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FRACTIONAL ELLIPTIC EQUATIONS WITH SIGN-CHANGING
AND SINGULAR NONLINEARITY

SARIKA GOYAL, KONIJETI SREENADH

Abstract. In this article, we study the fractional Laplacian equation with
singular nonlinearity

(−∆)su = a(x)u−q + λb(x)up in Ω,

u > 0 in Ω, u = 0 in ∂Ω,

where Ω is a bounded domain in Rn with smooth boundary ∂Ω, n > 2s, s ∈
(0, 1), λ > 0. Using variational methods, we show existence and multiplicity

of positive solutions.

1. Introduction

Let Ω ⊂ Rn be a bounded domain with smooth boundary, n > 2s and s ∈ (0, 1).
We consider the fractional elliptic problem with singular nonlinearity

(−∆)su = a(x)u−q + λb(x)up in Ω,
u > 0 in Ω, u = 0 in ∂Ω.

(1.1)

We use the following assumptions on a and b:

(A1) a : Ω ⊂ Rn → R such that 0 < a ∈ L
2∗s

2∗s−1+q (Ω).
(A2) b : Ω ⊂ Rn → R is a sign-changing function such that b+ 6≡ 0 and b(x) ∈

L
2∗s

2∗s−1−p (Ω).
Here λ > 0 is a parameter, 0 < q < 1 < p < 2∗s − 1, with 2∗s = 2n

n−2s , known as
fractional critical Sobolev exponent and where (−∆)s is the fractional Laplacian
operator in Ω with zero Dirichlet boundary values on ∂Ω.

To define the fractional Laplacian operator (−∆)s in Ω, let {λk, φk} be the
eigenvalues and the corresponding eigenfunctions of −∆ in Ω with zero Dirichlet
boundary values on ∂Ω

(−∆)sφk = λkφk in Ω, φk = 0 on ∂Ω.

normalized by ‖φk‖L2(Ω) = 1. Then one can define the fractional Laplacian (−∆)s

for s ∈ (0, 1) by

(−∆)su =
∞∑
k=1

λskckφk,
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which clearly maps

Hs
0(Ω) :=

{
u =

∞∑
k=1

ckφk ∈ L2(Ω) : ‖u‖Hs0 (Ω) =
( ∞∑
k=1

λskc
2
k

)1/2

<∞
}

into L2(Ω). Moreover Hs
0(Ω) is a Hilbert space endowed with an inner product〈 ∞∑

k=1

ckφk,

∞∑
k=1

dkφk
〉
Hs0 (Ω)

=
∞∑
k=1

λskckdkφk, if
∞∑
k=1

ckφk,

∞∑
k=1

dkφk ∈ Hs
0(Ω).

Definition 1.1. A function u ∈ Hs
0(Ω) such that u(x) > 0 in Ω is a solution of

(1.1) such that for every function v ∈ Hs
0(Ω), it holds∫

Ω

(−∆)s/2u(−∆)s/2vdx =
∫

Ω

a(x)u−qvdx+ λ

∫
Ω

b(x)upvdx.

Associated with (1.1), we consider the energy functional for u ∈ Hs
0(Ω), u > 0

in Ω such that

Iλ(u) =
∫

Ω

|(−∆)s/2u|2dx− 1
1− q

∫
Ω

a(x)|u|1−qdx− λ

p+ 1

∫
Ω

b(x)|u|p+1dx.

The fractional power of Laplacian is the infinitesimal generator of Lévy stable
diffusion process and arise in anomalous diffusions in plasma, population dynamics,
geophysical fluid dynamics, flames propagation, chemical reactions in liquids and
American options in finance. For more details, we refer to [3, 14] and reference
therein.

Recently the study of existence, multiplicity of solutions for fractional elliptic
equations attracted a lot of interest by many researchers. Among the works dealing
with fractional elliptic equations we cite [6, 9, 21, 22, 23, 24, 25, 26] and references
therein, with no attempt to provide a complete list. Caffarelli and Silvestre [8]
gave a new formulation of fractional Laplacian through Dirichlet-Neumann maps.
This formulation transforms problems involving the fractional Laplacian into a local
problem which allows one to use the variational methods.

On the other hand, there are some works where multiplicity results are shown
using the structure of associated Nehari manifold. In [15, 16] authors studied
subcritical problems and in [28] the authors obtained the existence of multiplicity
for critical growth nonlinearity. In the case of the square root of Laplacian, the
multiplicity results for sublinear and superlinear type of nonlinearity with sign-
changing weight functions are studied in [7, 27].

In the local setting, s = 1, the paper by Crandall, Robinowitz and Tartar [12]
is the starting point on semilinear problem with singular nonlinearity. There is a
large body of literature on singular problems, see [1, 2, 11, 12, 17, 18, 19, 20] and
reference therein. Recently, Chen and Chen in [10] studied the following problem
with singular nonlinearity

−∆u− λ

|x|2
= h(x)u−q + µW (x)up in Ω \ {0}, u > 0 in Ω \ {0}, u = 0 on ∂Ω,

where 0 ∈ Ω ⊂ Rn(n ≥ 3) is a bounded smooth domain with smooth boundary,
0 < λ < (n−2)2

4 and 0 < q < 1 < p < n+2
n−2 . Also h, W both are continuous

functions in Ω with h > 0 and W is sign-changing. By variational methods, they
showed that there exists Tλ such that for µ ∈ (0, Tλ) the above problem has two
positive solutions.
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In case of the fractional Laplacian, Fang [13] proved the existence of a solution
of the singular problem

(−∆)sw = w−p, u > 0 in Ω, u = 0 in Rn \ Ω,

with 0 < p < 1, using the method of sub and super solution. Recently, Barrios,
Peral and et al [4] extend the result of [13]. They studied the existence result for
the singular problem

(−∆)su = λ
f(x)
uγ

+Mup, u > 0 in Ω, u = 0 in Rn \ Ω,

where Ω is a bounded smooth domain of Rn, n > 2s, 0 < s < 1, γ > 0, λ > 0,
p > 1 and f ∈ Lm(Ω), m ≥ 1 is a nonnegative function. For M = 0, they proved
the existence of solution for every γ > 0 and λ > 0. For M = 1 and f ≡ 1, they
showed that there exist Λ such that it has a solution for every 0 < λ < Λ, and
have no solution for λ > Λ. Here the authors first studied the uniform estimates of
solutions {un} of the regularized problems

(−∆)su = λ
f(x)

(u+ 1
n )γ

+ up, u > 0 in Ω, u = 0 in Rn \ Ω. (1.2)

Then they obtained the solutions by taking limit in the regularized problem (1.2).
As far as we know, there is no work related to fractional Laplacian for singular

nonlinearity and sign-changing weight functions. So, in this paper, we study the
multiplicity results for problem (1.1) for 0 < q < 1 < p < 2∗s − 1 and λ > 0. This
work is motivated by the work of Chen and Chen in [10]. Due to the singularity
of problem, it is not easy to deal the problem (1.1) as the associated functional is
not differentiable even in sense of Gâteaux and the strong maximum principle is
not applicable to show the positivity of solutions. Moreover one can not directly
extend all the results from Laplacian case to fractional Laplacian, due to the non-
local behavior of the operator and the bounded support of the test function is not
preserved. To overcome these difficulties, we first use the Cafferelli and Silvestre
[9] approach to convert the problem (1.1) into the local problem. Then we use the
variational technique to study the local problem as in [10]. In this paper, the proofs
of some Lemmas follow the similar lines as in [10] but for completeness, we give the
details.

The article is organized as follows: In section 2 we present some preliminaries on
extension problem and necessary weighted trace inequalities required for variational
settings. We also state our main results. In section 3, we study the decomposition
of Nehari manifold and local charts using the fibering maps. In Section 4, we show
the existence of a nontrivial solutions and show how these solutions arise out of
nature of Nehari manifold.

We will use the following notation throughout this paper: The same symbol

‖ · ‖ denotes the norms in the three spaces L
2∗s

2∗s−1−q (Ω), L
2∗s

2∗s−1−p (Ω), and Hs
0,L(CΩ)

defined by (2.1). Also S := ksS(s, n) where S(s, n) is the best constant of Sobolev
embedding (see (2.2)).

