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MULTIPLE SOLUTIONS FOR A FRACTIONAL p-LAPLACIAN
EQUATION WITH SIGN-CHANGING POTENTIAL

VINCENZO AMBROSIO

Abstract. We use a variant of the fountain Theorem to prove the existence
of infinitely many weak solutions for the fractional p-Laplace equation

(−∆)s
pu + V (x)|u|p−2u = f(x, u) in RN ,

where s ∈ (0, 1), p ≥ 2, N ≥ 2, (−∆)s
p is the fractional p-Laplace operator, the

nonlinearity f is p-superlinear at infinity and the potential V (x) is allowed to

be sign-changing.

1. Introduction

In this article we are interested in the study of the nonlinear fractional p-
Laplacian equation

(−∆)spu+ V (x)|u|p−2u = f(x, u) in RN , (1.1)

where s ∈ (0, 1), p ≥ 2 and N ≥ 2. Here (−∆)sp is the fractional p-Laplace operator
defined, for u smooth enough, by setting

(−∆)spu(x) = 2 lim
ε→0

∫
RN\Bε(x)

|u(x)− u(y)|p−2(u(x)− u(y))
|x− y|N+sp

dy, x ∈ RN ,

up to some normalization constant depending upon N and s.
When p = 2, equation (1.1) arises in the study of the nonlinear Fractional

Schrödinger equation

ı
∂ψ

∂t
+ (−∆)sψ = H(x, ψ) in RN × R

when looking for standing wave functions ψ(x, t) = u(x)e−ıct, where c is a constant.
This equation was introduced by Laskin [12, 13] and comes from an extension of the
Feynman path integral from the Brownian-like to the Levy-like quantum mechanical
paths.

Nowadays there are many articles related to the nonlinear fractional Schrödinger
equation: see for instance [1, 4, 5, 7, 8, 15, 16] and references therein. More re-
cently, a new nonlocal and nonlinear operator was considered, namely the fractional
p-Laplacian. In the works of Franzina and Palatucci [9] and of Lindgren and Lin-
qvist [14], the eigenvalue problem associated with (−∆)sp is studied, in particular
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some properties of the first eigenvalue and of the higher order eigenvalues are ob-
tained. Torres [17] established an existence result for the problem (1.1) when f
is p-superlinear and subcritical. Iannizzotto et al. [11] investigated existence and
multiplicity of solutions for a class of quasi-linear nonlocal problems involving the
p-Laplacian operator.

Motivated by the above papers, we aim to study the multiplicity of nontrivial
weak solutions to (1.1), when f is p-superlinear and V (x) can change sign. More
precisely, we require that the potential V (x) satisfies the following assumptions:

(A1) V ∈ C(RN ) is bounded from below;
(A2) There exists r > 0 such that

lim
|y|→∞

|{x ∈ RN : |x− y| ≤ r, V (x) ≤M}| = 0

for any M > 0,

while the nonlinearity f : RN ×R→ R and its primitive F (x, t) =
∫ t

0
f(x, z) dz are

such that
(A3) f ∈ C(RN × R), and there exist c1 > 0 and p < ν < p∗s such that

|f(x, t)| ≤ c1(|t|p−1 + |t|ν−1) ∀(x, t) ∈ RN × R,

where p∗s = Np
N−sp if sp < N and p∗s =∞ for sp ≥ N .

(A4) F (x, 0) ≡ 0, F (x, t) ≥ 0 for all (x, t) ∈ RN × R and

lim
|t|→∞

F (x, t)
|t|p

= +∞ uniformly in x ∈ RN .

(A5) There exists θ ≥ 1 such that

θF(x, t) ≥ F(x, τt) ∀(x, t) ∈ RN × R and τ ∈ [0, 1]

where F(x, t) = tf(x, t)− pF (x, t).
(A6) f(x,−t) = −f(x, t) for all (x, t) ∈ RN × R.

We recall that the conditions (A1) and (A2) on the potential V and (A3)–(A6)
with p = 2 and s = 1, have been used in [18] to extend the well-known multiplicity
result due to Bartsch and Wang [2]. Examples of V and f satisfying the above
assumptions are

V (x) =

{
2n|x| − 2n(n− 1) + c0 if n− 1 ≤ |x| ≤ (2n− 1)/2
−2n|x|+ 2n2 + c0 if (2n− 1)/2 ≤ |x| ≤ n.

