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SOLVABILITY OF BOUNDARY-VALUE PROBLEMS FOR
POISSON EQUATIONS WITH HADAMARD TYPE

BOUNDARY OPERATOR

BATIRKHAN TURMETOV, MAIRA KOSHANOVA, KAYRAT USMANOV

Abstract. In this article we study properties of some integro-differential oper-

ators of fractional order. As an application of the properties of these operators

for Poisson equation we examine questions on solvability of a fractional ana-
logue of Neumann problem and analogues of periodic boundary-value problems

for circular domains. The exact conditions for solvability of these problems

are found.

1. Introduction

Let Q be a bounded domain from Rn with a smooth boundary S. It is known
that classical problems for the Poisson equation.

∆u(x) = f(x), x ∈ Q, (1.1)

are Dirichlet and Neumann problems. Let ν be a normal vector to S, and Dν = d
dν

be an operator of differentiation along the normal, D0
ν = I be a unit vector. Then

Dirichlet and Neumann boundary conditions can be given in the form

Dα
ν u(x) = gα(x), x ∈ S, (1.2)

where α = 0 or α = 1, D0
νu(x) = u(x). It is known that the Dirichlet problem is

unconditionally solvable, and for solvability of the Neumann condition the following
condition is necessary [7]: ∫

Q

f(x)dx =
∫
S

g1(x)dx. (1.3)

In this article, we introduce fractional analogues of the boundary operators Dα
ν ,

and for the equation (1.1) we study the boundary-value problem with the boundary
condition (1.2) for all values of the parameter α ∈ (0,∞). Moreover, we investi-
gate solvability of some analogues of periodic boundary-value problems for circular
domains.

The structure of this paper is as follows. In Introduction we provide an overview
of some papers published on the subject. Further, we give concepts of Hadamard
type integral-differential operators of fractional order. In the second section we
study properties of integral-differential operators of fractional order in the class
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of smooth functions. Properties of these operators in Hölder class are studied.
Propositions about reversibility of the operators are proved. In the third section
we present some auxiliary statements related to the properties of solutions of the
Dirichlet problem for the Poisson equation. In the fourth and fifth sections we
consider applications of these integral - differential operators of fractional order to
examine questions on solvability of some boundary-value problems with boundary
operators of fractional order. In the fourth section we study questions about solv-
ability of a fractional analogue of the Neumann problem. The problem is solved
by reducing it to an equivalent Dirichlet problem with the additional condition at
the point x = 0. In the fifth section we also study analogues of periodic problems
for circular domains. The problem is reduced to two auxiliary problems: Dirichlet
problem and an analogue of Neumann problem.

Note that the local and nonlocal boundary-value problems with boundary op-
erators of fractional order for the second order elliptic equations were studied in
[4, 9, 10, 12, 13, 14, 15, 16, 20, 21, 22, 24, 25, 26] and for higher-order equations in
[3, 5, 6, 23]. As the boundary operators in [9, 10, 12, 13, 14, 15, 20, 21, 22, 24, 25, 26]
operators with Riemann-Liouville and Caputo type derivatives, and in [3, 4, 16] the
Hadamard - Marchaud type operators were considered. We also note that applica-
tions of boundary-value problems for elliptic equations with boundary operators of
fractional order have been considered in [1, 2, 27]. Now let us turn to the definitions
of integration and differentiation operator of fractional order.

Let Ω = {x ∈ Rn : |x| < 1} be a unit ball, n ≥ 2, ∂Ω = {x ∈ Rn : |x| = 1} -
unit sphere. Suppose further that, u(x) is a smooth function in the domain Ω,
r = |x|, θ = x/r, δ = r ddr - Dirac operator, where

r
d

dr
=

n∑
j=1

xj
∂

∂xj
, α > 0.

Further, let 0 < α <∞. The expression

Jα[u](x) =
1

Γ(α)

∫ r

0

(
ln
r

s

)α−1
u(sθ)

ds

s

is called integration operator of the α order in the Hadamard sense (see e.g. [11]).
Furthermore, we assume that J0[u](x) = u(x).

