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SOLVABILITY OF A CLOSE TO SYMMETRIC SYSTEM OF
DIFFERENCE EQUATIONS

STEVO STEVIĆ, BRATISLAV IRIČANIN, ZDENĚK ŠMARDA

Abstract. The problem of solvability of a close to symmetric product-type

system of difference equations of second order is investigated. Some recent
results in the literature are extended.

1. Introduction

Various types of nonlinear difference equations and systems have been consider-
ably studied recently (see, e.g., [1]-[4], [6, 7, 9, 10], [12]-[31]). Among other topics,
there has been some renewed interest in the equations and systems which can be
solved (see, e.g., [1]-[4], [16, 21], [23]-[29], [31]). Many of these papers essentially
used a transformation method by Stević (see, e.g., [1, 2, 16, 21, 23, 24, 25, 31]
where can be also found original sources and many other references). Some known
classes of difference equations and systems, including solvable ones, can be found,
for example, in [5, 8, 11, 18]. After the publication of some papers on concrete sys-
tems of difference equations by Papaschinopoulos and Schinas almost two decades
ago (see, e.g., [12, 13, 14]), some interest in the area has also started (see, e.g.,
[4, 15, 17, 19, 20, 24, 25, 26, 27, 28, 29, 30, 31]).

An investigation of the long-term behavior of solutions to some classes of dif-
ference equations which are modifications/perturbations of product-type ones has
been also started by Stević (see, e.g., [22] and the references therein). The corre-
sponding investigation of related systems of difference equations has been started
somewhat later. For example, in [30] the boundedness character of positive solu-
tions of the following system

zn+1 = max
{
f, wp

n/z
q
n−1

}
, wn+1 = max

{
f, zp

n/w
q
n−1

}
, n ∈ N0, (1.1)

with positive parameters f, p and q, was investigated. There are also some solvable
max-type systems of difference equations [24]. The corresponding product-type
system to (1.1) (system (1.2) below with â = ĉ = p and b̂ = d̂ = q) with positive
initial values is solvable. However, the case of complex initial values seems has
not been studied in detail. These observations motivated us to study product-type
systems with such initial values. One of the first papers on the problem is [29],
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where we have studied the product-type system

zn+1 =
wâ

n

zb̂
n−1

, wn+1 =
zĉ
n

wd̂
n−1

, n ∈ N0, (1.2)

where â, b̂, ĉ, d̂ are integers (the condition is posed to avoid multi-valued sequences).
Motivated by the close to symmetric systems in [30] and [31], in [26] S. Stević has

noticed that some complex parameters/coefficients can be included into a product-
type system of difference equations so that the solvability of such obtained system
is preserved. For some other results in the topic, see also [28].

Our aim is to investigate the solvability of the following close to symmetric
system of difference equations

zn+1 = αwa
nz

b
n−1, wn+1 = βzc

nw
d
n−1, n ∈ N0, (1.3)

where a, b, c, d ∈ Z, α, β ∈ C and z−1, z0, w−1, w0 ∈ C. Actually, since the cases
α = 0 and β = 0 are simple, we will study only the case when α, β ∈ C \ {0} in
detail.

We want to point out that system (1.3) is not only an interesting and important
extension of system (1.2), but also our approach in the paper will be different from
the one in [29], but in the spirit of [26].

Note that the domain of undefinable solutions ([25]) to system (1.3) is a subset
of

U = {(z−1, z0, w−1, w0) ∈ C4 : z−1 = 0 or z0 = 0 or w−1 = 0 or w0 = 0}.
This domain is equal to U if min{a, b, c, d} < 0, but it can be also an empty set if
min{a, b, c, d} > 0. To avoid some quite simple and not so interesting discussions
we will also assume that all the initial values belong to C \ {0}. Throughout the
paper we will frequently use the convention

∑m
j=l aj = 0, for m < l.

2. Main results

The problem of solvability of system (1.3) will be treated in this section. Three
cases will be separately studied, namely, a = 0, c = 0 and ac 6= 0.

Theorem 2.1. Assume that b, c, d ∈ Z, a = 0, α, β ∈ C \ {0} and initial values
z−1, z0, w−1, w0 ∈ C \ {0}. Then system (1.3) is solvable in closed form.