,

for n ∈ N and c0 ∈ R; and

f(x, t) = a(x)|t|p−2t ln(1 + |t|) ∀(x, t) ∈ RN × R,

where a(x) is a continuous bounded function with positive lower bound. Our main
result can be stated as follows.

Theorem 1.1. Assume that (A1)–(A6) are satisfied. Then the problem (1.1) has
infinitely many nontrivial weak solutions.

To prove Theorem 1.1, we will consider the family of functionals

Jλ(u) =
1
p

[ ∫∫
R2N

|u(x)− u(y)|p

|x− y|N+sp
dx dy +

∫
RN

V (x)|u(x)|p dx
]
− λ

∫
RN

F (x, u) dx,
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with λ ∈ [1, 2] and u ∈ E, where E is the completion of C∞0 (RN ) with respect to
the norm

‖u‖pE =
∫∫

R2N

|u(x)− u(y)|p

|x− y|N+sp
dx dy +

∫
RN

V (x)|u(x)|p dx,

and we will show that Jλ satisfies the assumptions of the following variant of
fountain Theorem due to Zou [19].

Theorem 1.2 ([19]). Let (E, ‖·‖) be a Banach space, E = ⊕j∈NXj, with dimXj <

∞ for any j ∈ N. Set Yk = ⊕kj=1Xj and Zk = ⊕∞j=kXj. Let Jλ : E → R a family
of C1(E,R) functionals defined by

Jλ(u) = A(u)− λB(u), λ ∈ [1, 2].

Assume that Jλ satisfies the following assumptions:
(i) Jλ maps bounded sets to bounded sets uniformly for λ ∈ [1, 2], Jλ(−u) =
Jλ(u) for all (λ, u) ∈ [1, 2]× E.

(ii) B(u) ≥ 0 for all u ∈ E, and A(u)→∞ or B(u)→∞ as ‖u‖ → ∞.
(iii) There exists rk > ρk such that

βk(λ) = max
u∈Yk,‖u‖=rk

Jλ(u) < αk(λ) = inf
u∈Zk,‖u‖=ρk

Jλ(u), ∀λ ∈ [1, 2].

Then
αk(λ) ≤ ξk(λ) = inf

γ∈Γk
max
u∈Bk

Jλ(γ(u)) ∀λ ∈ [1, 2],

where

Bk = {u ∈ Yk : ‖u‖ ≤ rk} and Γk = {γ ∈ C(Bk, X) : γ is odd , γ = Id on ∂Bk}.
Moreover, for a.e. λ ∈ [1, 2], there exists a sequence {ukm(λ)}m∈N ⊂ E such that

sup
m∈N
‖ukm(λ)‖ <∞,J ′λ(ukm(λ))→ 0, Jλ(ukm(λ))→ ξk(λ) as m→∞.

Remark 1.3. By using (A1) we know that there exists V0 > 0 such that V1(x) =
V (x) + V0 ≥ 1 for any x ∈ RN . Let f1(x, t) = f(x, t) + V0|t|p−2t for all (x, t) ∈
RN ×R. Then it is easy to verify that the study of (1.1) is equivalent to investigate
the problem

(−∆)spu+ V1(x)|u|p−2u = f1(x, u) in RN .
Hence, from now on, we assume that V (x) ≥ 1 for any x ∈ RN in (A1).

2. Preliminaries and functional setting

In this preliminary Section, for the reader’s convenience, we recall some basic
results related to the fractional Sobolev spaces. For more details about this topic
we refer to [6].

Let u : RN → R be a measurable function. We say that u belongs to the space
W s,p(RN ) if u ∈ Lp(RN ) and

[u]p
W s,p(RN )

:=
∫∫

R2N

|u(x)− u(y)|p

|x− y|N+sp
dx dy <∞.

Then W s,p(RN ) is a Banach space with respect to the norm

‖u‖W s,p(RN ) =
[
[u]p

W s,p(RN )
+ |u|p

Lp(RN )

]1/p
.