2. Preliminaries and main results

In this section we give some definitions and functional settings. At the end of
this section, we state our main results. To state our main result, we introduce some
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notation and basic preliminaries results. Denote the upper half-space in Rn+1 by

Rn+1
+ := {z = (x, y) = (x1, x2, . . . , xn, y) ∈ Rn+1|y > 0},

the half cylinder standing on a bounded smooth domain Ω ⊂ Rn by CΩ := Ω ×
(0,∞) ⊂ Rn+1

+ and its lateral boundary is denoted by ∂LCΩ = ∂Ω× [0,∞). Define
the function space Hs

0,L(CΩ) as the completion of C∞0,L(CΩ) = {w ∈ C∞(CΩ) : w =
0 on ∂LCΩ} under the norm

‖w‖Hs0,L(CΩ) =
(
ks

∫
CΩ
y1−2s|∇w(x, y)|2 dx dy

)1/2

, (2.1)

where ks := 21−2sΓ(1−s)
Γ(s) is a normalization constant. Then it is a Hilbert space

endowed with the inner product

〈w, v〉Hs0,L(CΩ) = ks

∫
Ω×{0}

y1−2s∇w∇v dx dy.

If Ω is a smooth bounded domain then it is verified that (see [8, Proposition 2.1],
[6, Proposition 2.1], [26, section 2])

Hs
0(Ω) := {u = tr |Ω×{0}w : w ∈ Hs

0,L(CΩ)}

and there exists a constant C > 0 such that

‖w(·, 0)‖Hs0 (Ω) ≤ C‖w‖Hs0,L(CΩ) for all w ∈ Hs
0,L(CΩ).

Now we define the extension operator and fractional Laplacian for functions in
Hs

0(Ω).

Definition 2.1. Given a function u ∈ Hs
0(Ω), we define its s-harmonic extension

w = Es(u) to the cylinder CΩ as a solution of the problem

div(y1−2s∇w) = 0 in CΩ,
w = 0 on ∂LCΩ,
w = u on Ω× {0}.

Definition 2.2. For any regular function u ∈ Hs
0(Ω), the fractional Laplacian

(−∆)s acting on u is defined by

(−∆)su(x) = −ks lim
y→0+

y1−2s ∂w

∂y
(x, y) for all (x, y) ∈ CΩ.

From [5] and [9], the map Es(·) is an isometry between Hs
0(Ω) and Hs

0,L(CΩ).
Furthermore, we have

(1)
‖(−∆)su‖H−s(Ω) = ‖u‖Hs0 (Ω) = ‖Es(u)‖Hs0,L(CΩ),

where H−s(Ω) denotes the dual space of Hs
0(Ω);

(2) For any w ∈ Hs
0,L(CΩ), there exists a constant C independent of w such

that
‖ trΩ w‖Lr(Ω) ≤ C‖w‖Hs0,L(CΩ)

holds for every r ∈ [2, 2n
n−2s ]. Moreover, Hs

0,L(CΩ) is compactly embedded
into Lr(Ω) for r ∈ [2, 2n

n−2s ).
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Lemma 2.3. For every 1 ≤ r ≤ 2n
n−2s and every w ∈ Hs

0,L(CΩ), it holds(∫
Ω×{0}

|w(x, 0)|rdx
)2/r

≤ Cks
∫
CΩ
y1−2s|∇w(x, y)|2 dx dy,

where the constant C depends on r, s, n and |Ω|.

Lemma 2.4. For every w ∈ Hs(Rn+1
+ ), it holds

S(s, n)
(∫

Rn
|u(x)|

2n
n−2s dx

)n−2s
n ≤

∫
Rn+1

+

y1−2s|∇w(x, y)|2 dx dy, (2.2)

where u = trΩ w. The constant S(s, n) is known as the best constant and takes the
value

S(s, n) =
2πsΓ( 2−2s

2 )Γ(n+2s
2 )(Γ(n2 ))

2s
n

Γ(s)Γ(n−2s
2 )(Γ(n))

2s
n

.

Now we can transform the nonlocal problem (1.1) into the local problem

−div(y1−2s∇w) = 0 in CΩ := Ω× (0,∞),

w = 0 on ∂LCΩ, w > 0 on Ω× {0},
∂w

∂v2s
= a(x)w−q + λb(x)wp on Ω× {0},

(2.3)

where ∂w
∂v2s := −ks limy→0+ y1−2s ∂w

∂y (x, y), for all x ∈ Ω.

Definition 2.5. A weak solution of (2.3) is a function w ∈ Hs
0,L(CΩ), w > 0 in

Ω× {0} such that for every v ∈ Hs
0,L(CΩ),

ks

∫
CΩ
y1−2s∇w∇v dx dy

=
∫

Ω×{0}
a(x)(w−qv)(x, 0)dx+ λ

∫
Ω×{0}

b(x)(wpv)(x, 0)dx.

If w satisfies (2.3), then u = trΩ w = w(x, 0) ∈ Hs
0(Ω) is a weak solution to problem

(1.1).

Let c = 1−2s, then the associated functional Jλ : Hs
0,L(CΩ)→ R to the problem

(2.3) is

Jλ(w) =
ks
2

∫
CΩ
yc|∇w|2 dx dy − 1

1− q

∫
Ω×{0}

a(x)|w|1−qdx

− λ

p+ 1

∫
Ω×{0}

b(x)|w(x, 0)|p+1dx.

Now for w ∈ Hs
0,L(CΩ), we define the fiber map φw : R+ → R as

φw(t) = Jλ(tw) =
t2

2
‖w‖2 − 1

1− q

∫
Ω×{0}

a(x)|tw|1−qdx

− λtp+1

p+ 1

∫
Ω×{0}

b(x)|w(x, 0)|p+1dx.

Then

φ′w(t) = t‖w‖2 − t−q
∫

Ω×{0}
a(x)|w(x, 0)|1−qdx− λtp

∫
Ω×{0}

b(x)|w(x, 0)|p+1dx,
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φ′′w(t) = ‖w‖2 + qt−q−1

∫
Ω×{0}

a(x)|w(x, 0)|1−qdx

− pλtp−1

∫
Ω×{0}

b(x)|w(x, 0)|p+1dx.

It is easy to see that the energy functional Jλ is not bounded below on the space
Hs

0,L(CΩ). But we will show that it is bounded below on an appropriate subset of
Hs

0,L(CΩ) and a minimizer on subsets of this set gives rise to solutions of (2.3). In
order to obtain the existence results, we define

Nλ : = {w ∈ Hs
0,L(CΩ) : 〈J ′λ(w), w〉 = 0}

=
{
w ∈ Hs

0,L(CΩ) : ‖w‖2 =
∫

Ω×{0}
a(x)|w(x, 0)|1−qdx

+ λ

∫
Ω×{0}

b(x)|w(x, 0)|p+1dx
}
.

Note that w ∈ Nλ if w is a solution of (2.3). Also one can easily see that tw ∈ Nλ
if and only if φ′w(t) = 0 and in particular, w ∈ Nλ if and only if φ′w(1) = 0. In
order to obtain our result, we decompose Nλ with N±λ , N 0

λ as follows:

N±λ = {w ∈ Nλ : φ′′w(1) ≷ 0}

=
{
w ∈ Nλ : (1 + q)‖w‖2 ≷ λ(p+ q)

∫
Ω×{0}

b(x)|w(x, 0)|p+1 dx
}
,

N 0
λ = {w ∈ Nλ : φ′′w(1) = 0}

=
{
w ∈ Nλ : (1 + q)‖w‖2 = λ(p+ q)

∫
Ω×{0}

b(x)|w(x, 0)|p+1 dx
}
.

Inspired by [9] and [10], we show that how variational methods can be used to
established some existence and multiplicity results. Our results are as follows:

Theorem 2.6. Suppose that λ ∈ (0,Λ), where

Λ :=
1 + q

p+ q

(p− 1
p+ q

) p−1
1+q 1
‖b‖

( Sp+q

‖a‖p−1

)1/(1+q)

.

Then problem (2.3) has at least two solutions w0 ∈ N+
λ , W0 ∈ N−λ with ‖W0‖ >

‖w0‖. Moreover, u0(x) = w0(·, 0) ∈ Hs
0(Ω) and U0(x) = W0(·, 0) ∈ Hs

0(Ω) are
positive solutions of the problem (1.1).

Next, we obtain the blow up behavior of the solution Wε ∈ N−λ of problem (2.3)
with p = 1 + ε as ε→ 0+.

