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EXISTENCE OF SOLUTIONS TO BURGERS EQUATIONS IN
DOMAINS THAT CAN BE TRANSFORMED INTO

RECTANGLES

YASSINE BENIA, BOUBAKER-KHALED SADALLAH

Abstract. This work is concerned with Burgers equation ∂tu+u∂xu−∂2
xu =

f (with Dirichlet boundary conditions) in the non rectangular domain Ω =

{(t, x) ∈ R2; 0 < t < T, ϕ1(t) < x < ϕ2(t)} (where ϕ1(t) < ϕ2(t) for all
t ∈ [0;T ]). This domain will be transformed into a rectangle by a regular

change of variables. The right-hand side lies in the Lebesgue space L2(Ω),

and the initial condition is in the usual Sobolev space H1
0 . Our goal is to

establish the existence, uniqueness and the optimal regularity of the solution

in the anisotropic Sobolev space.

1. Introduction

One of the most important partial differential equations of the theory of nonlinear
conservation laws, is the semilinear diffusion equation, called Burgers equation:

∂tu+ u∂xu− ν∂2
xu = f, (1.1)

where u stands, generally, for a velocity, t the time variable, x the space variable
and ν the constant of viscosity (or the diffusion coefficient). Homogeneous Burgers
equation (equation (1.1) with f = 0), is one of the simplest models of nonlinear
equations which have been studied.

The mathematical structure of this equation includes a nonlinear convection
term u∂xu which makes the equation more interesting, and a viscosity term of
higher order ∂2

xu which regularizes the equation and produces a dissipation effect
of the solution near a shock. When the viscosity coefficient vanishes, ν = 0, the
Burgers equation reduced to the transport equation, which represents the inviscid
Burgers equation ∂tu+ u∂xu = f .

The study of the equation (1.1) has a long history: In 1906, Forsyth, treated
an equation which converts by some variable changes to the Burgers equation. In
1915, Bateman [2] introduced the equation (1.1): He was interested in the case
when ν → 0, and in studying the movement behavior of a viscous fluid when the
viscosity tends to zero. Burgers (1948) has published a study on the equation
(1.1) (which it owes his name), in his document [6] about modeling the turbulence
phenomena. Using the transformation discovered later by [8] in 1951, about the
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same time and independently by Hopf [10], (called the Hopf-Cole transformation),
Burgers continued his study of what he called “nonlinear diffusion equation”. This
study treated mainly the static aspects of the equation. The results of these works
can be found in the book [5].

The objective of Burgers was to consider a simplified version of the incompress-
ible Navier Stokes equation ∂tu+ (u · ∇)u = ν∆u−∇p by neglecting the pressure
term.

Among the most interesting applications of the one-dimensional Burgers equa-
tion, we mention traffic flow, growth of interfaces, and financial mathematics (see
for example [11, 15]).

The nonlinear Burgers equation (1.1), with f = 0, can be converted to the linear
heat equation and then explicitly solved by the Hopf-Cole transformation. We
usually look for explicit solutions for the forced Burgers equation ∂tu + u∂xu −
ν∂2

xu = f , where f(x, t) is the forcing term in a rectangular domain. In this work
we are interested in proving a result of existence, uniqueness and regularity for the
inhomogeneous Burgers problem.

For f(x, t) = −λ∂xη(x, t), Burgers equation becomes

∂tu+ u∂xu− ν∂2
xu = −λ∂xη(x, t), (1.2)

which is Burgers stochastic equation, where η(x, t) stands for the white noise. Using
the transformation u(x, t) = −λ∂xh(x, t), we find that (1.2) is equivalent to the
equation of KPZ

∂th(x, t)− λ

2
(∂xh(x, t))2 − ν∂2

xh(x, t) = η(x, t).

This equation has been introduced by Kardar, Parisi and Zhang in 1986, and quickly
became the default model for random interface growth in physics.