Note that, if u(0) 6= 0, then in the class of continuous functions the operator
Jα is not defined, since the integral

∫ 1

0
(ln 1

s )α−1
s−1ds diverges. Therefore, as the

differentiation operator we consider the Hadamard - Caputo type operator. Namely,
differentiation operator of the α > 0 order is the expression:

Dα[u](x) =
1

Γ(`− α)

∫ r

0

(ln
r

s
)
`−1−α

(s
d

ds
)
`

u(sθ)
ds

s
, `− 1 < α ≤ `, ` ≥ 1.

2. Properties of Jα and Dα operators

In this section we study properties of Jα and Dα operators. Further, by the
symbol C we denote the constant whose value can be different.

Lemma 2.1. Let α > 0, 0 < λ < 1 and u(x) ∈ Cλ+p(Ω), p ≥ 0. If the condition
u(0) = 0 holds, then Jα[u](x) ∈ Cλ+p(Ω) and Jα[u](0) = 0.
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Proof. If u(0) = 0, then

|Jα[u](x)| ≤ 1
Γ(α)

∫ 1

0

(ln
1
s

)
α−1 |u(sθ)|

s
≤ C

Γ(α)

∫ 1

0

(ln
1
s

)
α−1

sλ−1ds.

Since the last integral converges, the function Jα[u](x) is defined in the domain Ω.
Let x(1), x(2) be arbitrary points of the domain Ω. Denote h(x) = Jα[u](x). Then

|h(x(1))− h(x(2))| ≤ 1
Γ(α)

∫ 1

0

(ln
1
s

)sµ−1|u(sx(1))− u(sx(2))|ds

≤ C|x(1) − x(2)|λ

Γ(α)

∫ 1

0

(ln
1
s

)
α−1

sµ+λ−1ds

≤ C|x(1) − x(2)|λ,

i.e. h(x) ∈ Cλ(Ω). Further, if β = (β1, β2, . . . βn) is a multi-index and ∂βx =
∂|β|

∂x
β1
1 ···∂x

βn
n

, then for all β with length |β| ≤ p and x(1), x(2) ∈ Ω we have

|∂βxh(x(1))− ∂βxh(x(2))| ≤ 1
Γ(α)

∫ 1

0

(ln
1
s

)
α−1

sµ+|β|−1|∂βxu(y1)− ∂βxh(y2)|ds

≤ C|x(1) − x(2)|λ,

where y = sx = (sx1, sx2, . . . sxn), and, consequently Jα[u](x) ∈ Cλ+p(Ω). Lastly,

lim
x→0

|Jα0 [u](x)| ≤ C lim
x→0
|x|λ = 0.

Then Jα0 [u](0) = 0. �

Similarly we can prove the following statement.

Lemma 2.2. Let `−1 < α ≤ `, ` = 1, 2, . . ., 0 < λ < 1 and u(x) ∈ Cλ+p(Ω̄), p ≥ `.
Then Dα[u](x) ∈ Cλ+p−`(Ω̄) and the equality Dα[u](0) = 0. holds.

Lemma 2.3. Let ` − 1 < α ≤ `, ` = 1, 2, . . ., 0 < λ < 1 and u(x) ∈ Cλ+p(Ω̄),
p ≥ `, p = 1, 2, . . . . Then for any x ∈ Ω̄:

Jα[Dα[u]](x) = u(x)− u(0), (2.1)

and if u(0) = 0, then we obtain

Dα[Jα[u]](x) = u(x). (2.2)

Proof. If u(x) ∈ Cλ+p(Ω̄), p ≥ `, then by Lemma 2.2 we obtain Dα[u](x) ∈
Cλ+p−`(Ω̄) and Dα[u](0) = 0. Let us prove equality (2.1) for the case α = ` -
integer. Since Dα[u](0) = 0, then in the class of these functions the operator Jα is
defined, and in this case:

J`[D`[u]](x) =
1

(`− 1)!

∫ r

0

s−1(ln
r

s
)
`−1

(s
d

ds
)
`

u(sθ)ds.

Integrating by parts the last integral `− 1 times, we obtain

J`[D`[u]](x) =
∫ r

0

d

ds
[u(sθ)]ds = u(sθ)|s=rs=0 = u(x)− u(0).

Let now `− 1 < α < `, ` = 1, 2, . . .. Then

Jα[Dα[u]](x) = Jα[J`−α[δ`[u]]](x).
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Further, since Jα · J`−α = J` (see e.g. [11], page 114), it follows that

Jα[Dα[u]](x) = J`[δ`[u]](x) = u(x)− u(0).