Proof. Since a = 0 we have

zn+1 = αzb
n−1, wn+1 = βzc

nw
d
n−1, n ∈ N0. (2.1)

The first equation in (2.1) easily yields

z2n = α
Pn−1

j=0 bj

zbn

0 , n ∈ N, (2.2)

z2n−1 = α
Pn−1

j=0 bj

zbn

−1, n ∈ N. (2.3)

From (2.2) and (2.3) we have

z2n = α
1−bn

1−b zbn

0 , n ∈ N, (2.4)

z2n−1 = α
1−bn

1−b zbn

−1, n ∈ N, (2.5)

when b 6= 1, while

z2n = αnz0, n ∈ N, (2.6)
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z2n−1 = αnz−1, n ∈ N, (2.7)

when b = 1 (note that (2.2) and (2.3) obviously hold for n = 0, when b 6= 0).
By using (2.2) in the second equation in (2.1) with n→ 2n, we obtain

w2n+1 = βzc
2nw

d
2n−1 = β(α

Pn−1
j=0 bj

zbn

0 )cwd
2n−1

= βαc
Pn−1

j=0 bj

zcbn

0 wd
2n−1,

(2.8)

for n ∈ N.
Suppose that for some k ∈ N we have proved

w2n+1 = β
Pk−1

i=0 di

αc
Pk−1

i=0 di Pn−i−1
j=0 bj

z
c

Pk−1
i=0 dibn−i

0 wdk

2(n−k)+1, (2.9)

for n ≥ k. By using (2.8) with n→ n− k into (2.9) it follows that

w2n+1 = β
Pk−1

i=0 di

αc
Pk−1

i=0 di Pn−i−1
j=0 bj

z
c

Pk−1
i=0 dibn−i

0

× (βαc
Pn−k−1

j=0 bj

zcbn−k

0 wd
2(n−k−1)+1)dk

= β
Pk

i=0 di

αc
Pk

i=0 di Pn−i−1
j=0 bj

z
c

Pk
i=0 dibn−i

0 wdk+1

2(n−k−1)+1,

(2.10)

for n ≥ k + 1.
Formulas (2.8), (2.10) along with the induction shows that (2.9) holds for all

natural numbers k and n such that 1 ≤ k ≤ n. For k = n, (2.9) becomes

w2n+1 = β
Pn−1

i=0 di

αc
Pn−1

i=0 di Pn−i−1
j=0 bj

z
c

Pn−1
i=0 dibn−i

0 wdn

1 , n ∈ N. (2.11)

Using the relation w1 = βzc
0w

d
−1 into (2.11), we obtain

w2n+1 = β
Pn−1

i=0 di

αc
Pn−1

i=0 di Pn−i−1
j=0 bj

z
c

Pn−1
i=0 dibn−i

0 (βzc
0w

d
−1)dn

= β
Pn

i=0 di

αc
Pn−1

i=0 di Pn−i−1
j=0 bj

z
c

Pn
i=0 dibn−i

0 wdn+1

−1 , n ∈ N0.
(2.12)

By using (2.3) into the second equation in (2.1) with n→ 2n− 1, we obtain

w2n = βzc
2n−1w

d
2n−2 = β(α

Pn−1
j=0 bj

zbn

−1)cwd
2n−2

= βαc
Pn−1

j=0 bj

zcbn

−1 w
d
2n−2,

(2.13)

for n ∈ N.
Assume that for some k ∈ N we have proved that

w2n = β
Pk−1

i=0 di

αc
Pk−1

i=0 di Pn−i−1
j=0 bj

z
c

Pk−1
i=0 dibn−i

−1 wdk

2(n−k), (2.14)

for n ≥ k.
By using (2.13) with n→ n− k into (2.14) we obtain

w2n = β
Pk−1

i=0 di

αc
Pk−1

i=0 di Pn−i−1
j=0 bj

z
c

Pk−1
i=0 dibn−i

−1

× (βαc
Pn−k−1

j=0 bj

zcbn−k

−1 wd
2(n−k−1))

dk

= β
Pk

i=0 di

αc
Pk

i=0 di Pn−i−1
j=0 bj

z
c

Pk
i=0 dibn−i

−1 wdk+1

2(n−k−1),

(2.15)

for n ≥ k + 1.
From (2.13), (2.15) and the induction we have that (2.14) holds for all natural

