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FAMILY OF QUADRATIC DIFFERENTIAL SYSTEMS WITH
INVARIANT HYPERBOLAS: A COMPLETE CLASSIFICATION

IN THE SPACE R12

REGILENE D. S. OLIVEIRA, ALEX C. REZENDE, NICOLAE VULPE

Abstract. In this article we consider the class QS of all non-degenerate qua-

dratic systems. A quadratic polynomial differential system can be identified

with a single point of R12 through its coefficients. In this paper using the
algebraic invariant theory we provided necessary and sufficient conditions for

a system in QS to have at least one invariant hyperbola in terms of its coef-

ficients. We also considered the number and multiplicity of such hyperbolas.
We give here the global bifurcation diagram of the class QS of systems with

invariant hyperbolas. The bifurcation diagram is done in the 12-dimensional

space of parameters and it is expressed in terms of polynomial invariants. The
results can therefore be applied for any family of quadratic systems in this

class, given in any normal form.

1. Introduction and statement of main results

In this article, we consider differential systems of the form
dx

dt
= P (x, y),

dy

dt
= Q(x, y), (1.1)

where P,Q ∈ R[x, y], i.e. P,Q are polynomials in x, y over R and their associated
vector fields

X = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y
. (1.2)

We call degree of a system (1.1) the integer m = max(degP,degQ). In particular
we call quadratic a differential system (1.1) with m = 2. We denote here by QS
the whole class of real non-degenerate quadratic systems, i.e. we assume that the
polynomials P and Q are coprime.

Quadratic systems appear in the modeling of many natural phenomena described
in different branches of science, in biological and physical applications and applica-
tions of these systems became a subject of interest for the mathematicians. Many
papers have been published about quadratic systems, see for example [13] for a
bibliographical survey.

Let V be an open and dense subset of R2, we say that a nonconstant differentiable
function H : V → R is a first integral of a system (1.1) on V if H(x(t), y(t)) is
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constant for all of the values of t for which (x(t), y(t)) is a solution of this system
contained in V . Obviously H is a first integral of systems (1.1) if and only if

X(H) = P
∂H

∂x
+Q

∂H

∂y
= 0, (1.3)

for all (x, y) ∈ V . When a system (1.1) has a first integral we say that this system
is integrable.

The knowledge of the first integrals is of particular interest in planar differential
systems because they allow us to draw their phase portraits.

On the other hand given f ∈ C[x, y] we say that the curve f(x, y) = 0 is an
invariant algebraic curve of systems (1.1) if there exists K ∈ C[x, y] such that

P
∂f

∂x
+Q

∂f

∂y
= Kf. (1.4)

The polynomial K is called the cofactor of the invariant algebraic curve f = 0.
When K = 0, f is a polynomial first integral.

Quadratic systems with an invariant algebraic curve have been studied by many
authors, for example Schlomiuk and Vulpe [14, 16] have studied quadratic systems
with invariant straight lines, Qin Yuan-xum [10] has investigated the quadratic
systems having an ellipse as limit cycle, Druzhkova [7] has presented necessary and
sufficient conditions for existence and uniqueness of an invariant algebraic curve
of second degree in terms of the coefficients of quadratic systems, and Cairo and
Llibre [3] have studied the quadratic systems having invariant algebraic conics in
order to investigate the Darboux integrability of such systems.

The motivation for studying the systems in the quadratic class is not only because
of their usefulness in many applications but also for theoretical reasons, as discussed
by Schlomiuk and Vulpe in the introduction of [14]. The study of non–degenerate
quadratic systems could be done using normal forms and applying the invariant
theory.

The main goal of this paper is to investigate non–degenerate quadratic systems
having invariant hyperbolas and this study is done applying the invariant theory.
More precisely in this paper we give necessary and sufficient conditions for a qua-
dratic system in QS to have invariant hyperbolas. We also determine the invariant
criteria which provide the number and multiplicity of such hyperbolas.

Definition 1.1. We say that an invariant conic Φ(x, y) = p + qx + ry + sx2 +
2txy + uy2 = 0, (s, t, u) 6= (0, 0, 0), (p, q, r, s, t, u) ∈ C6 for a quadratic vector
field X has multiplicity m if there exists a sequence of real quadratic vector fields
Xk converging to X, such that each Xk has m distinct (complex) invariant conics
Φ1
k = 0, . . . ,Φmk = 0, converging to Φ = 0 as k → ∞ (with the topology of their

coefficients), and this does not occur for m+ 1. In the case when an invariant conic
Φ(x, y) = 0 has multiplicity one we call it simple.

Our main results are stated in the following theorem.

Theorem 1.2.
(A) The conditions γ1 = γ2 = 0 and either η ≥ 0, M 6= 0 or C2 = 0 are necessary
for a quadratic system in the class QS to possess at least one invariant hyperbola.
(B) Assume that for a system in the class QS the condition γ1 = γ2 = 0 is satisfied.
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(1) If η > 0 then the necessary and sufficient conditions for this system to
possess at least one invariant hyperbola are given in Figure 1, where we can
also find the number and multiplicity of such hyperbolas.

(2) In the case η = 0 and either M 6= 0 or C2 = 0 the corresponding necessary
and sufficient conditions for this system to possess at least one invariant
hyperbola are given in Figure 2, where we can also find the number and
multiplicity of such hyperbolas.

(C) Figures 1 and 2 actually contain the global bifurcation diagram in the 12-
dimensional space of parameters of the systems belonging to family QS, which pos-
sess at least one invariant hyperbola. The corresponding conditions are given in
terms of invariant polynomials with respect to the group of affine transformations
and time rescaling.

Remark 1.3. An invariant hyperbola is denoted by H if it is real and by
c

H if
it is complex. In the case we have two such hyperbolas then it is necessary to
distinguish whether they have parallel or non-parallel asymptotes in which case we

denote them by Hp (
c

Hp) if their asymptotes are parallel and by H if there exists at
least one pair of non-parallel asymptotes. We denote by Hk (k = 2, 3) a hyperbola
with multiplicity k; by Hp2 a double hyperbola, which after perturbation splits into
two Hp; and by Hp3 a triple hyperbola which splits into two Hp and one H.

The term “complex invariant hyperbolas” of a real system requires some explana-
tion. Indeed the term hyperbola is reserved for a real irreducible affine conic which
has two real points at infinity. This distinguishes it from the other two irreducible
real conics: the parabola with just one real point at infinity and the ellipse which has
two complex points at infinity. We call “complex hyperbola” an irreducible affine
conic Φ(x, y) = 0, with Φ(x, y) = p+ qx+ ry + sx2 + 2txy + uy2 = 0 over C, such
that there does not exist a non-zero complex number λ with λ(p, q, r, s, t, u) ∈ R6

and in addition this conic has two real points at infinity.
The invariants and comitants of differential equations (see Subsection 2.2) used

for proving our main result are obtained following the theory of algebraic invariants
of polynomial differential systems, developed by Sibirsky and his disciples (see for
instance [18, 19, 12, 1, 4]).

2. Preliminaries

Consider real quadratic systems of the form:

dx

dt
= p0 + p1(x, y) + p2(x, y) ≡ P (x, y),

dy

dt
= q0 + q1(x, y) + q2(x, y) ≡ Q(x, y)

(2.1)

with homogeneous polynomials pi and qi (i = 0, 1, 2) of degree i in x, y:

p0 = a00, p1(x, y) = a10x+ a01y, p2(x, y) = a20x
2 + 2a11xy + a02y

2,

q0 = b00, q1(x, y) = b10x+ b01y, q2(x, y) = b20x
2 + 2b11xy + b02y

2.

Such a system (2.1) can be identified with a point in R12. Let

ã =
(
a00, a10, a01, a20, a11, a02, b00, b10, b01, b20, b11, b02

)
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Figure 1. Existence of invariant hyperbolas: the case η > 0

and consider the ring R[a00, a10, . . . , a02, b00, b10, . . . , b02, x, y] which we shall denote
R[ã, x, y].

2.1. Group actions on quadratic systems (2.1) and invariant polynomials
with respect to these actions. On the set QS of all quadratic differential systems
(2.1) acts the group Aff(2,R) of affine transformations on the plane. Indeed for
every g ∈ Aff(2,R), g : R2 → R2 we have:

g :
(
x̃
ỹ

)
= M

(
x
y

)
+B; g−1 :

(
x
y

)
= M−1

(
x̃
ỹ

)
−M−1B.
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Figure 2. Existence of invariant hyperbolas: the case η = 0

where M = ‖Mij‖ is a 2 × 2 nonsingular matrix and B is a 2 × 1 matrix over R.
For every S ∈ QS we can form its transformed system S̃ = gS:

dx̃

dt
= P̃ (x̃, ỹ),

dỹ

dt
= Q̃(x̃, ỹ), (2.2)

where (
P̃ (x̃, ỹ)
Q̃(x̃, ỹ)

)
= M

(
(P ◦ g−1)(x̃, ỹ)
(Q ◦ g−1)(x̃, ỹ)

)
.

The map Aff(2,R)×QS → QS defined by

(g, S)→ S̃ = gS

satisfies the axioms for a left group action. For every subgroup G ⊆ Aff(2,R) we
have an induced action of G on QS. We can identify the set QS of systems (2.1)
with a subset of R12 via the embedding QS ↪→ R12 which associates to each system
(2.1) the 12-tuple (a00, . . . , b02) of its coefficients.

On systems (S) such that max(deg(p),deg(q)) ≤ 2 we consider the action of the
group Aff(2,R) which yields an action of this group on R12. For every g ∈ Aff(2,R)
let rg : R12 → R12 be the map which corresponds to g via this action. We know
(cf. [18]) that rg is linear and that the map r : Aff(2,R) → GL(12,R) thus
obtained is a group homomorphism. For every subgroup G of Aff(2,R), r induces
a representation of G onto a subgroup G of GL(12,R).

We shall denote a polynomial U in the ring R[ã, x, y] by U(ã, x, y).

Definition 2.1. A polynomial U(ã, x, y) ∈ R[ã, x, y] is a comitant for systems (2.1)
with respect to a subgroup G of Aff(2,R), if there exists χ ∈ Z such that for every
(g, ã) ∈ G× R12 and for every (x, y) ∈ R2 the following relation holds:

U(rg(ã), g(x, y) ) ≡ (det g)−χU(ã, x, y).
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If the polynomial U does not explicitly depend on x and y then it is an invariant.
The number χ ∈ Z is the weight of the comitant U(ã, x, y). If G = GL(2,R) (or
G = Aff(2,R)) then the comitant U(ã, x, y) of systems (2.1) is called GL-comitant
(respectively, affine comitant).