In a paper by Morandi Cecchi et al. [12], the main result was the existence and
uniqueness of a solution to the Burgers problem (with constant coefficients) in the
anistropic Sobolev space

H1,2(R) =
{
u ∈ L2(R) : ∂tu ∈ L2(R), ∂xu ∈ L2(R), ∂2

xu ∈ L2(R)
}

where R is a rectangle. The authors used a wrong inequality (namely
∫

Ω
M(u −

M)+(t)dx ≤ M‖(u −M)+(t)‖2) at the end of the proof of Theorem 2 (maximum
principle); the inequality appears in the line 14, page 165 (and line 15 page 167).
To rectify this part of the proof it suffices to show that u ∈ L∞(Q). The proof
given by the authors remains true only when f = 0 (but this was not the objective
of their paper), this case being treated by Bressan in [3]. However, in our work,
using another method, we prove a more general result concerning the existence,
uniqueness and regularity of a solution to the Burgers problem with variable coef-
ficients in a rectangle. Then, the existence, uniqueness and regularity of a solution
to the Burgers problem in a domain that can be transformed into a rectangle.

Setting of the problem. Recall that Lp(0, a) and Hm(0, a) are the usual spaces
of Lebesgue and Sobolev, respectively, for 1 ≤ p ≤ ∞ and m ∈ Z. For any
Banach space X, we define Lp(0, T ;X) to be the space of measurable functions
u : (0, T )→ X such that

‖u‖Lp(0,T ;X) =
(∫ T

0

‖u‖pX dt
)1/p

<∞
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for 1 ≤ p < ∞ and ‖u‖L∞(0,T ;X) = ess sup0<t<T ‖u‖X < ∞ if p = ∞. Lp(0, T ;X)
is a Banach space. Of course, we have Lp(R) = Lp(0, T ;Lp(0, a)).

This article is concerned with two questions regarding the Burgers equation. The
first one is to study the existence, uniqueness and regularity of the solution of the
semilinear parabolic problem:

∂tu(t, x) + α(t)u(t, x)∂xu(t, x)− β(t)∂2
xu(t, x) + γ(t, x)∂xu(t, x)

= f(t, x) (t, x) ∈ R,
u(0, x) = u0(x) x ∈ I,

u(t, 0) = u(t, a) = 0 t ∈ (0, T ),

(1.3)

in the rectangle R = I × (0, T ) where I = (0, a), a ∈ R+ (T is finite); f ∈ L2(R)
and u0 ∈ H1

0 (I) are given functions. We assume that the functions α, β depend
only on t and the function γ depends on t and x. We also suppose that there exist
positive constants (αi)i=1,2, (βi)i=1,2 and γ1, such that

α1 ≤ α(t) ≤ α2, β1 ≤ β(t) ≤ β2, ∀t ∈ [0, T ]

and |∂xγ(t, x)| ≤ γ1 or |γ(t, x)| ≤ γ1 ∀(t, x) ∈ R.
(1.4)

The second question concerns the semilinear parabolic Burgers problem:

∂tu(t, x) + u(t, x)∂xu(t, x)− ν∂2
xu(t, x) = f(t, x) in Ω,

u|t=0 = u0(x) x ∈ J,
u|x=ϕi(t) = 0 i = 1, 2

(1.5)

in Ω ⊂ R2, such as

Ω = {(t, x) ∈ R2; 0 ≤ t ≤ T, ϕ1(t) < x < ϕ2(t)}
where J = [ϕ1(0), ϕ2(0)] and ν is a positive constant, ϕ1, ϕ2 are functions defined
on [0, T ] belonging to C1(]0, T [). We assume that ϕ1(t) < ϕ2(t) for t ∈ [0, T ].

Using the results obtained in the first part of this work, we look for conditions on
the functions (ϕi)i=1,2 which guarantee that problem (1.5) admits a unique solution
u ∈ H1,2(Ω). In order to solve problem (1.5), we will follow the method which was
used, for example, in Sadallah[13] and Clark et al. [7]. This method consists in
proving that this problem admits a unique solution when Ω is transformed into
a rectangle, using a change of variables preserving the anisotropic Sobolev space
H1,2(Ω).

To establish the existence (and uniqueness) of the solution to (1.5), we impose
the assumption

|ϕ′(t)| ≤ c for all t ∈ [0, T ] (1.6)
where c is a positive constant, and ϕ(t) = ϕ2(t)− ϕ1(t) for all t ∈ [0, T ].

