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EXISTENCE AND NONEXISTENCE OF SOLUTIONS OF
ASYMPTOTICALLY LINEAR KLEIN-GORDON EQUATION

PAULO C. CARRIÃO, RAQUEL LEHRER, ANDRÉ VICENTE

Abstract. In this article we study a nonlinear Klein-Gordon equation when

the nonlinear term asymptotically linear at infinity. We used the Pohozaev

manifold to separate a subspace of H1(RN ) on a global existence region and
on a blow up region.

1. Introduction

We consider the Cauchy problem for the nonlinear Klein-Gordon equation

utt −∆u+ λu = a(x)f(u) in RN × (0, T ),

u(x, 0) = u0(x), ut(x, 0) = u1(x) in RN ,
(1.1)

where N ≥ 3; ∆ =
∑n
i=1

∂2

∂x2
i

is the Laplace operator; λ is a positive constant; and

a : R→ R+, f : R→ R+, u0, u1 : RN → R are given functions.
The motivation for studying problem (1.1) was the paper of Kaitai and Quande

[11], where they studied the case a(x) ≡ 1 and f(u) = u2 + u3. In that case the
equation (1.1)1 is associated with the study of crystals dislocation. The authors
proved a result of global existence and finite time blow up to the problem when
N ≤ 3.

It is know that the evolution problem (1.1) has a strong connection with the
elliptic problem:

−∆u+ λu = a(x)f(u) in RN . (1.2)
In fact, defining the functional I : H1(RN )→ R by

I(u) =
1
2

∫
RN

|∇u|2 dx+
λ

2

∫
RN

u2 dx−
∫

RN

a(x)F (u)dx,

where F (ξ) =
∫ ξ

0
f(s)ds, the critical values of I are the weak solutions of (1.2).

When the known Ambrosetti-Rabinowitz condition (see [3])

0 < θF (ξ) < ξf(ξ), for all ξ ∈ R\{0},
for some θ > 2 holds, it is possible to control the projection of u ∈ H1(RN ) over
the Nehari manifold

N = {u ∈ H1(RN )\{0}; I ′(u)u = 0},
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where I ′(u)u is the Gateaux derivative of u applied on u, and to prove that the
level

d = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)), (1.3)

where
Γ = {γ ∈ C([0, 1];H1(RN )); γ(0) = 0 and γ(1) = e},

here e ∈ H1(RN ); ‖e‖ > r > 0 and inf‖u‖=r I(u) > I(0) > I(e)), is reached over N ,
i e,

d = inf
u∈N

I(u).

The number d is a critical value of I and is called of Mountain pass level. Details
can be found in Willem [20].

Therefore, it is possible defining the energy of (1.1) by

E(t) =
1
2

∫
RN

|ut|2dx+ I(u), (1.4)

with appropriate assumptions on f , to prove an existence/nonexistence result when
the energy at t = 0, i e, E(0) is bellow of the mountain pass level. In many papers
the Nehari manifold has an important role because it allows to “separate” one
H1(RN ) subset on an existence region and on a nonexistence region, see [1, 2, 6,
13, 18] and references therein. See also a more recent work of Wang [19].

On the other hand, when we do not have the Ambrosetti-Rabinowitz condition
the work to get blow up results involving (1.1) can be hard. It holds when f is,
for example, defined by f(u) = u3

1+u2 . In the elliptic context, this function is a
prototype of a class of nonlinearity so called asymptotic linear at infinity which was
recently solved, in a more general context, by Lehrer and Maia [12]. The presence
of a(x) let the problem nonautonomous and it gives some technical difficulties.
Quickly speaking, the authors showed that the mountain pass level is not attained.
To solve the problem they worked with an alternative to the use of the Nehari
manifold, namely, it was used the Pohozaev manifold:

P = {u ∈ H1(RN )\{0}; J(u) = 0},
where J : H1(RN )→ R is given by

J(u) =
N − 2

2

∫
RN

|∇u|2 dx+
Nλ

2

∫
RN

u2 dx−N
∫

RN

a(x)F (u) dx

−
∫

RN

∇a(x) · xF (u)dx.

The key of their paper was to show that the functional I has a critical value, above
the mountain pass level, in a subset of P.

Let a : RN → R be a radial function satisfying the following assumptions
(A1) a ∈ C2(RN ,R+), with infx∈RN a(x) > 0;
(A2) lim|x|→∞ a(x) = a∞ > λ;
(A3) ∇a(x) ·x ≥ 0, for all x ∈ RN , with the strict inequality holding on a subset

of positive Lebesgue measure of RN ;
(A4) a(x) + ∇a(x)·x

N < a∞, for all x ∈ RN ;
(A5) ∇a(x) · x + x·H(x)·x

N ≥ 0, for all x ∈ RN , where H represents the Hessian
matrix of the function a.