We recall the main embeddings results for this class of fractional Sobolev spaces:



4 V. AMBROSIO EJDE-2016/151

Theorem 2.1 ([6]). Let s ∈ (0, 1) and p ∈ [1,∞) be such that sp < N . Then there
exists C = C(N, p, s) > 0 such that

|u|Lp∗s (RN ) ≤ C‖u‖W s,p(RN ).

for any u ∈ W s,p(RN ). Moreover the embedding W s,p(RN ) ⊂ Lq(RN ) is locally
compact whenever q < p∗s.

• If sp = N then W s,p(RN ) ⊂ Lq(RN ) for any q ∈ [p,∞).

• If sp > N then W s,p(RN ) ⊂ C0, sp−Np
loc (RN ).

Now we give the definition of weak solution for the problem (1.1). Taking into
account the presence of the potential V (x), we denote by E the closure of C∞0 (RN )
with respect to the norm

‖u‖ :=
(

[u]p
W s,p(RN )

+ |u|pV
)1/p

, |u|pV =
∫

RN
V (x)|u(x)|p dx.

Equivalently
E =

{
u ∈ Lp

∗
s (RN ) : [u]W s,p(RN ), |u|V <∞

}
.

Let us denote by (E∗, ‖ · ‖∗) the dual space of (E, ‖ · ‖). We define the nonlinear
operator A : E → E∗ by setting

〈A(u), v〉 =
∫∫

R2N

|u(x)− u(y)|p−2(u(x)− u(y))
|x− y|N+sp

(v(x)− v(y)) dxdy

+
∫

RN
V (x)|u|p−2uv dx,

for u, v ∈ E. Here 〈·, ·〉 denotes the duality pairing between E and E∗. Let

B(u) =
∫

RN
F (x, u) dx

for u ∈ E, and we set J (u) = 1
p 〈A(u), u〉 −B(u) for u ∈ E.

Definition 2.2. We say that u ∈ E is a weak solution to (1.1) if u satisfies

〈A(u), v〉 = 〈B′(u), v〉
for all v ∈ E.

Now we show a compactness result.

Lemma 2.3. Under the assumption (A1) and (A2), the embedding E ⊂ Lq(RN )
is compact for any q ∈ [p, p∗s).

Proof. Let {un} ⊂ E such that un ⇀ 0 in E. We have to show that un → 0 in
Lq(RN ) for q ∈ [p, p∗s). By the interpolation inequality we only need to consider
q = p. By using the Theorem 2.1 we know that un → 0 in Lploc(RN ). Thus it
suffices to show that, for any ε > 0, there exists R > 0 such that∫

BcR(0)

|un|p dx < ε;

here BcR(0) = RN \ BR(0). Let {yi}i∈N be a sequence of points in RN satisfying
RN ⊂

⋃
i∈N Br(yi) and such that each point x is contained in at most 2N such balls

Br(yi). We recall that we are assuming V (x) ≥ 1 for any x ∈ RN . Let

AR,M = {x ∈ BcR : V (x) ≥M}, BR,M = {x ∈ BcR : V (x) < M}.
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Then ∫
AR,M

|un|p dx ≤
1
M

∫
RN

V (x)|un|p dx

and this can be made arbitrarily small by choosing M large.
Take γ > 1 such that pγ ≤ p∗s and let γ′ = γ

γ−1 be the dual exponent of γ. Then
for fixed M > 0 we have∫

BR,M

|un|p dx ≤
∑
i∈N

∫
BR,M∩Br(yi)

|un|p dx

≤
∑
i∈N

(∫
BR,M∩Br(yi)

|un|pγ dx
)1/γ

|BR,M ∩Br(yi)|1/γ
′

≤ εR
∑
i∈N

(∫
BR,M∩Br(yi)

|un|pγ dx
)1/γ

≤ CεR
∑
i∈N
‖un‖pW s,p(Br(yi))

≤ CεR2N‖un‖pW s,p(RN )

where εR = supyi |BR,M∩Br(yi)|
1/γ′ . By assumption (A1) we can infer that εR → 0

as R→∞. Then we may make this term small by choosing R large. �

Next we prove the following result which will be fundamental later.

Lemma 2.4. If un ⇀ u in E and 〈A(un), un − u〉 → 0 then un → u in E.

