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FRACTIONAL ELLIPTIC EQUATIONS WITH SIGN-CHANGING
AND SINGULAR NONLINEARITY

SARIKA GOYAL, KONIJETI SREENADH

ABSTRACT. In this article, we study the fractional Laplacian equation with
singular nonlinearity

(=A)°u =a(z)u™+ Ab(z)uP in Q,
u>0 inQ, u=0 in 9N,
where € is a bounded domain in R™ with smooth boundary 99, n > 2s, s €

(0,1), A > 0. Using variational methods, we show existence and multiplicity
of positive solutions.

1. INTRODUCTION

Let © C R™ be a bounded domain with smooth boundary, n > 2s and s € (0,1).
We consider the fractional elliptic problem with singular nonlinearity

(—A)u = a(z)u™? + Xb(z)uP in Q,

1.1
u>0 in), wu=0 in 0. (1.1)

We use the following assumptions on a and b:
-
(Al) a: QCR” - Rsuch that 0 < a € LT (Q).
(A2) b: Q C R® — R is a sign-changing function such that bT # 0 and b(z) €
e
L7 7(Q).

Here A > 0 is a parameter, 0 < ¢ < 1 < p < 2} — 1, with 2} = nzfzs, known as
fractional critical Sobolev exponent and where (—A)® is the fractional Laplacian
operator in  with zero Dirichlet boundary values on 0f2.

To define the fractional Laplacian operator (—A)® in Q, let {A\g, ¢x} be the
eigenvalues and the corresponding eigenfunctions of —A in Q with zero Dirichlet
boundary values on 0f)

(=A)°dr = A\pdr in Q, ¢ = 0 on O

normalized by ||¢x||z2(q) = 1. Then one can define the fractional Laplacian (—A)®
for s € (0,1) by

(—A)SU = Z )\chd)k,
k=1
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which clearly maps

00 00 1/2
H3(©) = {u =Y e € LA(Q) ¢ lullmgoy = (D Mie?) < oo}
k=1

k=1

into L?(Q). Moreover Hg(f2) is a Hilbert space endowed with an inner product

() exdn, Y k) s ) = > Aerdedr, i cndr, Y dier € Hi(Q).
k=1 k=1 k=1 k=1 k=1
Definition 1.1. A function u € H§(f2) such that u(z) > 0 in  is a solution of
(1.1) such that for every function v € H§(2), it holds

/(—A)S/QU(—A)S/Zde = / a(x)u”%dx + X [ b(x)uPvdz.
Q Q Q

Associated with , we consider the energy functional for u € H§(2), u > 0
in  such that

I(u) = / (=AY 2u|?dx — L/ a(x)|u|'~ldx — A b(x)|u|PTdx.

Q 1—qJq r+1Ja

The fractional power of Laplacian is the infinitesimal generator of Lévy stable
diffusion process and arise in anomalous diffusions in plasma, population dynamics,
geophysical fluid dynamics, flames propagation, chemical reactions in liquids and
American options in finance. For more details, we refer to [3, [[4] and reference
therein.

Recently the study of existence, multiplicity of solutions for fractional elliptic
equations attracted a lot of interest by many researchers. Among the works dealing
with fractional elliptic equations we cite [6] 9] 2], 22], 23] 24] 25| [26] and references
therein, with no attempt to provide a complete list. Caffarelli and Silvestre [8]
gave a new formulation of fractional Laplacian through Dirichlet-Neumann maps.
This formulation transforms problems involving the fractional Laplacian into a local
problem which allows one to use the variational methods.

On the other hand, there are some works where multiplicity results are shown
using the structure of associated Nehari manifold. In [I5] [I6] authors studied
subcritical problems and in [28] the authors obtained the existence of multiplicity
for critical growth nonlinearity. In the case of the square root of Laplacian, the
multiplicity results for sublinear and superlinear type of nonlinearity with sign-
changing weight functions are studied in [7), 27].

In the local setting, s = 1, the paper by Crandall, Robinowitz and Tartar [12]
is the starting point on semilinear problem with singular nonlinearity. There is a
large body of literature on singular problems, see [1| 2 [Tl 12} [I7, 18, 19} 20] and
reference therein. Recently, Chen and Chen in [I0] studied the following problem
with singular nonlinearity

A
|2
where 0 € Q@ C R™(n > 3) is a bounded smooth domain with smooth boundary,

0 <A< % and 0 < g <1 <p< ng Also h, W both are continuous
functions in Q with A > 0 and W is sign-changing. By variational methods, they
showed that there exists T such that for p € (0,7)) the above problem has two

positive solutions.

—Au =h(z)u™? + pW(z)u? in Q\ {0}, u«>0in Q\ {0}, w=0on 99,
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In case of the fractional Laplacian, Fang [I3] proved the existence of a solution
of the singular problem

(—AYw=w"P u>0inQ, u=0inR"\Q,

with 0 < p < 1, using the method of sub and super solution. Recently, Barrios,
Peral and et al [4] extend the result of [13]. They studied the existence result for
the singular problem

(—A)Su:)\%—i—Mup, u>0in Q, w=0inR"\Q,

where €2 is a bounded smooth domain of R", n > 25, 0 < s <1, v >0, A > 0,
p>1land f € L™(Q), m > 1is a nonnegative function. For M = 0, they proved
the existence of solution for every v > 0 and A > 0. For M = 1 and f = 1, they
showed that there exist A such that it has a solution for every 0 < A < A, and
have no solution for A > A. Here the authors first studied the uniform estimates of

solutions {u,} of the regularized problems

(—A)su:)\Lxl)—i—up,u>OinQ, u=0in R™\ Q. (1.2)
(u+5)7
Then they obtained the solutions by taking limit in the regularized problem .

As far as we know, there is no work related to fractional Laplacian for singular
nonlinearity and sign-changing weight functions. So, in this paper, we study the
multiplicity results for problem for0<g<1l<p<2:—1and A >0. This
work is motivated by the work of Chen and Chen in [I0]. Due to the singularity
of problem, it is not easy to deal the problem as the associated functional is
not differentiable even in sense of Gateaux and the strong maximum principle is
not applicable to show the positivity of solutions. Moreover one can not directly
extend all the results from Laplacian case to fractional Laplacian, due to the non-
local behavior of the operator and the bounded support of the test function is not
preserved. To overcome these difficulties, we first use the Cafferelli and Silvestre
[9] approach to convert the problem into the local problem. Then we use the
variational technique to study the local problem as in [I0]. In this paper, the proofs
of some Lemmas follow the similar lines as in [10] but for completeness, we give the
details.