Theorem 2.7. let Wε ∈ N−λ be the solution of problem (2.3) with p = 1 + ε, where
λ ∈ (0,Λ), then

‖Wε‖ > Cε
(Λ
λ

)1/ε
,

where

Cε =
(

1 +
1 + q

ε

)1/(1+q)

‖a‖1/(q+1)
( 1√

S

) 1−q
1+q →∞ as ε→ 0+.

Namely, Wε blows up faster than exponentially with respect to ε.
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We remark that if w is a positive solution of the problem

(−∆)su = a(x)u−q + λb(x)up in Ω
u > 0 in Ω, u = 0 on ∂Ω.

Then one can easily see that v = λ1/(p−1)u is a positive solution of the problem

(−∆)sv = λ
1+q
p−1 a(x)v−q + b(x)vp in Ω

v > 0 in Ω, v = 0 in ∂Ω.
(2.4)

That is, the problem (2.4) has two positive solution for λ ∈ (0,Λp−1).

3. Fibering map analysis

In this section, we show that N±λ is nonempty and N 0
λ = {0}. Moreover, Jλ is

bounded below and coercive.

Lemma 3.1. Let λ ∈ (0,Λ). Then for each w ∈ Hs
0,L(CΩ) with∫

Ω×{0}
a(x)|w(x, 0)|1−qdx > 0,

we have the following:
(i)
∫

Ω×{0} b(x)|w(x, 0)|p+1 dx ≤ 0, then there exists a unique t1 < tmax such
that t1w ∈ N+

λ and Jλ(t1w) = inft>0 Jλ(tw);
(ii)

∫
Ω×{0} b(x)|w(x, 0)|p+1 dx > 0, then there exists a unique t1 and t2 with

0 < t1 < tmax < t2 such that t1w ∈ N+
λ , t2w ∈ N−λ and Jλ(t1w) =

inf0≤t≤tmax Jλ(tw), Jλ(t2w) = supt≥t1 Jλ(tw).

Proof. For t > 0, we define

ψw(t) = t1−p‖w‖2−t−p−q
∫

Ω×{0}
a(x)|w(x, 0)|1−q dx−λ

∫
Ω×{0}

b(x)|w(x, 0)|p+1 dx.

One can easily see that ψw(t)→ −∞ as t→ 0+. Now

ψ′w(t) = (1− p)t−p‖w‖2 + (p+ q)t−p−q−1

∫
Ω×{0}

a(x)|w(x, 0)|1−q dx.

ψ′′w(t) = −p(1− p)t−p−1‖w‖2

− (p+ q)(p+ q + 1)t−p−q−2

∫
Ω×{0}

a(x)|w(x, 0)|1−q dx.

Then ψ′w(t) = 0 if and only if t = tmax := [ (p−1)‖w‖2
(p+q)

R
Ω×{0} a(x)|w(x,0)|1−q dx ]−1/(1+q).

Also

ψ′′w(tmax) = p(p− 1)
[ (p− 1)‖w‖2

(p+ q)
∫

Ω×{0} a(x)|w(x, 0)|1−q dx

] p+1
q+1 ‖w‖2

− (p+ q)(p+ q + 1)
[ (p− 1)‖w‖2

(p+ q)
∫

Ω×{0} a(x)|w(x, 0)|1−q dx

] p+q+2
q+1

×
∫

Ω×{0}
a(x)|w(x, 0)|1−q dx

= −‖w‖2(p− 1)(1 + q)
[ (p− 1)‖w‖2

(p+ q)
∫

Ω×{0} a(x)|w(x, 0)|1−q dx

] p+1
q+1

< 0.
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Thus ψw achieves its maximum at t = tmax. Now using the Hölder’s inequality and
Sobolev inequality (2.2), we obtain∫

Ω×{0}
a(x)|w(x, 0)|1−q dx

≤
[ ∫

Ω×{0}
|a(x)|

2∗s
2∗s−1+q

] 2∗s+q−1
2∗s

[ ∫
Ω×{0}

|w(x, 0)|2
∗
sdx
] 1−q

2∗s

≤ ‖a‖
(‖w‖√

S

)1−q
.

(3.1)

∫
Ω×{0}

b(x)|w(x, 0)|p+1 dx

≤
[ ∫

Ω×{0}
|b(x)|

2∗s
2∗s−1−p

] 2∗s−p−1
2∗s

[ ∫
Ω×{0}

|w(x, 0)|2
∗
sdx
] p+1

2∗s

≤ ‖b‖
(‖w‖√

S

)p+1

.

(3.2)

Using (3.1) and (3.2), we obtain

ψw(tmax)

=
1 + q

p+ q

(p− 1
p+ q

) p−1
1+q ‖w‖

2(p+q)
1+q

[
∫

Ω×{0} a(x)|w(x, 0)|1−q dx]
p−1
1+q

− λ
∫

Ω×{0}
b(x)|w(x, 0)|p+1 dx

≥
[1 + q

p+ q

(p− 1
p+ q

) p−1
1+q
( (
√
S)(1−q)

‖a‖
) p−1

1+q − λ‖b‖
( 1√

S

)p+1]
‖w‖p+1

≡ Eλ‖w‖p+1,

(3.3)
where

Eλ :=
[1 + q

p+ q

(p− 1
p+ q

) p−1
1+q
( (
√
S)(1−q)

‖a‖

) p−1
1+q − λ‖b‖

( 1√
S

)p+1]
.

Then we see that Eλ = 0 if and only if λ = Λ, where

Λ :=
1 + q

p+ q

(p− 1
p+ q

) p−1
1+q 1
‖b‖

( Sp+q

‖a‖p−1

)1/(1+q)

.

Thus for λ ∈ (0,Λ), we have Eλ > 0, and therefore it follows from (3.3) that
ψw(tmax) > 0.

(i) If
∫

Ω×{0} b(x)|w(x, 0)|p+1 dx ≥ 0, then

ψw(t)→ −λ
∫

Ω×{0}
b(x)|w(x, 0)|p+1 dx < 0

as t → ∞. Consequently, ψw(t) has exactly two points 0 < t1 < tmax < t2 such
that

ψw(t1) = 0 = ψw(t2) and ψ′w(t1) > 0 > ψ′w(t2).

From the definition of N±λ , we get t1w ∈ N+
λ and t2w ∈ N−λ . Now φ′w(t) = tpψw(t).

Thus φ′w(t) < 0 in (0, t1), φ′w(t) > 0 in (t1, t2) and φ′w(t) < 0 in (t2,∞). Hence
Jλ(t1w) = inf0≤t≤tmax Jλ(tw), Jλ(t2w) = supt≥t1 Jλ(tw).
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(ii) If
∫

Ω×{0} b(x)|w(x, 0)|p+1 dx < 0 and

ψw(t)→ −λ
∫

Ω×{0}
b(x)|w(x, 0)|p+1 dx > 0

as t→∞. Consequently, ψw(t) has exactly one point 0 < t1 < tmax such that

ψw(t1) = 0 and ψ′w(t1) > 0.

Now φ′w(t) = tpψw(t). Then φ′w(t) < 0 in (0, t1), φ′w(t) > 0 in (t1,∞). Thus
Jλ(t1w) = inft≥0 Jλ(tw). Hence, it follows that t1w ∈ N+

λ . �

Corollary 3.2. Suppose that λ ∈ (0,Λ), then N±λ 6= ∅.

Proof. From (A1) and (A2), we can choose w ∈ Hs
0,L(CΩ) \ {0} such that∫

Ω×{0}
a(x)|w(x, 0)|1−q dx > 0 and

∫
Ω×{0}

b(x)|w(x, 0)|p+1 dx > 0.

Then by (ii) of Lemma 3.1, there exists a unique t1 and t2 such that t1w ∈ N+
λ ,

t2w ∈ N−λ . In conclusion, N±λ 6= ∅. �

Lemma 3.3. For λ ∈ (0,Λ), we have N 0
λ = {0}.

Proof. We prove this by contradiction. Assume that there exists 0 6≡ w ∈ N 0
λ .

Then it follows from w ∈ N 0
λ that

(1 + q)‖w‖2 = λ(p+ q)
∫

Ω×{0}
b(x)|w(x, 0)|p+1 dx

and consequently

0 = ‖w‖2 −
∫

Ω×{0}
a(x)|w(x, 0)|1−q dx− λ

∫
Ω×{0}

b(x)|w(x, 0)|p+1 dx

=
p− 1
p+ q

‖w‖2 −
∫

Ω×{0}
a(x)|w(x, 0)|1−q dx.