The result related to the existence of the solution u of (1.3) in a rectangle
is obtained thanks to a personal (and detailed) communication of professor Luc
Tartar about the Burgers equation with constant coefficients in a rectangle. The
authors would like to thank him for his appreciate comments and hints. Our main
result is as follows:

Theorem 1.1. If u0 ∈ H1
0 (I), f ∈ L2(R) and α, β , γ satisfy the assumption (1.4),

then problem (1.3) admits a (unique) solution u ∈ H1,2(R).

Theorem 1.2. If u0 ∈ H1
0 (J), f ∈ L2(Ω) and ϕ1, ϕ2 satisfy the assumption (1.6),

then problem (1.5) admits a (unique) solution u ∈ H1,2(Ω).
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The proof of Theorem 1.1 is based on the Faedo-Galerkin method. We introduce
approximate solution by reduction to the finite dimension. By the Faedo-Galerkin
method, we obtain the existence of an approximate solution using an existence
theorem of solutions for a system of ordinary differential equations. We approximate
the equation of problem (1.3) by a simple equation. Then we make the passage
to the limit using a compactness argument. The proof of Theorem 1.2 needs an
appropriate change of variables which allows us to use Theorem 1.1.

2. Proof of Theorem 1.1

Multiplying the equation of problem (1.3) by a test function w ∈ H1
0 (I), and

integrating by parts from 0 to a, we obtain∫ a

0

∂tuw dx+ α(t)
∫ a

0

u∂xuw dx

+ β(t)
∫ a

0

∂xu∂xw dx+
∫ a

0

γ(t, x)∂xuw dx

=
∫ a

0

fw dx, ∀w ∈ H1
0 (I), t ∈ (0, T ),

(2.1)

This is the weak formulation of problem (1.3). The solution of (2.1) satisfying the
conditions of problem (1.3) is called weak solution.

To prove the existence of a weak solution to (1.3), we choose the basis (ej)j∈N?

of L2(I) defined as a subset of the eigenfunctions of −∂2
x for the Dirichlet problem

−∂2
xej = λjej , j ∈ N∗,

ej = 0 on Γ = {0, a}.

More precisely,

ej(x) =
√

2√
a

sin
jπx

a
, λj = (

jπ

a
)2, for j ∈ N∗.

As the family (ej)j∈N? is an orthonormal basis of L2(I), then it is an orthogonal
basis of H1

0 (I). In particular, for v ∈ L2(R), we can write

v =
∞∑
k=1

bk(t)ek,

where bk = (v, ek)L2(I) and the series converges in L2(I). Then, we introduce the
approximate solution un by

un(t) =
n∑
j=1

cj(t)ej ,

un(0) = u0n =
n∑
j=1

cj(0)ej ,
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which has to satisfy the approximate problem∫ a

0

∂tunej dx+ α(t)
∫ a

0

un∂xunej dx

+ β(t)
∫ a

0

∂xun∂xej dx+
∫ a

0

γ(t, x)∂xunej dx

=
∫ a

0

fej dx,

un(0) = u0n.

(2.2)

for all j = 1, . . . , n, and0 ≤ t ≤ T .

Remark 2.1. The coefficients cj(0) (which depend on j and n) will be chosen such
that the sequence (u0n) converges in H1

0 (I) to u0. Then we suppose in the sequel
that limu0n = u0 in H1

0 (I).

2.1. Solution of the approximate problem.

Lemma 2.2. For all j, there exists a unique solution un of Problem (2.2).

Proof. As e1, · · · , en are orthonormal in L2(I), then∫ a

0

∂tunej dx =
n∑
i=1

c′i(t)
∫ a

0

eiej dx = c′j(t).

On the other hand, −∂2
xei = λiei, then ∂2

xun(t) = −
∑n
i=1 ci(t)λiei. Therefore, for

all t ∈ [0, T ],

−β(t)
∫ a

0

∂2
xunej dx = β(t)

n∑
i=1

ci(t)λi
∫ a

0

eiej dx = β(t)λjcj(t).