The article is organized as follows: In section 2 we present some preliminaries on
extension problem and necessary weighted trace inequalities required for variational
settings. We also state our main results. In section 3, we study the decomposition
of Nehari manifold and local charts using the fibering maps. In Section 4, we show
the existence of a nontrivial solutions and show how these solutions arise out of
nature of Nehari manifold.

We will use the following notation throughout this paper: The same symbol

o .

s 25
|| - || denotes the norms in the three spaces L>-1-¢(Q), L>3-"-7(Q), and Hg ; (Cq)
defined by (2.1). Also S := ksS(s,n) where S(s,n) is the best constant of Sobolev
embedding (see (2.2)).

2. PRELIMINARIES AND MAIN RESULTS

In this section we give some definitions and functional settings. At the end of
this section, we state our main results. To state our main result, we introduce some
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notation and basic preliminaries results. Denote the upper half-space in R™+! by
]Rf'l ={z=(2,y) = (x1,22,...,7pn,y) € R" |y > 0},

the half cylinder standing on a bounded smooth domain 2 C R™ by Cq := Q X

(0,00) C R*! and its lateral boundary is denoted by 91,Cq = 09 x [0, 00). Define

the function space H{ 1 (Cq) as the completion of C§% (Ca) = {w € C*° (Cq) :w=
0 on 9Cq} under the norm

1-2s 2 1/2
Jwllg iea = (ke | o'V )P dedy) (21)

Ca

1—-2s
where ks = %‘Sﬂ) is a normalization constant. Then it is a Hilbert space

endowed with the inner product
<U), U>H§ .(Ca) = ks / yl_QSVwVU dx dy

' Qx{0}
If Q is a smooth bounded domain then it is verified that (see [8] Proposition 2.1],
[0, Proposition 2.1], [26] section 2])

Hg(Q) :={u = tr|gxoyw: w € Hj 1(Ca)}
and there exists a constant C' > 0 such that
||w(, 0)||H5(Q) S CHwHHsL(CQ) fOI‘ all w e HS)L(CQ).

Now we define the extension operator and fractional Laplacian for functions in
H(Q).

Definition 2.1. Given a function v € H{(2), we define its s-harmonic extension
w = Eg(u) to the cylinder Cq as a solution of the problem

div(y' ~?*Vw) =0 in Cq,
w=0 ond.Cq,
w=wu onx{0}.

Definition 2.2. For any regular function v € H{(Q2), the fractional Laplacian
(—A)® acting on u is defined by
(=A)’u(x) = —ks lim y1_258—w(x7y) for all (z,y) € Cq.
y—0F y
From [5] and [9], the map E(-) is an isometry between H(S2) and H ;(Cq)-
Furthermore, we have
(1)
(=) ull-s0) = llullag @) = 1Es(w)llag , o)
where H*(2) denotes the dual space of H§();
(2) For any w € H{ ;(Ca), there exists a constant C' independent of w such
that
| tro wllLr@) < Cllwllgg , o)

holds for every r € [2, -2%-]. Moreover, Hj ; (Cq) is compactly embedded

into L"(2) for r € [2, -2%-).

I n—2s
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Lemma 2.3. For every 1 <r < 22 and every w € H{ 1 (Ca), it holds
2/r
([ w@ora)” <cr [ o>V ddy,
QX{O} Co

where the constant C' depends on r, s, n and |Q).

Lemma 2.4. For every w € H*(R":), it holds

o 7L:L2s os
S(s,n)(/ |u(x)|nf2sdx) < /Rn+1 yt 2 |Vw(x,y)|2dxdy, (2.2)
+

where u = trqw. The constant S(s,n) is known as the best constant and takes the

value
2

TSI (3) %

S(s,n) =
) = R () ()

Now we can transform the nonlocal problem (|1.1)) into the local problem
—div(y'™*Vw) =0 in Cq := Q x (0,00),
w=0o0ndCq, w>0onQx {0},

(2.3)
0
Wfs =a(x)w™ 4+ Ab(z)w? on Q x {0},
where 2% := —k, lim, o+ yl’QS%—‘y”(x, y), for all z € Q.

Definition 2.5. A weak solution of (2.3) is a function w € Hj ;(Cq), w > 0 in
Q x {0} such that for every v € H{ 1 (Ca),

ks Yy 72 VwVo dz dy
Ca

- / o) (w=0) (2, 0)da + A b(a) (wPv) (z, 0)da.
Qx{0} Qx{0}
If w satisfies ([2.3)), then u = trq w = w(z,0) € H5(Q) is a weak solution to problem
).
Let ¢ = 1—2s, then the associated functional Jy : Hg (Ca) — R to the problem

23) is

ks 1 _
Ji(w) = —/ Y| Vw|? de dy — —— a(z)|w|' "%z
2 Jeg 1 —q Jaxqo
A
- b(x)|w(z,0)|P  da.
P+ 1 Jaxioy

Now for w € Hf 1 (Cq), we define the fiber map ¢, : RT — R as

t? 1 _
6u(t) = In(tw) = Sl = = [ ao)ltul1ds
2 1 —q Jax{o)
AP
p+1

/ b(x)|w(zx,0)|P T d.
Qx{0}
Then

S =l ~ £ [ a@fu@ o) e -3 [ b0 e,
Qx{0} Qx{0}
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o1 () = [Ju]]? + gt o / a(@)|w(z, 0)|*~7dz

Qx{0}
! / b(@)|w(z, 0) P+ da.
Qx{0}

It is easy to see that the energy functional Jy is not bounded below on the space
Hg 1.(Cq). But we will show that it is bounded below on an appropriate subset of
H{ 1 (Cq) and a minimizer on subsets of this set gives rise to solutions of . In
order to obtain the existence results, we define