Definition 2.2. A subset X ⊂ R12 will be called G-invariant, if for every g ∈ G
we have rg(X) ⊆ X.

Let T (2,R) be the subgroup of Aff(2,R) formed by translations. Consider the
linear representation of T (2,R) into its corresponding subgroup T ⊂ GL(12,R), i.e.
for every τ ∈ T (2,R), τ : x = x̃+α, y = ỹ+β we consider as above rτ : R12 → R12.

Definition 2.3. A GL-comitant U(ã, x, y) of systems (2.1) is a T -comitant if for
every (τ, ã) ∈ T (2,R)×R12 the relation U(rτ (ã), x̃, ỹ) = U(ã, x̃, ỹ) holds in R[x̃, ỹ].

Consider s homogeneous polynomials Ui(ã, x, y) ∈ R[ã, x, y], i = 1, . . . , s:

Ui(ã, x, y) =
di∑
j=0

Uij(ã)xdi−jyj , i = 1, . . . , s,

and assume that the polynomials Ui are GL-comitants of a system (2.1) where di
denotes the degree of the binary form Ui(ã, x, y) in x and y with coefficients in R[ã].
We denote by

U = {Uij(ã) ∈ R[ã] : i = 1, . . . , s, j = 0, 1, . . . , di},

the set of the coefficients in R[ã] of the GL-comitants Ui(ã, x, y), i = 1, . . . , s, and
by V (U) its zero set:

V (U) = { ã ∈ R12 : Uij(ã) = 0, ∀Uij(ã) ∈ U}.

Definition 2.4. Let U1, . . . , Us be GL-comitants of a system (2.1) . A GL-comitant
U(ã, x, y) of this system is called a conditional T -comitant (or CT -comitant) mod-
ulo the ideal generated by Uij(ã) (i = 1, . . . , s; j = 0, 1, . . . , di) in the ring R[ã] if
the following two conditions are satisfied:

(i) the algebraic subset V (U) ⊂ R12 is affinely invariant (see Definition 2.2);
(ii) for every (τ, ã) ∈ T (2,R) × V (U) we have U(rτ (ã), x̃, ỹ) = U(ã, x̃, ỹ) in

R[x̃, ỹ].

In other words a CT -comitant U(ã, x, y) is a T -comitant on the algebraic subset
V (U) ⊂ R12.

Definition 2.5. A homogeneous polynomial U(ã, x, y) ∈ R[ã, x, y] of even degree
in x, y has well determined sign on V ⊂ R12 with respect to x, y if for every ã ∈ V ,
the binary form u(x, y) = U(ã, x, y) yields a function of constant sign on R2 except
on a set of zero measure where it vanishes.

Remark 2.6. We draw attention to the fact that if a CT -comitant U(ã, x, y) of
even weight is a binary form of even degree in x and y, of even degree in ã and has
well determined sign on some affine invariant algebraic subset V , then its sign is
conserved after an affine transformation and time rescaling.
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2.2. Main invariant polynomials associated with invariant hyperbolas.
We single out the following five polynomials, basic ingredients in constructing in-
variant polynomials for systems (2.1):

Ci(ã, x, y) = ypi(x, y)− xqi(x, y), (i = 0, 1, 2)

Di(ã, x, y) =
∂pi
∂x

+
∂qi
∂y

, (i = 1, 2).
(2.3)

As it was shown in [18] these polynomials of degree one in the coefficients of systems
(2.1) are GL-comitants of these systems. Let f , g ∈ R[ã, x, y] and

(f, g)(k) =
k∑
h=0

(−1)h
(
k
h

)
∂kf

∂xk−h∂yh
∂kg

∂xh∂yk−h
.

The polynomial (f, g)(k) ∈ R[ã, x, y] is called the transvectant of index k of (f, g)
(cf. [8, 11]).

Theorem 2.7 ([19]). Any GL-comitant of systems (2.1) can be constructed from
the elements (2.3) by using the operations: +, −, ×, and by applying the differential
operation (∗, ∗)(k).

Remark 2.8. We point out that the elements (2.3) generate the whole set of GL-
comitants and hence also the set of affine comitants as well as the set of T -comitants.

We construct the following GL-comitants of the second degree with respect to
the coefficients of the initial systems

T1 = (C0, C1)(1), T2 = (C0, C2)(1), T3 = (C0, D2)(1),

T4 = (C1, C1)(2), T5 = (C1, C2)(1), T6 = (C1, C2)(2),

T7 = (C1, D2)(1), T8 = (C2, C2)(2), T9 = (C2, D2)(1).

(2.4)

Using these GL-comitants as well as the polynomials (2.3) we construct the
additional invariant polynomials. In order to be able to calculate the values of the
needed invariant polynomials directly for every canonical system we shall define
here a family of T -comitants expressed through Ci (i = 0, 1, 2) and Dj (j = 1, 2):

Â = (C1, T8 − 2T9 +D2
2)(2)/144,

D̂ =
[
2C0(T8 − 8T9 − 2D2

2) + C1(6T7 − T6 − (C1, T5)(1)

+ 6D1C1D2 − T5)− 9D2
1C2

]
/36,

Ê = [D1(2T9 − T8)− 3(C1, T9)(1) −D2(3T7 +D1D2)]/72,

F̂ = [6D2
1(D2

2 − 4T9) + 4D1D2(T6 + 6T7) + 48C0(D2, T9)(1)

− 9D2
2T4 + 288D1Ê − 24(C2, D̂)(2) + 120(D2, D̂)(1)

− 36C1(D2, T7)(1) + 8D1(D2, T5)(1)]/144,

B̂ =
{

16D1(D2, T8)(1)(3C1D1 − 2C0D2 + 4T2)

+ 32C0(D2, T9)(1)(3D1D2 − 5T6 + 9T7)

+ 2(D2, T9)(1)(27C1T4 − 18C1D
2
1.− 32D1T2 + 32(C0, T5)(1)

)
+ 6(D2, T7)(1)

[
8C0(T8 − 12T9)− 12C1(D1D2 + T7) +D1(26C2D1 + 32T5)
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+ C2(9T4 + 96T3)
]

+ 6(D2, T6)(1)
[
32C0T9 − C1(12T7 + 52D1D2)

− 32C2D
2
1

]
+ 48D2(D2, T1)(1)(2D2

2 − T8)

− 32D1T8(D2, T2)(1) + 9D2
2T4(T6 − 2T7)− 16D1(C2, T8)(1)(D2

1 + 4T3)

+ 12D1(C1, T8)(2)(C1D2 − 2C2D1) + 6D1D2T4(T8 − 7D2
2 − 42T9)

+ 12D1(C1, T8)(1)(T7 + 2D1D2) + 96D2
2[D1(C1, T6)(1) +D2(C0, T6)(1)]−

− 16D1D2T3(2D2
2 + 3T8)− 4D3

1D2(D2
2 + 3T8 + 6T9) + 6D2

1D
2
2(7T6 + 2T7)

− 252D1D2T4T9

}
/(2833),

K̂ = (T8 + 4T9 + 4D2
2)/72, Ĥ = (8T9 − T8 + 2D2

2)/72.

These polynomials in addition to (2.3) and (2.4) will serve as bricks in constructing
affine invariant polynomials for systems (2.1).

The following 42 affine invariants A1, . . . , A42 form the minimal polynomial basis
of affine invariants up to degree 12. This fact was proved in [2] by constructing
A1, . . . , A42 using the above bricks.

A1 = Â, A2 = (C2, D̂)(3)/12, A3 =
[
C2, D2)(1), D2

)(1)
, D2

)(1)
/48,

A4 = (Ĥ, Ĥ)(2), A5 = (Ĥ, K̂)(2)/2, A6 = (Ê, Ĥ)(2)/2,

A7 =
[
C2, Ê)(2), D2

)(1)
/8, A8 =

[
D̂, Ĥ)(2), D2

)(1)
/48, A9 =

[
D̂,D2)(1), D2

)(1)
,

A10 =
[
D̂, K̂)(2), D2

)(1)
/8, A11 = (F̂ , K̂)(2)/4, A12 = (F̂ , Ĥ)(2)/4,

A13 =
[
C2, Ĥ)(1), Ĥ

)(2)
, D2

)(1)
/24, A14 = (B̂, C2)(3)/36, A15 = (Ê, F̂ )(2)/4,

A16 =
[
Ê,D2)(1), C2

)(1)
, K̂
)(2)

/16, A17 =
[
D̂, D̂)(2), D2

)(1)
, D2

)(1)
/64,

A18 =
[
D̂, F̂ )(2), D2

)(1)
/16, A19 =

[
D̂, D̂)(2), Ĥ

)(2)
/16,

A20 =
[
C2, D̂)(2), F̂

)(2)
/16, A21 =

[
D̂, D̂)(2), K̂

)(2)
/16,

A22 =
1

1152
[
C2, D̂)(1), D2

)(1)
, D2

)(1)
, D2

)(1)
D2

)(1)
, A23 =

[
F̂ , Ĥ)(1), K̂

)(2)
/8,

A24 =
[
C2, D̂)(2), K̂

)(1)
, Ĥ
)(2)

/32, A25 =
[
D̂, D̂)(2), Ê

)(2)
/16,

A26 = (B̂, D̂)(3)/36, A27 =
[
B̂,D2)(1), Ĥ

)(2)
/24,

A28 =
[
C2, K̂)(2), D̂

)(1)
, Ê
)(2)

/16, A29 =
[
D̂, F̂ )(1), D̂

)(3)
/96,

A30 =
[
C2, D̂)(2), D̂

)(1)
, D̂
)(3)

/288, A31 =
[
D̂, D̂)(2), K̂

)(1)
, Ĥ
)(2)

/64,

A32 =
[
D̂, D̂)(2), D2

)(1)
, Ĥ
)(1)

, D2

)(1)
/64,

A33 =
[
D̂,D2)(1), F̂

)(1)
, D2

)(1)
, D2

)(1)
/128,

A34 =
[
D̂, D̂)(2), D2

)(1)
, K̂
)(1)

, D2

)(1)
/64,

A35 =
[
D̂, D̂)(2), Ê

)(1)
, D2

)(1)
, D2

)(1)
/128,

A36 =
[
D̂, Ê)(2), D̂

)(1)
, Ĥ
)(2)

/16, A37 =
[
D̂, D̂)(2), D̂

)(1)
, D̂
)(3)

/576,

A38 =
[
C2, D̂)(2), D̂

)(2)
, D̂
)(1)

, Ĥ
)(2)

/64, A39 =
[
D̂, D̂)(2), F̂

)(1)
, Ĥ
)(2)

/64,
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A40 =
[
D̂, D̂)(2), F̂

)(1)
, K̂
)(2)

/64, A41 =
[
C2, D̂)(2), D̂

)(2)
, F̂
)(1)

, D2

)(1)
/64,

A42 =
[
D̂, F̂ )(2), F̂

)(1)
, D2

)(1)
/16.