numbers k and n such that 1 ≤ k ≤ n. For k = n, (2.14) becomes

w2n = β
Pn−1

i=0 di

αc
Pn−1

i=0 di Pn−i−1
j=0 bj

z
c

Pn−1
i=0 dibn−i

−1 wdn

0 , (2.16)
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for n ∈ N.
Case b 6= d. From (2.12) and (2.16) we have that

w2n+1 = β
Pn

i=0 di

αc
Pn−1

i=0 di Pn−i−1
j=0 bj

z
c dn+1−bn+1

d−b

0 wdn+1

−1 , (2.17)

for n ∈ N0, and

w2n = β
Pn−1

i=0 di

αc
Pn−1

i=0 di Pn−i−1
j=0 bj

z
bc dn−bn

d−b

−1 wdn

0 , n ∈ N. (2.18)

Subcase b 6= 1 6= d. From (2.17) we have

w2n+1 = β
1−dn+1

1−d αc
Pn−1

i=0 di 1−bn−i

1−b z
c dn+1−bn+1

d−b

0 wdn+1

−1

= β
1−dn+1

1−d α
c

1−b

(
1−dn

1−d −b bn−dn

b−d

)
z

c dn+1−bn+1
d−b

0 wdn+1

−1

= β
1−dn+1

1−d α
c(b−d+dn+1−bn+1+dbn+1−bdn+1)

(1−b)(1−d)(b−d) z
c dn+1−bn+1

d−b

0 wdn+1

−1 ,

(2.19)

for n ∈ N0. From (2.18) and by employing a formula used in getting (2.19), we
have

w2n = β
Pn−1

i=0 di

αc
Pn−1

i=0 di 1−bn−i

1−b z
bc dn−bn

d−b

−1 wdn

0

= β
1−dn

1−d α
c(b−d+dn+1−bn+1+dbn+1−bdn+1)

(1−b)(1−d)(b−d) z
bc dn−bn

d−b

−1 wdn

0 ,

(2.20)

for n ∈ N.
Subcase b 6= 1 = d. From (2.17) we have

w2n+1 = βn+1αc
Pn−1

i=0
1−bn−i

1−b z
c 1−bn+1

1−b

0 w−1

= βn+1α
c

1−b

(
n−b 1−bn

1−b

)
z

c 1−bn+1
1−b

0 w−1

= βn+1α
c(n−(n+1)b+bn+1)

(1−b)2 z
c 1−bn+1

1−b

0 w−1,

(2.21)

for n ∈ N0. From (2.18) and by employing a formula used in getting (2.21), we
have

w2n = βnαc
Pn−1

i=0
1−bn−i

1−b z
bc 1−bn

1−b

−1 w0

= βnα
c(n−(n+1)b+bn+1)

(1−b)2 z
bc 1−bn

1−b

−1 w0,

(2.22)

for n ∈ N.
Subcase b = 1 6= d. From (2.17) we have

w2n+1 = β
1−dn+1

1−d αc
Pn−1

i=0 di(n−i)z
c dn+1−1

d−1
0 wdn+1

−1

= β
1−dn+1

1−d α
c
(
n 1−dn

1−d −d
1−ndn−1+(n−1)dn

(1−d)2

)
z

c dn+1−1
d−1

0 wdn+1

−1

= β
1−dn+1

1−d α
c(n−(n+1)d+dn+1)

(1−d)2 z
c dn+1−1

d−1
0 wdn+1

−1 ,

(2.23)

for n ∈ N0. From (2.18) and by employing a formula used in getting (2.23), we
have

w2n = β
1−dn

1−d αc
Pn−1

i=0 di(n−i)z
c 1−dn

1−d

−1 wdn

0

= β
1−dn

1−d α
c(n−(n+1)d+dn+1)

(1−d)2 z
c dn−1

d−1
−1 wdn

0 ,

(2.24)
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for n ∈ N.
Case b = d 6= 1. From (2.12) we have

w2n+1 = β
1−bn+1

1−b αc
Pn−1

i=0 bi 1−bn−i

1−b z
cbn(n+1)
0 wbn+1

−1

= β
1−bn+1

1−b α
c

1−b

(
1−bn

1−b −nbn
)
z

cbn(n+1)
0 wbn+1

−1

= β
1−bn+1

1−b α
c(1−(n+1)bn+nbn+1)