Ny o= {w € Hj 1(Ca) : (J3(w), w) = 0}

— {w c H&L(CQ) : ||w||2 = / a(x)|w(x,0)|17qu
Qx{0}

+ A b(2)|w(e, 0)|P+1dx}.
Qx{0}
Note that w € N, if w is a solution of (2.3). Also one can easily see that tw € Ny
if and only if ¢/, (t) = 0 and in particular, w € N, if and only if ¢/ (1) = 0. In
order to obtain our result, we decompose Ny with N5, NV as follows:

NE={weN,:¢"(1) =0}

—{weN: (149wl 2Mp+a) [ b0t di,
Qx{0}

NY ={weN,:¢l(1) =0}
= [we N : (1+g)wl? = Ap+ q)/ b(a)|w(z, )P+ da.
Qx {0}
Inspired by [9] and [10], we show that how variational methods can be used to
established some existence and multiplicity results. Our results are as follows:
Theorem 2.6. Suppose that A € (0,A), where
_l+qp—1 el g Spta \1/(1+a)
“iGrd) )
Then problem has at least two solutions wo € Ny, Wy € Ny with |[Wo| >

lwol|. Moreover, ug(z) = wo(-,0) € HF(QY) and Up(z) = Wy(-,0) € HE() are
positive solutions of the problem (L.1)).

Next, we obtain the blow up behavior of the solution W, € Ny~ of problem (2.3)
withp=1+4+e€ase— 0F.

Theorem 2.7. let W, € N be the solution of problem (2.3) with p =1+ ¢, where
A€ (0,A), then

A

A1/e
Wl > c(5)"",

where

1/(1+ 1
C. = <1+ﬂ) ) q)Ha”l/(qH)(L) o ase—OF.
€ NG

Namely, W, blows up faster than exponentially with respect to e.
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We remark that if w is a positive solution of the problem
(=A)°u =a(z)u™? + Xb(z)u? in Q
u>0in Q, u =0 on 0.
Then one can easily see that v = AY/®~Dy is a positive solution of the problem
(=A)’v = At a(x)v” 1+ b(z)v? in Q
v>0inQ, v=01in JN.
That is, the problem has two positive solution for A € (0, AP~1).

(2.4)

3. FIBERING MAP ANALYSIS

In this section, we show that N is nonempty and N = {0}. Moreover, Jy is
bounded below and coercive.

Lemma 3.1. Let A € (0,A). Then for each w € Hj 1 (Ca) with

/ a(x)|w(z,0)|'~dz > 0,
Qx{0}

we have the following:
(i) fo{o} b(z)|w(z,0)[PT dx < 0, then there exists a unique t; < tmax such

that tyw € N/\+ and Jy(tyw) = inf;~q Jy(tw);
(ii) fo{o} b(z)|w(x,0)|PT dx > 0, then there exists a unique t; and ty with

0 < t1 < tmax < t2 such that tiw € Ny, taw € Ny and J\(tiw) =
infosityn, Ja (1), Ja(E20) = SUpysg, J (1),

Proof. For t > 0, we define
Py (t) = tl_”HwHQ—t_p_q/ a(x)|w(z,0)|* 9 dx—\ b(x)|w(z,0)|P™ du.
Qx {0} Qx {0}

One can easily see that 1), (t) — —oo as t — 0F. Now
V(1) = (1= p)tPllwl* + (p + @t 777! / a@)|w(z,0)['~ d.
Qx{0}
b (t) = —p(1 = p)t 7 Hw|?

(et q)(p gt e / o) (z, 0)[17 da.

Qx{0}
— 0 ey — (p=D)lw||? -1/(1
Then ¢, (t) = 0 if and only if ¢ = tpax = [(p+q) fo{(i “(I)\w(%o)‘l_qdw] 1/(1+4q)
Also
(»— Dl I
Wl (tmax) = p(p = 1) | ——] "l
0+ 0 Ty oy @@, 0)[ 7 da

(p— 1)llw]? |
0+ 9) Jo g0y o), 0)[ 4 d

y / a(@)|w(z, )= do
Qx{0}

~(p+a)p+a+1)]

(p = 1)|wlf? }$

P+ ) Jor oy a(@)w(z, 0)['=2 do <0

= —Jwl|?p-1)(1+q)
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Thus ), achieves its maximum at ¢ = t,,2. Now using the Holder’s inequality and
Sobolev inequality (2.2)), we obtain

/ a(x)|u/(x,0)|1_q dx
Qx{0}

*
2 +q-1

23 : . 135
= {/ Ia(w)IQ?*”‘I] - [/ lw(z,0)|% dz| * (3.1)
Qx{0} Qx{0}
[[w]\1-9
<lal(g)
/ b(@)|w(z, )" dx
Qx{0}
2 gt Bl
< [/ Ib(x)l%“‘l‘?’] B [/ lw(z,0)|* dz| > (3.2)
Qx{0} Qx{0}
[[wl]lP+!
< ||b\|<ﬁ) .
Using (3.1) and 7 we obtain
ww(tmax)
L p—1yia o] 5
— T q
e - A @), 0 da
pP+q\p+q [fQX{O}a(x)|w(x)0)|1—(1dg;]m Qx{0}
> 1 + q(pP— 1 % (\/g)(l_q) % — b L Pl p+1
= ) 151l [[w]
p+q\p+yq llall VS
= Exw|P*,
(3.3)
where

B {1+q(p—1>’1%3((\/§)(1*q)>‘1%§ )\||b||< 1 )PH]
N = |—|— -_ — — .
p+a\p+q el VS

Then we see that Ey = 0 if and only if A = A, where

A 1+q(p—1)11%; 1 ( Spta )1/(1+q)

Cptaiptal Bl \al?
Thus for A € (0,A), we have Ey > 0, and therefore it follows from (3.3 that

Yo (tmax) > 0.
(i) If fo{O} b(z)|w(x,0)|PT! dz > 0, then

Pu(t) = =X b(@)w(z, 0)[P*! dar < 0
Qx{0}

as t — oo. Consequently, ¢,,(t) has exactly two points 0 < t; < tmax < to such
that

djw(tl) =0= 7/}11)(t2) and 1/}Lj(t1) > 0> 1/’;,)(152)

From the definition of N, we get tyw € N and tow € Ny . Now ¢/, () = P4, (t).
Thus ¢,,(t) < 0 in (0,%1), ¢, (t) > 0 in (t1,%2) and ¢!, (t) < 0 in (t2,00). Hence
In(tiw) = infocict,,,, Ia(tw), Ja(taw) = sup;s,, Jx(tw).
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(i) I fo, 10y b(z)|w(x,0)[PT dx < 0 and
vult) = <A [ bl )P de > 0
Qx{0}
as t — oo. Consequently, ,,(t) has exactly one point 0 < t; < tmax such that
ww(tl) =0 and ¢iu(t1) > 0.