Proof. Firstly, let us observe that for any u, v ∈ E
|〈A(u), v〉| ≤ [u]p−1

W s,p(RN )
[v]W s,p(RN ) + |v|p−1

V |v|V ≤ ‖u‖p−1‖v‖.

Then, elementary calculations yield

0 ≤ (‖un‖p−1 − ‖u‖p−1)(‖un‖ − ‖u‖)
≤ ‖un‖p − 〈A(un), u〉 − 〈A(u), un〉+ ‖u‖p

= 〈A(un), un〉 − 〈A(un), u〉 − 〈A(u), un〉+ 〈A(u), u〉
= 〈A(un), un − u〉 − 〈A(u), un − u〉 =: In + IIn.

(2.1)

By the hypotheses of the lemma, it follows that In, IIn → 0 as n → ∞ so, in
view of (2.1), we have ‖un‖ → ‖u‖ as n → ∞. Since it is well known that the
weak convergence and the norm convergence in a uniformly convex space imply the
strong convergence, to conclude the proof it will be sufficient to prove that E is
uniformly convex.

Fix ε ∈ (0, 2) and let u, v ∈ E such that ‖u‖, ‖v‖ ≤ 1 and ‖u− v‖ > ε. By using
that

|a+ b

2
|p + |a− b

2
|p ≤ 1

2
(|a|p + |b|p) for any a, b ∈ R,

it follows that

‖u+ v

2
‖p + ‖u− v

2
‖p

=
{[u+ v

2
]p
W s,p(RN )

+
[u− v

2
]p
W s,p(RN )

+ |u+ v

2
|pV + |u− v

2
|pV
}

≤ 1
2

(
[u]p

W s,p(RN )
+ [v]p

W s,p(RN )
+ |u|pV + |v|pV

)
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=
1
2
(
‖u‖p + ‖v‖p

)
= 1,

which gives ‖u+v
2 ‖

p < 1− εp

2p . Choosing

δ = 1−
[
1−

(ε
2

)p]1/p
> 0,

we can infer that ‖u+v
2 ‖ < 1− δ. Then E is uniformly convex. �

Let us introduce a family of functionals Jλ : E → R defined by

Jλ(u) =
1
p
〈A(u), u〉 − λB(u), λ ∈ [1, 2].

After integrating, from (A3), we obtain that for any (x, t) ∈ RN × R,

|F (x, t)| ≤ c1
p
|t|p +

c1
ν
|t|ν ≤ c1(|t|p + |t|ν). (2.2)

By using (A1), (A2), (2.2) and Lemma 2.3 follows that Jλ is well defined on E.
Moreover Jλ ∈ C1(E,R), and

J ′λ(u)v = 〈A(u), v〉 − λ〈B′(u), v〉 (2.3)

where
〈B′(u), v〉 =

∫
RN

f(x, u)v dx.

Then the critical points of J1 = J are weak solutions to (1.1).
To apply the Theorem 1.2, we can observe that E is a separable (C∞0 (RN )

is separable and dense in W s,p(RN )) and reflexive Banach space, so there exist
(φn) ⊂ E and (φ∗n) ⊂ E∗ such that E = span{φn : n ∈ N}, E∗ = span{φ∗n : n ∈ N}
and 〈φ∗n, φm〉 = 1 if n = m and zero otherwise. Then, for any n ∈ N, we set
Xn = span{φn}, Yn = ⊕nj=1Xj and Zn = ⊕∞j=nXj .

3. Proof of Theorem 1.1

In this section we give the proof of the main result of this paper. Firstly we
prove the following Lemmas:

Lemma 3.1. Assume that (A1)–(A3) are satisfied. Then there exists k1 ∈ N and
a sequence ρk →∞ as k →∞ such that

αk(λ) = inf
u∈Zk,‖u‖=ρk

Jλ(u), ∀k ≥ k1.

Proof. Let us define

bp(k) = sup
u∈Zk,‖u‖=1

|u|Lp(RN ), bν(k) = sup
u∈Zk,‖u‖=1

|u|Lν(RN ).