On the nonlinearity f we assume:
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(A6) f ∈ C(R+,R+), lims→0
f(s)
s = 0;

(A7) lims→∞
f(s)
s = 1;

(A8) if F (s) =
∫ s

0
f(t)dt and Q(s) = 1

2f(s)s−F (s), then there exists a constant
D ≥ 1 such that

0 < Q(s) ≤ D Q(t), for all 0 < s ≤ t,
lim
s→∞

Q(s) = +∞.

We observe that the assumptions (A1)–(A8) are the same of [12] and the con-
dition (A8) was introduced by Jeanjean and Tanaka [9]. Note that (A8) is more
general than the usual assumption that f(s)/s begin an increasing function of s > 0.
In particular, if f is differentiable, then f(s)/s is increasing if and only if (A8) holds
with D = 1. We extend f to R− by f(s) = 0 if s < 0.

Conditions (A6) and (A7) imply that, given ε > 0 and 2 ≤ p ≤ p∗ := 2N
N−2 , there

exists a positive constant C = C(ε, p) such that for all s in R

|F (s)| ≤ ε

2
|s|2 + C|s|p . (1.5)

Therefore (1.1) is asymptotic linear at infinity and nonautonomous. As we do
not have the Ambrosetti-Rabinowitz condition then the Nehari manifold is not
appropriate, therefore we used the Pohozaev manifold to find an existence and a
nonexistence region. Precisely, defining

W1 = {u ∈ H1
rad(RN )\{0}; I(u) < c and J(u) > 0} ∪ {0},

W2 = {u ∈ H1
rad(RN )\{0}; I(u) < c and J(u) < 0},

where c is the mountain pass level and will be defined posteriorly, we proved that
when the initial data is taken in W1, the problem (1.1) has a global solution which
there exist for all t ≥ 0. Moreover, if the initial data is in W2, then the solution
blow up (in finite or infinite time).

We also would like to cite the classical paper of Shatah [16], where a ≡ 1, f
satisfies the Berestycki-Lions assumptions and N ≥ 3. In this case the author
also used the Pohozaev manifold. The work of Shatah was extended to N = 2 by
Jeanjean and Le Coz [8].

The goal of our paper is to prove an existence/nonexistence result to (1.1) when a
and f satisfy (A1)-(A5) and (A6)-(A8), respectively. This work extends, in a sence,
the results of [11, 16] to an other class of nonlinearities. Our paper is organized
as follows: in Section 2 we give the notations, the preliminaries and we stablish a
linear existence theorem, which is analogous to Serrin, Todorova and Vitillaro [15,
Theorem 3]. In Section 3 we prove the main result.

2. Preliminaries

The norms in L2(RN ) and H1(RN ) are denoted, respectively, by

‖u‖2 =
(∫

RN

|u(x)|2 dx
)1/2

, ‖u‖λ =
(
λ

∫
RN

|u(x)|2 dx+
∫

RN

∇u · ∇u dx
)1/2

,

here ∇ = ( ∂
∂x1

, . . . , ∂
∂xn

) is the gradient operator in spatial variable and · is the
usual scalar product in RN .
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To prove our blow up result we need two technical lemmas which are connected
with the autonomous elliptic problem:

−∆u+ λu = a∞f(u) in RN , (2.1)

where the constant a∞ was given in (A2). Associated to (2.1) we have the Pohozaev
manifold

P∞ = {u ∈ H1(RN )\{0}; J∞(u) = 0},
where

J∞(u) =
(N − 2)

2

∫
RN

|∇u|2dx+
λN

2

∫
RN

u2 dx−N
∫

RN

a∞F (u)dx.

Define the functional I∞ associated with (2.1) by

I∞(u) =
1
2

∫
RN

|∇u|2 + λu2 −
∫

RN

a∞F (u)dx,

and the mountain pass level

c∞ = min
γ∈Γ∞

max
0≤t≤1

I∞(γ(t)),

where the set of paths is given by

Γ∞ = {γ ∈ C([0, 1], H1(RN ))|γ(0) = 0, I∞(γ(1)) < 0}.

We have the following result which show that, in the autonomous case, the mountain
pass level is the minimum of I∞ over P∞.

Lemma 2.1. Let ϕ∞ be the ground state solution of the autonomous elliptic prob-
lem. Then

I∞(ϕ∞) = c∞ = min
v∈P∞

I∞(v) > 0.