Now @), (t) = tP1)y, (). Then ¢, (t) < 0 in (0,%1), ¢, (t) > 0 in (t1,00). Thus
Jr(tiw) = infy>o Ja(tw). Hence, it follows that tyw € Nj O

Corollary 3.2. Suppose that A € (0,A), then ./\f;—L £ 0.
Proof. From (A1) and (A2), we can choose w € H{j 1 (Ca) \ {0} such that

/ a(z)|w(x,0)|' " 9dr >0 and / b(x)|w(z,0)|PT dz > 0.
Qx{0} Qx{0}

Then by (ii) of Lemma there exists a unique ¢; and ¢, such that tyw € N, ;r ,
tyw € Ny . In conclusion, N& # 0. O

Lemma 3.3. For A € (0,A), we have N? = {0}.

Proof. We prove this by contradiction. Assume that there exists 0 # w € NY.
Then it follows from w € N that

(1+ )] = Ap +q) / gy M@0 e

and consequently
0= |lw|?® - / a(x)|w(z,0))' "4 dr — /\/ b(x)|w(z,0)[PT dx
Qx{0} Qx{0}
p—1 _
Dl - [ a0 de.
p+gq Qx {0}

Therefore, as A € (0,A) and w # 0, we use similar arguments as those in (3.3)) to
obain

0 < ExJjw|P*

p—1 2(p+4q)
<1+<J(p—1)m ]| 1
< p—1
PRAAPEAT o oy al@)lw(z, 0)[1=0 da] 752
- A b(x)|w(z,0)|P™ dr
Qx{0}
p—1 2(p+a)
:1+q(p_1)m ||U}|| 1+a _1+q||w||2:0
+ + - i + ’
pTqg \pTgq (ﬁ”wuz) I+ pTq
a contradiction. Hence w = 0. That is, NY = {0}. O

We note that A is also related to a gap structure in Ny:
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Lemma 3.4. Suppose that A € (0,A), then there exist a gap structure in Ny:
W]l > Ax > Ao > |Jw]| for allw € Ny, W € Ny,

where

1+¢q 1/(p—1)
A= [—— L (/gp+
= eram V3]

Proof. If w € N}F C N, then

>17q} 1/(q+1).

and Ao=[p+qu I(—=

7

— @l - @+ ol - [ a0 ]

Qx {0}
—@-pl 4 p+a) [ a0
Qx{0}

Hence it follows from (3.1) that

(p—1>|w||2<(p+q>AX{0} a(z) w(z, )| de<<p+q>|a||('u)

4 1-q71/(a+1)
S "n ||(f) |
If W € Ny, then it follows from (3.2)) that

which yields

Wi
1+ q)||W|?* < A +q/ b(x)|W (x,0)|PTrdz < Mp + q)||b
A+QIWIE <Mp+a) | H@)W(w0) o+l (S=)"

which yields
144 1/(p—1)
Wl > | ————(V/S)PH! = Ay.
V> [y oS :
Now we show that Ay = Ap if and only if A = A.
VA 1+q(p, 1)%L< Spta )1/(1+q)
p+aip+q/ o] \[alr~?
if and only if
s (L g\ V@D o 1\ (1) e
— )\ 1/(-1) g
Av=2 (p—|—q) (Hb”) (f)
_ (PO ) TSt + 5
=G=1) e (vs)
:[ (p+q)lall }1/(‘”1): .
(p—1)(VS)t—a
Thus for all A € (0,A), we can conclude that
W| > Ay > Ag > |lw|| for all w € Ny, W € Ny .
A A
This completes the proof. ([

Lemma 3.5. Suppose that X € (0,A), then N is a closed set in Hg 1 (Cq)-topology.
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Proof. Let {W}} be a sequence in N~ with W), — W, in H{ 1(Ca). Then we have

[Woll* = lim [|W]?
—00

= lim [/ a(x)\Wk(:c,O)P*qd:ch)\/ b(x)|[Wy(x, 0) [P da
k—oo L Jax{o} Qx{0}

/ a(@)|Wo (z, 0)| 9z + A b(a)[Wo (x, 0) [P+ dz
Qx{0} Qx{0}

and

a+qmww2—Mp+m/" b() [ Wo(z, 0) [P+ dac
Qx{0}

= lim [(1 +q)[|[We|* = A(p + q)/

b(x)|Wk(x,0)|p+1dx} <0.
Qx{0}

That is, Wy € Ny NNY. Since {W;} C Ny, from Lemmawe have
[Woll = lim [[W] = Ao > 0,

which imply, Wy # 0. It follows from Lemma that Wy ¢ N for any \ €
(0,A). Thus Wy € Ny . Hence, Ny is a closed set in Hg ; (Cq)-topology for any
A€ (0,A). O

Lemma 3.6. Let w € J\f/\lL Then for any ¢ € C§%(Ca), there exists a number
¢ >0 and a continuous function f : Bc(0) := {v € H§ ;(Ca) : [[v|| < e} — R* such
that

f)>0, f0)=1, f)(w+vg) e NS forallve B(0).

