, u) = q(x)
(
|u|p + (p − 2)|u|p−ε sin2( |u|

ε

ε )
)
, where 0 < ε < p − 2,

p ∈ (2, 3), q(x) > 0 is 1-periodic with respect to xi, i = 1, 2, 3.
Here we only check the (1) satisfies condition (A5). Indeed, a straightforward
computation deduces that F (x, u) = q(x)|u|p satisfies the following relation (it
have already been proved in [24])

F (x, (s+ 1)u+ v)− F (x, u)− Fu(x, u) ·
(
s(
s

2
+ 1)u+ (s+ 1)v

)
≥ 0, s ≥ −1.

If we take r = s+ 1 and v = (1− r)u+ z, then

F (x, u+ z)− F (x, u)− rFu(x, u) · z +
(r − 1)2

2
Fu(x, u) · u ≥ 0, r ≥ 0,

which implies (A5) holds if we take W (x) = 0 and r ∈ [0, 1]. For the Ex2, the proof
is similar. Additionally, the Ex2 does not satisfy the Ambrosetti-Rabinowitz type
superquadratic condition.

The rest of this article is organized as follows. In Section 2, we establish the
variational framework associated with problem (1.1), and we also give some pre-
liminary lemmas, which are useful in the proofs of our main results. In Section 3,
we give the detailed proofs of our main results.

2. Variational setting and preliminary results

We first introduce a variational structure for problem (1.1). Let

Lp(Ω) := {u ∈ Lploc(R3,C4) : u(x+ êi) = u(x) a.e., i = 1, 2, 3},

where ê1 = (1, 0, 0), ê2 = (0, 1, 0), ê3 = (0, 0, 1). In what follows by ‖ · ‖q we denote
the usual Lq-norm for q ∈ [1,∞], and (·, ·)2 denote the usual L2 inner product, c,
Ci stand for different positive constants. For convenience, let Dirac operator

A0 = −i
3∑
k=1

αk∂k + aβ and AV = A0 + V.

Clearly, A0 and AV are selfadjoint operator on L2(Ω) with domain

D(AV ) = D(A0) = H1(Ω)

:= {u ∈ H1
loc(R3,C4) : u(x+ êi) = u(x) a.e., i = 1, 2, 3}.

It is clear that A2
0 has only eigenvalues of finite multiplicity arranged by

a2 < ν1 < ν2 ≤ ν3 ≤ · · · → ∞.

By the spectral theory of self adjoint operators, A0 has only eigenvalues ±`j =
±√νj , j ∈ N. Moreover, since H1(Ω) embeds compactly in L2 := L2(Ω), and
the multiplication operator V is bounded in L2, hence compact relative to A0, the
spectrum of the self-adjoint operator AV consists of eigenvalues of finite multiplicity.
We arrange the eigenvalues as

. . . µ−j ≤ · · · ≤ µ−1 < µ0 = 0 < µ1 ≤ · · · ≤ µj . . . (2.1)

with µ±j → ±∞ as j → ∞, and corresponding eigenfunctions {e±j}j∈N form an
orthogonal basis in L2. Observe that we have an orthogonal decomposition

L2 = L− ⊕ L0 ⊕ L+ and u = u− + u0 + u+,
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such that AV is negative definite on L− and positive definite on L+ and L0 =
ker(AV ). Set E := D(|AV |1/2) be the domain of the selfadjoint operator |AV |1/2
which is a Hilbert space equipped with the inner product

(u, v) = (|AV |1/2u, |AV |1/2v)2 + (u0, v0)2, ∀u, v ∈ E

and norm ‖u‖ = (u, u)1/2. Let E± := span{e±k}k∈N+ , E0 = ker(AV ). Then
E−, E0 and E+ are orthogonal with respect to the products (·, ·)2 and (·, ·). Hence

E = E− ⊕ E0 ⊕ E+

is an orthogonal decomposition of E. Note that if 0 6∈ σ(AV ) then E0 = {0}, where
σ(AV ) denote the spectrum of AV .

To prove our main results, we need the following embedding theorem (see [5]).

Lemma 2.1. E = H1/2(Ω) with equivalent norms, hence E embeds compactly into
Lp(Ω) for all p ∈ [1, 3) and continuously into Lp(Ω) for all p ∈ [1, 3]. In particular
there is a cp > 0 such that ‖u‖p ≤ cp‖u‖ for u ∈ E.