(1−b)2 z
cbn(n+1)
0 wbn+1

−1 ,

(2.25)

for n ∈ N0.
From (2.16) and by employing a formula used in getting (2.25), we have

w2n = β
1−bn

1−b αc
Pn−1

i=0 bi 1−bn−i

1−b zcnbn

−1 wbn

0

= β
1−bn

1−b α
c(1−(n+1)bn+nbn+1)

(1−b)2 zcnbn

−1 wbn

0 ,

(2.26)

for n ∈ N0.
Case b = d = 1. From (2.12) we have

w2n+1 = βn+1αc
Pn−1

i=0 (n−i)z
c(n+1)
0 w−1

= βn+1α
cn(n+1)

2 z
c(n+1)
0 w−1,

(2.27)

for n ∈ N0. From (2.16) we have

w2n = βnαc
Pn−1

i=0 (n−i)zcn
−1w0

= βnα
cn(n+1)

2 zcn
−1w0,

(2.28)

for n ∈ N0. This completes the proof. �

Corollary 2.2. Consider system (1.3). Assume that b, c, d ∈ Z, a = 0, α, β ∈
C \ {0} and z−1, z0, w−1, w0 ∈ C \ {0}. Then the following statements are true.

(a) If b 6= 1 6= d 6= b, then the general solution of system (1.3) is given by (2.4),
(2.5), (2.19) and (2.20).

(b) If b 6= 1 = d, then the general solution of system (1.3) is given by (2.4),
(2.5), (2.21) and (2.22).

(c) If b = 1 6= d, then the general solution of system (1.3) is given by (2.6),
(2.7), (2.23) and (2.24).

(d) If b = d 6= 1, then the general solution of system (1.3) is given by (2.4),
(2.5), (2.25) and (2.26).

(e) If b = d = 1, then the general solution of system (1.3) is given by (2.6),
(2.7), (2.27) and (2.28).

Theorem 2.3. Assume that a, b, d ∈ Z, c = 0, α, β ∈ C\{0} and z−1, z0, w−1, w0 ∈
C \ {0}. Then system (1.3) is solvable in closed form.

Proof. This theorem follows from the proof of Theorem 2.1, since essentially the
same system is obtained in this case. Namely, it is enough to change letter a to c,
letter b to d, letter z to w, and letter α to β, in the system

zn+1 = αwa
nz

b
n−1, wn+1 = βwd

n−1, n ∈ N0,

and it will become system (2.1). �

Theorem 2.4. Assume that a, b, c, d ∈ Z, a 6= 0 6= c, α, β ∈ C \ {0} and z−1, z0,
w−1,w0 ∈ C \ {0}. Then system (1.3) is solvable in closed form.
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Proof. Using the conditions α, β ∈ C \ {0} and z−1, z0, w−1, w0 ∈ C \ {0} into the
equations in (1.3) it is easy to see by using the induction that zn 6= 0 6= wn for
every n ≥ −1. Hence, from the first equation in (1.3) for any such solution we have

wa
n =

zn+1

αzb
n−1

, n ∈ N0. (2.29)

By taking the second equation in (1.3) to the a-th power is obtained

wa
n+1 = βazac

n wad
n−1, n ∈ N0. (2.30)

If we use (2.29) into (2.30) we easily get

zn+2 = α1−dβazac+b+d
n z−bd

n−2, n ∈ N. (2.31)

Let γ := α1−dβa,
x1 = 1, a1 = ac+ b+ d, b1 = −bd. (2.32)

From (2.31) we have that

z2(n+1)+i = γx1za1
2n+iz

b1
2(n−1)+i, n ∈ N, (2.33)

for i = −1, 0.
Using (2.33) with n→ n− 1 into itself, we obtain

z2(n+1)+i = γx1(γza1
2(n−1)+iz

b1
2(n−2)+i)

a1zb1
2(n−1)+i

= γx1+a1za1a1+b1
2(n−1)+iz

b1a1
2(n−2)+i

= γx2za2
2(n−1)+iz

b2
2(n−2)+i,

(2.34)

for n ≥ 2 and i = −1, 0, where

x2 := x1 + a1, a2 := a1a1 + b1, b2 := b1a1. (2.35)