For a proof of the above lemma, see Jeanjean and Tanaka [10, Lemma 3.1].
Let I, E, J , W1 and W2 as in the preview section and c the mountain pass level,

associated to (1.1), defined in (1.3), namely,

c = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)).

The following lemma establishes that the mountain pass level of the nonautonomous
problem is attained in the Pohozaev manifold and it is the same level of the au-
tonomous problem.

Lemma 2.2. It holds that
c = c∞ = inf

u∈P
I(u).

For a proof of the above lemma, see [12, lemmas 3.13 and 4.2]. We will need one
more characterization to the level c which is given by the next lemma.

Lemma 2.3. We have

c = min{T∞(v); J∞(v) ≤ 0},

where T∞(v) = 1
N

∫
RN |∇v|2 dx.
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Proof. We observe that, for all u ∈ H1(RN ),

I∞(u) = T∞(u) +
1
N
J∞(u).

Let v ∈ H1(RN ) be such that J∞(v) ≤ 0. If J∞(v) = 0, then v ∈ P∞ and
I∞(u) = T∞(u). Therefore

inf
J∞(v)=0

T∞(v) = inf
J∞(v)=0

I∞(v) = inf
v∈P∞

I∞(v) = c, (2.2)

where in the last equality we used Lemmas 2.1 and 2.2. If J∞(v) < 0, then for
β > 0 define vβ(x) = v( xβ ). Thus

J∞(vβ) = βN−2
[N − 2

2

∫
RN

|∇v(x)|2dx

−Nβ2
(∫

RN

a∞F (v(x))dx+
λN

2

∫
RN

|v(x)|2dx
)]
.

Note that for β = 1 we have J∞(v1) = J∞(v) < 0 and for β > 0 sufficiently small
J∞(vβ) > 0. Therefore, there exists β0 ∈ (0, 1) such that J∞(vβ0) = 0. Thus, we
infer that

I∞(vβ0) = T∞(vβ0) =
βN−2

0

N

∫
RN

|∇v(x)|2dx

<
1
N

∫
RN

|∇v(x)|2dx = T∞(v).
(2.3)

Taking into account (2.2) and (2.3) we complete the proof. �

To prove the existence of solution we will need a theorem that gives us the
existence of solution to a linear problem. The next lemma establishes this result
and its proof is analogous to Serrin, Todorova and Vitillaro [15, Theorem 3].

Lemma 2.4. Let u0 ∈ H1(RN ), u1 ∈ L2(RN ) and g ∈ L2(RN × (0, T )) be given
functions. Then, for all T > 0 there exists a unique weak solution, u : RN×(0, T )→
R, of the linear problem

utt −∆u+ λu = g(x, t) in RN × (0, T ),

u(x, 0) = u0(x), ut(x, 0) = u1(x) in RN ,
(2.4)

in the class

u ∈ C([0, T ];H1(RN )), ut ∈ C([0, T ];L2(RN )).

Moreover, the energy identity satisfies

El(t)− El(s) =
∫ t

s

∫
RN

g(x, t)ut(x, t) dxdt, (2.5)

for all 0 ≤ s ≤ t, where

El(t) =
1
2

[∫
RN

|ut(x, t)|2dx+
∫

RN

|∇u(x, t)|2dx+ λ

∫
RN

|u(x, t)|2dx
]
.
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3. Main results

Theorem 3.1 (Local Existence). Suppose that assumptions (A1)-(A8) hold. Then
for each set of initial conditions (u0, u1) ∈ H1(RN )× L2(RN ) there exists a T > 0
such that the problem (1.1) has a unique weak solution, u : RN × (0, T ) → R, in
the class

u ∈ C([0, T ];H1(RN )) ∩ C1([0, T ];L2(RN )).

Proof. Define de set

XT = {u ∈ C([0, T ];H1(RN )) ∩ C1([0, T ];L2(RN ))}

endowed with the norm

‖u‖2 = ‖u‖2L∞(0,T ;H1(RN )) + ‖ut‖2L∞(0,T ;L2(RN ))

and, for each α > 0, we consider the set

XT,α = {u ∈ XT ; ‖u‖ ≤ α, u(0) = u0 and ut(0) = u1}.