The equality (2.1) is proved. Let us turn to the proof of the equality (2.2). If α = `,
then

D`[J`[u]](x) = δ`
{ 1

(`− 1)!

∫ r

0

s−1(ln
r

s
)
`−1

u(sθ)ds
}

= δ`−1
{ 1

(`− 2)!

∫ r

0

s−1(ln
r

s
)
`−2

u(sθ)ds
}

= r
d

dr
{
∫ r

0

s−1u(sθ)ds} = u(x).

Further, in the case ` − 1 < α < `, ` = 1, 2, . . . by the definitions of Dα and Jα

operators, we obtain

Dα[Jα[u]](x) =
1

Γ(`− α)

∫ r

0

1
`− α

(ln
r

s
)
`−α−1

δ`[Jα[u]](sx)
ds

s

=
1

Γ(`− α)
r
d

dr

∫ r

0

1
`− α

(ln
r

s
)
`−α d

ds
[δ`−1[Jα[u]]]ds

=
1

Γ(`− α)
r
d

dr

∫ r

0

(ln
r

s
)
`−1−α

δ`−1[Jα[u]]
ds

s
.

Performing this operation again (`− 1) times, we have

Dα[Jα[u]](x) = δ`[J`−αJα[u]](x) = δ`[J`[u]](x) = u(x).

�

Lemma 2.4. Let `− 1 < α ≤ `, ` = 1, 2, . . ., 0 < λ < 1, f(x) be a smooth function
in the domain Ω̄ and ∆u(x) = f(x), x ∈ Ω. Then

∆Dα[u](x) = |x|−2Dα[|x|2f ](x), x ∈ Ω. (2.3)

Proof. We represent the function Dα[u](x) in the following form:

Dα[u](x) =
1

Γ(`− α)

∫ 1

0

(ln
1
ξ

)
`−1−α

(ξ
d

dξ
)
`

[u(ξx)]
dξ

ξ
.

Further, since

∆(ξ
d

dξ
)`[u](ξx) = ξ2(ξ

d

dξ
+ 2)`f(ξx) = ξ2(δ + 2)`[f ](ξx),

it follows that

∆Dα[u](x) =
1

Γ(`− α)

∫ 1

0

(ln
1
ξ

)
`−1−α

ξ2(δ + 2)`[f ](ξx)
dξ

ξ

= r−2J`−α[δ`[r2f ]](x)

= r−2Dα[r2f ](x).

�

Remark 2.5. It is easy to prove that for the function F (x) = |x|−2Dα[|x|2f ](x)
the following representation holds:

F (x) =
(
r
d

dr
+ 2
)
f`−α(x), (2.4)
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where
f`−α(x) = r−2J`−α[r2δ`−1[f ]](x). (2.5)

3. A property of the Dirichlet problem solution

In the domain Ω we consider the Dirichlet problem

∆v(x) = F (x), x ∈ Ω,

v(x) = g(x), x ∈ ∂Ω.
(3.1)

It is known [8] that if 0 < λ < 1, F (x) ∈ Cλ+p(Ω), g(x) ∈ Cλ+p+2(∂Ω), p ≥ 1,
then a solution of the problem exists, is unique, belongs to the class Cλ+2 and can
be represented in the form:

v(x) = − 1
ωn

∫
Ω

G(x, y)F (y)dy +
1
ωn

∫
∂Ω

1− |x|2

|x− y|n
g(y)dsy, (3.2)

where ωn is a square of the unit sphere, G(x, y) is the Green function of the problem
(3.1). Moreover, G(x, y) is represented in the form [7]:

G(x, y) =

{
1

n−2 [|x− y|2−n − |x|y| − y
|y| |

2−n], n ≥ 3

ln 1
|x−y| , n = 2.

Let ρ = |y|.