Now, if we introduce

fj(t) =
∫ a

0

fej dx, kj(t) = −α(t)
∫ a

0

un∂xunej dx,

hj(t) = −
∫ a

0

γ(t, x)∂xunej dx,

for j ∈ {1, . . . , n}, then (2.2) is equivalent to the following system of n uncoupled
linear ordinary differential equations:

c′j(t) = −β(t)λjcj(t) + kj(t) + hj(t) + fj(t), j = 1, . . . , n. (2.3)

Observe that the terms kj(t), hj(t) are well defined (because ej and γ(t, x) are
regular) and fj is integrable (because f ∈ L2(R)). Taking into account the initial
condition cj(0), for each fixed j ∈ {1, . . . , n}, (2.3) has a unique regular solution cj
in some interval (0, T ′) with T ′ ≤ T . In fact, we can prove here that T ′ = T . �

2.2. A priori estimate.

Lemma 2.3. There exists a positive constant K1 independent of n, such that for
all t ∈ [0, T ]

‖un‖2L2(I) + β1

∫ t

0

‖∂xun(s)‖2L2(I) ds ≤ K1.
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Proof. Multiplying (2.2) by cj and summing for j = 1, . . . , n, we obtain

1
2
d

dt

∫ a

0

u2
n dx+ β(t)

∫ a

0

(∂xun)2 dx− 1
2

∫ a

0

∂xγ(t, x)u2
n dx =

∫ a

0

fun dx.

Indeed, because of the boundary conditions, we have

α(t)
∫ a

0

u2
n∂xun dx =

α(t)
3

∫ a

0

∂x(un)3 dx = 0,

and an integration by parts gives

−1
2

∫ a

0

∂xγ(t, x)u2
n dx =

∫ a

0

γ(t, x)un∂xun dx.

Then, by integrating with respect to t (t ∈ (0, T )), and according to (1.4), we find
that

1
2
‖un‖2L2(I) + β1

∫ t

0

‖∂xun(s)‖2L2(I) ds

≤ 1
2
‖u0n‖2L2(I) +

∫ t

0

‖f(s)‖L2(I)‖un(s)‖L2(I) ds+
γ1

2

∫ t

0

‖un(s)‖2L2(I) ds.

Using Poincaré’s inequality

‖un‖2L2(I) ≤
a2

2
‖∂xun‖2L2(I),

both with the elementary inequality

|rs| ≤ ε

2
r2 +

s2

2ε
, ∀r, s ∈ R, ∀ε > 0, (2.4)

with ε = 2β1
a2 , we obtain

‖un‖2L2(I) + β1

∫ t

0

‖∂xun(s)‖2L2(I) ds

≤ ‖u0n‖2L2(I) +
a2

2β1

∫ t

0

‖f(s)‖2L2(I) ds+ γ1

∫ t

0

‖un(s)‖2L2(I) ds,

so

‖un‖2L2(I) + β1

∫ t

0

‖∂xun(s)‖2L2(I) ds

≤ ‖u0n‖2L2(I) +
a2

2β1

∫ t

0

‖f(s)‖2L2(I) ds

+ γ1

∫ t

0

(
‖un(s)‖2L2(I) + β1

∫ s

0

‖∂xun(τ)‖2L2(I) dτ
)

ds.

As the sequence (u0n) converges in H1
0 (I) to u0 (see Remark 2.1) and f ∈ L2(R),

there exists a positive constant C1 independent of n such that

‖u0n‖2L2(I) +
a2

2β1
‖f‖2L2(R) ≤ C1

and

‖un‖2L2(I) + β1

∫ t

0

‖∂xun(s)‖2L2(I) ds
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≤ C1 + γ1

∫ t

0

(
‖un(s)‖2L2(I) + β1

∫ s

0

‖∂xun(τ)‖2L2(I) dτ
)

ds,

then by Gronwall’s inequality,

‖un‖2L2(I) + β1

∫ t

0

‖∂xun(s)‖2L2(I) ds ≤ C1 exp(γ1t).

Taking K1 = C1 exp(γ1T ), we obtain

‖un‖2L2(I) + β1

∫ t

0

‖∂xvn(s)‖2L2(I) ds ≤ K1.

�

Lemma 2.4. There exists a positive constant K2 independent of n, such that for
all t ∈ [0, T ]

‖∂xun‖2L2(I) + β1

∫ t

0

‖∂2
xun(s)‖2L2(I) ds ≤ K2.

Proof. As −∂2
xej = λjej , we deduce that

n∑
j=1

cj(t)λjej = −
n∑
j=1

cj(t)∂2
xej = −∂2

xun(t),

then, multiplying both sides of (2.2) by cjλj and summing for j = 1, . . . , n, we
obtain

1
2
d

dt

∫ a

0

(∂xun)2dx+ β(t)
∫ a

0

(∂2
xun)2 dx

= −
∫ a

0

f∂2
xun dx+

∫ a

0

γ(t, x)∂xun∂2
xun dx+ α(t)

∫ a

0

un∂xun∂
2
xun dx.