Define g : XT,α → L2(RN × (0, T )) by g(v) = f(v).
For each v ∈ XT,α let u be the solution of

utt −∆u+ λu = g(v) in RN × (0, T ),

u(x, 0) = u0(x), ut(x, 0) = u1(x) in RN
(3.1)

given by Lemma 2.4. Now, we show that for α large enough and T small enough
u ∈ XT,α. The energy identity (2.5) gives us

El(t) = El(0) +
∫ t

0

∫
RN

f(v)ut dxdξ. (3.2)

As |f(s)| ≤ Cs, for all s, then∣∣ ∫ t

0

∫
RN

f(v)ut dx dt
∣∣ ≤ C ∫ t

0

∫
RN

|v||ut| dxdξ ≤ C
∫ t

0

‖v(ξ)‖2‖ut(ξ)‖2 dξ,

but v ∈ XT,α, therefore∣∣ ∫ t

0

∫
RN

f(v)ut dxdt
∣∣ ≤ √2Cα

∫ t

0

E
1/2
l (ξ) dξ. (3.3)

Putting (3.3) into (3.2) we obtain

El(t)
2
≤ El(0)

2
+
Cα√

2

∫ t

0

E
1/2
l (ξ) dξ. (3.4)

Applying Lemma A.5 in Brezis [5, page 157], we conclude that

E
1/2
l (t) ≤ E1/2

l (0) +
Cα√

2
T, for all t ∈ [0, T ]. (3.5)

Choosing α >
√

2El(0)1/2 and, posteriorly, T <
α−
√

2E
1/2
l (0)

Cα from (3.5) and using
the definition of El we obtain(

‖ut(t)‖22 + ‖∇u(t)‖22 + λ‖u(t)‖22
)1/2

≤ α,

i e, u ∈ XT,α. This allows us to define the application Φ : XT,α → XT,α by
Φ(v) = u.
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We will prove that for T > 0 sufficiently small Φ is a contraction. In fact, consider
v1, v2 ∈ XT,α and denote u1 = Φ(v1) and u2 = Φ(v2). Define also z = u1 − u2 the
unique solution of

ztt −∆z + λz = g(u1)− g(u2) in RN × (0, T ),

u(x, 0) = 0, ut(x, 0) = 0 in RN .
(3.6)

The energy identity (2.5) gives

1
2

(
‖zt(t)‖22 + ‖z(t)‖2λ

)
=
∫ t

0

∫
RN

(f(v1)− f(v2))zt dx dξ. (3.7)

From the assumptions over f and Hölder inequality we obtain∫
RN

(f(v1)− f(v2))zt dx ≤ C
∫

RN

|v1 − v2||zt|dx ≤ C‖v1(t)− v2(t)‖2‖zt(t)‖2.

Combining this with (3.7) we obtain

1
2

(
‖zt(t)‖22 + ‖z(t)‖2λ

)
≤ C‖v1 − v2‖

(
‖zt(t)‖22 + ‖z(t)‖2λ

)1/2

. (3.8)

The inequality (3.8) and Brezis [5, Lemma A.5] gives(
‖zt(t)‖22 + ‖z(t)‖2λ

)1/2

≤ CαT‖v1 − v2‖,

and since z = u1 − u2 = Φ(v1)− Φ(v2) it follows that

‖Φ(v1)− Φ(v2)‖ ≤ CαT‖v1 − v2‖.
Taking T > 0 sufficiently small we conclude that Φ is a contraction. Therefore, Φ
has a unique fixed point which is the solution of (1.1). �

Let u be the local solution of (1.1) given by Theorem 3.1. From the linear energy
identity (2.5) we have the identity

E(t) =
1
2
‖ut(t)‖22 + I(u(t)) = E(0), (3.9)

for all t in the interval of existence of solution u, where E was defined in (1.4).
We say that a subset V of H1(RN ) is an invariant region for the solution of (1.1)

when if the initial data u0 ∈ V , then the solution of (1.1) is in V .
Define a subset of H1(RN ):

W = {u ∈ H1
rad(RN ); I(u) < c}.

Lemma 3.2. Under the assumption E(0) < c, we have that W = W1 ∪W2 and
W1, W2 are invariant regions for the solutions of (1.1).

Proof. We note that if J(u) = 0, then u ∈ P. Thus I(u) ≥ infu∈P I(u) = c. From
this, for all u ∈ W we can conclude that J(u) 6= 0, i.e., u ∈ W1 or u ∈ W2, thus
W = W1 ∪W2.