We aim to prove that

bp(k)→ 0, bν(k)→ 0 as k →∞. (3.1)

It is clear that bp(k) and bν(k) are decreasing with respect to k so there exist
bp, bν ≥ 0 such that bp(k) → bp and bν(k) → bν as k → ∞. For any k ≥ 0, there
exists uk ∈ Zk such that ‖uk‖ = 1 and |uk|p ≥ bp(k)

2 .
Taking into account that E is reflexive, we can assume that uk ⇀ u in E. Now,

for any φ∗n ∈ {φ∗j}j∈N, we can see that 〈φ∗n, uk〉 = 0 for k > n, so 〈φ∗n, u〉 =
limk→∞〈φ∗n, uk〉 = 0. Then 〈φ∗n, u〉 = 0 for any φ∗n ∈ {φ∗j}j∈N, which gives u = 0.
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Since E is compactly embedded in Lp(RN ) by Lemma 2.3, we have uk → 0 in
Lp(RN ), which implies that bp = 0. Similarly we can prove bν = 0. Then, for any
u ∈ Zk and λ ∈ [1, 2], we can see that

Jλ(u) =
1
p
〈A(u), u〉 − λB(u)

≥ ‖u‖
p

p
− 2

∫
RN

F (x, u) dx

≥ ‖u‖
p

p
− 2c1(|u|p

Lp(RN )
+ |u|νLν(RN ))

≥ ‖u‖
p

p
− 2c1(bpp(k)‖u‖p + bνν(k)‖u‖ν).

By using (3.1), we can find k1 ∈ N such that

2c1bpp(k) ≤ 1
2p

∀k ≥ k1.

For each k ≥ k1, we choose

ρk := (8pc1bνν(k))
1

p−ν .

Let us note that
ρk →∞ as k →∞, (3.2)

since ν > p. Then we deduce that

αk(λ) := inf
u∈Zk,‖u‖=ρk

Jλ(u) ≥ 1
4p
ρpk > 0

for any k ≥ k1. �

Lemma 3.2. Assume that (A1)–(A4) hold. Then for the positive integer k1 and
the sequence ρk obtained in Lemma 3.1, there exists rk > ρk for any k ≥ k1 such
that

βk(λ) = max
u∈Yk,‖u‖=rk

Jλ(u) < 0.

Proof. Firstly we prove that for any finite dimensional subspace F ⊂ E there exists
a constant δ > 0 such that

|{x ∈ RN : |u(x)| ≥ δ‖u‖}| ≥ δ, ∀u ∈ F \ {0}. (3.3)

We argue by contradiction and we suppose that for any n ∈ N there exists 0 6=
un ∈ F such that ∣∣{x ∈ RN : |un(x)| ≥ 1

n
‖u‖
}∣∣ < 1

n
, ∀n ∈ N.

Let vn := un
‖un‖ ∈ F for all n ∈ N. Then ‖vn‖ = 1 for all n ∈ N and∣∣{x ∈ RN : |vn(x)| ≥ 1

n

}∣∣ < 1
n
, ∀n ∈ N. (3.4)

Up to a subsequence, we may assume that vn → v in E for some v ∈ F since F is
a finite dimensional space. Clearly ‖v‖ = 1. By using Lemma 2.3 and the fact that
all norms are equivalent on F , we deduce that

|vn − v|Lp(RN ) → 0 as n→∞. (3.5)
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Since v 6= 0, there exists δ0 > 0 such that

|{x ∈ RN : |v(x)| ≥ δ0}| ≥ δ0. (3.6)

Set
Λ0 := {x ∈ RN : |v(x)| ≥ δ0}

and for all n ∈ N,

Λn :=
{
x ∈ RN : |vn(x)| ≥ 1

n

}
, Λcn := RN \ Λn.

Taking into account (3.4) and (3.6), we obtain

|Λn ∩ Λ0| ≥ |Λ0| − |Λcn| ≥ δ0 −
1
n
≥ δ0

2
.

for n large enough. Therefore,∫
RN
|vn − v|p dx ≥

∫
Λn∩Λ0

|vn − v|p dx

≥
∫

Λn∩Λ0

(|v|p − |vn|p) dx

≥
(
δ0 −

1
n

)p
|Λn ∩ Λ0|

≥
(δ0

2

)p+1

> 0

which contradicts (3.5).
Now, by using that Yk is finite dimensional and (3.3), we can find δk > 0 such

that
|{x ∈ RN : |u(x)| ≥ δk‖u‖}| ≥ δk, ∀u ∈ Yk \ {0}. (3.7)

By (A4), for any k ∈ N there exists a constant Rk > 0 such that

F (x, u) ≥ |u|
p

δp+1
k

∀x ∈ RN and |u| ≥ Rk.