Proof. We give the proof only for the case w € N, ; , the case V" may be preceded
exactly. For any ¢ € C§%(Ca), we define F': Hf ; (Ca) x RT — R as follows:

F(v,r) =r"*lw +vg||* - /Q {0} a(z)|(w + ve)(z, 0)[' 7

St [ bl o) 0
Qx{0}
Since w € Ny (C Ny), we have

nmn=nwﬁ—/

a(x)|w(z,0)|' ~dx — )\/ b(x)|w(z,0)|PT dx = 0,
Qx{0}

Qx{0}

and
oF 9 ol
-0, 1) =1+ g)flwl* = Ap+q) b(z)|w(z,0)[P" dz > 0.
or Qx {0}

Applying the implicit function theorem at (0,1), we have that there exists € > 0
such that for |lv|| < € v € Hg (Ca), the equation F(v,7) = 0 has a unique
continuous solution r = f(v) > 0. It follows from F'(0,1) = 0 that f(0) = 1 and
from F (v, f(v)) =0 for [[v|| <€ v € Hj ;(Ca) that

0=f”q(v)||w+v¢||2—/ a(@)|(w + ve)(z, 0)[' 7

Qx{0}

— AfP(y) / b(z)|(w + vg) (z, 0) [P

Qx{0}
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= (e w+ o) = [ a@)lf(e)w -+ 00,0

Qx{0}
A [ @)+ ve) (@, 0) ) /0 w);
Qx{0}
that is,
f)(w+vg) € Ny forall v € Hy 1 (Ca),|lv]| <é

Since 2E(0,1) > 0 and

or
oF
o fw))
=1+ a)f(v)]w +vo|* = Mp + ¢) f7 (v) / b(z)|(w +ve)(w,0)["* dx
Qx{0}
L+ gl f (@) (w+ vl = Ap +9) Joy o) 1@ f (0) (w + 06) (2, 0)[P+ dav

- F24(v) ’

we can take € > 0 possibly smaller (e < €) such that for any v € Hg 1 (Ca), [[v]| <,

1+ q)llf (@) (w +ve)lI* = Ap + q) /QX{O} b(@)|f(v)(w + vg)(, 0)["T da > 0;

that is,
f)(w+vg) € N for all v € Bc(0).

This completes the proof. O
Lemma 3.7. Jy is bounded below and coercive on Ny.

Proof. For w € Ny, from (3.1)), we obtain

_ 17 1 2 _ 1 _ 1 1—q
hw) = (5= gl = (7 = 577) [, e o -7de

1 1 5 1 1 lw|[\ 12
> (5 - )l = (5= - == )lal (V%)
2 p+1 l1-q p+1 V'S
Now consider the function p : Rt — R as p(t) = at? — ft1 79, where «, 3 are both
positive constants. One can easily show that p is convex(p’(t) > 0 for all ¢ > 0)

with p(t) — 0 ast — 0 and p(t) — oo as t — o0o. p achieves its minimum at

B(lfq)}1/(1+q) and
2a

(3.4)

tmin - [
Bl —q);+2 ﬁ(l_Q)]%:_l"‘qﬁﬁ(l—Q)ﬁ
200 20 '
. . 1-
Applying p(t) with a = (5 — —47), 6 = (1% — 7)) lal(F5) " and ¢ = |w],
w € Ny, we obtain from (3.4) that

lim  Jy(w) > tlim p(t) = oco.

l|wl|—o0

Thus J) is coercive on N,. Moreover, it follows from (3.4) that
Ixn(w) > p(t) > p(tmin) (a constant), (3.5)

p(tmin) = a [

1—q>1‘TZ - l+q ((p+q)lla\\>ﬁ<;>ﬁ.
p

57 (5 Q0+ 1) \a(/5)i-a ~1
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Thus J, is bounded below on Nj. O

4. EXISTENCE OF SOLUTIONS IN Nf

Now from Lemma NYUNY and Ny are two closed sets in H ; (C) provided
A € (0,A). Consequently, the Ekeland variational principle can be applied to the
problem of finding the infimum of Jy on both N;" UNY and N5 . First, consider
{wi} € Ny UNY with the following properties:

1
J,\(wk) < inf J,\(w) + - (4.1)
wENTUNY k
1
Ia(w) = Iy(we) = llw —will, Vo € NTUN. (4.2)

From Jy(Jw|) = Jx(w), we may assume that wy > 0 on Cq.

Lemma 4.1. Show that the sequence {wy} is bounded in Nyx. Moreover, there
exists 0 # wo € H{ 1 (Ca) such that wy, — wo weakly in Hg 1 (Ca).

Proof. By equations (3.5) and (4.1), we have
1
at? — vt = p(t) < Jy(w) < inf  Jy(w)+ — < Cs,
weN;TUNY k

for sufficiently large k and a suitable positive constant. Hence putting ¢t = wy in
the above equation, we obtain {wy,} is bounded.

Let {wy} is bounded in H{ ;(Cq). Then, there exists a subsequence of {wy}r,
still denoted by {wy } and wy € HS’L(CQ) such that wy — wy weakly in H&L(CQ),
wk(+,0) = wo(-,0) strongly in LP(Q) for 1 < p < 2% and wy(-,0) — wo(-,0) a.e. in
Q.

For any w € N, we have from 0 < ¢ < 1 < p that

_ 1_ 1 9 1 _ 1 p+1
Bw) = (5= 7= )l + (= erl))\/QX{O}b(scﬂw(xﬂ) d

11 1 1 \14gq
<(5- 7= )i+ (5= - —= ) sl
2 1-—gq 1-¢ p+1/p+gq
1 IN1+¢
= (-7 - 5) T—alwl? <,
p+1 2/1—¢q
which means that ian;r Jx < 0. Now for A € (0,A), we know from Lemma
that MY = {0}. Together, these imply that wy, € N for k large and

inf  Jy(w) < inf Jy(w) < 0.
weN;FUNY weENY

Therefore, by weak lower semi-continuity of norm,

Jxn(wp) < liminf Jy(wg) = inf Jy <0,
e Ny

that is, wg > 0, wy £ 0. (]

Lemma 4.2. Suppose wy € ./\/)\"' such that wi, — wo weakly in H87L(CQ). Then for
A€ (0,A),

a(z)wi ™Yz T — — 2wt (z o . .
(1+@[¥m}<>0 (2, 0)dz = A(p ml%mf<>o (e, 0)de > 0. (43)
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Moreover, there exists a constant Co > 0 such that

(1+@MMP—A@+@/’{gww@“wmwmzca>o (4.4)
Qx{0

Proof. For {wy} C NJF(C N,), since
u+m/’ a@Mﬁﬂwmm—A@—D/) byl (x, 0)da
Qx{0} Qx{0}