Next, on E we define the functional

Φ(u) =
1
2

(‖u+‖2 − ‖u−‖2)−Ψ(u), for u = u− + u0 + u+ (2.2)

where Ψ(u) =
∫

Ω
F (x, u)dx. Clearly, Φ is strongly indefinite, and our hypotheses

imply that Φ ∈ C1(E,R), and a standard argument shows that critical points of Φ
are solutions of problem (1.1) (see [5, 20]).

To find critical points of Φ, we shall use the following abstract theorem. Let
E be a Hilbert space with norm ‖ · ‖ and have an orthogonal decomposition E =
N ⊕ N⊥, N ⊂ E being a closed and separable subspace. There exists a norm
|v|ω ≤ ‖v‖ for all v ∈ N and induces a topology equivalent to the weak topology of
N on a bounded subset of N . For u = v+w ∈ E = N ⊕N⊥ with v ∈ N , w ∈ N⊥,
we define |u|2ω = |v|2ω + ‖w‖2. Particularly, if un = vn + wn is | · |ω-bounded and

un
|·|ω−−→ u, then vn ⇀ v weakly in N , wn → w strongly in N⊥, un ⇀ v + w weakly

in E [18].
Let E = E− ⊕ E0 ⊕ E+, e ∈ E+ with ‖e‖ = 1. Let N := E− ⊕ E0 ⊕ Re and

E+
1 := N⊥ = (E− ⊕ E0 ⊕ Re)⊥. For R > 0, let

Q := {u := u− + u0 + se : s ∈ R+, u− + u0 ∈ E− ⊕ E0, ‖u‖ < R}.
For 0 < s0 < R, we define

D := {u := se+ w+ : s ≥ 0, w+ ∈ E+
1 , ‖se+ w+‖ = s0}.

For Φ ∈ C1(E,R), define

Γ :=
{
h : h : [0, 1]× Q̄→ E is | · |ω continuous, h(0, u) = u and Φ(h(s, u)) ≤ Φ(u),

for all u ∈ Q̄, for any (s0, u0) ∈ [0, 1]× Q̄ there is a | · |ω neighborhood

U(s0, u0) such that {u− h(x, u) : (x, u) ∈ U(s0, u0) ∩ ([0, 1]× Q̄)} ⊂ Efin

}
where Efin denotes various finite-dimensional subspaces of E; Γ 6= 0 since id ∈ Γ.

Now we state a critical point theorem which will be used later (see [18]).

Theorem 2.2. The family of C1-functionals Φλ have the form

Φλ(u) := λK(u)− J(u), ∀λ ∈ [1, λ0],

where λ0 > 1. Assume that
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(a) K(u) ≥ 0 for all u ∈ E, Φ1 = Φ;
(b) |J(u)|+K(u)→∞ as ‖u‖ → ∞;
(c) Φλ is | · |ω-upper semicontinuous, Φ′λ is weakly sequentially continuous on

E, Φλ maps bounded sets to bounded sets;
(d) sup∂Q Φλ < infD Φλ for all λ ∈ [1, λ0].

Then for all λ ∈ [1, λ0], there exists a sequence {un} such that

sup
n
‖un‖ <∞, Φ′λ(un)→ 0, Φλ(un)→ cλ,

where
cλ := inf

h∈Γ
sup
u∈Q̄

Φλ(h(1, u)) ∈ [inf
D

Φλ, sup
Q̄

Φλ].

To apply Theorem 2.2, we shall prove a few lemmas. We select λ0 such that
1 < λ0 < min[2, µ1

η ]. For 1 ≤ λ ≤ λ0, we consider

Φλ(u) :=
λ

2
‖u+‖2 −

(1
2
‖u−‖2 +

∫
Ω

F (x, u)dx
)

:= λK(u)− J(u). (2.3)

It is easy to see that Φλ satisfies condition (a) in Theorem 2.2. To see (c), if

un
|·|ω−−→ u, and Φλ(un) ≥ c, then u+

n → u+ and u−n ⇀ u− in E, un(x) → u(x)
a.e. on Ω, going to a subsequence if necessary. Using Fatou’s lemma, we know
Φλ(u) ≥ c, which means that Φλ is | · |ω-upper semicontinuous. By Lemma 2.1 and
(A2), Φ′λ is weakly sequentially continuous on E, and Φλ maps bounded sets to
bounded sets.