(2.5)

Using Cauchy-Schwartz inequality, (2.4) with ε = β1/2 leads to

|
∫ a

0

f∂2
xun dx| ≤

(∫ a

0

|∂2
xun|2 dx

)1/2(∫ a

0

|f |2 dx
)1/2

≤ β1

4

∫ a

0

|∂2
xun|2 dx+

1
β1

∫ a

0

|f |2 dx,
(2.6)

and

|
∫ a

0

γ(t, x)∂xun∂2
xun dx| = 1

2

∣∣ ∫ a

0

∂xγ(t, x)∂xu2
n dx

∣∣ ≤ γ1

2

∫ a

0

|∂xun|2 dx. (2.7)

Now, we have to estimate the last term of (2.5). An integration by parts gives∫ a

0

un∂xun∂
2
xun dx =

∫ a

0

un∂x(
1
2

(∂xun)2) dx = −1
2

∫ a

0

(∂xun)3 dx.

Since ∂xun satisfies
∫ a

0
∂xun dx = 0 we deduce that the continuous function ∂xun

is zero at some point y0n ∈ (0, a), and by integrating 2∂xun∂2
xun between y0n and

y, we obtain

|∂xun|2 = |
∫ y

y0n

∂x(∂xun)2 dx| = 2|
∫ y

y0n

un∂
2
xun dx|,

the Cauchy-Schwartz inequality gives

‖∂xun‖2L∞(I) ≤ 2‖∂xun‖L2(I)‖∂2
xun‖L2(I).
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But
‖∂xun‖3L3(I) ≤ ‖∂xun‖

2
L2(I)‖∂xun‖L∞(I).

So, (1.4) yields

|
∫ a

0

α(t)un∂xun∂2
xun dx| ≤

(∫ a

0

|∂2
xun|2 dx

)1/4(
α

4/5
2

∫ a

0

|∂xun|2 dx
)5/4

.

Finally, thanks to Young’s inequality |AB| ≤ |A|
p

p + |B|p
′

p′ , with 1 < p < ∞ and
p′ = p

p−1 , we have

|AB| = |(β1/p
1 A)(β1/p′

1

B

β1
)| ≤ β1

p
|A|p +

β1

p′βp
′

1

|B|p
′
.

Choosing p = 4 (then p′ = 4
3 ) in the previous formula,

A = (
∫ a

0

|∂2
xun|2 dx)1/4, B =

(
α

4/5
2

∫ a

0

|∂xun|2 dx
)5/4

,

the estimate of the last term of (2.5) becomes

|
∫ a

0

α(t)un∂xun∂2
xun dx| ≤ β1

4

∫ a

0

|∂2
xun|2 dx+

3
4
α

4/3
2

β
1/3
1

(∫ a

0

|∂xun|2 dx
)5/3

. (2.8)

Let us return to inequality (2.5): By integrating between 0 and t, from the estimates
(2.6), (2.7), and (2.8) we obtain

‖∂xun‖2L2(I) + β1

∫ t

0

‖∂2
xun(s)‖2L2(I) ds

≤ ‖∂xu0n‖2L2(I) +
2
β1

∫ t

0

‖f(s)‖2L2(I) ds

+ C2

∫ t

0

(
‖∂xun(s)‖2L2(I)

)5/3

ds+ γ1

∫ t

0

‖∂xun(s)‖2L2(I) ds,

where C2 = 3
2
α

4/3
2

β
1/3
1

. Observe that f ∈ L2(R)), and ‖∂xu0n‖2L2(I) is bounded (see

Remark 2.1). Then, there exists a constant C3 such that

‖∂xun‖2L2(I) + β1

∫ t

0

‖∂2
xun(s)‖2L2(I) ds

≤ C3 + C2

∫ t

0

(
‖∂xun(s)‖2L2(I)

)2/3

‖∂xun(s)‖2L2(I) ds+ γ1

∫ t

0

‖∂xun(s)‖2L2(I) ds.