Therefore, as λ ∈ (0,Λ) and w 6≡ 0, we use similar arguments as those in (3.3) to
obain

0 < Eλ‖w‖p+1

≤ 1 + q

p+ q

(p− 1
p+ q

) p−1
1+q ‖w‖

2(p+q)
1+q[ ∫

Ω×{0} a(x)|w(x, 0)|1−q dx
] p−1

1+q

− λ
∫

Ω×{0}
b(x)|w(x, 0)|p+1 dx

=
1 + q

p+ q

(p− 1
p+ q

) p−1
1+q ‖w‖

2(p+q)
1+q(

p−1
p+q ‖w‖2

) p−1
1+q

− 1 + q

p+ q
‖w‖2 = 0,

a contradiction. Hence w ≡ 0. That is, N 0
λ = {0}. �

We note that Λ is also related to a gap structure in Nλ:
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Lemma 3.4. Suppose that λ ∈ (0,Λ), then there exist a gap structure in Nλ:

‖W‖ > Aλ > A0 > ‖w‖ for all w ∈ N+
λ , W ∈ N

−
λ ,

where

Aλ =
[ 1 + q

λ(p+ q)‖b‖
(
√
S)p+1

]1/(p−1)

and A0 =
[p+ q

p− 1
‖a‖
( 1√

S

)1−q]1/(q+1)

.

Proof. If w ∈ N+
λ ⊂ Nλ, then

0 < (1 + q)‖w‖2 − λ(p+ q)
∫

Ω×{0}
b(x)|w(x, 0)|p+1dx

= (1 + q)‖w‖2 − (p+ q)
[
‖w‖2 −

∫
Ω×{0}

a(x)|w(x, 0)|1−qdx
]

= (1− p)‖w‖2 + (p+ q)
∫

Ω×{0}
a(x)|w(x, 0)|1−qdx.

Hence it follows from (3.1) that

(p− 1)‖w‖2 < (p+ q)
∫

Ω×{0}
a(x)|w(x, 0)|1−qdx ≤ (p+ q)‖a‖

(‖w‖√
S

)1−q

which yields

‖w‖ <
[p+ q

p− 1
‖a‖
( 1√

S

)1−q]1/(q+1)

≡ A0.

If W ∈ N−λ , then it follows from (3.2) that

(1 + q)‖W‖2 < λ(p+ q)
∫

Ω×{0}
b(x)|W (x, 0)|p+1dx ≤ λ(p+ q)‖b‖

(‖W‖√
S

)p+1

which yields

‖W‖ >
[ 1 + q

λ(p+ q)‖b‖
(
√
S)p+1

]1/(p−1)

≡ Aλ.

Now we show that Aλ = A0 if and only if λ = Λ.

λ = Λ =
1 + q

p+ q

(p− 1
p+ q

) p−1
1+q 1
‖b‖

( Sp+q

‖a‖p−1

)1/(1+q)

if and only if

Aλ = λ−1/(p−1)
(1 + q

p+ q

)1/(p−1)( 1
‖b‖

)1/(p−1)(√
S
) p+1
p−1

=
(p+ q

p− 1

)1/(1+q)

‖a‖1/(q+1)
(√

S
)− 2(p+q)

(1+q)(p−1) + p+1
p−1

=
[ (p+ q)‖a‖

(p− 1)(
√
S)1−q

]1/(q+1)

≡ A0.

Thus for all λ ∈ (0,Λ), we can conclude that

‖W‖ > Aλ > A0 > ‖w‖ for all w ∈ N+
λ ,W ∈ N

−
λ .

This completes the proof. �

Lemma 3.5. Suppose that λ ∈ (0,Λ), then N−λ is a closed set in Hs
0,L(CΩ)-topology.
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Proof. Let {Wk} be a sequence in N−λ with Wk →W0 in Hs
0,L(CΩ). Then we have

‖W0‖2 = lim
k→∞

‖Wk‖2

= lim
k→∞

[ ∫
Ω×{0}

a(x)|Wk(x, 0)|1−qdx+ λ

∫
Ω×{0}

b(x)|Wk(x, 0)|p+1dx
]

=
∫

Ω×{0}
a(x)|W0(x, 0)|1−qdx+ λ

∫
Ω×{0}

b(x)|W0(x, 0)|p+1dx

and

(1 + q)‖W0‖2 − λ(p+ q)
∫

Ω×{0}
b(x)|W0(x, 0)|p+1dx

= lim
k→∞

[
(1 + q)‖Wk‖2 − λ(p+ q)

∫
Ω×{0}

b(x)|Wk(x, 0)|p+1dx
]
≤ 0.

That is, W0 ∈ N−λ ∩N 0
λ . Since {Wk} ⊂ N−λ , from Lemma 3.4 we have

‖W0‖ = lim
k→∞

‖Wk‖ ≥ A0 > 0,

which imply, W0 6= 0. It follows from Lemma 3.1, that W0 6∈ N 0
λ for any λ ∈

(0,Λ). Thus W0 ∈ N−λ . Hence, N−λ is a closed set in Hs
0,L(CΩ)-topology for any

λ ∈ (0,Λ). �

Lemma 3.6. Let w ∈ N±λ . Then for any φ ∈ C∞0,L(CΩ), there exists a number
ε > 0 and a continuous function f : Bε(0) := {v ∈ Hs

0,L(CΩ) : ‖v‖ < ε} → R+ such
that

f(v) > 0, f(0) = 1, f(v)(w + vφ) ∈ N±λ for all v ∈ Bε(0).

Proof. We give the proof only for the case w ∈ N+
λ , the case N−λ may be preceded

exactly. For any φ ∈ C∞0,L(CΩ), we define F : Hs
0,L(CΩ)× R+ → R as follows:

F (v, r) = r1+q‖w + vφ‖2 −
∫

Ω×{0}
a(x)|(w + vφ)(x, 0)|1−q

− λrp+q
∫

Ω×{0}
b(x)|(w + vφ)(x, 0)|p+1.

Since w ∈ N+
λ (⊂ Nλ), we have

F (0, 1) = ‖w‖2 −
∫

Ω×{0}
a(x)|w(x, 0)|1−qdx− λ

∫
Ω×{0}

b(x)|w(x, 0)|p+1dx = 0,

and
∂F

∂r
(0, 1) = (1 + q)‖w‖2 − λ(p+ q)

∫
Ω×{0}

b(x)|w(x, 0)|p+1dx > 0.

Applying the implicit function theorem at (0, 1), we have that there exists ε̄ > 0
such that for ‖v‖ < ε̄, v ∈ Hs

0,L(CΩ), the equation F (v, r) = 0 has a unique
continuous solution r = f(v) > 0. It follows from F (0, 1) = 0 that f(0) = 1 and
from F (v, f(v)) = 0 for ‖v‖ < ε̄, v ∈ Hs

0,L(CΩ) that

0 = f1+q(v)‖w + vφ‖2 −
∫

Ω×{0}
a(x)|(w + vφ)(x, 0)|1−q

− λfp+q(v)
∫

Ω×{0}
b(x)|(w + vφ)(x, 0)|p+1
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=
(
‖f(v)(w + vφ)‖2 −

∫
Ω×{0}

a(x)|f(v)(w + vφ)(x, 0)|1−q

− λ
∫

Ω×{0}
b(x)|f(v)(w + vφ)(x, 0)|p+1

)
/f1−q(v);

that is,
f(v)(w + vφ) ∈ Nλ for all v ∈ Hs

0,L(CΩ), ‖v‖ < ε̃.

Since ∂F
∂r (0, 1) > 0 and

∂F

∂r
(v, f(v))

= (1 + q)fq(v)‖w + vφ‖2 − λ(p+ q)fp+q−1(v)
∫

Ω×{0}
b(x)|(w + vφ)(x, 0)|p+1dx

=
(1 + q)‖f(v)(w + vφ)‖2 − λ(p+ q)

∫
Ω×{0} b(x)|f(v)(w + vφ)(x, 0)|p+1dx

f2−q(v)
,

we can take ε > 0 possibly smaller (ε < ε̄) such that for any v ∈ Hs
0,L(CΩ), ‖v‖ < ε,

(1 + q)‖f(v)(w + vφ)‖2 − λ(p+ q)
∫

Ω×{0}
b(x)|f(v)(w + vφ)(x, 0)|p+1dx > 0;

that is,
f(v)(w + vφ) ∈ N+

λ for all v ∈ Bε(0).
This completes the proof. �

Lemma 3.7. Jλ is bounded below and coercive on Nλ.