Lemma 2.3. Assume that (A1)–(A5) are satisfied, then

J(u) +K(u)→∞ as ‖u‖ → ∞.

Proof. Suppose to the contrary that there exists {un} with ‖un‖ → ∞ such that
J(un) + K(un) ≤ C for some C > 0. Let wn = un

‖un‖ = w−n + w0
n + w+

n , then
‖wn‖ = 1 and

C

‖un‖2
≥ K(un) + J(un)

‖un‖2

=
1
2

(‖w+
n ‖2 + ‖w−n ‖2) +

∫
Ω

F (x, un)
‖un‖2

dx

=
1
2

(‖wn‖2 − ‖w0
n‖2) +

∫
Ω

F (x, un)
‖un‖2

dx.

(2.4)

Going to a subsequence if necessary, we may assume wn ⇀ w, w−n ⇀ w−, w+
n ⇀ w+,

w0
n → w0 and wn(x)→ w(x) a.e. on Ω. If w0 = 0, by (A2) and (2.4) we have

1
2
‖wn‖2 +

∫
Ω

F (x, un)
‖un‖2

dx ≤ 1
2
‖w0

n‖2 +
C

‖un‖2
,

which implies ‖wn‖ → 0, this contradicts with ‖wn‖ = 1. If w0 6= 0, then w 6= 0.
Therefore, |un| = |wn|‖un‖ → ∞. By (A2), (A4) and Fatou’s lemma we have∫

Ω

F (x, un)
|un|2

|wn|dx→∞.

Hence by (2.4) again, we obtain 0 ≥ +∞, a contradiction. The proof is complete.
�
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Note that Lemma 2.3 implies condition (b). To continue the discussion, we still
need to verify condition (d).

Lemma 2.4. Assume that (A1)–(A5) are satisfied. Then there are two positive
constants κ, ρ > 0 such that

Φλ(u) ≥ κ, u ∈ E+, ‖u‖ = ρ, λ ∈ [1, λ0].

Proof. By (2.1) and the definition of E+, it is easy to see that

‖u‖2 = (Au, u)2 ≥ µ1‖u‖22, ∀u ∈ E+, (2.5)

For any u ∈ E+, by (A2), (A3), (2.5) and Lemma 2.3, we have

Φλ(u) =
λ

2
‖u‖2 −

∫
Ω

F (x, u)dx

≥ 1
2
‖u‖2 −

∫
{|u|<δ}

F (x, u)dx−
∫
{|u|≥δ}

F (x, u)dx

≥ 1
2
‖u‖2 − 1

2
η

∫
{|u|<δ}

|u|2dx− c
∫
{|u|≥δ}

|u|pdx

≥ 1
2
‖u‖2 − η

µ1

1
2
‖u‖2 − C ′‖u‖p

=
1
2
‖u‖2

(
1− η

µ1
− 2C ′‖u‖p−2

)
, 0 ≤ η < µ1.

The conclusion follows if we take ‖u‖ sufficiently small. �

Lemma 2.5. Assume that (A1)–(A5) are satisfied. Then there exists a constant
R > 0 such that

Φλ(u) ≤ 0, u ∈ ∂QR, λ ∈ [1, λ0],
where

QR := {u := v + se : s ≥ 0, v ∈ E− ⊕ E0, e ∈ E+ with ‖e‖ = 1, ‖u‖ ≤ R}.

Proof. By contradiction, we suppose that there exist Rn → ∞, λn ∈ [1, λ0] and
un = vn + sne = v−n + v0

n + sne ∈ ∂QRn such that Φλn(un) > 0. If sn = 0, by (A2),
we obtain

Φλn(un) = −1
2
‖v−n ‖2 −

∫
Ω

F (x, un)dx ≤ −1
2
‖v−n ‖2 ≤ 0.

Therefore,
sn 6= 0 and ‖un‖2 = ‖vn‖2 + s2

n.

Let
ũn =

un
‖un‖

= s̃ne+ ṽn .