Lemma 3.1. Let F (y), g(y) be smooth enough functions and F (y) be represented
in the form F (y) = (ρ ∂

∂ρ + 2)f1(y), v(x) be a solution of the problem (3.1). Then
the condition v(0) = 0 holds if and only if∫

Ω

f1(y)dy =
∫
∂Ω

g(y)dsy. (3.3)

Proof. Since F (y) and g(y) are smooth enough functions, then solution of the prob-
lem (3.1) exists and can be represented as (3.2). Then in the case n ≥ 3 we have

v(0) = − 1
ωn

∫
Ω

1
n− 2

[|y|2−n − 1]F (y)dy +
1
ωn

∫
∂Ω

g(y)dy. (3.4)

We consider the following two integrals:

I1(ρ, ξ) =
∫ 1

0

ρn−1[ρ2−n − 1]ρ
∂

∂ρ
f1(ρ, ξ)dρ,

I2(ρ, ξ) = 2
∫ 1

0

ρn−1[ρ2−n − 1]f1(ρ, ξ)dρ.

Integrating I1 by parts, we obtain

I1(ρ, ξ) =
∫ 1

0

[ρ2 − ρn]
∂

∂ρ
f1(ρ, ξ)dρ

= −
∫ 1

0

[2ρ− nρn−1]f1(ρ, ξ)dρ

=
∫ 1

0

ρn−1[n− 2ρ2−n]f1(ρ, ξ)dρ.
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Since F (y) has the form (ρ ∂
∂ρ + 2)f1(y), moving to spherical coordinates for the

first integral in the right-hand side of (3.4), we have

− 1
ωn

∫
Ω

1
n− 2

[|y|2−n − 1](ρ
∂

∂ρ
+ 2)f1(y)dy

= − 1
(n− 2)ωn

∫
|ξ|=1

∫ 1

0

ρn−1[ρ2−n − 1](ρ
∂

∂ρ
+ 2)f1(ρ, ξ)dρdξ

= − 1
(n− 2)ωn

∫
|ξ|=1

[I1(ρ, ξ) + I2(ρ, ξ)]dξ

= − 1
ωn

∫
|ξ|=1

∫ 1

0

ρn−1f1(ρ, ξ)dρdξ = − 1
ωn

∫
Ω

f1(y)dy.

Consequently, if v(0) = 0, then the equality (3.3) holds. Hence, necessity of the
condition (3.3) is proved. Sufficiency is proved in reverse order. �

4. Neumann type problem

In this section we consider a fractional analogue of the Neumann problem with
the boundary operator Dα.

Problem 4.1. Let 0 < α. Find a function u(x) ∈ C2(Ω) ∩ C(Ω) such that
Dα[u](x) ∈ C(Ω), and satisfying the equation

∆u(x) = f(x), x ∈ Ω, (4.1)

and the boundary value condition

Dα[u](x) = g(x), x ∈ ∂Ω. (4.2)

Since J0 = I , when α = 1 we have

D1u(x)
∣∣
∂Ω

= J0[δ[u]](x)
∣∣
∂Ω

= r
du(x)
dr

∣∣
∂Ω

=
∂u(x)
∂ν

∣∣
∂Ω
.

Therefore, when α = 1 the problem (4.1) - (4.2) coincides with the classical Neu-
mann problem.

Theorem 4.2. Let ` − 1 < α ≤ `, ` = 1, 2, . . . , 0 < λ < 1, f(x) ∈ Cλ+2`−1(Ω),
g(x) ∈ Cλ+`+1(∂Ω). Then for solvability of the problem 4.1 it is necessary and
sufficient the condition ∫

Ω

f`−α(y)dy =
∫
∂Ω

g(y)dy. (4.3)

where the function f`−α(x) is defined by the equality (2.5).
If a solution of the problem exists, then it is unique up to a constant term, belongs

to the class Cλ+`+1(Ω) and can be represented in the form

u(x) = C + Jα[v](x), (4.4)

where v(x) is a solution of problem (3.1) with the function F (x) = r−2Dα[r2f ](x)
and satisfies the condition v(0) = 0.

Proof. Let u(x) be a solution of problem 4.1. Apply the operator Dα to the func-
tion u(x), and denote v(x) = Dα[u](x). Find conditions, which the function v(x)
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satisfies. It is obvious that v(x)|∂Ω = Dα[u](x)|∂Ω = g(x). Applying the operator
∆ to the equality v(x) = Dα[u](x), due to (2.3), we obtain

∆v(x) = r−2Dα[r2f ](x).