Set
Aku = {x ∈ RN : |u(x)| ≥ δk‖u‖}

and let us observe that, by (3.7), |Aku| ≥ δk for any u ∈ Yk \ {0}. Then for any
u ∈ Yk such that ‖u‖ ≥ Rk

δk
, we have

Jλ(u) ≤ 1
p
‖u‖p −

∫
RN

F (x, u) dx

≤ 1
p
‖u‖p −

∫
Aku

|u|p

δp+1
k

dx

≤ 1
p
‖u‖p − ‖u‖p = −

(p− 1
p

)
‖u‖p.

Choosing rk > max{ρk, Rkδk } for all k ≥ k1, follows that

βk(λ) = max
u∈Yk,‖u‖=rk

Jλ(u) ≤ −
(p− 1

p

)
rpk < 0, ∀k ≥ k1.

�
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By using (2.2) and Lemma 2.3 we can see that Jλ maps bounded sets to bounded
sets uniformly for λ ∈ [1, 2]. Moreover, by (A6), Jλ is even. Then condition (i) in
Theorem 1.2 is satisfied. Condition (ii) is clearly true, while (iii) follows by Lemma
3.1 and Lemma 3.2. Then, by Theorem 1.2, for any k ≥ k1 and λ ∈ [1, 2] there
exists a sequence {ukm(λ)} ⊂ E such that

sup
m∈N
‖ukm(λ)‖ <∞, J ′λ(ukm(λ))→ 0, Jλ(ukm(λ))→ ξk(λ) as m→∞

where
ξk(λ) = inf

γ∈Γk
max
u∈Bk

Jλ(γ(u))

with

Bk = {u ∈ Yk : ‖u‖ ≤ rk}, Γk = {γ ∈ C(Bk, X) : γ is odd , γ = Id on ∂Bk}.
In particular, from the proof of Lemma 3.1, we deduce that for any k ≥ k1 and
λ ∈ [1, 2]

1
4p
ρpk =: ck ≤ ξk(λ) ≤ dk := max

u∈Bk
J1(u), (3.8)

and ck →∞ as k →∞ by (3.2). As a consequence, for any k ≥ k1, we can choose
λn → 1 (depending on k) and get the corresponding sequences satisfying

sup
m∈N
‖ukm(λn)‖ <∞, J ′λn(ukm(λn))→ 0 as m→∞. (3.9)

Now, we prove that for any k ≥ k1, {ukm(λn)}m∈N admits a strongly convergent
subsequence {ukn}n∈N, and that such subsequence is bounded.

Lemma 3.3. For each λn given above, the sequence {ukm(λn)}m∈N has a strong
convergent subsequence.

Proof. By (3.9) we may assume, without loss of generality, that as m→∞,

ukm(λn) ⇀ ukn in E

for some ukn ∈ E. By Lemma 2.3 we have

ukm(λn)→ ukn in Lp(RN ) ∩ Lν(RN ). (3.10)

By (A3) and Hölder inequality it follows that∣∣∣∫
RN

f(x, ukm(λn))(ukm(λn)− ukn) dx
∣∣∣

≤ c1|ukm(λn)|p−1
p |ukm(λn)− ukn|p + c1|ukm(λn)|ν−1

ν |ukm(λn)− ukn|ν
so, by using (3.10), we obtain

lim
m→∞

∫
RN

f(x, ukm(λn))(ukm(λn)− ukn) dx = 0.

Since J ′λn(ukm(λn))→ 0 as m→∞, and

〈J ′λ(u), v〉 = 〈A(u), v〉 − λ〈B′(u), v〉,
we deduce that

〈A(ukm(λn)), ukm(λn)− ukn〉 → 0 as m→∞.
Then, by using Lemma 2.4, we infer that

ukm(λn)→ ukn in E as m→∞.