Assume that for a k ≥ 2 have been proved the following equality

z2(n+1)+i = γxkzak

2(n−k+1)+iz
bk

2(n−k)+i, (2.36)

for n ≥ k and i = −1, 0, where

xk := xk−1 + ak−1, ak := a1ak−1 + bk−1, bk := b1ak−1. (2.37)

Then, by using (2.33) with n→ n− k into (2.36), we have

z2(n+1)+i = γxkzak

2(n−k+1)+iz
bk

2(n−k)+i

= γxk(γza1
2(n−k)+iz

b1
2(n−k−1)+i)

akzbk

2(n−k)+i

= γxk+akza1ak+bk

2(n−k)+iz
b1ak

2(n−k−1)+i

= γxk+1z
ak+1

2(n−k)+iz
bk+1

2(n−k−1)+i,

(2.38)

for n ≥ k + 1 and i = −1, 0, where

xk+1 := xk + ak, ak+1 := a1ak + bk, bk+1 := b1ak. (2.39)

From (2.34), (2.35), (2.38), (2.39) and the induction we obtain that (2.36) and
(2.37) hold for all natural numbers k and n such that 2 ≤ k ≤ n. Note that (2.36)
also holds for 1 ≤ k ≤ n.

For k = n, (2.36) becomes

z2(n+1)+i = γxnzan
2+iz

bn
i ,
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for n ∈ N and i = −1, 0, from which along with

z1 = αwa
0z

b
−1, z2 = αwa

1z
b
0 = αβazac+b

0 wad
−1,

it follows that

z2n = γxn−1z
an−1
2 z

bn−1
0

= (α1−dβa)xn−1(αβazac+b
0 wad

−1)an−1z
bn−1
0

= α(1−d)xn−1+an−1βaxn−1+aan−1z
(ac+b)an−1+bn−1
0 w

adan−1
−1 ,

(2.40)

z2n−1 = γxn−1z
an−1
1 z

bn−1
−1

= (α1−dβa)xn−1(αwa
0z

b
−1)an−1z

bn−1
−1

= α(1−d)xn−1+an−1βaxn−1w
aan−1
0 z

ban−1+bn−1
−1 ,

(2.41)

for n ≥ 2. From (2.37) and since x1 = 1, we have that

ak = a1ak−1 + b1ak−2, k ≥ 3, (2.42)

xk = 1 +
k−1∑
j=1

aj , k ∈ N. (2.43)

In what follows we consider three cases separately, that is, b = 0, d = 0 and
bd 6= 0.
Case b = 0. In this case (2.42) is

ak = a1ak−1 = (ac+ d)ak−1, k ∈ N,
from which it follows that

ak = a1(ac+ d)k−1 = (ac+ d)k, k ∈ N, (2.44)

and which along with b1 = 0 and bk = b1ak−1, k ≥ 2, implies that

bk = 0, k ∈ N. (2.45)

From (2.43) and (2.44) we have

xk = 1 +
k−1∑
j=1

(ac+ d)j , k ∈ N,

from which it follows that

xk =
1− (ac+ d)k

1− ac− d
, k ∈ N, (2.46)

if ac+ d 6= 1, while
xk = k, k ∈ N, (2.47)

if ac+ d = 1.
From (2.40), (2.41), (2.44), (2.45) and (2.46), we have that

z2n = α
1−d−ac(ac+d)n−1

1−ac−d βa
1−(ac+d)n

1−ac−d z
ac(ac+d)n−1

0 w
ad(ac+d)n−1

−1 , (2.48)

z2n−1 = α
1−d−ac(ac+d)n−1

1−ac−d βa
1−(ac+d)n−1

1−ac−d w
a(ac+d)n−1

0 , (2.49)

for n ≥ 2, if ac+d 6= 1, while from (2.40), (2.41), (2.44), (2.45) and (2.47), we have

z2n = α(1−d)n+dβanzac
0 wad

−1, (2.50)

z2n−1 = α(1−d)n+dβa(n−1)wa
0 , (2.51)
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for n ≥ 2, if ac+ d = 1.
Case d = 0. In this case (2.42) is

ak = a1ak−1 = (ac+ b)ak−1, k ∈ N,
from which it follows that

ak = a1(ac+ b)k−1 = (ac+ b)k, k ∈ N, (2.52)