Now, let u0 ∈ W1 and u be the solution of (1.1) associated to u0. From (3.9)
and the assumption E(0) < c we obtain

I(u(t)) ≤ 1
2
‖ut(t)‖22 + I(u(t)) = E(0) < c,

therefore u(t) ∈ W for all t in the interval of existence of solution. We affirm that
u(t) ∈ W1 for all t in the interval of existence of the solution. If it is not hold,
then there exists t0 > 0 such that u(t0) /∈W1, therefore, as W = W1 ∪W2 we have
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u(t0) ∈ W2. From the definition of W1 and W2 there exists t∗ ∈ (0, t0) such that
J(u(t∗)) = 0. If u(t∗) 6= 0, then u(t∗) ∈ P and this implies

I(u(t∗)) ≥ inf
u∈P

I(u) = c,

therefore u(t∗) /∈W , which is a contradiction. If u(t∗) = 0 then

lim
t→t∗+

(‖∇u(t)‖22 + λ‖u(t)‖22) = 0. (3.10)

and
J(u(t)) < 0, for all t∗ < t ≤ t0 (3.11)

From the definition of J and (3.11) we have

N − 2
2

∫
RN

|∇u|2dx+
Nλ

2

∫
RN

|u|2dx

< N

∫
RN

a(x)F (u)dx+
∫

RN

∇a(x) · xF (u)dx,

for all t∗ < t ≤ t0. This inequality, (A4) and (1.5) imply that given ε > 0 and
2 ≤ p ≤ 2∗ such that

‖u(t)‖2λ ≤
ε

2

∫
RN

|u|2dx+ c(ε, p)
∫

RN

|u|pdx.

Thus
‖u(t)‖2λ ≤ C‖u(t)‖p

Lp(RN )
≤ C‖u(t)‖pλ,

consequently
1
C
≤ ‖u(t)‖p−2

λ ,

but this and (3.10) give us a contradiction. Therefore u(t) ∈ W1, for all t in the
interval of existence of solution. The proof for W2 is analogous. �

Theorem 3.3 (Global solution). Suppose that (A1)–(A8) are satisfied and that
(u0, u1) ∈ W1 × L2(RN ) and E(0) < c. Then the local solution given by Theorem
3.1 can be extended for all t > 0.

Proof. It is sufficient to estimate the H1(RN ) norm. We observe that

‖∇u(t)‖22 + J(u) +
∫

RN

∇a(x) · xF (u)dx = NI(u(t)). (3.12)

As u0 ∈ W1, then for all t, u(t) ∈ W1 and J(u(t)) > 0. Therefore, from (3.12) we
have

‖∇u(t)‖22 < NI(u(t))−
∫

RN

∇a(x) · xF (u)dx < Nc, (3.13)

for all t ≥ 0. By Sobolev, Gagliardo, Nirenberg inequality there exist C > 0 such
that

‖u(t)‖2∗ < C, (3.14)

for all t ≥ 0. Using (1.5) for all ε > 0 we have∫
RN

a(x)F (u)dx ≤ ‖a‖∞ε
2
‖u(t)‖22 + C(ε)‖u(t)‖2

∗

2∗ .
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This allows us to conclude that

I(u(t)) =
1
2

∫
RN

|∇u|2dx+
λ

2

∫
RN

|u|2dx− ‖a‖∞ε
2
‖u(t)‖22 − C(ε)‖u(t)‖2

∗

2∗

≤ 1
2

∫
RN

|∇u|2dx+
λ

2

∫
RN

|u|2dx−
∫

RN

a(x)F (u)dx.
(3.15)

Using the assumption we obtain

I(u(t)) < E(t) = E(0) < c. (3.16)

From (3.12) and (3.16) we have

1
2

∫
RN

|∇u|2dx+
λ

2

∫
RN

|u|2dx− ‖a‖∞ε
2
‖u(t)‖22 − C(ε)‖u(t)‖2

∗

2∗ < c

This inequality, (3.13), (3.14) allow us to infer that(λ
2
− ‖a‖∞ε

2

)
‖u(t)‖22 ≤ C.

Choosing ε > 0 such that ε < λ
‖a‖∞ , we conclude that ‖u(t)‖22 is bounded, this and

(3.13) give the result. �

The next step is to prove the blow up result, for which we need some auxiliary
results.

Lemma 3.4. Let (u0, u1) ∈ W2 × L2(RN ) be such that E(0) < c and u(t) the
associated solution of (1.1) defined in [0, T ). Then there exists δ > 0 such that
J(u(t)) < −δ, for all t ∈ [0, T ).

Proof. Since u0 ∈W2 then u(t) ∈W2, for all t ∈ (0, T ), this implies

J∞(u(t)) ≤ J(u(t)) < 0, for all t ∈ (0, T ).

On the other hand, it is easy to see that

1
N

∫
RN

|∇u(t)|2dx = I(u(t))− J(u(t))
N

− 1
N

∫
RN

∇a(x) · xF (u(t)) dx.