In the above list, the bracket “[” is used in order to avoid placing the otherwise
necessary up to five parentheses “(”.

Using the elements of the minimal polynomial basis given above we construct
the affine invariant polynomials

γ1(ã) = A2
1(3A6 + 2A7)− 2A6(A8 +A12),

γ2(ã) = 9A2
1A2(23252A3 + 23689A4)− 1440A2A5(3A10 + 13A11)

− 1280A13(2A17 +A18 + 23A19 − 4A20)− 320A24(50A8 + 3A10

+ 45A11 − 18A12) + 120A1A6(6718A8 + 4033A9 + 3542A11

+ 2786A12) + 30A1A15(14980A3 − 2029A4 − 48266A5)

− 30A1A7(76626A2
1 − 15173A8 + 11797A10 + 16427A11 − 30153A12)

+ 8A2A7(75515A6 − 32954A7) + 2A2A3(33057A8 − 98759A12)

− 60480A2
1A24 +A2A4(68605A8 − 131816A9 + 131073A10 + 129953A11)

− 2A2(141267A2
6 − 208741A5A12 + 3200A2A13),

γ3(ã) = 843696A5A6A10 +A1(−27(689078A8 + 419172A9 − 2907149A10

− 2621619A11)A13 − 26(21057A3A23 + 49005A4A23 − 166774A3A24

+ 115641A4A24)).

γ4(ã) = −9A2
4(14A17 +A21) +A2

5(−560A17 − 518A18 + 881A19 − 28A20

+ 509A21)−A4(171A2
8 + 3A8(367A9 − 107A10) + 4(99A2

9 + 93A9A11

+A5(−63A18 − 69A19 + 7A20 + 24A21))) + 72A23A24,

γ5(ã) = −488A3
2A4 +A2(12(4468A2

8 + 32A2
9 − 915A2

10 + 320A9A11 − 3898A10A11

− 3331A2
11 + 2A8(78A9 + 199A10 + 2433A11)) + 2A5(25488A18

− 60259A19 − 16824A21) + 779A4A21) + 4(7380A10A31

− 24(A10 + 41A11)A33 +A8(33453A31 + 19588A32 − 468A33 − 19120A34)

+ 96A9(−A33 +A34) + 556A4A41 −A5(27773A38 + 41538A39

− 2304A41 + 5544A42)),

γ6(ã) = 2A20 − 33A21,

γ7(ã) = A1(64A3 − 541A4)A7 + 86A8A13 + 128A9A13 − 54A10A13

− 128A3A22 + 256A5A22 + 101A3A24 − 27A4A24,

γ8(ã) = 3063A4A
2
9 − 42A2

7(304A8 + 43(A9 − 11A10))− 6A3A9(159A8

+ 28A9 + 409A10) + 2100A2A9A13 + 3150A2A7A16

+ 24A2
3(34A19 − 11A20) + 840A2

5A21 − 932A2A3A22 + 525A2A4A22

+ 844A2
22 − 630A13A33,

γ9(ã) = 2A8 − 6A9 +A10, γ10(ã) = 3A8 +A11,

γ11(ã) = −5A7A8 +A7A9 + 10A3A14, γ12(ã) = 25A2
2A3 + 18A2

12,

γ13(ã) = A2, γ14(ã) = A2A4 + 18A2A5 − 236A23 + 188A24,
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γ15(ã, x, y) = 144T1T
2
7 − T 3

1 (T12 + 2T13)− 4(T9T11 + 4T7T15 + 50T3T23

+ 2T4T23 + 2T3T24 + 4T4T24),

γ16(ã, x, y) = T15, γ17(ã, x, y) = −(T11 + 12T13),

γ̃18(ã, x, y) = C1(C2, C2)(2) − 2C2(C1, C2)(2),

γ̃19(ã, x, y) = D1(C1, C2)(2) − ((C2, C2)(2), C0)(1),

δ1(ã) = 9A8 + 31A9 + 6A10, δ2(ã) = 41A8 + 44A9 + 32A10,

δ3(ã) = 3A19 − 4A17, δ4(ã) = −5A2A3 + 3A2A4 +A22,

δ5(ã) = 62A8 + 102A9 − 125A10, δ6(ã) = 2T3 + 3T4,

β1(ã) = 3A2
1 − 2A8 − 2A12, β2(ã) = 2A7 − 9A6,

β3(ã) = A6, β4(ã) = −5A4 + 8A5,

β5(ã) = A4, β6(ã) = A1,

β7(ã) = 8A3 − 3A4 − 4A5, β8(ã) = 24A3 + 11A4 + 20A5,

β9(ã) = −8A3 + 11A4 + 4A5, β10(ã) = 8A3 + 27A4 − 54A5,

β11(ã, x, y) = T 2
1 − 20T3 − 8T4, β12(ã, x, y) = T1,

β13(ã, x, y) = T3,

R1(ã) = −2A7(12A2
1 +A8 +A12) + 5A6(A10 +A11)− 2A1(A23 −A24)

+ 2A5(A14 +A15) +A6(9A8 + 7A12),

R2(ã) = A8 +A9 − 2A10, R3(ã) = A9,

R4(ã) = −3A2
1A11 + 4A4A19,

R5(ã, x, y) = (2C0(T8 − 8T9 − 2D2
2) + C1(6T7 − T6)− (C1, T5)(1)

+ 6D1(C1D2 − T5)− 9D2
1C2),

R6(ã) = −213A2A6 +A1(2057A8 − 1264A9 + 677A10 + 1107A12)

+ 746(A27 −A28),

R7(ã) = −6A2
7 −A4A8 + 2A3A9 − 5A4A9 + 4A4A10 − 2A2A13,

R8(ã) = A10, R9(ã) = −5A8 + 3A9,

R10(ã) = 7A8 + 5A10 + 11A11, R11(ã, x, y) = T16.

H12(ã, x, y) = (D̂, D̂)(2),

N7(ã) = 12D1(C0, D2)(1) + 2D3
1 + 9D1(C1, C2)(2) + 36

[
C0, C1)(1), D2)(1).

We remark the the last two invariant polynomials H12(ã, x, y) and N7(ã) are
constructed in [15].

2.3. Preliminary results involving polynomial invariants. Considering the
GL-comitant C2(ã, x, y) = yp2(ã, x, y)−xq2(ã, x, y) as a cubic binary form of x and
y we calculate

η(ã) = Discrim[C2, ξ], M(ã, x, y) = Hessian[C2],

where ξ = y/x or ξ = x/y. According to [17] we have the next result.



EJDE-2016/162 FAMILY OF QUADRATIC DIFFERENTIAL SYSTEMS 11

Lemma 2.9 ([17]). The number of infinite singularities (real and imaginary) of a
quadratic system in QS is determined by the following conditions:

(i) 3 real if η > 0;
(ii) 1 real and 2 imaginary if η < 0;
(iii) 2 real if η = 0 and M 6= 0;
(iv) 1 real if η = M = 0 and C2 6= 0;
(v) ∞ if η = M = C2 = 0.

Moreover, for each one of these cases the quadratic systems (2.1) can be brought
via a linear transformation to one of the following canonical systems:

(SI)

{
ẋ = a+ cx+ dy + gx2 + (h− 1)xy,
ẏ = b+ ex+ fy + (g − 1)xy + hy2;

(SII)

{
ẋ = a+ cx+ dy + gx2 + (h+ 1)xy,
ẏ = b+ ex+ fy − x2 + gxy + hy2;

(SIII)

{
ẋ = a+ cx+ dy + gx2 + hxy,

ẏ = b+ ex+ fy + (g − 1)xy + hy2;

(SIV )

{
ẋ = a+ cx+ dy + gx2 + hxy,

ẏ = b+ ex+ fy − x2 + gxy + hy2;

(SV )

{
ẋ = a+ cx+ dy + x2,

ẏ = b+ ex+ fy + xy.

Lemma 2.10. If a quadratic system (2.6) possesses a non-parabolic irreducible
conic then the conditions γ1 = γ2 = 0 hold.

Proof. According to [5] a system (2.6) possessing a second order non-parabolic
irreducible curve as an algebraic particular integral can be written in the form

ẋ = aΦ(x, y) + Φ′y(gx+ hy + k), ẏ = bΦ(x, y)− Φ′x(gx+ hy + k),

where a, b, g, h, k are real parameters and Φ(x, y) is the conic

Φ(x, y) ≡ p+ qx+ ry + sx2 + 2txy + uy2 = 0. (2.5)

A straightforward calculation gives γ1 = γ2 = 0 for the above systems and this
completes the proof. �

Assume that a conic (2.5) is an affine algebraic invariant curve for quadratic
systems (2.1), which we rewrite in the form:

dx

dt
= a+ cx+ dy + gx2 + 2hxy + ky2 ≡ P (x, y),

dy

dt
= b+ ex+ fy + lx2 + 2mxy + ny2 ≡ Q(x, y).

(2.6)

Remark 2.11. Following [9] we construct the determinant

∆ =

∣∣∣∣∣∣
s t q/2
t u r/2
q/2 r/2 p

∣∣∣∣∣∣ ,
associated to the conic (2.5). By [9] this conic is irreducible (i.e. the polynomial Φ
defining the conic is irreducible over C) if and only if ∆ 6= 0.
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To detect if an invariant conic (2.5) of a system (2.6) has the multiplicity greater
than one, we shall use the notion of k-th extactic curve Ek(X) of the vector field
X (see (1.2)), associated to systems (2.6). This curve is defined in the paper [6,
Definition5.1] as follows:

Ek(X) = det


v1 v2 . . . vl

X(v1) X(v2) . . . X(vl)
...