and which along with b1 = 0 and bk = b1ak−1, k ≥ 2, implies that (2.45) holds.
From (2.43) and (2.52) we have

xk = 1 +
k−1∑
j=1

(ac+ b)j , k ∈ N,

from which it follows that

xk =
1− (ac+ b)k

1− ac− b
, k ∈ N, (2.53)

if ac+ b 6= 1, while
xk = k, k ∈ N, (2.54)

if ac+ b = 1. From (2.40), (2.41), (2.45), (2.52) and (2.53), we have

z2n = α
1−(ac+b)n

1−ac−b βa
1−(ac+b)n

1−ac−b z
(ac+b)n

0 , (2.55)

z2n−1 = α
1−(ac+b)n

1−ac−b βa
1−(ac+b)n−1

1−ac−b w
a(ac+b)n−1

0 z
b(ac+b)n−1

−1 , (2.56)

for n ≥ 2, if ac+ b 6= 1, while from (2.40), (2.41), (2.45), (2.52) and (2.54), we have

z2n = αnβanz0, (2.57)

z2n−1 = αnβa(n−1)wa
0z

b
−1, (2.58)

for n ∈ N, if ac+ b = 1.
Case b 6= 0 6= d. Let λ1,2 be the roots of the characteristic polynomial

P (λ) = λ2 − (ac+ b+ d)λ+ bd, (2.59)

associate to difference equation (2.42).
Recall that then the general solution to equation (2.42) is

an = c1λ
n
1 + c2λ

n
2 , n ∈ N,

if (ac + b + d)2 6= 4bd, where c1 and c2 are arbitrary constants, while in the case
(ac+ b+ d)2 = 4bd, it has the following form

un = (d1n+ d2)λn
1 , n ∈ N,

where d1 and d2 are arbitrary constants.
By some calculation and using the values for a1 and a2, if (ac + b + d)2 6= 4bd,

we obtain

ak =
λk+1

1 − λk+1
2

λ1 − λ2
, k ∈ N, (2.60)

while if (ac+ b+ d)2 = 4bd, we obtain

ak = (k + 1)λk
1 , k ∈ N. (2.61)

By using (2.60) into the third equation in (2.37) we obtain

bk = −bdak−1 = −bdλ
k
1 − λk

2

λ1 − λ2
, k ≥ 2, (2.62)



EJDE-2016/159 CLOSE TO SYMMETRIC SYSTEM OF DIFFERENCE EQUATIONS 9

if (ac + b + d)2 6= 4bd, while if (ac + b + d)2 = 4bd, by using (2.61) into the third
equation in (2.37) we obtain

bk = −bdak−1 = −bdkλk−1
1 , k ≥ 2. (2.63)

On the other hand, by using (2.60) into (2.43) we obtain

xk = 1 +
k−1∑
j=1

λj+1
1 − λj+1

2

λ1 − λ2
=

(λ2 − 1)λk+1
1 − (λ1 − 1)λk+1

2 + λ1 − λ2

(λ1 − 1)(λ2 − 1)(λ1 − λ2)
, (2.64)

for k ∈ N, if (ac+ b+ d)2 6= 4bd, while if (ac+ b+ d)2 = 4bd, by using (2.61) into
(2.43) we obtain

xk = 1 +
k−1∑
j=1

(j + 1)λj
1 =

1− (k + 1)λk
1 + kλk+1

1

(1− λ1)2
, k ∈ N. (2.65)

From (2.40), (2.41), (2.60), (2.62) and (2.64), we obtain formulas for zn in the case
(ac + b + d)2 6= 4bd, while from (2.40), (2.41), (2.61), (2.63) and (2.65), we obtain
formulas for zn in the case (ac+ b+ d)2 = 4bd.