As I(u(t)) ≤ E(t) = E(0) and ∇a(x) · xF (u(t)) ≥ 0 we have

1
N

∫
RN

|∇u|2dx ≤ E(0)− J(u(t))
N

= c− ν − J(u(t))
N

, (3.17)

where ν := c− E(0) is a positive constant, since E(0) < c. Suppose that does not
exist δ satisfying the lemma. Then there exists a sequence (tk)k∈N ⊂ (0, T ) such
that J(u(tk))→ 0, when k →∞. Therefore, for k large enough, we have

− νN

2
< J(u(tk)) ≤ 0. (3.18)

From (3.17) and (3.18) we obtain

T∞(u(tk)) =
1
N

∫
RN

|∇u(tk)|2dx ≤ c− ν

2
,

for k large enough, but this contradicts the Lemma 2.3. �
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For each ε > 0, define Φε : R→ R by

Φε(r) =


N if 0 ≤ r ≤ exp( 1

ε ),
2N −Nεln(r) if exp( 1

ε ) < r ≤ exp( 2
ε ),

0 if r > exp( 2
ε )

and Ψε : R→ R by

Ψε(r) =
1

rN−1

∫ r

0

sN−1Φε(s)ds.

The next lemma summarizes some properties of Φε and Ψε.

Lemma 3.5. For each ε > 0, we have

Φε(r) = N, Ψε(r) = r, 0 ≤ r ≤ exp(
1
ε

); (3.19)

Ψ′ε(r) +
N − 1
r

Ψε(r) = Φε(r), for all r ≥ 0; (3.20)

‖Ψ′ε −
1
r

Ψε‖L∞ < ε; (3.21)

|Φε(r)| ≤ k, Ψ′ε(r) ≤ 1, for all r ≥ 0; (3.22)( rN−1

N − 1
Ψε(r)

)′
=

rN−1

N − 1
Φε(r), for all r ≥ 0. (3.23)

For a proof of the above lemma see Ohta and Todorova [14] and Jeanjean and
Le Coz [8].

Lemma 3.6. Let (u0, u1) ∈ W2 × L2(RN ) be such that E(0) < c and u(t) the
associated solution of (1.1) defined in [0,∞). If there exists a constant K > 0 such
that ‖u(t)‖λ ≤ K, then

νt ≤ C(1 + ‖ut(t)‖2‖∇u(t)‖2),

for all t ∈ [0,∞), where ν and C are positive constants.

Proof. As u0 ∈ W2, by the uniqueness of solution, u(t) is a radial function for all
t ≥ 0, namely, u(x, t) = u(r, t), where r = |x|. Therefore, equation (1.1)1 becomes

utt −
N − 1
r

u′ − u′′ + λu = af(u). (3.24)

Multiplying (3.24) by Ψε(r)u′rN−1

N−1 and integrating over [0,∞) we obtain∫ ∞
0

uttu
′Ψε(r)

rN−1

N − 1
dr −

∫ ∞
0

|u′|2Ψε(r)rN−2dr

−
∫ ∞

0

u′′u′Ψε(r)
rN−1

N − 1
dr + λ

∫ ∞
0

uu′Ψε(r)
rN−1

N − 1
dr

=
∫ ∞

0

a(r)f(u)u′Ψε(r)
rN−1

N − 1
dr.

(3.25)
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Now estimate the terms of the above equation.∫ ∞
0

uttu
′Ψε(r)

rN−1

N − 1
dr

=
∂

∂t

∫ ∞
0

utu
′Ψε(r)

rN−1

N − 1
dr −

∫ ∞
0

utu
′
tΨε(r)

rN−1

N − 1
dr

=
∂

∂t

∫ ∞
0

utu
′Ψε(r)

rN−1

N − 1
dr − 1

2

∫ ∞
0

(u2
t )
′Ψε(r)

rN−1

N − 1
dr

=
∂

∂t

∫ ∞
0

utu
′Ψε(r)

rN−1

N − 1
dr +

1
2

∫ ∞
0

u2
tΦε(r)

rN−1

N − 1
dr;

(3.26)

−
∫ ∞

0

u′′u′Ψε(r)
rN−1

N − 1
dr

= −1
2

∫ ∞
0

(|u′|2)′Ψε(r)
rN−1

N − 1
dr

=
1
2

∫ ∞
0

|u′|2
(

Ψ′ε(r)
rN−1

N − 1
+ Ψε(r)rN−2

)
dr;

(3.27)

λ

∫ ∞
0

uu′Ψε(r)
rN−1

N − 1
dr =

λ

2

∫ ∞
0

(u2)′Ψε(r)
rN−1

N − 1
dr

= −λ
2

∫ ∞
0

u2Φε(r)
rN−1

N − 1
dr;

(3.28)

∫ ∞
0

a(r)F (u)Φε(r)
rN−1

N − 1
dr

=
∫ ∞

0

a(r)F (u)
(

Ψε(r)
rN−1

N − 1

)′
dr

= −
∫ ∞

0

(a′(r)F (u) + a(r)f(u)u′)Ψε(r)
rN−1

N − 1
dr.