...
X l−1(v1) X l−1(v2) . . . X l−1(vl)

 ,

where v1, v2, . . . , vl is the basis of Cn[x, y], the C-vector space of polynomials in
Cn[x, y] and l = (k + 1)(k + 2)/2. Here X0(vi) = vi and Xj(v1) = X(Xj−1(v1)).

Considering the Definition 1.1 of a multiplicity of an invariant curve, according
to [6] the following statement holds:

Lemma 2.12. If an invariant curve Φ(x, y) = 0 of degree k has multiplicity m,
then Φ(x, y)m divides Ek(X).

We shall apply this lemma in order to detect additional conditions for a conic to
be multiple. According to definition of an invariant curve (see page 2) considering
the cofactor K = Ux+ V y +W ∈ C[x, y] the following identity holds:

∂Φ
∂x

P (x, y) +
∂Φ
∂y

Q(x, y) = Φ(x, y)(Ux+ V y +W ).

This identity yields a system of 10 equations for determining the 9 unknown pa-
rameters p, q, r, s, t, u, U , V , W :

Eq1 ≡ s(2g − U) + 2lt = 0,

Eq2 ≡ 2t(g + 2m− U) + s(4h− V ) + 2lu = 0,

Eq3 ≡ 2t(2h+ n− V ) + u(4m− U) + 2ks = 0,

Eq4 ≡ u(2n− V ) + 2kt = 0,

Eq5 ≡ q(g − U) + s(2c−W ) + 2et+ lr = 0,

Eq6 ≡ r(2m− U) + q(2h− V ) + 2t(c+ f −W ) + 2(ds+ eu) = 0,

Eq7 ≡ r(n− V ) + u(2f −W ) + 2dt+ kq = 0,

Eq8 ≡ q(c−W ) + 2(as+ bt) + er − pU = 0,

Eq9 ≡ r(f −W ) + 2(bu+ at) + dq − pV = 0,
Eq10 ≡ aq + br − pW = 0.

(2.7)

3. Proof of the main theorem

Assuming that a quadratic system (2.6) in QS has an invariant hyperbola (2.5),
we conclude that this system must possess at least two real distinct infinite sin-
gularities. So according to Lemmas 2.9 and 2.10 the conditions γ1 = γ2 = 0 and
either η ≥ 0 and M 6= 0 or C2 = 0 have to be fulfilled.

In what follows, supposing that the conditions γ1 = γ2 = 0 hold, we shall
examine three families of quadratic systems (2.6): systems with three real distinct
infinite singularities (corresponding to the condition η > 0); systems with two real
distinct infinite singularities (corresponding to the conditions η = 0 and M 6= 0)
and systems with infinite number of singularities at infinity, i.e. with degenerate
infinity (corresponding to the condition C2 = 0).
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3.1. Systems with three real infinite singularities and θ 6= 0. In this case
according to Lemma 2.9 systems (2.6) via a linear transformation could be brought
to the following family of systems

dx

dt
= a+ cx+ dy + gx2 + (h− 1)xy,

dy

dt
= b+ ex+ fy + (g − 1)xy + hy2.

(3.1)

For this systems we calculate

C2(x, y) = xy(x− y), θ = −(g − 1)(h− 1)(g + h)/2 (3.2)

and we shall prove the next lemma.

Lemma 3.1. Assume that for a system (3.1) the conditions θ 6= 0 and γ1 = 0 hold.
Then this system via an affine transformation could be brought to the form

dx

dt
= a+ cx+ gx2 + (h− 1)xy,

dy

dt
= b− cy + (g − 1)xy + hy2. (3.3)

Proof. Since θ 6= 0 the condition (g−1)(h−1)(g+h) 6= 0 holds and by a translation
we may assume d = e = 0 for systems (3.1). Then we calculate

γ1 =
1
64

(g − 1)2(h− 1)2D1D2D3,

where

D1 = c+ f, D2 = c(g + 4h− 1) + f(1 + g − 2h),

D3 = c(1− 2g + h) + f(4g + h− 1).

Since θ 6= 0 (i.e. (g−1)(h−1) 6= 0) the condition γ1 = 0 is equivalent to D1D2D3 =
0. We claim that without loss of generality we may assume D1 = c + f = 0, as
other cases could be brought to this one via an affine transformation.

Indeed, assume first D1 6= 0 and D2 = 0. Then as g + h 6= 0 (due to θ 6= 0) we
apply to systems (3.1) with d = e = 0 the affine transformation

x′ = y − x− (c− f)/(g + h), y′ = −x (3.4)

and we obtain the systems

dx′

dt
= a′+ c′x′+ g′x′2 + (h′− 1)x′y′,

dy′

dt
= b′+ f ′y′+ (g′− 1)x′y′+h′y′2. (3.5)

These systems have the following new parameters:

a′ =
[
c2h− f2g + cf(g − h)− (a− b)(g + h)2

]
/(g + h)2,

b′ = −a, c′ = (cg − 2fg − ch)/(g + h),

f ′ = (c− f − cg + 2fg + fh)/(g + h), g′ = h, h′ = 1− g − h.
(3.6)

A straightforward computation gives

D′1 = c′ + f ′ =
[
c(g + 4h− 1) + f(1 + g − 2h)

]
/(g + h) = D2/(g + h) = 0

and hence, the condition D2 = 0 is replaced with D1 = 0 via an affine transforma-
tion.

Suppose now D1 6= 0 and D3 = 0. Then we apply to systems (3.1) the affine
transformation

x′′ = −y, y′′ = x− y + (c− f)/(g + h)
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and we obtain the systems
dx′′

dt
= a′′+c′′x′′+g′′x′′2 +(h′′−1)x′′y′′,

dy′′

dt
= b′′+f ′′y′′+(g′′−1)x′′y′′+h′′y′′2,

having the following new parameters:

a′′ = −b, b′′ =
[
f2g − c2h+ cf(−g + h) + (a− b)(g + h)2

]
/(g + h)2,

c′′ = (c− f − cg + 2fg + fh)/(g + h),

f ′′ = (cg − 2fg − ch)/(g + h), g′′ = 1− g − h, h′′ = g.

We calculate

D′′1 = c′′ + f ′′ =
[
c(1− 2g + h) + f(4g + h− 1)

]
/(g + h) = D3/(g + h) = 0.

Thus our claim is proved and this completes the proof of the lemma. �

Lemma 3.2. A system (3.3) possesses an invariant hyperbola of the indicated
form if and only if the corresponding conditions indicated on the right hand side
are satisfied:

(I) Φ(x, y) = p + qx + ry + 2xy ⇔ B1 ≡ b(2h − 1) − a(2g − 1) = 0,
(2h− 1)2 + (2g − 1)2 6= 0, a2 + b2 6= 0;

(II) Φ(x, y) = p+ qx+ ry + 2x(x− y) ⇔ either
(i) c = 0, B2 ≡ b(1−2h)+2a(g+2h−1) = 0, (2h−1)2 +(g+2h−1)2 6= 0,

a2 + b2 6= 0, or
(ii) h = 1/3, B′2 ≡ (1 + 3g)2(b− 2a+ 6ag) + 6c2(1− 3g) = 0, a 6= 0;

(III) Φ(x, y) = p+ qx+ ry + 2y(x− y) ⇔ either
(i) c = 0, B3 ≡ a(1−2g)+2b(2g+h−1) = 0, (2g−1)2 +(2g+h−1)2 6= 0,

a2 + b2 6= 0, or
(ii) g = 1/3, B′3 ≡ (1 + 3h)2(a− 2b+ 6bh) + 6c2(1− 3h) = 0, b 6= 0.

Proof. Since for systems (3.3) we have C2 = xy(x−y) (i.e. the infinite singularities
are located at the “ends” of the lines x = 0, y = 0 and x−y = 0) it is clear that if a
hyperbola is invariant for these systems, then its homogeneous quadratic part has
one of the following forms: (i) kxy, (ii) kx(x− y), (iii) ky(x− y), where k is a real
nonzero constant. Obviously we may assume k = 2 (otherwise instead of hyperbola
(2.5) we could consider 2Φ(x, y)/k = 0).

Considering the equations (2.7) we examine each one of the above mentioned
possibilities.

(i) Φ(x, y) = p+ qx+ ry + 2xy; in this case we obtain
t = 1, q = r = s = u = 0, U = 2g − 1, V = 2h− 1, W = 0,

Eq8 = p(1− 2g) + 2b, Eq9 = p(1− 2h) + 2a,
Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = Eq6 = Eq7 = Eq10 = 0.

Calculating the resultant of the non-vanishing equations with respect to the pa-
rameter p we obtain

Resp(Eq8, Eq9) = a(1− 2g) + b(2h− 1) = B1.

So if (2h− 1)2 + (2g − 1)2 6= 0 then the hyperbola exists if and only if B1 = 0. We
may assume 2h−1 6= 0, otherwise the change (x, y, a, b, c, g, h) 7→ (y, x, b, a,−c, h, g)
(which preserves systems (3.3)) could be applied. Then we obtain

p = 2a/(2h− 1), b = a(2g − 1)/(2h− 1), Φ(x, y) =
2a

2h− 1
+ 2xy = 0
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and clearly for the irreducibility of the hyperbola the condition a2 + b2 6= 0 must
hold. This completes the proof of the statement (I) of the lemma.

(ii) Φ(x, y) = p+ qx+ ry+ 2x(x− y); since g+ h 6= 0 (because θ 6= 0) we obtain

s = 2, t = −1, r = u = 0, q = 4c/(g + h), U = 2g, V = 2h− 1, W = −hq/2,
Eq8 = 4a− 2b− 2gp+ 4c2(g − h)/(g + h)2,

Eq9 = p(1− 2h)− 2a, Eq10 = 2c(2a− hp)/(g + h),
Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = Eq6 = Eq7 = 0.