Consequently, the function

ϕ(t) = ‖∂xun‖2L2(I) + β1

∫ t

0

‖∂2
xun(s)‖2L2(I) ds

satisfies the inequality

ϕ(t) ≤ C3 +
∫ t

0

(C2‖∂xun(s)‖4/3L2(I) + γ1)ϕ(s)ds.

Gronwall’s inequality shows that

ϕ(t) ≤ C3 exp
(∫ t

0

(C2‖∂xun(s)‖4/3L2(I) + γ1)ds
)
.
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According to Lemma 2.3 the integral
∫ t

0
‖∂xun‖4/3L2(I)ds is bounded by a constant

independent of n (and t). So there exists a positive constant K2 such that

‖∂xun‖2L2(I) + β1

∫ t

0

‖∂2
xun(s)‖2L2(I) ds ≤ K2.

�

Lemma 2.5. There exists a positive constant K3 independent of n, such that for
all t ∈ [0, T ]

‖∂tun‖2L2(R) ≤ K3.

Proof. Let
gn = f − α(t)un∂xun + β(t)∂2

xun − γ(t, x)∂xun.
To show that ∂tun is bounded in L2(R), we will first show that gn is bounded in
L2(R). According to Lemmas 2.3 and 2.4, the terms γ(t, x)∂xun and β(t)∂2

xun are
bounded in L2(R). On the other hand, by the hypothesis f ∈ L2(R). It remains
only to show that α(t)un∂xun ∈ L2(R).

Lemma 2.3 proves that ‖un‖2L∞(0,T ;H1
0 (I))

is bounded. Then, using the injection
of H1

0 (I) in L∞(I), we obtain

|
∫ T

0

∫ a

0

(α(t)un∂xun)2 dxdt| ≤ α2
2

∫ T

0

(
‖un‖2L∞(I)

∫ a

0

|∂xun|2 dx
)

dt

≤ α2
2CI

∫ T

0

‖un‖2H1
0 (I)‖∂xun‖

2
L2(I) dt

≤ α2
2CI‖un‖2L∞(0,T ;H1

0 (I))‖∂xun‖
2
L2(R),

where CI is a constant independent of n. Hence gn is bounded in L2(R). So, ∂tun
is also bounded in L2(R). Indeed, from (2.2) for j = 1, . . . , n, we have∫ a

0

∂tunej dx =
∫ a

0

(f − α(t)un∂xun + β(t)∂2
yun − γ(t, x)∂xun)ej dx,

=
∫ a

0

gnej dx,

multiplying both sides by c′j and summing for j = 1, . . . , n,

‖∂tun‖2L2(I) =
∫ a

0

gn∂tun dx,

we deduce that ‖∂tun‖L2(R) ≤ ‖gn‖L2(R). �

2.3. Existence and uniqueness. Lemmas 2.3, 2.4 and 2.5 show that the Galerkin
approximation un is bounded in L∞(0, T, L2(I)), and in L2(0, T,H2(I)), and ∂tun
is bounded in L2(R). So, it is possible to extract a subsequence from un (that we
continue to denote un) such that

un → u weakly in L2(0, T,H1
0 (I)), (2.9)

un → u strongly in L2(0, T, L2(I)) and a.e. in R, (2.10)

∂tun → ∂tu strongly in L2(R). (2.11)

Lemma 2.6. Under the assumptions of Theorem 1.1, problem (1.3) admits a weak
solution u ∈ H1,2(R).
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Proof. Note that (2.11) implies∫ T

0

∫ a

0

∂tunw dx dt→
∫ T

0

∫ a

0

∂tuw dxdt, ∀w ∈ L2(R).

From (2.9) and (2.10),

un∂xun → u∂xu weakly in L2(R) ,

then ∫ T

0

∫ a

0

α(t)un∂xunw dxdt→
∫ T

0

∫ a

0

α(t)u∂xuw dx dt, ∀w ∈ L2(R),

and ∫ T

0

∫ a

0

γ(t, x)∂xunw dx dt→
∫ T

0

∫ a

0

γ(t, x)∂xuw dxdt, ∀w ∈ L2(R).