Proof. For w ∈ Nλ, from (3.1), we obtain

Jλ(w) =
(1

2
− 1
p+ 1

)
‖w‖2 −

( 1
1− q

− 1
p+ 1

)∫
Ω×{0}

a(x)|w(x, 0)|1−q dx

≥
(1

2
− 1
p+ 1

)
‖w‖2 −

( 1
1− q

− 1
p+ 1

)
‖a‖
(‖w‖√

S

)1−q
.

(3.4)

Now consider the function ρ : R+ → R as ρ(t) = αt2 − βt1−q, where α, β are both
positive constants. One can easily show that ρ is convex(ρ′′(t) > 0 for all t > 0)
with ρ(t) → 0 as t → 0 and ρ(t) → ∞ as t → ∞. ρ achieves its minimum at
tmin = [β(1−q)

2α ]1/(1+q) and

ρ(tmin) = α
[β(1− q)

2α
] 2

1+q − β
[β(1− q)

2α
] 1−q

1+q = −1 + q

2
β

2
1+q

(1− q
2α

) 1−q
1+q

.

Applying ρ(t) with α =
(

1
2 −

1
p+1

)
, β =

(
1

1−q −
1
p+1

)
‖a‖
(

1√
S

)1−q and t = ‖w‖,
w ∈ Nλ, we obtain from (3.4) that

lim
‖w‖→∞

Jλ(w) ≥ lim
t→∞

ρ(t) =∞.

Thus Jλ is coercive on Nλ. Moreover, it follows from (3.4) that

Jλ(w) ≥ ρ(t) ≥ ρ(tmin) (a constant), (3.5)

i.e.,

Jλ(w) ≥ −1 + q

2
β

2
1+q

(1− q
2α

) 1−q
1+q

= − 1 + q

(1− q)(p+ 1)

( (p+ q)‖a‖
2(
√
S)1−q

) 2
1+q
( 1
p− 1

) 1−q
1+q

.
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Thus Jλ is bounded below on Nλ. �

4. Existence of solutions in N±λ
Now from Lemma 3.5, N+

λ ∪N 0
λ and N−λ are two closed sets in Hs

0,L(CΩ) provided
λ ∈ (0,Λ). Consequently, the Ekeland variational principle can be applied to the
problem of finding the infimum of Jλ on both N+

λ ∪ N 0
λ and N−λ . First, consider

{wk} ⊂ N+
λ ∪N 0

λ with the following properties:

Jλ(wk) < inf
w∈N+

λ ∪N
0
λ

Jλ(w) +
1
k

(4.1)

Jλ(w) ≥ Jλ(wk)− 1
k
‖w − wk‖, ∀w ∈ N+

λ ∪N
0
λ . (4.2)

From Jλ(|w|) = Jλ(w), we may assume that wk ≥ 0 on CΩ.

Lemma 4.1. Show that the sequence {wk} is bounded in Nλ. Moreover, there
exists 0 6= w0 ∈ Hs

0,L(CΩ) such that wk ⇀ w0 weakly in Hs
0,L(CΩ).

Proof. By equations (3.5) and (4.1), we have

at2 − bt1−q = ρ(t) ≤ Jλ(w) < inf
w∈N+

λ ∪N
0
λ

Jλ(w) +
1
k
≤ C5,

for sufficiently large k and a suitable positive constant. Hence putting t = wk in
the above equation, we obtain {wk} is bounded.

Let {wk} is bounded in Hs
0,L(CΩ). Then, there exists a subsequence of {wk}k,

still denoted by {wk}k and w0 ∈ Hs
0,L(CΩ) such that wk ⇀ w0 weakly in Hs

0,L(CΩ),
wk(·, 0)→ w0(·, 0) strongly in Lp(Ω) for 1 ≤ p < 2∗s and wk(·, 0)→ w0(·, 0) a.e. in
Ω.

For any w ∈ N+
λ , we have from 0 < q < 1 < p that

Jλ(w) =
(1

2
− 1

1− q

)
‖w‖2 +

( 1
1− q

− 1
p+ 1

)
λ

∫
Ω×{0}

b(x)|w(x, 0)|p+1 dx

<
(1

2
− 1

1− q

)
‖w‖2 +

( 1
1− q

− 1
p+ 1

)1 + q

p+ q
‖w‖2

=
( 1
p+ 1

− 1
2

)1 + q

1− q
‖w‖2 < 0,

which means that infN+
λ
Jλ < 0. Now for λ ∈ (0,Λ), we know from Lemma 3.1,

that N 0
λ = {0}. Together, these imply that wk ∈ N+

λ for k large and

inf
w∈N+

λ ∪N
0
λ

Jλ(w) ≤ inf
w∈N+

λ

Jλ(w) < 0.

Therefore, by weak lower semi-continuity of norm,

Jλ(w0) ≤ lim inf
k→∞

Jλ(wk) = inf
N+
λ ∪N

0
λ

Jλ < 0,

that is, w0 ≥ 0, w0 6≡ 0. �

Lemma 4.2. Suppose wk ∈ N+
λ such that wk ⇀ w0 weakly in Hs

0,L(CΩ). Then for
λ ∈ (0,Λ),

(1 + q)
∫

Ω×{0}
a(x)w1−q

0 (x, 0)dx− λ(p− 1)
∫

Ω×{0}
b(x)wp+1

0 (x, 0)dx > 0. (4.3)
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Moreover, there exists a constant C2 > 0 such that

(1 + q)‖wk‖2 − λ(p+ q)
∫

Ω×{0}
b(x)wp+1

k (x, 0) dx ≥ C2 > 0. (4.4)

Proof. For {wk} ⊂ N+
λ (⊂ Nλ), since

(1 + q)
∫

Ω×{0}
a(x)w1−q

0 (x, 0)dx− λ(p− 1)
∫

Ω×{0}
b(x)wp+1

0 (x, 0)dx

= lim
k→∞

[
(1 + q)

∫
Ω×{0}

a(x)w1−q
k (x, 0) dx− λ(p− 1)

∫
Ω×{0}

b(x)wp+1
k (x, 0) dx

]
= lim
k→∞

[
(1 + q)‖wk‖2 − λ(p+ q)

∫
Ω×{0}

b(x)wp+1
k (x, 0) dx

]
≥ 0,

we can argue by a contradiction and assume that

(1 + q)
∫

Ω×{0}
a(x)w1−q

0 (x, 0)dx− λ(p− 1)
∫

Ω×{0}
b(x)wp+1

0 (x, 0)dx = 0. (4.5)

Since wk ∈ Nλ, from the weak lower semi continuity of norm and (4.5) we have

0 = lim
k→∞

[
‖wk‖2 −

∫
Ω×{0}

a(x)w1−q
k (x, 0) dx− λ

∫
Ω×{0}

b(x)wp+1
k (x, 0) dx

]
≥ ‖w0‖2 −

∫
Ω×{0}

a(x)w1−q
0 (x, 0)dx− λ

∫
Ω×{0}

b(x)wp+1
0 (x, 0)dx

=

{
‖w0‖2 − λp+q1+q

∫
Ω×{0} b(x)wp+1

0 (x, 0)dx

‖w0‖2 − p+q
p−1

∫
Ω×{0} a(x)w1−q

0 (x, 0)dx.