From the second equation in (1.3) we have

zc
n =

wn+1

βwd
n−1

, n ∈ N0. (2.66)

By taking the first equation in (1.3) to the c-th power is obtained

zc
n+1 = αcwac

n z
bc
n−1, n ∈ N0. (2.67)

Using (2.66) into (2.67) we easily obtain

wn+2 = αcβ1−bwac+b+d
n w−bd

n−2, n ∈ N, (2.68)

which differs from (2.31) only for the coefficient αcβ1−b.
Let δ := αcβ1−b,

y1 = 1, a1 = ac+ b+ d, b1 = −bd. (2.69)

By the above described procedure for z2n+i, n ∈ N0, i = −1, 0, it can be shown
that for any k ∈ N such that 1 ≤ k ≤ n, hold

w2(n+1)+i = δykwak

2(n−k+1)+iw
bk

2(n−k)+i, (2.70)

for n ≥ k and i = −1, 0, where

yk := yk−1 + ak−1, ak := a1ak−1 + bk−1, bk = b1ak−1. (2.71)

For k = n, (2.70) becomes

w2(n+1)+i = δynwan
2+iw

bn
i ,

for n ∈ N and i = −1, 0, from which along with

w1 = βzc
0w

d
−1, w2 = βzc

1w
d
0 = αcβwac+d

0 zbc
−1,

it follows that

w2n = δyn−1w
an−1
2 w

bn−1
0 = (αcβ1−b)yn−1(αcβwac+d

0 zbc
−1)an−1w

bn−1
0

= αcyn−1+can−1β(1−b)yn−1+an−1z
bcan−1
−1 w

(ac+d)an−1+bn−1
0 ,

(2.72)

w2n−1 = δyn−1w
an−1
1 w

bn−1
−1 = (αcβ1−b)yn−1(βzc

0w
d
−1)an−1w

bn−1
−1

= αcyn−1β(1−b)yn−1+an−1w
dan−1+bn−1
−1 z

can−1
0 ,

(2.73)
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for n ≥ 2. From (2.71) and the fact that y1 = 1, we see that the sequence (ak)k∈N
satisfies recurrent relation (2.42), while

yk = 1 +
k−1∑
j=1

aj , k ∈ N, (2.74)

which means that
yk = xk, k ∈ N. (2.75)

Now we consider three cases separately, that is, b = 0, d = 0 and bd 6= 0.
Case b = 0. From the above consideration it is clear that for ak holds formula
(2.44), for bk formula (2.45), while for yk, we have

yk =
1− (ac+ d)k

1− ac− d
, k ∈ N, (2.76)

if ac+ d 6= 1, while
yk = k, k ∈ N, (2.77)

if ac+ d = 1.
From (2.44), (2.45), (2.72), (2.73) and (2.76), we have that

w2n = αc
1−(ac+d)n

1−ac−d β
1−(ac+d)n

1−ac−d w
(ac+d)n

0 , (2.78)

w2n−1 = αc
1−(ac+d)n−1

1−ac−d β
1−(ac+d)n

1−ac−d w
d(ac+d)n−1

−1 z
c(ac+d)n−1

0 , (2.79)

for n ≥ 2, if ac+d 6= 1, while from (2.44), (2.45), (2.72), (2.73) and (2.77), we have
that

w2n = αcnβnw0, (2.80)

w2n−1 = αc(n−1)βnwd
−1z

c
0, (2.81)

for n ∈ N, if ac+ d = 1.
Case d = 0. From the above consideration it is clear that for ak holds formula
(2.52), for bk formula (2.45), while for yk, we have

yk =
1− (ac+ b)k

1− ac− b
, k ∈ N, (2.82)

if ac+ b 6= 1, while
yk = k, k ∈ N, (2.83)

if ac+ b = 1.
From (2.45), (2.52), (2.72), (2.73) and (2.82), we have that

w2n = αc
1−(ac+b)n

1−ac−b β
1−b−ac(ac+b)n−1

1−ac−b z
bc(ac+b)n−1

−1 w
ac(ac+b)n−1

0 , (2.84)

w2n−1 = αc
1−(ac+b)n−1

1−ac−b β
1−b−ac(ac+b)n−1

1−ac−b z
c(ac+b)n−1

0 , (2.85)

for n ≥ 2, if ac+ b 6= 1, while from (2.45), (2.52), (2.72), (2.73) and (2.83), we have
that

w2n = αcnβ(1−b)n+bzbc
−1w

ac
0 , (2.86)

w2n−1 = αc(n−1)β(1−b)n+bzc
0, (2.87)

for n ∈ N, if ac+ b = 1.
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Case b 6= 0 6= d. Let λ1,2 be the roots of characteristic polynomial (2.59) associated
to difference equation (2.42). From the above consideration we see that formulas
(2.60)-(2.63) hold and that