10 V. AMBROSIO EJDE-2016/151

�

Therefore, without loss of generality, we may assume that

lim
m→∞

ukm(λn) = ukn, ∀n ∈ N, k ≥ k1.

As a consequence, we obtain

J ′λn(ukn) = 0,Jλn(ukn) ∈ [ck, dk], ∀n ∈ N, k ≥ k1. (3.11)

Lemma 3.4. For any k ≥ k1, the sequence {ukn}n∈N is bounded.

Proof. For simplicity we set un = ukn. We suppose by contradiction that, up to a
subsequence,

‖un‖ → ∞ as n→∞. (3.12)
Let wn = un/‖un‖ for any n ∈ N. Then, up to subsequence, we may assume that

wn ⇀ w in E

wn → w in Lp(RN ) ∩ Lν(RN )

wn → w a.e. in RN .
(3.13)

Now we distinguish two cases.
Case w = 0. As in [10], we can say that for any n ∈ N there exists tn ∈ [0, 1] such
that

Jλn(tnun) = max
t∈[0,1]

Jλn(tun). (3.14)

Since (3.12) holds, for any j ∈ N, we can choose rj = (2jp)1/pwn such that

rj‖un‖−1 ∈ (0, 1) (3.15)

provided n is large enough. By (3.13), F (·, 0) = 0 and the continuity of F , we can
see that

F (x, rjwn)→ F (x, rjw) = 0 a.e. x ∈ RN (3.16)
as n→∞ for any j ∈ N. Then, taking into account (2.2), (3.13), (3.16), (A4) and
by using the Dominated Convergence Theorem we deduce that

F (x, rjwn)→ 0 in L1(RN ) (3.17)

as n→∞ for any j ∈ N. Then (3.14), (3.15) and (3.17) yield

Jλn(tnun) ≥ Jλn(rjwn) ≥ 2j − λn
∫

RN
F (x, rjwn) dx ≥ j

provided n is large enough and for any j ∈ N. As a consequence

Jλn(tnun)→∞ as n→∞. (3.18)

Since Jλn(0) = 0 and Jλn(un) ∈ [ck, dk], we deduce that tn ∈ (0, 1) for n large
enough. Thus, by (3.14) we have

〈J ′λn(tnun), tnun〉 = tn
d

dt

∣∣∣
t=tn
Jλn(tun) = 0. (3.19)

Taking into account (A5), (3.19) and (2.3) we obtain
1
θ
Jλn(tnun) =

1
θ

(
Jλn(tnun)− 1

p
〈J ′λn(tnun), tnun〉

)
=
λn
θp

∫
RN
F(x, tnun) dx
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≤ λn
p

∫
RN
F(x, un) dx

= Jλn(un)− 1
p
〈J ′λn(un), un〉 = Jλn(un)

which contradicts (3.11) and (3.18).
Case w 6≡ 0. Thus the set Ω := {x ∈ RN : w(x) 6= 0} has positive Lebesgue
measure. By using (3.12) and that w 6≡ 0, we have

|un(x)| → ∞ a.e. x ∈ Ω as n→∞. (3.20)

Putting together (3.13), (3.20), and (A4), and by applying Fatou’s Lemma, we can
easily deduce that

1
p
− Jλn(un)
‖un‖p

= λn

∫
RN

F (x, un(x))
‖un‖p

dx

≥ λn
∫

Ω

|wn|p
F (x, un(x))
|un|p

dx→∞ as n→∞

which gives a contradiction because of (3.11).
Then, we have proved that the sequence {un} is bounded in E. �

Proof of Theorem 1.1. Taking into account Lemma 3.4 and (3.11), for each k ≥ k1,
we can use similar arguments to those in the proof of Lemma 3.3, to show that
the sequence {ukn} admits a strong convergent subsequence with the limit uk being
just a critical point of J1 = J . Clearly, J (uk) ∈ [ck, dk] for all k ≥ k1. Since
ck → ∞ as k → ∞ in (3.8), we deduce the existence of infinitely many nontrivial
critical points of J . As a consequence, we have that (1.1) possesses infinitely many
nontrivial weak solutions. �
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