From here,∫ ∞
0

a(r)f(u)u′Ψε(r)
rN−1

N − 1
dr

= −
∫ ∞

0

a(r)F (u)Φε(r)
rN−1

N − 1
dr −

∫ ∞
0

a′(r)F (u)Ψε(r)
rN−1

N − 1
dr.

(3.29)

Substituting (3.26)–(3.29) in (3.25) we obtain

∂

∂t

∫ ∞
0

utu
′Ψε(r)

rN−1

N − 1
dr

+
1
2

∫ ∞
0

u2
tΦε(r)

rN−1

N − 1
dr −

∫ ∞
0

|u′|2Ψε(r)rN−2dr

+
1
2

∫ ∞
0

|u′|2
(

Ψ′ε(r)
rN−1

N − 1
+ Ψε(r)rN−2

)
dr − λ

2

∫ ∞
0

u2Φε(r)
rN−1

N − 1
dr

= −
∫ ∞

0

a(r)F (u)Φε(r)
rN−1

N − 1
dr −

∫ ∞
0

a′(r)F (u)Ψε(r)
rN−1

N − 1
dr.

(3.30)



12 P. C. CARRIÃO, R. LEHRER, A. VICENTE EJDE-2016/149

Define

JT (u) =
N − 2

2N

∫ ∞
0

|u′|2Φε(r)
rN−1

N − 1
dr −

∫ ∞
0

a(r)F (u)Φε(r)
rN−1

N − 1
dr

+
λ

2

∫ ∞
0

u2Φε(r)
rN−1

N − 1
dr − 1

N

∫ ∞
0

a′(r)rF (u)Φε(r)
rN−1

N − 1
dr.

(3.31)

From (3.30) and (3.31) we have

− ∂

∂t

∫ ∞
0

utu
′Ψε(r)

rN−1

N − 1
dr

=
1
2

∫ ∞
0

u2
tΦε(r)

rN−1

N − 1
dr︸ ︷︷ ︸

≥0

−
∫ ∞

0

|u′|2Ψε(r)rN−2dr

+
1
2

∫ ∞
0

|u′|2
(

Ψ′ε(r)
rN−1

N − 1
+ Ψε(r)rN−2

)
dr

+
N − 2

2N

∫ ∞
0

|u′|2Φε(r)
rN−1

N − 1
dr

− 1
N

∫ ∞
0

a′(r)rF (u)Φε(r)
rN−1

N − 1
dr

+
∫ ∞

0

a′(r)F (u)Ψε(r)
rN−1

N − 1
dr − JT (u).

(3.32)

As ∫ ∞
0

|u′|2Φε(r)
rN−1

N − 1
dr

=
∫ ∞

0

|u′|2
(

Ψε(r)
rN−1

N − 1

)′
dr

=
∫ ∞

0

|u′|2
(

Ψ′ε(r)
rN−1

N − 1
+ Ψε(r)rN−2

)
dr,

we obtain

−
∫ ∞

0

|u′|2Ψε(r)rN−2dr +
1
2

∫ ∞
0

|u′|2
(

Ψ′ε(r)
rN−1

N − 1
+ Ψε(r)rN−2

)
dr

+
N − 2

2N

∫ ∞
0

|u′|2Φε(r)
rN−1

N − 1
dr

=
1
N

∫ ∞
0

|u′|2
(

Ψ′ε(r)−
1
r

Ψε(r)
)
rN−1dr.

From this identity, the assumption ‖u(t)‖λ ≤ K and (3.21) we conclude that∣∣∣− ∫ ∞
0

|u′|2Ψε(r)rN−2dr +
1
2

∫ ∞
0

|u′|2
(

Ψ′ε(r)
rN−1

N − 1
+ Ψε(r)rN−2

)
dr

+
N − 2

2N

∫ ∞
0

|u′|2Φε(r)
rN−1

N − 1
dr
∣∣∣ ≤ ε,
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−
∫ ∞

0

|u′|2Ψε(r)rN−2dr +
1
2

∫ ∞
0

|u′|2
(

Ψ′ε(r)
rN−1

N − 1
+ Ψε(r)rN−2

)
dr

+
N − 2

2N

∫ ∞
0

|u′|2Φε(r)
rN−1

N − 1
dr ≥ −ε.