Then
‖ũn‖2 = ‖ṽn‖2 + s̃2

n = 1.
Thus, passing to a subsequence, we may assume that

s̃n → s̃, λn → λ,

ũn =
un
‖un‖

= s̃ne+ ṽn ⇀ ũ in E,

ũn(x)→ ũ(x) a.e. on Ω.
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It follows from Φλn(un) > 0 that

0 <
Φλn(un)
‖un‖2

=
1
2

(λns̃2
n − ‖ṽn‖2)−

∫
Ω

F (x, un)
|un|2

|ũn|2dx

=
1
2

[(λn + 1)s̃2
n − 1]−

∫
Ω

F (x, un)
|un|2

|ũn|2dx.
(2.6)

From (A2) and (2.6), we know that (λ+ 1)s̃2 − 1 ≥ 0, that is

s̃2 ≥ 1
1 + λ

≥ 1
1 + λ0

> 0.

Thus ũ 6= 0. It follows from (A4) and Fatou’s lemma that∫
Ω

F (x, un)
|un|2

|ũn|2dx→∞ as n→∞,

which contradicts to (2.6). The proof is complete. �

Hence, Lemmas 2.4 and 2.5 imply condition (d) of Theorem 2.2. Applying
Theorem 2.2, we obtain the following result.

Lemma 2.6. Assume that (A1)–(A5) are satisfied. then for each λ ∈ [1, λ0], there
exists a sequence {un} such that

sup
n
‖un‖ <∞, Φ′λ(un)→ 0, Φλ(un)→ cλ,

Lemma 2.7. Assume that (A1)–(A5) are satisfied. then for each λ ∈ [1, λ0], there
exists a uλ ∈ E such that

Φ′λ(uλ) = 0, Φλ(uλ) = cλ.

Proof. Let {un} be the sequence obtained in Lemma 2.6. Since {un} is bounded,
we can assume un ⇀ uλ in E and un(x) → uλ(x) a.e. on Ω. By Lemma 2.6 and
the fact Φ′λ is weakly sequentially continuous, we have

〈Φ′λ(uλ), ϕ〉 = lim
n→∞

〈Φ′λ(un), ϕ〉 = 0, ∀ϕ ∈ E.

That is Φ′λ(uλ) = 0. By Lemma 2.6 again, we have

Φλ(un)− 1
2
〈Φ′λ(un), un〉 =

∫
Ω

(1
2

(Fu(x, un), un)− F (x, un)
)
dx→ cλ.

On the other hand, by Lemma 2.1, it is easy to prove that∫
Ω

1
2
Fu(x, un) · undx→

∫
Ω

1
2
Fu(x, uλ) · uλdx, (2.7)∫

Ω

F (x, un)dx→
∫

Ω

F (x, uλ)dx, (2.8)

Therefore, by (2.7), (2.8) and the fact Φ′λ(uλ) = 0, we obtain

Φλ(uλ) = Φλ(uλ)− 1
2
〈Φ′λ(uλ), uλ〉

=
∫

Ω

(1
2

(Fu(x, uλ) · uλ − F (x, uλ)
)
dx = cλ.

The proof is complete. �

Applying Lemma 2.7, we obtain the following result.
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Lemma 2.8. Assume that (A1)–(A5) are satisfied. Then for each λ ∈ [1, λ0], there
exists sequences un ∈ E and λn ∈ [1, λ0] with λn → λ such that

Φ′λn(un) = 0, Φλn(un) = cλn .

Lemma 2.9. Suppose (A5) holds. Then∫
Ω

(
F (x, u)− F (x, rw) + r2Fu(x, u) · w − 1 + r2

2
Fu(x, u) · u

)
dx ≤ C,

where u ∈ E,w ∈ E+, 0 ≤ r ≤ 1 and the constant C does not depend on u,w, r.

Proof. The inequality follows from (A5) if we take u = u and z = rw − u, and
C =

∫
Ω
|W (x)|dx. �

Lemma 2.10. Assume that (A1)–(A5) are satisfied. Then the sequences {un}
given in Lemma 2.8 are bounded.

Proof. Suppose to the contrary that {un} is unbounded. Without loss of generality,
we can assume that ‖un‖ → ∞ as n → ∞. Let vn = un

‖un‖ = v+
n + v0

n + v−n , then
‖vn‖ = 1. Going to a subsequence if necessary, we can assume that vn ⇀ v in E,
vn → v in Lp for p ∈ [1, 3), vn(x) → v(x) a.e. on Ω. For v, we have only the
following two cases: v 6= 0 and v = 0.