(1) Assume first c 6= 0. Then considering the equations Eq9 = 0 and Eq10 = 0
we obtain p(3h − 1) = 0. Taking into account the relations above we obtain the
hyperbola

Φ(x, y) = p+ 4cx/(g + h) + 2x(x− y) = 0
which evidently is reducible if p = 0. So p 6= 0 and this implies h = 1/3. Then from
the equation Eq9 = 0 we obtain p = 6a. Since θ = (g − 1)(3g + 1)/9 6= 0 we have
Eq9 = Eq10 = 0, Eq8 = −2B′2/(3g+ 1)2. So the equation Eq8 = 0 gives B′2 = 0 and
then systems (3.3) with h = 1/3 possess the hyperbola

Φ(x, y) = 6a+
12c

3g + 1
x+ 2x(x− y) = 0,

which is irreducible if and only if a 6= 0.
(2) Suppose now c = 0. In this case there remain only two non–vanishing

equations:

Eq8 = 4a− 2b− 2gp = 0, Eq9 = p(1− 2h)− 2a = 0.

Calculating the resultant of these equations with respect to the parameter p we
obtain

Resp(Eq8, Eq9) = b(1− 2h) + 2a(g + 2h− 1) = B2.

If (1− 2h)2 + (g+ 2h− 1)2 6= 0 (which is equivalent to (1− 2h)2 + g2 6= 0) then the
condition B′2 = 0 is necessary and sufficient for a system (3.3) with c = 0 to possess
the invariant hyperbola

Φ(x, y) = p+ 2x(x− y) = 0,

where p is the parameter determined from the equation Eq9 = 0 (if 2h − 1 6= 0),
or Eq8 = 0 (if g 6= 0). We observe that the hyperbola is irreducible if and only if
p 6= 0 which due to the mentioned equations is equivalent to a2 + b2 6= 0.

Thus the statement II of the lemma is proved.
(iii) Φ(x, y) = p + qx + ry + 2y(x − y); we observe that due to the change

(x, y, a, b, c, g, h) 7→ (y, x, b, a,−c, h, g) (which preserves systems (3.3)) this case
could be brought to the previous one and hence, the conditions could be constructed
directly applying this change. This completes the proof of Lemma 3.2. �

In what follows the next remark will be useful.

Remark 3.3. Consider systems (3.3).
(i) The change (x, y, a, b, c, g, h) 7→ (y, x, b, a,−c, h, g) which preserves these

systems replaces the parameter g by h and h by g.
(ii) Moreover if c = 0 then having the relation (2h−1)(2g−1)(1−2g−2h) = 0

(respectively (4h − 1)(4g − 1)(3 − 4g − 4h) = 0) due to a change we may
assume 2h− 1 = 0 (respectively 4h− 1 = 0).
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To prove the statement (ii) it is sufficient to observe that in the case 2g − 1 = 0
(respectively 4g−1 = 0) we could apply the change given in the statement (i) (with
c = 0), whereas in the case 1− 2g− 2h = 0 (respectively 3− 4g− 4h = 0) we apply
the change (x, y, a, b, g, h) 7→ (y − x,−x, b − a,−a, h, 1 − g − h), which conserves
systems (3.3) with c = 0.

Next we determine the invariant criteria which are equivalent to the conditions
given by Lemma 3.2.

Lemma 3.4. Assume that for a quadratic system (2.6) the conditions η > 0, θ 6= 0
and γ1 = γ2 = 0 hold. Then this system possesses at least one invariant hyperbola
if and only if one of the following sets of the conditions are satisfied:

(i) If β1 6= 0 then either
(i.1) β2 6= 0, R1 6= 0, or
(i.2) β2 = 0, β3 6= 0, γ3 = 0, R1 6= 0, or
(i.3) β2 = β3 = 0, β4β5R2 6= 0, or
(i.4) β2 = β3 = β4 = 0, γ3 = 0, R2 6= 0;

(ii) If β1 = 0 then either
(ii.1) β6 6= 0, β2 6= 0, γ4 = 0, R3 6= 0, or
(ii.2) β6 6= 0, β2 = 0, γ5 = 0, R4 6= 0, or
(ii.3) β6 = 0, β7 6= 0, γ5 = 0, R5 6= 0, or
(ii.4) β6 = 0, β7 = 0, β9 6= 0, γ5 = 0, R5 6= 0, or
(ii.5) β6 = 0, β7 = 0, β9 = 0, γ6 = 0, R5 6= 0.

Proof. Assume that for a quadratic system (2.6) the conditions η > 0, θ 6= 0 and
γ1 = 0 are fulfilled. According to Lemma 3.1 due to an affine transformation and
time rescaling this system could be brought to the canonical form (3.3), for which
we calculate

γ2 = −1575c2(g − 1)2(h− 1)2(g + h)(3g − 1)(3h− 1)(3g + 3h− 4)B1,

β1 = −c2(g − 1)(h− 1)(3g − 1)(3h− 1)/4,

β2 = −c(g − h)(3g + 3h− 4)/2.

(3.7)

3.1.1. Case β1 6= 0. According to Lemma 2.10 the condition γ2 = 0 is necessary
for the existence of a hyperbola. Since θβ1 6= 0 in this case the condition γ2 = 0 is
equivalent to (3g + 3h− 4)B1 = 0.

Subcase β2 6= 0. Then (3g + 3h − 4) 6= 0 and the condition γ2 = 0 gives B1 = 0.
Moreover the condition β2 6= 0 yields g−h 6= 0 and this implies (2h−1)2+(2g−1)2 6=
0. According to Lemma 3.2 systems (3.3) possess an invariant hyperbola, which is
irreducible if and only if a2 + b2 6= 0.

On the other hand for these systems we calculate

R1 = −3c(a− b)(g − 1)2(h− 1)2(g + h)(3g − 1)(3h− 1)/8

and we claim that for B1 = 0 the condition R1 = 0 is equivalent to a = b =
0. Indeed, as the equation B1 = 0 is linear homogeneous in a and b, as well as
the second equation a − b = 0, calculating the respective determinant we obtain
−2(g + h) 6= 0 due to θ 6= 0. This proves our claim and hence the statement (i.1)
of Lemma 3.4 is proved.



EJDE-2016/162 FAMILY OF QUADRATIC DIFFERENTIAL SYSTEMS 17

Subcase β2 = 0. Since β1 6= 0 (i.e. c 6= 0) we obtain (g − h)(3g + 3h− 4) = 0. On
the other hand for systems (3.3) we have

β3 = −c(g − h)(g − 1)(h− 1)/4

and we consider two possibilities: β3 6= 0 and β3 = 0.

Possibility β3 6= 0. In this case we have g− h 6= 0 and the condition β2 = 0 implies
3g + 3h − 4 = 0, i.e. g = 4/3 − h. So the condition (2h − 1)2 + (2g − 1)2 6= 0 for
systems (3.3) becomes (2h − 1)2 + (6h − 5)2 6= 0 and obviously this condition is
satisfied.

For systems (3.3) with g = 4/3− h we calculate

γ3 = 22971c(h− 1)3(3h− 1)3B1, R1 = (a− b)c(h− 1)3(3h− 1)3/6,

β1 = −c2(h− 1)2(3h− 1)2/4, β3 = −c(h− 1)(3h− 2)(3h− 1)/18.

So because β1 6= 0 the condition γ3 = 0 is equivalent to B1 = 0. Moreover if in
addition R1 = 0 (i.e. a − b = 0) we obtain a = b = 0, because the determinant of
the systems of linear equations

3B1 = a(5− 6h)− 3b(2h− 1) = 0, a− b = 0

with respect to the parameters a and b equals 4(3h − 2) 6= 0 due to the condition
β3 6= 0. So the statement (i.2) of the lemma is proved.

Possibility β3 = 0. Since β1 6= 0 (i.e. c(g − 1)(h− 1) 6= 0) we obtain g = h and for
systems (3.3) we calculate

γ2 = 6300c2h(h− 1)4(3h− 2)(3h− 1)2B1, θ = −h(h− 1)2,

β1 = −c2(h− 1)2(3h− 1)2/4, β4 = 2h(3h− 2), β5 = −2h2(2h− 1).

So by the condition θβ1 6= 0 we obtain that the necessary condition γ2 = 0 is
equivalent to B1(3h− 2) = 0 and we shall consider two cases: β4 6= 0 and β4 = 0.

(1) Case β4 6= 0. Therefore 3h − 2 6= 0 and this implies B1 = 0. Considering
Lemma 3.2 the condition (2h− 1)2 + (2g − 1)2 6= 0 for g = h becomes 2h− 1 6= 0.
So for the existence of a invariant hyperbola the condition β5 6= 0 is necessary.
Moreover this hyperbola is irreducible if and only if a2 + b2 6= 0. Since for these
systems we have

R2 = (a+ b)(h− 1)2(3h− 1)/2, B1 = −(2h− 1)(a− b)

we conclude, that when B1 = 0 the condition R2 6= 0 is equivalent to a2 + b2 6= 0
and this completes the proof of the statement (i.3) of the lemma.

(2) Case β4 = 0. Then by θ 6= 0 we obtain h = 2/3 and arrive at the 3-parameter
family of systems

dx

dt
= a+ cx+ 2x2/3− xy/3, dy

dt
= b− cy − xy/3 + 2y2/3, (3.8)

For these systems we calculate γ3 = 7657cB1/9, β1 = −c2/36, R2 = (a + b)/18,
where B1 = (b−a)/3. Since for these systems the condition (2h− 1)2 + (2g− 1)2 =
2/9 6= 0 holds, according to Lemma 3.2 we conclude that the statement (i.4) of the
lemma is proved.
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3.1.2. Case β1 = 0. Considering (3.7) and the condition θ 6= 0 we obtain c(3g −
1)(3h− 1) = 0. On the other hand for systems (3.3) we calculate

β6 = −c(g − 1)(h− 1)/2

and we shall consider two subcases: β6 6= 0 and β6 = 0.

Subcase β6 6= 0. Then c 6= 0 and the condition β1 = 0 implies (3g− 1)(3h− 1) = 0.
Therefore by Remark 3.3 we may assume h = 1/3 and this leads to the following
4-parameter family of systems

dx

dt
= a+ cx+ gx2 − 2xy/3,

dy

dt
= b− cy + (g − 1)xy + y2/3, (3.9)

which is a subfamily of (3.3). According to Lemma 3.2 the above systems possess
a hyperbola if and only if either B1 = a(1 − 2g) − b/3 = 0 and a2 + b2 6= 0 (the
statement I), or B′2 = (1 + 3g)2(b − 2a + 6ag) + 6c2(1 − 3g) = 0 and a 6= 0 (the
statement II). We observe that in the first case, when a(1 − 2g) − b/3 = 0 the
condition a2 + b2 6= 0 is equivalent to a 6= 0.