=1 . - — )w? ™ (z T
= lim. [(1+q)/ﬂx{0} a(z)w) ~(z,0) dz — A(p 1)/QX{O} b(a)wf ™ (2,0) d]

lim [(1 + Q)|Jw > = Mp +q) / b(a:)wi“(x,O) da:} >0,
k—o0 Qx{0}

we can argue by a contradiction and assume that
(1+ q)/ a(z)wy ™Y (x,0)dx — A(p — 1)/ b(z)wh ™ (z,0)dz = 0. (4.5)
Qx{0} Qx{0}
Since wy, € Ny, from the weak lower semi continuity of norm and (4.5)) we have

0 = lim [HwkHz - / a(z)w,” Y(z,0) dz — )\/ b(z)wh ™ (x,0) dx}
k—oo Qx{0} Qx{0}

> Juol = [ a@e} e 0de <3 [ bepugt (@,0)ds
Qx{0} Qx{0}
_ ”wO”2 - )‘% fo{O} b(x)ul’(l)ﬂrl(xv 0)dx
luoll? = 24 fo 0y (@), 0)d.
Thus for any A € (0,A) and wgy # 0, by similar arguments as those in (3.3]) we have
that

0 < Ey|Jwo|P™
2(p+aq)

p=1 .
S 1+q (p_ 1) 1+q ||w0|| 1+ S )\/ b(m)wg+1(x70)dx
ptqgipt+gq UQX{O} a(x)wé—q(%o)dx}m Qx{o}
p—1 2(p+aq)
:1+q<p—1>m [[woll " R (TR
+q\p+ -1 e ’
ptqgi\p+gq (%HWOW) T p+q

which is clearly impossible. Now by (4.3]), we have that
(1+ q)/Q o a(z)w,” U (z,0) dz — \(p — 1)/Q o b(x)wl T (,0) dz > Cy
X X

for sufficiently large k and a suitable positive constant Cs. This, together with the
fact that wy € N we obtain equation (4.4). O

Fix ¢ € C§%(Ca) with ¢ > 0. Then we apply Lemmawith w = w € N;
(k large enough such that % < (C9), we obtain a sequence of functions fy :

Bei,(0) — R such that f(0) =1 and fi(w)(wg + we) € Ny for all w € B, (0). It
follows from wy, € Ny and fr(w)(wy + wd) € N that

Jwr||* — / a(z)w, Y (z,0)dz — b(z)wlt (z,0) dz =0 (4.6)
Qx{0} Qx{0}
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and

it (w)[lwy +wel” — f;i_q(w)/g {0} a(z)(wy, +we)'~(z, 0)dx
. (4.7)

=M (w) /Q o) b(x) (wy, + wp)P T (2,0)dx = 0.

Choose 0 < p < €, and w = pv with |lv]] < 1. Then we find fi(w) such that
fx(0) =1 and fi(w)(wy, + we) € Ny for all w € B,(0).

Lemma 4.3. For A € (0, A) we have [(f;(0),v)] is finite for every 0 < v € Hg 1 (Ca)
with ||v]] < 1.

Proof. By (4.6) and (4.7) we have
0= [ff(w) = Yllwk +wg|® + [[wk + wg||* — [Jwll?

—[Fa ) — a(z)(wy + we) 9 (z T
[ (w) 11/%} () (uwy + we)~(x, 0)d
[ @) w) - w0l

Qx{0}

A o 0

< [fZ(pv) = Wllwr + pvol* + llwy + poo|* — [[wil|?

[ pw) — 1] /Q o 40 10

ST (pv) — 1] /MO} b(z)(wi + pog)P+ (x,0)

[ bt oo = wf ) w,0)
Qx {0}
Dividing by p > 0 and passing to the limit p — 0, we derive that

0 < 20£1(0), o) uwwl|? + 2ks/c YV w0V () d dy

— (1— ) (£}(0), ) / a(w)wl "z, 0)dx

Qx{0}

AP DO [ bl e 0)ds

Qx{0}

CApt 1) /Q PR

— (0.0 2wl - (1= 0) [ ool (00

Qx{0}

A +1) /Q o blayul* (z,0)da]

+2ks [ y*VwpV(ve)dedy — A(p+1) / b(z)(wive)(x,0)dx
Ca Qx{o}
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= (F10), 0 [ (1 + )

_)\(p—&—q)/ﬂx{o} b(x)w £+1(;(;,O>d$:|

+ 2k, / yVwpV(vg)dedy — AM(p+ 1) / b(z)(wive)(x,0)dz.  (4.8)
Ca Q2x{o}

From this inequality and (4.4) we know that (f;.(0),v) # —co. Now we show that
(f1.(0),v) # 4o00. Arguing by contradiction, we assume that (f;.(0),v) = +oo. Now
we note that

|fi(pv) = llwkll + fr(p)llpvoll = [|[fk(pv) — Hwi + pv fi(pv)d||
= || fx(pv)(wi + pvo) — wy||

and fi(pv) > fi(0) =1 for sufficiently large k.
From the definition of derivative (f}.(0),v), applying equation (4.2) with w =
Fe(pv)(wy + pvp) € NyT, we clearly have

zﬂnwmm+ww—wu
2 Ja(w) = In(fr(pv)(w + pve))

= l—i 2 L_# p+1
= (315l + 7 (1=, p+1)éﬂmbu>k (x,0)dx

1 1
(7=~ ) Rl + pwol?

_ M p+1(p1}) /Q o b(l‘)(U)]g + pv¢)p+l(x7 O)dl‘

(4.9)

1

— (7= — 3) o+ ool = Junl®) + (7= = 5) (o) = Wl + po

_ A(L _ L) P+ () /Q LI pod)? Tt — i) (e, 0)]da

—A(l—lﬁi“@m—ul¥mgw>p“mom

1—-q p+1
Dividing by p > 0 and passing to the limit as p — 0, we can obtain
(0. oy N2kl 09l
(1(0), ) I
14+¢q .
> (T2 | v meT ey dedy + (T50) (710) o)

A yéﬂ@wm W (2, 0)de
)\(11) + z) /Q o ) (wPve) (z, 0)da
),v

_ fli( [1+q |wkH2 (p_|_q)/§zx{0}b(x) Z+1<x70)d$
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+ (l%g)ks /cﬂ Y VwpV(vg) dx dy — A(?) /Qx{o} b(x)(whve)(x, 0)dz.