Our goal is to use these properties to pass to the limit. In problem (2.2), when
n→ +∞, for each fixed index j, we have∫ a

0

(
∂tu+ α(t)u∂xu

)
ej dx+ β(t)

∫ a

0

∂xu∂xej dx+
∫ a

0

γ(t, x)∂xuej dx

=
∫ a

0

fej dx,
(2.12)

Since (ej)j∈N is a base of H1
0 (I), for all w ∈ H1

0 (I), we can write

w(t) =
∞∑
k=1

bk(t)ek,

that is to say wN (t) =
∑N
k=1 bk(t)ek → w(t) in H1

0 (I) when N → +∞.
Multiplying (2.12) by bk and summing for k = 1, . . . , N , then∫ a

0

(
∂tu+ α(t)u∂xu

)
wN dx+ β(t)

∫ a

0

∂xu∂xwN dx+
∫ a

0

γ(t, x)∂xuwN dx

=
∫ a

0

fwN dx.

Letting N → +∞, we deduce that∫ a

0

(
∂tu+ α(t)u∂xu

)
w dx+ β(t)

∫ a

0

∂xu∂xw dx+
∫ a

0

γ(t, x)∂xuw dx =
∫ a

0

fw dx,

so, u satisfies the weak formulation (2.1) for all w ∈ H1
0 (I) and t ∈ [0;T ].

Finally, we recall that, by hypothesis, limn→+∞ un(0) := u0. This completes the
proof of the “existence” part of Theorem 1.1. �

Lemma 2.7. Under the assumptions of Theorem 1.1, the solution of problem (1.3)
is unique.

Proof. Let us observe that any solution u ∈ H1,2(R) of problem (1.3) is in u ∈
L∞(0, T, L2(I)). Indeed, it is not difficult to see that such a solution satisfies

1
2
d

dt

∫ a

0

u2 dx+ β(t)
∫ a

0

(∂xu)2 dx− 1
2

∫ a

0

∂xγ(t, x)u2 dx =
∫ a

0

fudx,

because

α(t)
∫ a

0

u2∂xudx =
α(t)

3

∫ a

0

∂x(u)3 dx = 0,
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and ∫ a

0

γ(t, x)∂xuudx =
∫ a

0

γ(t, x)∂x(
u2

2
) dx = −1

2

∫ a

0

∂xγ(t, x)u2 dx.

Consequently (see the proof of Lemma 2.3)

‖u‖2L2(I) + β1

∫ t

0

‖∂xu(s)‖2L2(I) ds

≤ ‖u0‖2L2(I) +
a2

2β1

∫ t

0

‖f(s)‖2L2(I) ds+ γ1

∫ t

0

‖u(s)‖2L2(I) ds,

so,

‖u‖2L2(I) + β1

∫ t

0

‖∂xu(s)‖2L2(I) ds

≤ ‖u0‖2L2(I) +
a2

2β1

∫ t

0

‖f(s)‖2L2(I) ds

+ γ1

∫ t

0

(
‖u(s)‖2L2(I) + β1

∫ s

0

‖∂xu(τ)‖2L2(I) dτ
)

ds.

Then there exist a positive constant C such that

‖u‖2L2(I) + β1

∫ t

0

‖∂xu(s)‖2L2(I) ds

≤ C + γ1

∫ t

0

(
‖u(s)‖2L2(I) + β1

∫ s

0

‖∂xu(τ)‖2L2(I) dτ
)

ds.

Hence, Gronwall’s lemma gives

‖u‖2L2(I) + β1

∫ t

0

‖∂xu(s)‖2L2(I) ds ≤ K,

where K = C exp(γ1T ). This shows that u ∈ L∞(0, T, L2(I)) for all f ∈ L2(I).
Now, let u1, u2 ∈ H1,2(R) be two solutions of (1.3). We put u = u1 − u2. It is

clear that u ∈ L∞(0, T, L2(I)). The equations satisfied by u1 and u2 lead to∫ a

0

[∂tuw + α(t)uw∂xu1 + α(t)u2w∂xu+ β(t)∂xu∂xw + γ(t, x)w∂xu] dx = 0.