Thus for any λ ∈ (0,Λ) and w0 6≡ 0, by similar arguments as those in (3.3) we have
that

0 < Eλ‖w0‖p+1

≤ 1 + q

p+ q

(p− 1
p+ q

) p−1
1+q ‖w0‖

2(p+q)
1+q[ ∫

Ω×{0} a(x)w1−q
0 (x, 0)dx

] p−1
1+q

− λ
∫

Ω×{0}
b(x)wp+1

0 (x, 0)dx

=
1 + q

p+ q

(p− 1
p+ q

) p−1
1+q ‖w0‖

2(p+q)
1+q(

p−1
p+q ‖w0‖2

) p−1
1+q

− 1 + q

p+ q
‖w0‖2 = 0,

which is clearly impossible. Now by (4.3), we have that

(1 + q)
∫

Ω×{0}
a(x)w1−q

k (x, 0) dx− λ(p− 1)
∫

Ω×{0}
b(x)wp+1

k (x, 0) dx ≥ C2

for sufficiently large k and a suitable positive constant C2. This, together with the
fact that wk ∈ Nλ we obtain equation (4.4). �

Fix φ ∈ C∞0,L(CΩ) with φ ≥ 0. Then we apply Lemma 3.6 with w = wk ∈ N+
λ

(k large enough such that (1−q)C1
k < C2), we obtain a sequence of functions fk :

Bεk(0)→ R such that fk(0) = 1 and fk(w)(wk + wφ) ∈ N+
λ for all w ∈ Bεk(0). It

follows from wk ∈ Nλ and fk(w)(wk + wφ) ∈ Nλ that

‖wk‖2 −
∫

Ω×{0}
a(x)w1−q

k (x, 0) dx− λ
∫

Ω×{0}
b(x)wp+1

k (x, 0) dx = 0 (4.6)
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and
f2
k (w)‖wk + wφ‖2 − f1−q

k (w)
∫

Ω×{0}
a(x)(wk + wφ)1−q(x, 0)dx

− λfp+1
k (w)

∫
Ω×{0}

b(x)(wk + wφ)p+1(x, 0)dx = 0.
(4.7)

Choose 0 < ρ < εk and w = ρv with ‖v‖ < 1. Then we find fk(w) such that
fk(0) = 1 and fk(w)(wk + wφ) ∈ N+

λ for all w ∈ Bρ(0).

Lemma 4.3. For λ ∈ (0,Λ) we have |〈f ′k(0), v〉| is finite for every 0 ≤ v ∈ Hs
0,L(CΩ)

with ‖v‖ ≤ 1.

Proof. By (4.6) and (4.7) we have

0 = [f2
k (w)− 1]‖wk + wφ‖2 + ‖wk + wφ‖2 − ‖wk‖2

− [f1−q
k (w)− 1]

∫
Ω×{0}

a(x)(wk + wφ)1−q(x, 0)dx

−
∫

Ω×{0}
a(x)[((wk + wφ)1−q − w1−q

k )(x, 0)]dx

− λ[fp+1
k (w)− 1]

∫
Ω×{0}

b(x)(wk + wφ)p+1(x, 0)dx

− λ
∫

Ω×{0}
b(x)[((wk + wφ)p+1 − wp+1

k )(x, 0)]dx

≤ [f2
k (ρv)− 1]‖wk + ρvφ‖2 + ‖wk + ρvφ‖2 − ‖wk‖2

− [f1−q
k (ρv)− 1]

∫
Ω×{0}

a(x)(wk + ρvφ)1−q(x, 0)

− λ[fp+1
k (ρv)− 1]

∫
Ω×{0}

b(x)(wk + ρvφ)p+1(x, 0)

− λ
∫

Ω×{0}
b(x)[((wk + ρvφ)p+1 − wp+1

k )(x, 0)]

Dividing by ρ > 0 and passing to the limit ρ→ 0, we derive that

0 ≤ 2〈f ′k(0), v〉‖wk‖2 + 2ks
∫
CΩ
yc∇wk∇(vφ) dx dy

− (1− q)〈f ′k(0), v〉
∫

Ω×{0}
a(x)w1−q

k (x, 0)dx

− λ(p+ 1)〈f ′k(0), v〉
∫

Ω×{0}
b(x)wp+1

k (x, 0)dx

− λ(p+ 1)
∫

Ω×{0}
b(x)(wpkvφ)(x, 0)dx

= 〈f ′k(0), v〉
[
2‖wk‖2 − (1− q)

∫
Ω×{0}

a(x)w1−q
k (x, 0)dx

− λ(p+ 1)
∫

Ω×{0}
b(x)wp+1

k (x, 0)dx
]

+ 2ks
∫
CΩ
yc∇wk∇(vφ) dx dy − λ(p+ 1)

∫
Ω×{0}

b(x)(wpkvφ)(x, 0)dx
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= 〈f ′k(0), v〉
[
(1 + q)‖wk‖2

− λ(p+ q)
∫

Ω×{0}
b(x)wp+1

k (x, 0)dx
]

+ 2ks
∫
CΩ
yc∇wk∇(vφ) dx dy − λ(p+ 1)

∫
Ω×{0}

b(x)(wpkvφ)(x, 0)dx. (4.8)

From this inequality and (4.4) we know that 〈f ′k(0), v〉 6= −∞. Now we show that
〈f ′k(0), v〉 6= +∞. Arguing by contradiction, we assume that 〈f ′k(0), v〉 = +∞. Now
we note that

|fk(ρv)− 1|‖wk‖+ fk(ρv)‖ρvφ‖ ≥ ‖[fk(ρv)− 1]wk + ρvfk(ρv)φ‖
= ‖fk(ρv)(wk + ρvφ)− wk‖

(4.9)

and fk(ρv) > fk(0) = 1 for sufficiently large k.
From the definition of derivative 〈f ′k(0), v〉, applying equation (4.2) with w =

fk(ρv)(wk + ρvφ) ∈ N+
λ , we clearly have

[fk(ρv)− 1]
‖wk‖
k

+ fk(ρv)
‖ρvφ‖
k

≥ 1
k
‖fk(ρv)(wk + ρvφ)− wk‖

≥ Jλ(wk)− Jλ(fk(ρv)(wk + ρvφ))

=
(1

2
− 1

1− q

)
‖wk‖2 + λ

( 1
1− q

− 1
p+ 1

)∫
Ω×{0}

b(x)wp+1
k (x, 0)dx

+
( 1

1− q
− 1

2

)
f2
k (ρv)‖wk + ρvφ‖2

− λ(p+ q)
(1− q)(p+ 1)

fp+1
k (ρv)

∫
Ω×{0}

b(x)(wk + ρvφ)p+1(x, 0)dx

=
( 1

1− q
− 1

2

)
(‖wk + ρvφ‖2 − ‖wk‖2) +

( 1
1− q

− 1
2

)
[f2
k (ρv)− 1]‖wk + ρvφ‖2

− λ
( 1

1− q
− 1
p+ 1

)
fp+1
k (ρv)

∫
Ω×{0}

b(x)[((wk + ρvφ)p+1 − wp+1
k )(x, 0)]dx

− λ
( 1

1− q
− 1
p+ 1

)
[fp+1
k (ρv)− 1]

∫
Ω×{0}

b(x)wp+1
k (x, 0)dx.

Dividing by ρ > 0 and passing to the limit as ρ→ 0, we can obtain

〈f ′k(0), v〉‖wk‖
k

+
‖vφ‖
k

≥
(1 + q

1− q

)
ks

∫
CΩ
yc∇wk∇(vφ) dx dy +

(1 + q

1− q

)
〈f ′k(0), v〉‖wk‖2

− λ
(p+ q

1− q

)
〈f ′k(0), v〉

∫
Ω×{0}

b(x)wp+1
k (x, 0)dx

− λ
(p+ q

1− q

)∫
Ω×{0}

b(x)(wpkvφ)(x, 0)dx

=
〈f ′k(0), v〉

1− q

[
(1 + q)‖wk‖2 − λ(p+ q)

∫
Ω×{0}

b(x)wp+1
k (x, 0) dx

]
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+
(1 + q

1− q

)
ks

∫
CΩ
yc∇wk∇(vφ) dx dy − λ

(p+ q

1− q

)∫
Ω×{0}

b(x)(wpkvφ)(x, 0)dx.

That is,

‖vφ‖
k
≥ 〈f

′
k(0), v〉
1− q

[
(1 + q)‖wk‖2 − λ(p+ q)

∫
Ω×{0}

b(x)wp+1
k (x, 0) dx

− (1− q)‖wk‖
k

]
+
(1 + q

1− q

)
ks

∫
CΩ
yc∇wk∇(vφ) dx dy

− λ
(p+ q

1− q

)∫
Ω×{0}

b(x)(wpkvφ)(x, 0)dx,

(4.10)

which is impossible because 〈f ′k(0), v〉 = +∞ and

(1+q)‖wk‖2−λ(p+q)
∫

Ω×{0}
b(x)wp+1

k (x, 0) dx− (1− q)‖wk‖
k

≥ C2−
(1− q)C1

k
> 0.