1 —q
That is,
[voll _ (f£(0),v) +1
o2 B g g [ et @ 0)de
(1 —q)||we] l+g ¢
— |+ (5 _q)ks -/Cﬂy VooV (v6) da dy (4.10)

4(%) /Q » b(x) (wPve) (z, 0)dz,

which is impossible because (f.(0),v) = +oo and

I A L O

> 0.
Qx{0} k

In conclusion, |(f;(0),v)] < +oo. Furthermore, (4.4) with ||wi| < Ci and two
inequalities (4.8]) and (4.10]) also imply that
[(fr(0),v)] < C3

for k sufficiently large and a suitable constant Cj. (]

Lemma 4.4. For each 0 < ¢ € C5%(Ca) and for every 0 < v € H [ (Ca) with
lvl| <1, we have a(z)wy Yvp € LY(Q) and

ks / y*VwoV(ve) dz dy — / a(z)(wy ") (z,0)dz
Co x40} (4.11)
- A b(z)(whve)(x,0)dz > 0.
Qx{0}
Proof. Applying (4.9) and (4.2) again, we obtain

[fk(pv) — 1]@ + fk([)v)@

= Ia(wi) = Ja(fr(pv)(wi + pvo))
:_flf(PU)—lnwk”z_f/f(Pv)
2 2
1—
m alx)(w v 1-q €T
e B [ )t o) w0

1 g g
T4 QX{O}a(x)[((warpvfb) —w, *)(z,0)]

+)\ 1€+1(pv) -1
p+1

(lwr, + pvgll* — wl|*)

/ b(a) (e + o) (z,0)
Qx{0}

A

2T S MO0+ 00— )0

Dividing by p > 0 and passing to the limit p — 0, we obtain

|<f,;<o>,v>|@+uvi]fu
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> (L(0), ) Jwnl)? — ks / Yo VWV (vg) da dy

Ca

+(£1(0),0) / a(z)wl(z, 0)da

Qx{0}

S Wi @0)
p—0t 1 —¢q Jaxio} P
+ A(f4(0),v) / b(z)w? ™ (x,0)dx + )\/ b(z)(wive)(x,0)dz.
Qx{0} Qx{0}
=GO [l [ @l w0 de A [ el @ 0) ]
— ks / yVwiV(ve) dx dy + )\/ b(x)(whé)(z,0)dx
Ca 2x{0}
IR By L S IR
p—0t 1 —q Jaxio) p
= —k, / y°Vw,V(ve) dx dy + b(x)(whve)(x,0)dx
Ca Qx{0}
VLI g (e R ST
p—0+ 1 —q Jax{o} P 7

Using above inequality, we have
/ a(z)[((wy + prg)' =7 — w,” ) (x,0)] dz
Qx{0} p

is finite. Now, since a(x)[((wg +v$)1 9 —wi_q)(x, 0)] > 0, then by Fatou’s Lemma,
we have

/ a(z)(wy, ve)(z,0)dx
Qx{0}

/ a(@)[((wg + pvg)' =7 — w, ™) (x,0)]
Qx{0} p

lim inf
p—0F

< liminf dzx

p—0+t 1—g¢q
|40, o) lwwll + llvoll
k
— /\/ b(x)(whve)(x, 0)dx
Qx{0}

< GG tllvell |, / YoV WV (v6) de dy — A / b(x) (whvg)(w,0)da.
k Co Qx{0}

Again using Fatou’s Lemma and this inequality, we have

/ a(z)(wy o) (z, 0)dx
Qx{0}

<

. / YWV (v6) da dy
Ca

< /Q gy L aa) o 00) 2, 0))

k—oo

< lim inf/ a(z)(w, “we)(z,0)dz
Qx {0}

k—oo
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< ks y°VweV(ve) dx dy — A b(z)(whve)(x,0)dz < oo,
Ca Qx{0}

which completes the proof. ([l

Corollary 4.5. For every 0 < ¢ € H§ 1 (Cq), we have a(x)wy ¢ € L*(Q), wo > 0
in Cq and

ks / y*Vuwo Ve de dy — / a(z)(wy ¢)(x, 0)dx

Co x40} (4.12)

- b(z)(whe)(x,0)dz > 0.
Qx{0}

Proof. Choosing v € Hg ;(Ca) such that v > 0, v = [ in the neighborhood of
support of ¢ and |lv|| < 1, for some [ > 0 is a constant. Then by the Lemma
we note that f&zx{o} a(z)(wg Y¢)(2,0)dz < oo, for every 0 < ¢ € C5% (Ca), which
guarantees that wg > 0 a.e. in  x {0}. Also by the strong maximum principle [9],
we obtain wg > 0 in Cq. Putting this choice of v in we have

ks / yVwoVodrdy — )\/ b(z)(wh¢)(z,0)dz
Ca Qx{o}

— / a(z)(wy 1¢)(x,0)dx > 0.
Qx{0}

for every 0 < ¢ € C§%(Ca). Hence by density argument, (4.12) holds for every
0 < ¢ € Hj (Ca), which completes the proof. O

Lemma 4.6. We have wy € Ny .
Proof. Using (4.12)) with ¢ = wp, we obtain
fwol= [ awyud U 0)do A [ bl (@00
Qx{0}

Qx{0}

On the other hand, by the weak lower semi-continuity of the norm, we have

lwo|* < liminf [Jwy||* < limsup |Jws]|?
k—o0 k—o00

:/ a(z)wy 4 (z,0)dx + )\/ b(z)wh ™ (x,0)dz.
Qx{0} Qx{0}
Thus
Ilwol2 = / a(@)wl (2, 0)dx + A b(z)uwl ™ (2, 0)dz. (4.13)
Qx{0} Qx{0}

Consequently, wy, — wo in Hg 1 (Ca) and wy € Ny. Moreover, from (4.3) it follows
that