First, we consider v 6= 0. It follows from (A4) and Fatou’s Lemma that∫
Ω

F (x, un)
‖un‖2

dx =
∫

Ω

F (x, un)
|un|2

|vn|2dx→∞ as n→∞,

which, together with Lemmas 2.4 and 2.8 imply

0 ≤ cλn
‖un‖2

=
Φλn(un)
‖un‖2

=
λn
2
‖v+
n ‖2 −

1
2
‖v−n ‖2 −

∫
Ω

F (x, un)
‖un‖2

dx→ −∞

as n→∞. Which is a contradiction.
Next we assume that v = 0. We claim that there exist a constant c independent

of un and λn such that

Φλn(ru+
n )− Φλn(un) ≤ c, ∀r ∈ [0, 1]. (2.9)

Since
1
2
〈Φ′λn(un), ϕ〉 =

1
2
λn(u+

n , ϕ
+)− 1

2
(u−n , ϕ

−)− 1
2

∫
Ω

Fu(x, un) · ϕdx = 0, ∀ϕ ∈ E,

it follows from the definition of Φλ that

Φλn(ru+
n )− Φλn(un)

=
1
2
λn(r2 − 1)‖u+

n ‖2 +
1
2
‖u−n ‖2 +

∫
Ω

[
F (x, un)− F (x, ru+

n )
]
dx

+
1
2
λn(u+

n , ϕ
+)− 1

2
(u−n , ϕ

−)− 1
2

∫
Ω

Fu(x, un) · ϕdx.

(2.10)

Taking

ϕ = (r2 + 1)u−n − (r2 − 1)u+
n + (r2 + 1)u0

n = (r2 + 1)un − 2r2u+
n ,

with Lemma 2.9 and (2.10) implies

Φλn(ru+
n )− Φλn(un) = −1

2
‖u−n ‖2 +

∫
Ω

(
F (x, un)− F (x, ru+

n )
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+ r2Fu(x, un) · u+
n −

1 + r2

2
Fu(x, un) · un

)
dx ≤ C.

Hence, (2.9) holds. Let θ be a constant and take

rn :=
θ

‖un‖
→ 0 as n→∞.

Therefore, (2.9) implies

Φλn(rnu+
n )− Φλn(un) ≤ C

for all sufficiently large n. From v+
n = u+

n

‖un‖ and Lemma 2.8 that

Φλn(θv+
n ) ≤ C ′ (2.11)

for all sufficiently large n. Note that Lemma 2.4, Lemma 2.8 and (A2) imply

0 ≤ cλn
‖un‖2

=
Φλn(un)
‖un‖2

=
λn
2
‖v+
n ‖2 −

1
2
‖v−n ‖2 −

∫
Ω

F (x, un)
‖un‖2

dx

≤ λ0

2
‖v+
n ‖2 −

1
2
‖v−n ‖2;

thus, λ0‖v+
n ‖ ≥ ‖v−n ‖. If v+

n → 0, then from the above inequality, we have v−n → 0,
and therefore

‖v0
n‖2 = 1− ‖v+

n ‖2 − ‖v−n ‖2 → 1.

Hence, v0
n → v0 because of dimE0 < ∞. Thus, v 6= 0, a contradiction. Therefore,

v+
n 9 0 and ‖v+

n ‖2 ≥ α for all n and some α > 0. By (A2) and (A3), we have∫
Ω

F (x, θv+
n )dx ≤ 1

2
ηθ2

∫
{|θv+n |<δ}

|v+
n |2dx+

1
2
c

∫
{|θv+n |≥δ}

θp|v+
n |pdx

≤ 1
2
ηθ2

∫
{|θv+n |<δ}

|v+
n |2dx+ C ′1

∫
{|θv+n |≥δ}

|v+
n |pdx.

(2.12)

For all sufficiently large n, from (2.11), (2.12) and the fact λn → λ, v+
n → v+ = 0

in Lp for p ∈ [1, 3) it follows that

Φλn(θv+
n ) =

1
2
λnθ

2‖v+
n ‖2 −

∫
Ω

F (x, θv+
n )dx

≥ 1
2
λnθ

2α− 1
2
ηθ2

∫
{|θv+n |<δ}

|v+
n |2dx− C ′1

∫
{|θv+n |≥δ}

|v+
n |pdx

→ 1
2
λαθ2, as n→∞.