Therefore, if u(x) is a solution of the problem 4.1, then v(x) = Dα[u](x) will be
a solution of (3.1) with the function F (x) = r−2Dα[r2f ]. Moreover, according
to Lemma 2.2, the function v(x) satisfies the condition v(0) = 0. By (2.4), the
function F (x) can be represented in the form

F (x) =
(
r
d

dr
+ 2
)
f`−α(x),

where f`−α(x) is defined by the equality (2.5). Then, by Lemma 3.1 for the equality
v(0) = 0 the following condition is necessary:∫

Ω

f`−α(y)dy =
∫
∂Ω

g(y)dSy.

Therefore, necessity of the condition (4.3) is proved. Applying the operator Jα to
the equality v(x) = Dα[u](x), because of (2.1), we obtain

u(x)− u(0) = Jα[v](x).

Hence, if a solution of the problem 4.1 exists, then it can be represented as (4.4).
We show that the condition (4.3) is sufficient for the existence of any solution of
the problem 4.1.

Indeed, let v(x) be a solution of the problem (3.1) with F (x) = r−2Dα[r2f ](x).
If f(x) ∈ Cλ+2`−1(Ω), then F (x) ∈ Cλ+`−1(Ω), and since g(x) ∈ Cλ+`+1(∂Ω), a
solution of (3.1) exists, is unique and belongs to the class Cλ+p+1(Ω̄) (see e.g. [8]).
We represent the function F (x) = |x|−2Dα[|x|2f ](x) as F (x) = (r ddr + 2)f`−α(x).
If for the function f`−α(x) the condition (4.3) holds, then corresponding solution
of the problem (3.1) satisfies the condition v(0) = 0. Then we should to consider
the function u(x) = C + Jα[v](x), which satisfies all conditions of problem 4.1. By
Lemma 2.1 this function belongs to the class Cλ+p+1(Ω̄). Further, using (2.2), we
obtain

Dα[u](x)|∂Ω = Dα[C] +Dα[Jα[v]](x)|∂Ω = v(x)|∂Ω = g(x).

Moreover,

∆u(x) = ∆
[ 1

Γ(1− α)

∫ r

0

(ln
r

s
)
1−α

v(sθ)
ds

s

]
= ∆

[ 1
Γ(1− α)

∫ 1

0

(ln
1
ξ

)
1−α

v(ξx)
dξ

ξ

]
=

1
Γ(1− α)

∫ 1

0

(ln
1
ξ

)
1−α

ξ2F (ξx)
dξ

ξ

=
1

Γ(1− α)

∫ 1

0

(ln
1
ξ

)
1−α

ξ2|ξx|−2Dα[|ξx|2f(ξx)]
dξ

ξ

=
|x|−2

Γ(1− α)

∫ r

0

(ln
r

s
)
1−α

Dα[s2f(sθ)]
ds

s

= r−2Jα[Dα[r2f ]](x) = r−2 · r2f(x) = f(x).

Thus, the function u(x) = C + Jα[v](x) satisfies all conditions of problem 4.1. �
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Remark 4.3. If α = 1, then f1(x) = r−2J0[r2f ](x) = f(x) and (4.3) coincides
with the condition of solvability of the Neumann problem (1.3).

5. Boundary-value problems with periodic conditions

In this section we study some analogues of periodic problems in Ω. Let x =
(x1, x̃) ∈ Ω, x̃ = (x2, . . . , xn) For any x = (x1, x̃) ∈ Ω we put “opposite” point
x∗ = (−x1, ax̃) ∈ Ω, where a = (a2, a3, . . . , an) and aj , j = 2, . . . , n take one of the
values ±1. Denote

∂Ω+ = {x ∈ ∂Ω : x1 ≥ 0}, ∂Ω− = {x ∈ ∂Ω : x1 ≤ 0}, I = {x ∈ ∂Ω : x1 = 0}.

Let 0 < α ≤ 1. Consider in Ω the following problem:

Problem 5.1. Find a function u(x) ∈ C2(Ω) ∩ C(Ω̄), such that Dα[u](x) ∈ C(Ω̄)
and

∆u(x) = f(x), x ∈ Ω, (5.1)

u(x)− (−1)ku(x∗) = g0(x), x ∈ ∂Ω+, (5.2)

Dα[u](x) + (−1)kDα[u](x∗) = g1(x), x ∈ ∂Ω+, (5.3)

where k = 1, 2.

The problem (5.1)–(5.3) in the case α = 1 have been studied in [17],[18] and in
the case 0 < α < 1 for the Riemann - Liouville and Caputo operators in [19].