On the other hand for these systems we calculate

γ4 = −16(g − 1)2(3g − 1)2B1B′2/81, β6 = c(g − 1)/3,

β2 = c(g − 1)(3g − 1)/2, R3 = a(3g − 1)3/18.

So we consider two possibilities: β2 6= 0 and β2 = 0.

Possibility β2 6= 0. In this case (g − 1)(3g − 1) 6= 0 and the conditions γ4 = 0 and
R3 6= 0 are equivalent to B1B′2 = 0 and a 6= 0, respectively. This completes the
proof of the statement (ii.1).

Possibility β2 = 0. From the condition β6 6= 0 we obtain g = 1/3 and this leads to
the following 3-parameter family of systems:

dx

dt
= a+ cx+ x2/3− 2xy/3,

dy

dt
= b− cy − 2xy/3 + y2/3. (3.10)

Since c 6= 0 (because β6 6= 0) according to Lemma 3.2 these systems possess an
invariant hyperbola if and only if one of the following sets conditions are fulfilled:

B1 = (a− b)/3 = 0, a2 + b2 6= 0;

B′2 = 4b = 0, a 6= 0; B′3 = 4a = 0, b 6= 0.

We observe that the last two conditions are equivalent to ab = 0 and a2 + b2 6= 0.
On the other hand for systems (3.10) we calculate

γ5 = 16B1B′2B′3/27, R4 = 128(a2 − ab+ b2)/6561.

It is clear that the condition R4 = 0 is equivalent to a2 + b2 = 0. So the statement
(ii.2) is proved.
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Subcase β6 = 0. Since θ 6= 0 (i.e. (g − 1)(h − 1) 6= 0) the condition β6 = 0 yields
c = 0. Therefore according to Lemma 3.2 systems (3.3) with c = 0 possess an
invariant hyperbola if and only if one of the following sets of conditions holds:

B1 ≡ b(2h− 1)− a(2g − 1) = 0, (2h− 1)2 + (2g − 1)2 6= 0, a2 + b2 6= 0;

B2 ≡ b(1− 2h) + 2a(g + 2h− 1) = 0, (2h− 1)2 + (g + 2h− 1)2 6= 0, a2 + b2 6= 0;

B3 ≡ a(1− 2g) + 2b(2g + h− 1) = 0, (2g − 1)2 + (2g + h− 1)2 6= 0, a2 + b2 6= 0.

Considering the following three expressions

α1 = 2g − 1, α2 = 2h− 1, α3 = 1− 2g − 2h

we observe that the condition (2h − 1)2 + (2g − 1)2 6= 0 (respectively (2h − 1)2 +
(g + 2h − 1)2 6= 0; (2g − 1)2 + (2g + h − 1)2 6= 0) is equivalent to α2

1 + α2
2 6= 0

(respectively α2
2 + α2

3 6= 0; α2
1 + α2

3 6= 0).
On the other hand for these systems we calculate

γ5 = −288(g − 1)(h− 1)(g + h)B1B2B3,

θ = −(g − 1)(h− 1)(g + h)/2,

β7 = 2α1α2α3, β9 = 2(α1α2 + α1α3 + α2α3),

R5 = 36(bx− ay)
[
(g − 1)2x2 + 2(g + h+ gh− 1)xy + (h− 1)2y2

]
.

We observe that if α1 = α2 = 0 (respectively α2 = α3 = 0; α1 = α3 = 0) then the
factor B1 (respectively B2; B3) vanishes identically. Considering the values of the
invariant polynomials β7 and β9 we conclude that two of the factors αi (i = 1, 2, 3)
vanish if and only if β7 = β9 = 0. So we have to consider two subcases: β2

7 +β2
9 6= 0

and β2
7 + β2

9 = 0.

Possibility β2
7 + β2

9 6= 0. In this case by θ 6= 0 the conditions γ5 = 0 and R5 6= 0
are equivalent to B1B2B3 = 0 and a2 + b2 6= 0, respectively. So by Lemma 3.2 there
exists at least one hyperbola and hence the statements (ii.3) and (ii.4) are valid.

Possibility β2
7 + β2

9 = 0. As it was mentioned above, in this case two of the factors
αi (i = 1, 2, 3) vanish. Considering Remark 3.3, without loss of generality we may
assume α1 = α2 = 0.

Thus we have g = h = 1/2 and we obtain the family of systems

dx

dt
= a+ x2/2− xy/2, dy

dt
= b− xy/2 + y2/2. (3.11)

Since c = 0 and the conditions of the statement I of Lemma 3.2 are not satisfied
for these systems, according to Lemma 3.2 the above systems possess an invariant
hyperbola if and only if a2 + b2 6= 0 and either B2 = a = 0 or B3 = b = 0. For
systems (3.11) we calculate

γ6 = −9B2B3, R5 = 9(bx− ay)(x+ y)2

and we conclude that the statement (ii.5) of the lemma holds.
As all the cases are examined, Lemma 3.4 is proved. �

The next lemma is related to the number of the invariant hyperbolas that qua-
dratic systems with η > 0 and θ 6= 0 could have.

Lemma 3.5. Assume that for a quadratic system (2.6) the conditions η > 0, θ 6= 0
and γ1 = γ2 = 0 are satisfied. Then this system possesses:
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(A) two invariant hyperbolas if and only if either
(A1) β1 = 0, β6 6= 0, β2 6= 0, γ4 = 0, R3 6= 0 and δ1 = 0, or
(A2) β1 = 0, β6 = 0, β7 6= 0, γ5 = 0, R5 6= 0 and β8 = δ2 = 0, or
(A3) β1 = 0, β6 = β7 = 0, β9 6= 0, γ5 = 0, R5 6= 0 and δ3 = 0, β8 6= 0;

(B) three invariant hyperbolas if and only if β1 = 0, β6 = β7 = 0, β9 6= 0,
γ5 = 0, R5 6= 0 and δ3 = β8 = 0.

Proof. For systems (3.3) we have

β6 = −c(g − 1)(h− 1)/2, θ = −(g − 1)(h− 1)(g + h)/2,

β1 = −c2(g − 1)(h− 1)(3g − 1)(3h− 1)/4.

3.1.3. Case β6 6= 0. Then c 6= 0 and according to Lemma 3.2 we could have at least
two hyperbolas only if the conditions given either by the statements I and II; (ii)
(i.e. B1 = B′2 = 0 and h = 1/3), or by the statements I and III; (ii) (i.e. B1 = B′3 = 0
and g = 1/3) are satisfied. Therefore the condition (3g−1)(3h−1) = 0 is necessary.
This condition is governed by the invariant polynomial β1. So we assume β1 = 0
and due to Remark 3.3 we may consider h = 1/3. Then we calculate

γ4 = −16(g − 1)2(3g − 1)2B1B′2/81, β1 = 0,

θ = (g − 1)(1 + 3g)/9 6= 0, β2 = c(g − 1)(3g − 1)/2.

Solving the systems of equations B1

∣∣
h=1/3

= B′2 = 0 with respect to a and b we
obtain

a =
6c2(3g − 1)
(1 + 3g)2

≡ A0, b = −18c2(2g − 1)(3g − 1)
(1 + 3g)2

≡ B0.

In this case we obtain the family of systems
dx

dt
= A0 + cx+ gx2 − 2xy/3,

dy

dt
= B0 − cy + (g − 1)xy + y2/3, (3.12)

which possess two invariant hyperbolas:

Φ1(x, y) = −36c2(3g − 1)
(1 + 3g)2

+ 2xy = 0,

Φ2(x, y) = −36c2(3g − 1)
(1 + 3g)2

+
12c

1 + 3g
x+ 2x(x− y) = 0,

where c(3g − 1) 6= 0 due to a 6= 0. Thus for the irreducibility of the hyperbolas
above, the condition c(3g − 1) 6= 0 (i.e. β2 6= 0) is necessary.

Since the condition γ4 = 0 gives B1B′2 = 0 it remains to find out the invariant
polynomial which in addition to γ4 is responsible for the relation B1 = B′2 = 0. We
observe that in the case B1 = 0 (i.e. b = 3a(1− 2g)) we have

δ1 = (3g − 1)
[
a(1 + 3g)2 − 6c2(3g − 1)

]
/18 = (3g − 1)B′2/18.

It remains to observe that in the case considered we have R3 = a(3g − 1)3/18 6= 0
and that due to the condition β2 6= 0 (i.e. c(3g − 1) 6= 0) by Lemma 3.2 we could
not have a third hyperbola of the form Φ(x, y) = p+ qx+ ry+ 2y(x− y) = 0. This
completes the proof of the statement (A1) of the lemma.

3.1.4. Case β6 = 0. Then c = 0 and we calculate for systems (3.3)

β7 = 2α1α2α3, β9 = 2(α1α2 +α1α3 +α2α3), β8 = 2(4g−1)(4h−1)(3−4g−4h),

where α1 = 2g − 1, α2 = 2h− 1 and α3 = 1− 2g − 2h.
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Subcase β7 6= 0. Then α1α2α3 6= 0 and we consider two possibilities: β8 6= 0 and
β8 = 0.

Possibility β8 6= 0. We claim that in this case we could not have more than one
hyperbola. Indeed, as c = 0 we observe that all five polynomials Bi (i = 1, 2, 3),
B′2 and B′3 are linear (and homogeneous) with respect to a and b and the condition
a2+b2 6= 0 must hold. So in order to have nonzero solutions in (a, b) of the equations

U = V = 0, U ,V ∈ {B1,B2,B3,B′2,B′3}, U 6= V
it is necessary that the corresponding determinants det(U ,V) = 0. We have for
each couple, respectively:

(ω1) det(B1,B2) = −(2h− 1)(4h− 1) = 0;

(ω2) det(B1,B3) = −(2g − 1)(4g − 1) = 0;

(ω3) det(B2,B3) = (1− 2g − 2h)(3− 4g − 4h) = 0;

(ω4) det(B1,B′2)
∣∣
h=1/3

= (3g + 1)2/3;

(ω5) det(B1,B′3)
∣∣
g=1/3

= (3h+ 1)2/3;

(ω6) det(B′2,B3)
∣∣
{c=0, h=1/3} = (1 + 3g)2(6g − 1)(12g − 5)/3 = 0;

(ω7) det(B2,B′3)
∣∣
{c=0, g=1/3} = (1 + 3h)2(6h− 1)(12h− 5)/3 = 0;

(ω8) det(B′2,B′3)
∣∣
{h=1/3, g=1/3} = −16 6= 0.