yk = 1 +
k−1∑
j=1

λj+1
1 − λj+1

2

λ1 − λ2
=

(λ2 − 1)λk+1
1 − (λ1 − 1)λk+1

2 + λ1 − λ2

(λ1 − 1)(λ2 − 1)(λ1 − λ2)
, (2.88)

for k ∈ N, if (ac+ b+ d)2 6= 4bd, while if (ac+ b+ d)2 = 4bd, then we have that the
following formula holds

yk = 1 +
k−1∑
j=1

(j + 1)λj
1 =

1− (k + 1)λk
1 + kλk+1

1

(1− λ1)2
, k ∈ N. (2.89)

Using formulas (2.60)-(2.63), (2.88) and (2.89) into (2.72) and (2.73) are obtained
closed form formulas for sequence wn in this case, finishing the proof. �

From the proof of Theorem 2.4 we obtain the following corollary.

Corollary 2.5. Consider system (1.3) with a, b, c, d ∈ Z, ac 6= 0. Assume that
z−1, z0, w−1, w0 ∈ C \ {0}. Then the following statements are true.

(a) If b = 0, ac + d 6= 1, then the general solution of system (1.3) is given by
(2.48), (2.49), (2.78) and (2.79).

(b) If b = 0, ac + d = 1, then the general solution of system (1.3) is given by
(2.50), (2.51), (2.80) and (2.81).

(c) If d = 0, ac + b 6= 1, then the general solution of system (1.3) is given by
(2.55), (2.56), (2.84) and (2.85).

(d) If d = 0, ac + b = 1, then the general solution of system (1.3) is given by
(2.57), (2.58), (2.86) and (2.87).

(e) If bd 6= 0 and (ac+ b+ d)2 6= 4bd, then the general solution of system (1.3)
is given by

z2n = αxn−dxn−1βaxnz
(ac+b)an−1−bdan−2
0 w

adan−1
−1 , (2.90)

z2n−1 = αxn−dxn−1βaxn−1w
aan−1
0 z

ban−1−bdan−2
−1 , (2.91)

w2n = αcxnβxn−bxn−1z
bcan−1
−1 w

(ac+d)an−1−bdan−2
0 , (2.92)

w2n−1 = αcxn−1βxn−bxn−1w
dan−1−bdan−2
−1 z

can−1
0 , (2.93)

where (an)n∈N and (xn)n∈N are given by (2.60) and (2.64) respectively.
(f) If bd 6= 0 and (ac+ b+ d)2 = 4bd, then the general solution of system (1.3)

is given by formulas (2.90)-(2.93), where (an)n∈N and (xn)n∈N are given by
(2.61) and (2.65) respectively.

Proof. Statements (a)–(d) follow directly from the proof of Theorem 2.4.
(e), (f): By using (2.37) and (2.75) in (2.40), (2.41), (2.72) and (2.73), and some

calculation formulas (2.90)-(2.93) follow. �

Remark 2.6. A relatively long and tedious calculation shows that formulas (2.90)-
(2.93) really present general solution to system (1.3) in the “main” case, that is,
abcd 6= 0. The authors have verified this, but since such calculations are tradition-
ally not quite suitable for publication we omit the calculation and left it to the
reader as an exercise.
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Remark 2.7. Bearing in mind that sequence an is defined for n ∈ N, one may
think that formulas (2.90)-(2.93) hold only for n ≥ 3. However, since b1 = bd 6= 0,
by using recurrent relation (2.42) we see that sequence an can be prolonged for
n ∈ Z. Indeed, for k = 2 equation (2.42) becomes a2 = a1a1 + b1a0, from which it
follows that a0 = (a2−a1a1)/b1 = 1. In general, if an−1 and an are defined for some
n ∈ Z, then an−2 can be calculated/defined by using the following consequence of
(2.42)

an−2 :=
1
b1

(an − a1an−1). (2.94)

By using (2.94) for n = 1 is obtained a−1 = 0, from which along with (2.94) for
n = 0 is obtained a−2 = −1/(bd). Consequently, xn can be calculated/defined also
for every n ∈ Z, by using the relation xn−1 = xn − an−1. For n = 1 is obtained
x0 = 0. Using this “prolongation” it is easy to verify that (2.90)-(2.93) hold for
every n ∈ N.
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