If x = (0, x̃) ∈ I, then x∗ = (0, αx̃) ∈ I, therefore, a necessary condition for
existence of a solution from the class u(x) ∈ C2(Ω)∩C(Ω̄), Dα[u](x) ∈ C(Ω̄) is the
fulfillment of the conditions

g0(0, x̃) = −(−1)kg0(0, ax̃), (5.4)

∂g0(0, x̃)
∂xj

= −(−1)k
∂g0(0, ax̃)

∂xj
, j = 1, . . . , n, (0, x̃) ∈ I, (5.5)

g1(0, x̃) = (−1)kg1(0, ax̃), (0, x̃) ∈ I. (5.6)

Theorem 5.2. Let 0 < λ < 1, f(x) ∈ Cλ+1(Ω̄), g0(x) ∈ Cλ+2(∂Ω+), g1(x) ∈
Cλ+2(∂Ω+) and the matching conditions (5.4),(5.6) hold. Then

(1) if k = 1, then a solution of the problem (5.1)–(5.3) exists, is unique and
belongs to the class Cλ+2(Ω̄);

(2) if k = 2 , then for solvability of the problem (5.1) - (5.3) the following
condition is necessary and sufficient:∫

Ω

f1−α(y)dy =
∫
∂Ω+

g1(y)dSy. (5.7)

If a solution exists, then it is unique up to a constant term, and belongs to the class
Cλ+2(Ω̄).

Proof. First we prove uniqueness. Let u(x) be a solution of the homogenous prob-
lem (5.1) - (5.3). Putting the function u(x) into the boundary value conditions of
the problem (5.1)–(5.3), we have

u(x) = (−1)ku(x∗), x ∈ ∂Ω+, (5.8)

Dα[u](x) = −(−1)kDα[u](x∗), x ∈ ∂Ω+. (5.9)
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If x ∈ ∂Ω−, then x∗ ∈ ∂Ω+. Then the condition (5.8) implies u(x∗) = (−1)ku(x),
x ∈ ∂Ω−, and (5.9) yields Dα[u](x∗) = −(−1)kDα[u](x), x ∈ ∂Ω− Consequently,
the equalities (5.8) and (5.9) hold for all points x ∈ ∂Ω, i.e.

u(x) = (−1)ku(x∗), Dα[u](x) = −(−1)kDα[u](x∗), x ∈ ∂Ω.

Since Dα[u](x) ∈ C(Ω̄), then from the equality u(x) = (−1)ku(x∗), x ∈ ∂Ω it fol-
lows: Dαu(x) = (−1)kDαu(x∗), x ∈ ∂Ω. Consequently, Dαu(x) = 0, x ∈ ∂Ω, i.e.
solution of the homogeneous problem (5.1) - (5.3) is also solution of the homo-
geneous Problem 4.1. Then by Theorem 4.2: u(x) ≡ C, x ∈ Ω̄. Hence, putting
u(x) ≡ C into (5.8), when k = 1 we have u(x) ≡ 0. Therefore, solution of the
problem (5.1)–(5.3) when k = 1 is unique, and when k = 2 it is unique up to a con-
stant term. Uniqueness is proved. Now let us turn to study existence of a solution.
Consider the auxiliary functions

v(x) =
1
2

(u(x) + u(x∗)), w(x) =
1
2

(u(x)− u(x∗)).

It is obvious that u(x) = v(x) + w(x). Moreover, v(x) = v(x∗), w(x) = −w(x∗).
We find problems, which these functions satisfy. Let k = 1. Applying the

operator ∆ to the functions v(x) and w(x), we have

∆v(x) =
1
2

[∆u(x) + ∆u(x∗)] =
1
2

[f(x) + f(x∗)] ≡ f+(x), x ∈ Ω,

∆w(x) =
1
2

[∆u(x)−∆u(x∗)] =
1
2

[f(x)− f(x∗)] ≡ f−(x), x ∈ Ω.

Further, from the boundary value conditions (5.2) and (5.3) we obtain

v(x)
∣∣
∂Ω+

=
1
2

[u(x) + u(x∗)]
∣∣
∂Ω+

=
g0(x)

2
,

Dαw(x)
∣∣
∂Ω

=
1
2

[Dαu(x)−Dαu(x∗)]
∣∣
∂Ω+

=
g1(x)

2
.