(3.13)

We observe that the determinant (ω8) is not zero. Moreover since β7 6= 0 and
β8 6= 0 we deduce that none of the determinants (ωi) (i = 1, 2, 3) could vanish.

On the other hand for systems (3.3) with c = 0 we have θ = (g− 1)(3g+ 1)/9 in
the case h = 1/3 and θ = (h− 1)(3h+ 1)/9 in the case g = 1/3. Therefore due to
θ 6= 0 in the cases (ω4) and (ω5) we also could not have zero determinants.

Thus it remains to consider the cases (ω6) and (ω7). Considering Remark 3.3 we
observe that the case (ω7) could be brought to the case (ω6). So assuming h = 1/3
we calculate

β7 = 2(2g − 1)(6g − 1)/9, β8 = −2(4g − 1)(12g − 5)/9, θ = (g − 1)(3g + 1)/9

and hence the determinant corresponding to the case (ω6) could not be zero due to
θβ7β8 6= 0. This completes the proof of our claim.

Possibility β8 = 0. In this case we obtain (4g−1)(4h−1)(3−4g−4h) = 0 and due
to Remark 3.3 we may assume h = 1/4. Then det(B1,B2) = 0 (see the case (ω1))
and we obtain B1 = (2a− b− 4ag)/2 = −B2 = 0. Since in this case we have

δ2 = 2(2g − 1)(4g − 1)(b− 2a+ 4ag), β7 = (2g − 1)(4g − 1)/2

we conclude that due β7 6= 0 the condition 2a− b− 4ag = 0 is equivalent to δ2 = 0.
So setting b = 2a(1− 2g) we arrive at the family of systems

dx

dt
= a+ gx2 − 3xy/4,

dy

dt
= 2a(1− 2g) + (g − 1)xy + y2/4. (3.14)

These systems possess the invariant hyperbolas

Φ′′1(x, y) = −4a+ 2xy = 0, Φ′′2(x, y) = 4a+ 2x(x− y) = 0,

which are irreducible if and only if a 6= 0. Since for these systems we have

R5 = 9a(2x− 4gx− y)
[
16(g − 1)2x2 + 8(5g − 3)xy + 9y2

]
/4
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the condition a 6= 0 is equivalent to R5 6= 0. On the other hand for these systems
we calculate

B3 = −2a(2g − 1)(4g − 1), B′3
∣∣
h=1/4

= 49a/24

and because β7R5 6= 0 we obtain B3B′3 6= 0, i.e. systems (3.14) could not possess a
third hyperbola. This completes the proof of the statement (A2).

Subcase β7 = 0. Then (2g− 1)(2h− 1)(1− 2g− 2h) = 0 and due to Remark 3.3 we
may assume h = 1/2. Then by Lemma 3.2 we must have g(2g − 1) 6= 0 and this is
equivalent to β9 = −4g(2g− 1) 6= 0. Herein we have det(B1,B2) = 0 and we obtain
B1 = a(1− 2g) = 0 and B2 = 2ag = 0. This implies a = 0, which due to β9 6= 0 is
equivalent to δ3 = 16a2g2(2g − 1)2 = 0. So we obtain the family of systems

dx

dt
= gx2 − xy/2, dy

dt
= b+ (g − 1)xy + y2/2 (3.15)

which possess the following two hyperbolas

Φ1(x, y) = − 2b
2g − 1

+ 2xy = 0, Φ2(x, y) = − b
g

+ 2x(x− y) = 0.

These hyperbolas are irreducible if and only if b 6= 0 which is equivalent to R5 =
9bx
[
4(g − 1)2x2 + 4(3g − 1)xy + y2

]
6= 0.

For the above systems we have B3 = b(4g− 1) and B′3 = 25b/4. Since b 6= 0 only
the condition B3 = 0 could be satisfied and this implies g = 1/4. It is not too hard
to find out that in this case we obtain the third hyperbola:

Φ3(x, y) = −4b+ 2y(x− y) = 0.

We observe that for the systems above β8 = −2(4g − 1)2 and hence the third
hyperbola exists if and only if β8 = 0. So the statements (A3) and (B) are proved.

Since all the possibilities are examined, Lemma 3.5 is proved. �

3.2. Systems with three real infinite singularities and θ = 0. Considering
(3.2) for systems (3.1) we obtain (g−1)(h−1)(g+h) = 0 and we may assume g = −h,
otherwise in the case g = 1 (respectively h = 1) we apply the change (x, y, g, h) 7→
(−y, x− y, 1− g − h, g) (respectively (x, y, g, h) 7→ (y − x,−x, h, 1− g − h)) which
preserves the quadratic parts of systems (3.1).

So g = −h and for systems (3.1) we calculate N = 9(h2−1)(x−y)2. We consider
two cases: N 6= 0 and N = 0.

3.2.1. Case N 6= 0. Then (h − 1)(h + 1) 6= 0 and due to a translation we may
assume d = e = 0 and this leads to the family of systems

dx

dt
= a+ cx− hx2 + (h− 1)xy,

dy

dt
= b+ fy − (h+ 1)xy + hy2. (3.16)

Remark 3.6. We observe that by changing (x, y, a, b, c, f, h) 7→ (y, x, b, a, f, c,−h)
which conserves systems (3.16) we can change the sign of the parameter h.

Lemma 3.7. A system (3.16) with (h−1)(h+1) 6= 0 possesses at least one invariant
hyperbola of the indicated form if and only if the following conditions are satisfied,
respectively:

(I) Φ(x, y) = p+ qr + ry + 2xy ⇔ c+ f = 0, E1 ≡ a(2h+ 1) + b(2h− 1) = 0,
a2 + b2 6= 0;

(II) Φ(x, y) = p+ qr + ry + 2x(x− y) ⇔ c− f = 0 and either
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(i) (2h − 1)(3h − 1) 6= 0, E2 ≡ 2c2(h − 1)(2h − 1) + (3h − 1)2(b − 2a +
2ah− 2bh) = 0, a 6= 0, or

(ii) h = 1/3, c = 0, a 6= 0, or
(iii) h = 1/2, a = 0, b+ 4c2 6= 0;

(III) Φ(x, y) = p+ qr + ry + 2y(x− y) ⇔ c− f = 0 and either
(i) (2h + 1)(3h + 1) 6= 0, E3 ≡ 2c2(h + 1)(2h + 1) + (3h + 1)2(a − 2b −

2bh+ 2ah) = 0, b 6= 0, or
(ii) h = −1/3, c = 0, b 6= 0, or
(iii) h = −1/2, b = 0, a+ 4c2 6= 0.

Proof. As it was mentioned in the proof of Lemma 3.2 (see page 14) we may assume
that the quadratic part of an invariant hyperbola has one of the following forms:
(i) 2xy, (ii) 2x(x− y), (iii) 2y(x− y). Considering the equations (2.7) we examine
each one of these possibilities.

(i) Φ(x, y) = p+qx+ry+2xy; in this case because N 6= 0 (i.e. (h−1)(h+1) 6= 0)
we obtain

t = 1, q = r = s = u = 0, U = −2h− 1, V = 2h− 1, W = c+ f,

Eq8 = p(1 + 2h) + 2b, Eq9 = p(1− 2h) + 2a, Eq10 = −p(c+ f),
Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = Eq6 = Eq7 = 0.

Since in this case the hyperbola has the form Φ(x, y) = p + 2xy it is clear that
p 6= 0, otherwise we obtain a reducible hyperbola. So the condition c + f = 0 is
necessary.

Calculating the resultant of the non-vanishing equations with respect to the
parameter p we obtain

Resp(Eq8, Eq9) = 2[a(2h+ 1) + b(2h− 1)] = 2E1.

Since (2h− 1)2 + (2h+ 1)2 6= 0 we conclude that an invariant hyperbola exists if
and only if E1 = 0. Due to Remark 3.6 we may assume 2h− 1 6= 0. Then we obtain

p = 2a/(2h− 1), b = a(2h+ 1)/(2h− 1), Φ(x, y) =
2a

2h− 1
+ 2xy = 0

and clearly for the irreducibility of the hyperbola the condition a 6= 0 must hold.
This completes the proof of the statement I of the lemma.
(ii) Φ(x, y) = p+ qx+ ry + 2x(x− y); since (h− 1)(h+ 1) 6= 0 (because N 6= 0)

we obtain

s = 2, t = −1, r = u = 0, U = −2h, V = 2h− 1, W = (4c+ hq)/2,

Eq6 = 2(c− f), Eq8 = 4a− 2b+ 2hp− cg − hq2/2,
Eq9 = p(1− 2h)− 2a, Eq10 = −2cp+ aq − hpq/2,

Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = Eq7 = 0.
(3.17)

We observe that the equation Eq6 = 0 implies the condition c− f = 0.
(1) Assume first (2h − 1)(3h − 1) 6= 0. Then considering the equation Eq9 = 0

we obtain p = 2a/(1− 2h). As the hyperbola Φ(x, y) = p+ qx+ 2x(x− y) = 0 has
to be irreducible the condition p 6= 0 holds and this implies a 6= 0. Therefore from

Eq10 =
a(4c− q + 3hq)

2h− 1
= 0
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From 3h− 1 6= 0 we obtain q = 4c/(1− 3h) and then we obtain

Eq8 =
2E2

(2h− 1)(3h− 1)2
= 0.

So we deduce that the conditions c − f = 0, E2 = 0 and a 6= 0 are necessary and
sufficient for the existence of a hyperbola of systems (3.16) in the case (2h−1)(3h−
1) 6= 0.