In conclusion, |〈f ′k(0), v〉| < +∞. Furthermore, (4.4) with ‖wk‖ ≤ C1 and two
inequalities (4.8) and (4.10) also imply that

|〈f ′k(0), v〉| ≤ C3

for k sufficiently large and a suitable constant C3. �

Lemma 4.4. For each 0 ≤ φ ∈ C∞0,L(CΩ) and for every 0 ≤ v ∈ Hs
0,L(CΩ) with

‖v‖ ≤ 1, we have a(x)w−q0 vφ ∈ L1(Ω) and

ks

∫
CΩ
yc∇w0∇(vφ) dx dy −

∫
Ω×{0}

a(x)(w−q0 vφ)(x, 0)dx

− λ
∫

Ω×{0}
b(x)(wp0vφ)(x, 0)dx ≥ 0.

(4.11)

Proof. Applying (4.9) and (4.2) again, we obtain

[fk(ρv)− 1]
‖wk‖
k

+ fk(ρv)
‖ρvφ‖
k

≥ Jλ(wk)− Jλ(fk(ρv)(wk + ρvφ))

= −f
2
k (ρv)− 1

2
‖wk‖2 −

f2
k (ρv)

2
(‖wk + ρvφ‖2 − ‖wk‖2)

+
f1−q
k (ρv)− 1

1− q

∫
Ω×{0}

a(x)(wk + ρvφ)1−q(x, 0)

+
1

1− q

∫
Ω×{0}

a(x)[((wk + ρvφ)1−q − w1−q
k )(x, 0)]

+ λ
fp+1
k (ρv)− 1
p+ 1

∫
Ω×{0}

b(x)(wk + ρvφ)p+1(x, 0)

+
λ

p+ 1

∫
Ω×{0}

b(x)[((wk + ρvφ)p+1 − wp+1
k )(x, 0)].

Dividing by ρ > 0 and passing to the limit ρ→ 0+, we obtain

|〈f ′k(0), v〉|‖wk‖
k

+
‖vφ‖
k
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≥ −〈f ′k(0), v〉‖wk‖2 − ks
∫
CΩ
yc∇wk∇(vφ) dx dy

+ 〈f ′k(0), v〉
∫

Ω×{0}
a(x)w1−q

k (x, 0)dx

+ lim inf
ρ→0+

1
1− q

∫
Ω×{0}

a(x)[((wk + ρvφ)1−q − w1−q
k )(x, 0)]

ρ
dx

+ λ〈f ′k(0), v〉
∫

Ω×{0}
b(x)wp+1

k (x, 0)dx+ λ

∫
Ω×{0}

b(x)(wpkvφ)(x, 0)dx.

= −〈f ′k(0), v〉
[
‖wk‖2 −

∫
Ω×{0}

a(x)w1−q
k (x, 0) dx− λ

∫
Ω×{0}

b(x)wp+1
k (x, 0) dx

]
− ks

∫
CΩ
yc∇wk∇(vφ) dx dy + λ

∫
Ω×{0}

b(x)(wpkφ)(x, 0)dx

+ lim inf
ρ→0+

1
1− q

∫
Ω×{0}

a(x)[(wk + ρvφ)1−q − w1−q
k )(x, 0)]

ρ
dx

= −ks
∫
CΩ
yc∇wk∇(vφ) dx dy + λ

∫
Ω×{0}

b(x)(wpkvφ)(x, 0)dx

+ lim inf
ρ→0+

1
1− q

∫
Ω×{0}

a(x)[((wk + ρvφ)1−q − w1−q
k )(x, 0)]

ρ
dx,

Using above inequality, we have

lim inf
ρ→0+

∫
Ω×{0}

a(x)[((wk + ρvφ)1−q − w1−q
k )(x, 0)]

ρ
dx

is finite. Now, since a(x)[((wk+vφ)1−q−w1−q
k )(x, 0)] ≥ 0, then by Fatou’s Lemma,

we have∫
Ω×{0}

a(x)(w−qk vφ)(x, 0)dx

≤ lim inf
ρ→0+

1
1− q

∫
Ω×{0}

a(x)[((wk + ρvφ)1−q − w1−q
k )(x, 0)]

ρ
dx

≤ |〈f
′
k(0), v〉|‖wk‖+ ‖vφ‖

k
+ ks

∫
CΩ
yc∇wk∇(vφ) dx dy

− λ
∫

Ω×{0}
b(x)(wpkvφ)(x, 0)dx

≤ C1C3 + ‖vφ‖
k

+ ks

∫
CΩ
yc∇wk∇(vφ) dx dy − λ

∫
Ω×{0}

b(x)(wpkvφ)(x, 0)dx.

Again using Fatou’s Lemma and this inequality, we have∫
Ω×{0}

a(x)(w−q0 vφ)(x, 0)dx

≤
∫

Ω×{0}

[
lim inf
k→∞

a(x)(w−qk vφ)(x, 0)
]
dx

≤ lim inf
k→∞

∫
Ω×{0}

a(x)(w−qk vφ)(x, 0)dx
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≤ ks
∫
CΩ
yc∇w0∇(vφ) dx dy − λ

∫
Ω×{0}

b(x)(wp0vφ)(x, 0)dx <∞,

which completes the proof. �

Corollary 4.5. For every 0 ≤ φ ∈ Hs
0,L(CΩ), we have a(x)w−q0 φ ∈ L1(Ω), w0 > 0

in CΩ and

ks

∫
CΩ
yc∇w0∇φdx dy −

∫
Ω×{0}

a(x)(w−q0 φ)(x, 0)dx

− λ
∫

Ω×{0}
b(x)(wp0φ)(x, 0)dx ≥ 0.

(4.12)

Proof. Choosing v ∈ Hs
0,L(CΩ) such that v ≥ 0, v ≡ l in the neighborhood of

support of φ and ‖v‖ ≤ 1, for some l > 0 is a constant. Then by the Lemma 4.4,
we note that

∫
Ω×{0} a(x)(w−q0 φ)(x, 0)dx < ∞, for every 0 ≤ φ ∈ C∞0,L(CΩ), which

guarantees that w0 > 0 a.e. in Ω×{0}. Also by the strong maximum principle [9],
we obtain w0 > 0 in CΩ. Putting this choice of v in (4.11) we have

ks

∫
CΩ
yc∇w0∇φdx dy − λ

∫
Ω×{0}

b(x)(wp0φ)(x, 0)dx

−
∫

Ω×{0}
a(x)(w−q0 φ)(x, 0)dx ≥ 0.

for every 0 ≤ φ ∈ C∞0,L(CΩ). Hence by density argument, (4.12) holds for every
0 ≤ φ ∈ Hs

0,L(CΩ), which completes the proof. �

Lemma 4.6. We have w0 ∈ N+
λ .

Proof. Using (4.12) with φ = w0, we obtain

‖w0‖2 ≥
∫

Ω×{0}
a(x)w1−q

0 (x, 0)dx+ λ

∫
Ω×{0}

b(x)wp+1
0 (x, 0)dx.

On the other hand, by the weak lower semi-continuity of the norm, we have

‖w0‖2 ≤ lim inf
k→∞

‖wk‖2 ≤ lim sup
k→∞

‖wk‖2

=
∫

Ω×{0}
a(x)w1−q

0 (x, 0)dx+ λ

∫
Ω×{0}

b(x)wp+1
0 (x, 0)dx.

Thus

‖w0‖2 =
∫

Ω×{0}
a(x)w1−q

0 (x, 0)dx+ λ

∫
Ω×{0}

b(x)wp+1
0 (x, 0)dx. (4.13)

Consequently, wk → w0 in Hs
0,L(CΩ) and w0 ∈ Nλ. Moreover, from (4.3) it follows

that

(1 + q)‖w0‖2 − λ(p+ q)
∫

Ω×{0}
b(x)wp+1

0 (x, 0)dx

=(1 + q)
∫

Ω×{0}
a(x)w1−q

0 (x, 0)dx− λ(p− 1)
∫

Ω×{0}
b(x)wp+1

0 (x, 0)dx > 0;

that is, w0 ∈ N+
λ . �

Lemma 4.7. The function w0 is a positive weak solution of problem (2.3).
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Proof. Suppose that φ ∈ Hs
0,L(CΩ) and ε > 0, we define Ψ = (w0 + εφ)+. Let

CΩ = Γ1 ∩ Γ2 with

Γ1 :=
{

(x, y) ∈ CΩ : (w0 + εφ)(x, y) > 0},
Γ2 := {(x, y) ∈ CΩ : (w0 + εφ)(x, y) ≤ 0

}
.