(3.33)

On the other hand,

− 1
N

∫ ∞
0

a′(r)rF (u)Φε(r)
rN−1

N − 1
dr +

∫ ∞
0

a′(r)F (u)Ψε(r)
rN−1

N − 1
dr

− 1
N

∫ ∞
0

a′(r)rF (u)
(

Ψε(r)
rN−1

N − 1

)′
dr +

∫ ∞
0

a′(r)F (u)Ψε(r)
rN−1

N − 1
dr

=
1

N − 1

∫ ∞
0

a′(r)rF (u)
(1
r

Ψε(r)−
1
N

Ψ′ε(r)−
N − 1
rN

Ψε(r)
)
rN−1dr

= − 1
N(N − 1)

∫ ∞
0

a′(r)rF (u)
(

Ψ′ε(r)−
1
r

Ψε(r)
)
rN−1dr.

Using the assumptions that a′(r)r → 0, when r →∞, |F (u)| ≤ Cu2, ‖u(t)‖λ ≤ K
and (3.21), we obtain∣∣∣− 1

N

∫ ∞
0

a′(r)rF (u)Φε(r)
rN−1

N − 1
dr +

∫ ∞
0

a′(r)F (u)Ψε(r)
rN−1

N − 1
dr
∣∣∣ < ε,

or

− 1
N

∫ ∞
0

a′(r)rF (u)Φε(r)
rN−1

N − 1
dr +

∫ ∞
0

a′(r)F (u)Ψε(r)
rN−1

N − 1
dr > −ε. (3.34)

Substituting (3.33) and (3.34) in (3.32) we have

− ∂

∂t

∫ ∞
0

utu
′Ψε(r)

rN−1

N − 1
dr > −JT (u)− 2ε. (3.35)

We know that JT (u) → J(u), when ε → 0, therefore for all µ > 0, there exists
γ > 0 such that |JT (u)− J(u)| < µ, when ε < γ. From here,

− J(u)− µ < −JT (u), when ε < γ. (3.36)

Inequalities (3.35) and (3.36) give us

− ∂

∂t

∫ ∞
0

utu
′Ψε(r)

rN−1

N − 1
dr > −J(u)− µ− 2ε.

Taking µ = δ/4, where δ was given by Lemma 3.4, ε = min{ δ8 ,
γ
2 } and using Lemma

3.4 we obtain

− ∂

∂t

∫ ∞
0

utu
′Ψε(r)

rN−1

N − 1
dr >

δ

2
,

integrating over (0,∞) we conclude that

δt < C(1 + ‖ut(t)‖2‖∇u(t)‖2),

for all t ≥ 0, this inequality allows us to complete the proof. �

Theorem 3.7 (Blow up). Suppose that (A1)–(A8) hold. Then for all (u0, u1) ∈
W2 × L2(RN ) such that E(0) < c there exists 0 < T ≤ ∞ and a unique function
u : RN × [0, T )→ R solution of (1.1) in the class

u ∈ C([0, T ];H1(RN )) ∩ C1([0, T ];L2(RN )).

such that u(t) ∈W2 for all t ∈ (0, T ) and either
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(a) the solution exists locally, i.e. T <∞, and there exists a sequence (tk)k∈N ⊂
(0, T ) with tk → T− such that

‖u(tk)‖λ →∞, when tk → T−;

or
(b) the solution exists globally on [0,∞) and there exists a sequence (tk)k∈N ⊂

(0,∞) with tk →∞ such that

‖u(tk)‖λ →∞, when tk →∞.

Proof. The blow up result of the item (a) is a consequence of T <∞, see Georgiev
and Todorova [7] and Segal [17]. Suppose that T = ∞. We will prove by contra-
diction. Suppose that there exists a constant k1 > 0 such that

λ‖u(t)‖22 + ‖∇u(t)‖22 ≤ ‖u(t)‖2λ ≤ k1 (3.37)

for all t ≥ 0. By the identity (3.9) we have

1
2
‖ut(t)‖22 = E(0)− 1

2
‖u(t)‖2λ +

∫
RN

a(x)F (u)dx. (3.38)

From (3.37) and (3.38) we conclude that there exists a constant k2 > 0 such that
1
2
‖ut(t)‖22 ≤ k2, (3.39)

for all t ≥ 0. But (3.37) and (3.39) give a contradiction with Lemma 3.6. �
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