Taking, for t ∈ [0, T ], w = u as a test function, we deduce that

1
2
d

dt
‖u‖2L2(I) + β(t)‖∂xu‖2L2(I)

= −
∫ a

0

γ(t, x)u∂xudx− α(t)
∫ a

0

u2∂xu1 dx− α(t)
∫ a

0

u2u∂xudx.
(2.13)

An integration by parts gives

α(t)
∫ a

0

u2∂xu1 dx = −2α(t)
∫ a

0

u∂xuu1 dx,

then (2.13) becomes

1
2
d

dt
‖u‖2L2(I) + β(t)‖∂xu‖2L2(I) =

1
2

∫ a

0

∂xγ(t, x)u2 dx+
∫ a

0

α(t)(2u1− u2)u∂xudx.
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By (1.4) and inequality (2.4) with ε = 2β1, we obtain

|
∫ a

0

α(t)(2u1 − u2)u∂xudx|

≤ 1
4β1

α2
2(2‖u1‖L∞(0,T,L2(I)) + ‖u2‖L∞(0,T,L2(I)))2‖u‖2L2(I) + β1‖∂xu‖2L2(I).

Furthermore,
1
2

∫ a

0

∂xγ(t, x)u2 dx ≤ γ1

2
‖u‖2L2(I).

So, we deduce that there exists a non-negative constant D, such as
1
2
d

dt
‖u‖2L2(I) ≤ D‖u‖

2
L2(I),

and Gronwall’s lemma leads to u = 0. This completes the proof. �

3. Proof of the theorem 1.2

Let
Ω = {(t, x) ∈ R2; 0 < t < T ; ϕ1(t) < x < ϕ2(t)},

where T is a positive finite number. The change of variables: Ω→ R,

(t, x) 7→ (t, y) = (t,
x− ϕ1(t)

ϕ2(t)− ϕ1(t)
)

transforms Ω into the rectangle R =]0, T [×]0, 1[. Putting u(t, x) = v(t, y) and
f(t, x) = g(t, y), then problem (1.5) becomes

∂tv(t, y) +
1
ϕ(t)

v(t, y)∂yv(t, y)

− ν

ϕ2(t)
∂2
yv(t, y) + γ(t, y)∂yv(t, y) = g(t, y) in R,

v(0, y) = v0(y) = u0(ϕ1(0) + ϕ(0)y), y ∈ (0, 1),

v(t, 0) = v(t, 1) = 0 t ∈ (0, T ),

(3.1)

where

ϕ(t) = ϕ2(t)− ϕ1(t),

γ(t, y) = −yϕ
′(t) + ϕ′1(t)
ϕ(t)

.

Now, we take I = (0, 1), α(t) = 1
ϕ(t) , β(t) = ν

ϕ2(t) , then problem (3.1) can be
written as

∂tv(t, y) + α(t)v(t, y)∂yv(t, y)− β(t)∂2
yv(t, y) + γ(t, y)∂yv(t, y) = g(t, y)

(t, y) ∈ R,
v(0, y) = v0(y) y ∈ I,

v(t, 1) = v(t, 0) = 0 t ∈ (0, T ),

It is easy to see that this change of variables preserves the spaces H1
0 , H1,2 and L2.

In other words
f ∈ L2(Ω) ⇔ g ∈ L2(R)

u ∈ H1,2(Ω) ⇔ v ∈ H1,2(R)

u0 ∈ H1
0 (J) ⇔ v0 ∈ H1

0 (I)

(3.2)



EJDE-2016/157 EXISTENCE OF SOLUTIONS TO BURGERS EQUATIONS 13

Remark 3.1. Observe that the hypotheses (1.4) are fulfilled. This means that the
functions α, β and γ satisfy the following conditions

α1 < α(t) < α2, ∀t ∈ [0, T ],

β1 < β(t) < β2, ∀t ∈ [0, T ],

|∂yγ(t, y)| ≤ γ1, ∀(t, y) ∈ R.

So, Burgers problem (1.5) is equivalent to problem (3.1), and by Theorem 1.1,
there exists a unique solution v ∈ H1,2(R) of problem (3.1). Then (3.2) implies
that the nonhomogeneous Burgers problem (1.5) in the domain Ω admits a unique
solution u ∈ H1,2(R).

This work can be generalized to the case when ϕ1, ϕ2 are Lipshitz continuous
functions on [0, T ] instead of C1(]0, T [). On the other hand, this is an interesting
question: What happens if ϕ1(0) = ϕ2(0)? This is a singular case which needs
some hypotheses on ϕ1, ϕ2 near t = 0. In a forthcoming work, we will answer this
question.
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