Let Ω× {0} = Ω1 × Ω2 with

Ω1 := {(x, 0) ∈ Ω× {0} : (w0 + εφ)(x, 0) > 0},
Ω2 := {(x, 0) ∈ Ω× {0} : (w0 + εφ)(x, 0) ≤ 0}.

Then Ω1 ⊂ Γ1, Ω2 ⊂ Γ2, Ψ|Γ1 = w0 + εφ, Ψ|Γ2 = 0, Ψ|Ω1(x, 0) = (w0 + εφ)(x, 0),
and Ψ|Ω2(x, 0) = 0. Putting Ψ into (4.12) and using (4.13), we see that

0 ≤ ks
∫
CΩ
yc∇w0∇Ψ dx dy −

∫
Ω×{0}

a(x)(w−q0 Ψ)(x, 0)dx

− λ
∫

Ω×{0}
b(x)(wp0Ψ)(x, 0)dx

= ks

∫
Γ1

yc∇w0∇(w0 + εφ) dx dy −
∫

Ω1

a(x)(w−q0 (w0 + εφ))(x, 0)dx

− λ
∫

Ω1

b(x)(wp0(w0 + εφ))(x, 0)dx

= ks

∫
CΩ
yc∇w0∇(w0 + εφ) dx dy −

∫
Ω×{0}

a(x)
(
w−q0 (w0 + εφ)

)
(x, 0)dx

− λ
∫

Ω×{0}
b(x) (wp0(w0 + εφ)) (x, 0)dx−

[
ks

∫
Γ2

yc∇w0∇(w0 + εφ) dx dy

−
∫

Ω2

a(x)
(
w−q0 (w0 + εφ)

)
(x, 0)dx− λ

∫
Ω2

b(x) (wp0(w0 + εφ)) (x, 0)dx
]

= ks

∫
CΩ
yc|∇w0|2 dx dy −

∫
Ω×{0}

a(x)w1−q
0 (x, 0)dx− λ

∫
Ω×{0}

b(x)wp+1
0 (x, 0)dx

+ ε
[
ks

∫
CΩ
yc∇w0∇φdx dy −

∫
Ω×{0}

a(x)(w−q0 φ)(x, 0)dx

− λ
∫

Ω×{0}
b(x)(wp0φ)(x, 0)dx

]
− [ks

∫
Γ2

yc|∇w0|2 −
∫

Ω2

a(x)w1−q
0 (x, 0)dx− λ

∫
Ω2

b(x)wp+1
0 (x, 0)dx

]
− ε
[
ks

∫
Γ2

yc∇w0∇φdx dy −
∫

Ω2

a(x)(w−q0 φ)(x, 0)dx

− λ
∫

Ω2

b(x)(wp0φ)(x, 0)dx
]

≤ ε
[
ks

∫
CΩ
yc∇w0∇φdx dy −

∫
Ω×{0}

a(x)(w−q0 φ)(x, 0)dx

− λ
∫

Ω×{0}
b(x)(wp0φ)(x, 0)dx

]
− εks

∫
Γ2

yc∇w0∇φdx dy +
∫

Ω2

a(x)w−q0 (w0 + εφ)dx
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+ λ

∫
Ω2

b(x)|εφ|p+1(x, 0)dx+ ελ

∫
Ω2

b(x)(wp0φ)(x, 0)dx

≤ ε
[
ks

∫
CΩ
yc∇w0∇φdx dy −

∫
Ω×{0}

a(x)(w−q0 φ)(x, 0)dx

− λ
∫

Ω×{0}
b(x)(wp0φ)(x, 0)dx

]
− εks

∫
Γ2

yc∇w0∇φdx dy + ελεp‖b‖
L

2∗s
2∗s−p−1 (Ω2)

(∫
Ω2

|φ|2
∗
sdx
) p+1

2∗s

+ ελ

∫
Ω2

b(x)(wp0φ)(x, 0)dx.

Since the measure of Γ2 and Ω2 tend to zero as ε→ 0, it follows that∫
Γ2

yc∇w0∇φdx dy → 0

as ε→ 0, and similarly for

λεp‖b‖
L

2∗s
2∗s−p−1 (Ω2)

(∫
Ω2

|φ|2
∗
sdx
) p+1

2∗s

and λ
∫

Ω2
b(x)(wp0φ)(x, 0)dx. Dividing by ε and letting ε→ 0, we obtain

ks

∫
CΩ
yc∇w0∇φdx dy −

∫
Ω×{0}

a(x)(w−q0 φ)(x, 0)dx

− λ
∫

Ω×{0}
b(x)(wp0φ)(x, 0)dx ≥ 0

and since this holds equally well for −φ, it follows that w0 is indeed a positive weak
solution of problem (2.3). �

Lemma 4.8. There exists a minimizing sequence {Wk} in N−λ such that Wk →W0

strongly in N−λ . Moreover W0 is a positive weak solution of (2.3).

Proof. Using the Ekeland variational principle again, we may find a minimizing
sequence {Wk} ⊂ N−λ for the minimizing problem infN−λ Jλ such that for Wk ∈
Hs

0,L(CΩ), we have Wk ⇀ W0 weakly in Hs
0,L(CΩ) and pointwise a.e. in Ω × {0}.

We can now repeat the argument used in Lemma 4.2 to derive that when λ ∈ (0,Λ)

(1+q)
∫

Ω×{0}
a(x)|W0(x, 0)|1−qdx−λ(p−1)

∫
Ω×{0}

b(x)|W0(x, 0)|p+1dx < 0 (4.14)

which yields

(1 + q)
∫

Ω×{0}
a(x)|Wk(x, 0)|1−qdx− λ(p− 1)

∫
Ω×{0}

b(x)|Wk(x, 0)|p+1dx ≤ −C4

for k sufficiently large and a suitable positive constant C4. At this point we may
proceed exactly as in Lemmas 4.3, 4.4, 4.6, 4.7 and Corollary 4.5, and conclude that
0 < W0 ∈ Nλ is the required positive weak solution of problem (2.3). Moreover
from (4.14) it follows that

(1 + q)‖W0‖2 − λ(p+ q)
∫

Ω×{0}
b(x)W p+1

0 (x, 0)dx
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= (1 + q)
[ ∫

Ω×{0}
a(x)W 1−q

0 (x, 0)dx+ λ

∫
Ω×{0}

b(x)W p+1
0 (x, 0)dx

]
− λ(p+ q)

∫
Ω×{0}

b(x)W p+1
0 (x, 0)dx

= (1 + q)
∫

Ω×{0}
a(x)W 1−q

0 (x, 0)dx− λ(p− 1)
∫

Ω×{0}
b(x)W p+1

0 (x, 0)dx < 0,

that is W0 ∈ N−λ . �

Proof of the Theorem 2.6. From Lemmas 4.7, 4.8 and 3.4, we can conclude that
problem (2.3) has two positive weak solutions w0 ∈ N+

λ , W0 ∈ N−λ with ‖W0‖ >
‖w0‖ for any λ ∈ (0,Λ). Hence, u0(·) = w0(·, 0) ∈ Hs

0(Ω) and U0(·) = W0(·, 0) ∈
Hs

0(Ω) are positive solutions of the problem (1.1). �

Proof of the Corollary 2.7. For any W ∈ N−λ , it follows from Lemma 3.4 that

‖W‖ > Aλ = Λ
−1
p−1

(1 + q

p+ q

)1/(p−1)( 1
‖b‖

)1/(p−1)(√
S
) p+1
p−1
(Λ
λ

)1/(p−1)

.

Thus by the definition of Λ, and using 2(p+q)
(1+q)(p−1) −

p+1
p−1 = 1−q

1+q , we obtain,

‖W‖ >
(

1 +
1 + q

p− 1

)1/(1+q)

‖a‖1/(q+1)
( 1√

S

) 1−q
1+q
(Λ
λ

)1/(p−1)

.

Hence, let Wε ∈ N−λ be the solution of problem (2.3) with p = 1 + ε, where
λ ∈ (0,Λ), we have

‖W‖ > Cε

(
Λ
λ

)1/ε

,

where Cε =
(
1 + 1+q

ε

)1/(1+q)‖a‖1/(q+1)
(

1√
S

) 1−q
1+q →∞ as ε→ 0. This completes the

proof of Corollary 2.7. �
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