(1+q)Jwo|2 = A(p + ) / b(2)ul ™ (2, 0)de
Qx{0}

=(1+ q)/ a(z)wy (z,0)dx — A(p — 1)/ b(z)wh™ (x,0)dz > 0;
Qx{0} Qx{0}

that is, wo € N . O

Lemma 4.7. The function wq is a positive weak solution of problem (2.3)).
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Proof. Suppose that ¢ € Hj (Cq) and € > 0, we define ¥ = (wp + e)*. Let
Cq =11 NIy with
Iy :={(z,y) € Ca : (wo + €¢)(z,y) > 0},
Dy :={(z,y) € Cq : (wo + €d)(z,y) < 0}.
Let Q x {0} = Q; x Qo with
0 :={(z,0) € Q x {0} : (wo + €¢)(z,0) > 0},
Qg :={(z,0) € Q x {0} : (wo + €¢)(x,0) <0}.
Then 1 C Ty, Q2 C T, Ulp, = wo + €, ¥lp, =0, U, (2,0) = (wo + €¢)(x,0),
and ¥|g, (z,0) = 0. Putting ¥ into ([#.12) and using (£.13), we see that

0<ks | yVwVVdrdy— / a(z)(wy 1) (x,0)dx
Ca Qx{0}

— )\/QX{O} b(z)(wh¥)(x,0)dx
= ks /F y*VwoV(wy + €9) de dy — /Q a(z)(wy “(wo + €¢))(z,0)dz
A [ ) + 0) (2. 0)a

=k, / yVwoV(wo + €¢) de dy — / a(z) (wy Y(wo + €9)) (z,0)dx
Ca Qx{0}

[ b (o + €0) 00— [k [y waViwo + eo) de dy
Qx{0} 2

- / a(x) (wo_q(wo + efb)) (z,0)dx — A b(z) (wh(wo + €9)) (, O)dx}
Qo Qo2

=k, / Y| Vwo|? de dy — / a(z)wy (z,0)dx — X\ b(z)wh ™ (z,0)dx
Ca Qx{0} Qx{0}

welh [ vvuTodeay— [ a9 00
- f PRCEDENT
~the [ 9wl = [ a0 <3 [ bt 0)ds
e [ Vo drdy - / () "0)(z. 0
A f ) i), 0)e|
< e[ks /C Y VUV dady - /Q o a(x)(wg *¢) (z, 0)dz
A gy PO 0)de|

— ks / y*VwoVe dr dy + / a(z)wy Y(wo + €p)dx
Ty Qo
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+ A [ b(@)|ep|P T (z,0)dx + e [ b(z)(whe)(x,0)ds
Qo Qo

i [ VuoVodrdy - /| oy 2", 00

) b(a)(who)(z, 0)de |
Qx{0}

pt1
—eks/ Y VwoVbda dy + AP o (/ B 2de)
Iy L2 (Q2) ~/Q2

s—p—1

+eX [ b(z)(whe)(x,0)dz.
Qo

Since the measure of I's and 25 tend to zero as € — 0, it follows that
/ Yy VuwoVodrdy — 0
T2

as € — 0, and similarly for

ptl
sl ([ jePian) ™
L1 () NS,

and A sz b(z)(wh¢)(z,0)dx. Dividing by € and letting € — 0, we obtain

ks / VoV dr dy — / o) (g 1) (z, 0)d
Ca Qx{0}

— )\~/Q><{O} b(z)(wh¢)(x,0)dz >0

and since this holds equally well for —¢, it follows that wy is indeed a positive weak
solution of problem (2.3]). O

Lemma 4.8. There exists a minimizing sequence {Wy} in Ny~ such that Wi, — Wy
strongly in Ny . Moreover Wy is a positive weak solution of (2.3)).

Proof. Using the Ekeland variational principle again, we may find a minimizing
sequence {W;} C N, for the minimizing problem inf w I such that for Wy €
Hg 1 (Ca), we have W), — Wy weakly in Hj 1 (Cq) and pointwise a.e. in Q x {0}.
We can now repeat the argument used in Lemmato derive that when A € (0, A)

(1+q) / () [Wo(x, 0)[ ' 1dz—A(p—1) / ()| Wol, 0)[PHldz < 0 (4.14)
Qx{0} Qx{0}

which yields
(1+9) / () [ Wiz, 0)['~9dz — A(p — 1) / () Wi (e, ) e < —C
Qx{0} Qx{0}

for k sufficiently large and a suitable positive constant Cy. At this point we may

proceed exactly as in Lemmas [47)and Corollary [£.5] and conclude that
0 < Wy € N, is the required positive weak solution of problem (2.3). Moreover

from (4.14) it follows that

(1+@)IWo|* — A(p+q)/ b(z)WE (x,0)dx
Qx {0}
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=(1+q) [/ a(z)Wy~(z,0)dx 4+ X b(z)WET (2, 0)dx
Qx{0} Qx{0}

—Ap+9q) / b(ac)Wé’H(x, 0)dz
Qx{0}

— 1+ q)/ a(2) Wz, 0)dz — A(p — 1)/ b) W (2, 0)da < 0,
Qx{0} Qx{0}

that is Wy € Ny . O
Proof of the Theorem[2.6 From Lemmas [4.7] and we can conclude that
problem (2-3) has two positive weak solutions wg € Ny, Wy € Ny with ||[Wp| >
[lwol| for any A € (0,A). Hence, up(-) = wo(-,0) € HE(Q) and Uy(-) = Wy(+,0) €
H§(Q) are positive solutions of the problem ([1.1J). O

Proof of the Corollary[2.] For any W € N, it follows from Lemma [3.4] that

oI\ 1\ YD) 2 AN/ (1)
Wi> A== () () ()R
Thus by the definition of A, and using % — g%} = };_H‘;, we obtain,

W > (14 ) e () (30,

Hence, let W, € N be the solution of problem (2.3) with p = 1 + ¢, where

A € (0,A), we have
A 1/e
w Cel| ~ ,
wi>c.(3)

-
where C. = (1+ 1?)1/(1“) [|a||*/(a+1) (%)ﬁg — 00 as € — 0. This completes the

proof of Corollary O
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