This implies that Φλn(θv+
n ) → ∞ as θ → ∞, contrary to (2.11). Therefore, {un}

are bounded. The proof is complete. �

3. Proofs of main results

Proof of Theorem 1.1. From Lemma 2.8, there are sequences 1 < λn → 1 and
{un} ⊂ E such that Φ′λn(un) = 0 and Φλn(un) = cλn . By Lemma 2.10, we know
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{un} is bounded in E, thus we can assume un ⇀ u in E, un → u in Lp for p ∈ [1, 3),
un(x)→ u(x) a.e. on Ω. Therefore

〈Φ′λn(un), ϕ〉 = λn(u+
n , ϕ)− (u−n , ϕ)−

∫
Ω

Fu(x, un) · ϕdx = 0, ∀ϕ ∈ E.

Hence, in the limit

〈Φ′(u), ϕ〉 = (u+, ϕ)− (u−, ϕ)−
∫

Ω

Fu(x, un) · ϕdx = 0, ∀ϕ ∈ E.

Thus Φ′(u) = 0. Note that

Φλn(un)− 1
2
〈Φ′λn(un), un〉 =

∫
Ω

(
1
2
Fu(x, un) · un − F (x, un)

)
dx = cλn ≥ c1.

(3.1)
Similar to (2.7) and (2.8), we know that∫

Ω

(
1
2
Fu(x, un) · un − F (x, un)

)
dx→

∫
Ω

(
1
2
Fu(x, u) · u− F (x, u)

)
dx,

as n→∞. It follows from Φ′(u) = 0, (3.1) and Lemma 2.4 that

Φ(u) = Φ(u)− 1
2
〈Φ′(u), u〉

=
∫

Ω

(1
2
Fu(x, u) · u− F (x, u)

)
dx

= lim
n→∞

∫
Ω

(1
2
(
Fu(x, un) · un

)
− F (x, un)

)
dx

≥ c1 ≥ κ > 0.

Therefore, u 6= 0. �

Proof of Theorem 1.2. Theorem 1.1 shows that K is not an empty set. Let m :=
infu∈K Φ(u). Now suppose that

|Fu(x, u)| = o(|u|), as |u| → 0.

It follows from (A2) that for any ε > 0, there exists a constant Cε > 0 such that

|Fu(x, u)| = ε|u|+ Cε|u|p−1. (3.2)

Let {un} be a sequence in K such that

Φ(un)→ m, (3.3)

by Lemma 2.10, the sequence {un} is bounded in E. Thus, un ⇀ u in E, un → u
in Lp for p ∈ [1, 3) and un(x) → u(x) a.e. on Ω, after passing to a subsequence.
Note that

0 = 〈Φ′(un), u+
n 〉 = ‖u+

n ‖2 −
∫

Ω

Fu(x, un) · u+
n dx, (3.4)

this together with (3.2), Hölder inequality and the Sobolev embedding theorem
imply

‖u+
n ‖2 =

∫
Ω

Fu(x, un) · u+
n dx

≤ ε
∫

Ω

|un||u+
n |dx+ Cε

∫
Ω

|un|p−1|u+
n |dx

≤ ε‖un‖2 + Cε‖un‖p.

(3.5)
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Similarly, we obtain
‖u−n ‖2 ≤ ε‖un‖2 + Cε‖un‖p. (3.6)

It follows from (3.5) and (3.6) that ‖un‖ ≥ c for some c > 0. A standard argument
shows that un → u in E by Lemma 2.1, hence u 6= 0. Observe that

〈Φ′(un), ϕ〉 = (u+
n , ϕ)− (u−n , ϕ)−

∫
Ω

Fu(x, un) · ϕdx = 0, ∀ϕ ∈ E;

taking the limit

〈Φ′(u), ϕ〉 = (u+, ϕ)− (u−, ϕ)−
∫

Ω

Fu(x, u) · ϕdx = 0, ∀ϕ ∈ E.

Thus, Φ′(u) = 0 and u ∈ K. Similar to (2.7) and (2.8), we have

Φ(un)− 1
2
〈Φ′(un), un〉 =

∫
Ω

(1
2
Fu(x, un) · un − F (x, un)

)
dx

→
∫

Ω

(1
2
Fu(x, u) · u− F (x, u)

)
dx as n→∞.

It follows from Φ′(u) = 0 and (3.3) that

Φ(u) = Φ(u)− 1
2
〈Φ′(u), u〉

=
∫

Ω

(1
2
Fu(x, u) · u− F (x, u)

)
dx

= lim
n→∞

∫
Ω

(1
2
Fu(x, un) · un − F (x, un)

)
dx

= lim
n→∞

Φ(un) = m.

This completes the proof. �
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