If x ∈ ∂Ω−, then x∗ ∈ ∂Ω+, so the following equalities hold:

v(x)
∣∣
∂Ω−

=
1
2

[u(x∗) + u(x)]
∣∣
∂Ω+

=
g0(x∗)

2
,

Dαw(x)
∣∣
∂Ω

= −1
2

[Dαu(x∗)−Dαu(x)]
∣∣
∂Ω+

= −g1(x∗)
2

.

We introduce the functions

2g̃0(x) =

{
g0(x), x ∈ ∂Ω+

g0(x∗), x ∈ ∂Ω−
, 2g̃1(x) =

{
g1(x), x ∈ ∂Ω+

−g1(x∗), x ∈ ∂Ω−
.

Therefore, functions v(x) and w(x) are solutions of the two problems:

∆v(x) = f+(x), x ∈ Ω; v(x)|∂Ω = g̃0(x), (5.10)

∆w(x) = f−(x), x ∈ Ω; Dαw(x)|∂Ω = g̃1(x). (5.11)

If for the functions f(x), g0(x) and g1(x) the conditions of the theorem hold,
then f±(x) ∈ Cλ+1(Ω̄), g̃0(x) ∈ Cλ+2(∂Ω), g̃1(x) ∈ Cλ+2(∂Ω). Then a solution
of the Dirichlet problem (5.10) exists, is unique, belongs to the class Cλ+2(Ω̄). By
Theorem 4.2, for solvability of the problem (5.11) it is necessary and sufficient the
following condition: ∫

Ω

f−1−α(y)dy =
∫
∂Ω

g̃1(y)dy, (5.12)
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where f−1−α(y) = r−2J1−α[r2f−](x).
Since ∫

Ω

f−1−α(y)dy =
1
2

∫
Ω

f−1−α(y)dy − 1
2

∫
Ω

f−1−α(y∗)dy = 0,∫
∂Ω

g̃1(y)dSy =
1
2

∫
∂Ω

g1(y)dSy −
1
2

∫
∂Ω

g1(y∗)dSy = 0,

it follows that the condition for solvability of (5.12) always holds, and therefore, in
this case f−(x) ∈ Cλ+1(Ω̄), g̃1(x) ∈ Cλ+2(∂Ω) a solution of problem (5.11) exists
and belongs to the class Cλ+1(Ω̄). Note that a solution of the problem (5.11) is
unique up to a constant term C. Since the function w(x) should have the property
w(x) = −w(x∗), we obtain C ≡ 0. Therefore, the existence of a solution of problem
(5.1)–(5.3) for the case k = 1 is proved.

Let k = 2. In this case for auxiliary functions v(x) and w(x) we obtain the
following problems:

∆w(x) = f−(x), x ∈ Ω; w(x)|∂Ω = g̃0(x), (5.13)

∆v(x) = f+(x), x ∈ Ω; Dαv(x)|∂Ω = g̃1(x). (5.14)

Here

2g̃0(x) =

{
g0(x), x ∈ ∂Ω+

−g0(x∗), x ∈ ∂Ω−
, 2g̃1(x) =

{
g1(x), x ∈ ∂Ω+

g1(x∗), x ∈ ∂Ω−.

When the conditions of the theorem hold, a solution of problem (5.13) exists, it is
unique and belongs to the class Cλ+1(Ω̄). And for solvability of the problem (5.14)
it is necessary and sufficient the condition∫

Ω

f+
1−α(y)dy =

∫
∂Ω

g̃1(y)dSy. (5.15)

Since ∫
Ω

f+
1−α(y)dy =

1
2

∫
Ω

f1−α(y)dy +
1
2

∫
Ω

f1−α(y∗)dy =
∫

Ω

f1−α(y)dy,∫
∂Ω

g̃1(y)dSy =
1
2

∫
∂Ω+

g1(y)dSy +
1
2

∫
∂Ω−

g1(y∗)dSy =
∫
∂Ω+

g1(y)dSy,

it follows that (5.15) can be rewritten as (5.7). Under this condition, a solution
of problem (5.14) exists, is unique up to a constant term, and belongs to the class
Cλ+1(Ω̄). �

Remark 5.3. When α = 1 the propositions in Theorems 4.2 and 5.2 coincide with
the results in [17, 18].
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