(2) Suppose now h = 1/3. Then considering (3.17) we have Eq9 = (p− 6a)/3 =
0, i.e. p = 6a 6= 0 (otherwise we obtain a reducible hyperbola). Therefore the
equation Eq10 = −12ac = 0 yields c = 0. Herein the equation Eq8 = 0 becomes
Eq8 = [12(4a − b) − q2]/6 = 0, i.e. q = ±2

√
3(4a− b) and obviously we obtain at

leas one real hyperbola if 4a− b ≥ 0 and two complex if 4a− b < 0.
Thus in the case h = 1/3 we have at least one hyperbola if and only if the

conditions f = c = 0 and a 6= 0 hold.
(3) Assume finally h = 1/2. In this case we obtain Eq9 = −2a = 0, i.e. a = 0

and we have

Eq8 = −2b+ p− cq − q2/4 = 0, Eq10 = −p(8c+ q)/4 = 0,

Φ(x, y) = p+ qx+ 2x(x− y).

Therefore p 6= 0 and we obtain q = −8c and p = 2(b + 4c2) 6= 0. This completes
the proof of the statement II of the lemma.

(iii) Φ(x, y) = p + qx + ry + 2y(x − y); we observe that due to the change
(x, y, a, b, c, f, h) 7→ (y, x, b, a, c, f,−h) (which preserves systems (3.16)) this case
could be brought to the previous one and hence, the conditions could be constructed
directly applying this change.

Thus Lemma 3.7 is proved. �

We shall construct now the affine invariant conditions for the existence of at least
one invariant hyperbola for quadratic systems in the considered family.

Lemma 3.8. Assume that for a quadratic system (2.6) the conditions η > 0, θ = 0,
N 6= 0, and γ1 = γ2 = 0 hold. Then this system possesses at least one invariant
hyperbola if and only if one of the following sets of the conditions is satisfied:

(i) If β6 6= 0 then either
(i.1) β10 6= 0, γ7 = 0, R6 6= 0, or
(i.2) β10 = 0, γ4 = 0, β2R3 6= 0;

(ii) If β6 = 0 then either
(ii.1) β2 6= 0, β7 6= 0, γ8 = 0, β10R7 6= 0, or
(ii.2) β2 6= 0, β7 = 0, γ9 = 0, R8 6= 0, or
(ii.3) β2 = 0, β7 6= 0, β10 6= 0, γ7γ8 = 0, R5 6= 0, or
(ii.4) β2 = 0, β7 6= 0, β10 = 0, R3 6= 0, γ7 6= 0, or
(ii.5) β2 = 0, β7 6= 0, β10 = 0, R3 6= 0, γ7 = 0, or
(ii.6) β2 = 0, β7 = 0, γ7 = 0, R3 6= 0.

Proof. Assume that for a quadratic system (2.6) the conditions η > 0, θ = 0 and
N 6= 0 are fulfilled. As it was mentioned earlier due to an affine transformation
and time rescaling this system could be brought to the canonical form (3.16), for
which we calculate

γ1 = (c− f)2(c+ f)(h− 1)2(h+ 1)2(3h− 1)(3h+ 1)/64,
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β6 = (c− f)(h− 1)(h+ 1)/4, β10 = −2(3h− 1)(3h+ 1).

Subcase β6 6= 0. By Lemma 2.10 for the existence of an invariant hyperbola of
systems (3.16) the condition γ1 = 0 is necessary and this condition is equivalent to
(c+ f)(3h− 1)(3h+ 1) = 0. We examine two possibilities: β10 6= 0 and β10 = 0.

Possibility β10 6= 0. Then we obtain f = −c (this implies γ2 = 0) and we have

γ7 = 8(h− 1)(h+ 1) E1.

Therefore becuase β6 6= 0 the condition γ7 = 0 is equivalent to E1 = 0. So we have
a = λ(2h − 1), b = −λ(2h + 1) (where λ 6= 0 is an arbitrary parameter) and then
we calculate

R6 = −632λc(h− 1)(h+ 1).

Since β6 6= 0 we deduce that the condition R6 6= 0 is equivalent to a2 + b2 6= 0.
This completes the proof of the statement (i.1) of the lemma.

Possibility β10 = 0. Then we have (3h− 1)(3h+ 1) = 0 and by Remark 3.6 we may
assume h = 1/3. Then we obtain the 4-parameter family of systems

dx

dt
= a+ cx− x2/3− 2xy/3,

dy

dt
= b+ fy − 4xy/3 + y2/3, (3.18)

for which we calculate γ1 = 0 and

γ2 = 44800(c− f)2(c+ f)(2c− f)/243,

β6 = −2(c− f)/9, β2 = −4(2c− f)/9.

Since β6 6= 0 (i.e. c − f 6= 0) by Lemma 2.10 the necessary condition γ2 = 0 gives
(c+ f)(2c− f) = 0. We claim that for the existence of an invariant hyperbola the
condition 2c − f 6= 0 (i.e. β2 6= 0) must be satisfied. Indeed, setting f = 2c we
obtain β6 = 2c/9 6= 0. However, according to the Lemma 3.7, for the existence of
a hyperbola of systems (3.18), the condition (c+ f)(c− f) = 0 is necessary , which
for f = 2c becomes −3c2 = 0. The contradiction obtained proves our claim.

Thus the condition β2 6= 0 is necessary and then we have f = −c. By Lemma
3.7 in the case h = 1/3 we have an invariant hyperbola (which is of the form
Φ(x, y) = p+ qx+ ry+ 2xy = 0) if and only if E1 = (5a− b)/3 = 0 and a2 + b2 6= 0.

On the other hand for systems (3.18) with f = −c we calculate

γ4 = −4096c2E1/243, β6 = −4c/9, R3 = −4a/9.

So the statement (i.2) of the lemma is proved.

Subcase β6 = 0. Then f = c (this implies γ2 = 0) and we calculate

γ8 = 42(h− 1)(h+ 1)E2E3, β2 = c(h− 1)(h+ 1)/2,

β7 = −2(2h− 1)(2h+ 1), β10 = −2(3h− 1)(3h+ 1),

R7 = −(h− 1)(h+ 1)U(a, b, c, h)/4,

where U(a, b, c, h) = 2c2(h− 1)(h+ 1)− b(h+ 1)(3h− 1)2 + a(h− 1)(3h+ 1)2.
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Possibility β2 6= 0. Then c 6= 0 and we shall consider two cases: β7 6= 0 and β7 = 0.
(1) Case β7 6= 0. We observe that in this case for the existence of a hyperbola

the condition β10 6= 0 is necessary. Indeed, since f = c 6= 0 and (2h−1)(2h+1) 6= 0,
according to Lemma 3.7 (see the statements II and III for the existence of at least
one invariant hyperbola it is necessary and sufficient (3h−1)(3h+1) 6= 0 and either
E2 = 0 and a 6= 0, or E3 = 0 and b 6= 0.

We claim that the condition a 6= 0 (when E2 = 0) as well as the condition b 6= 0
(when E3 = 0) is equivalent to U(a, b, c, h) 6= 0. Indeed, as E2 as well as E3 and
U(a, b, c, h) are linear polynomials in a and b, then the equations E2 = U(a, b, c, h) =
0 (respectively E2 = U(a, b, c, h) = 0) with respect to a and b gives a = 0 and
b = 2c2(h− 1)/(3h− 1)2 (respectively b = 0 and a = −2c2(h+ 1)/(3h+ 1)2). This
proves our claim.

It remains to observe that the condition E2E3 = 0 is equivalent to γ8 = 0. So
this completes the proof of the statement (ii.1) of the lemma.

(2) Case β7 = 0. Then by Remark 3.6 we may assume h = 1/2 and since f = c,
by Lemma 3.7 for the existence of a hyperbola of systems (3.16) (with h = 1/2 and
f = c) the conditions a = 0 and b+ 4c2 6= 0. On the other hand we calculate

γ9 = 3a/2, R8 = (7a+ b+ 4c2)/8

and clearly these invariant polynomials govern the above conditions. So the state-
ment (ii.2) of the lemma is proved.

Possibility β2 = 0. In this case we have f = c = 0.
(1) Case β7 6= 0. Then (2h− 1)(2h+ 1) 6= 0.
(a) Subcase β10 6= 0. In this case (3h − 1)(3h + 1) 6= 0. By Lemma 3.7 we

could have an invariant hyperbola if and only if E1E2E3 = 0. On the other hand for
systems (3.16) with f = c = 0 we have

γ7γ8 = −336(h− 1)2(1 + h)2E1E2E3,
R5 = 36(bx− ay)(x− y)

[
(1 + h)2x− (h− 1)2y

]
and therefore the condition R5 6= 0 is equivalent to a2 + b2 6= 0. This completes
the proof of the statement (ii.3) of the lemma.

(b) Subcase β10 = 0. Then we have (3h− 1)(3h+ 1) = 0 and by Remark 3.6 we
may assume h = 1/3. By Lemma 3.7 we could have an invariant hyperbola if and
only if either the conditions I or II; (ii) of Lemma 3.7 are satisfied. In this case we
calculate

γ7 = −64E1/9, R3 = −4a/9

and hence, the condition R3 6= 0 implies the irreducibility of the hyperbola. There-
fore in the case γ7 6= 0 we arrive at the statement (ii.4) of the lemma, whereas for
γ7 = 0 the statement (ii.5) of the lemma holds.

(2) Case β7 = 0. Then (2h− 1)(2h+ 1) = 0 and by Remark 3.6 we may assume
h = 1/2. By Lemma 3.7 we could have an invariant hyperbola if and only if either
the conditions E1 = 2a = 0 and b 6= 0 (see statement I) or a = 0 and b 6= 0
(see statement II; (iii) of the lemma) are fulfilled. As we could see the conditions
coincide and hence by this lemma we have two hyperbolas: the asymptotes of one
of them are parallel to the lines x = 0 and y = 0, whereas the asymptotes of the
other hyperbola are parallel to the lines x = 0 and y = x.
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On the other hand for systems (3.16) (with h = 1/2 and f = c = 0) we calculate

γ7 = −12a, R3 = (5a− b)/16

and this leads to the statement (ii.6) of the lemma.
Since all the possibilities are considered, Lemma 3.8 is proved. �

Lemma 3.9. Assume that for a quadratic system (2.6) the conditions η > 0, θ = 0,
N 6= 0 and γ1 = γ2 = 0 are satisfied. Then this system possesses:

(A) three distinct invariant hyperbolas if and only if β6 = β2 = β10 = γ7 = 0,
β7R3 6= 0 and γ10 6= 0; more precisely all three hyperbolas are real (1 H
and 2 Hp) if γ10 > 0 and one is real and two are complex (1 H and 2

c

Hp)
if γ10 < 0;

(B) two distinct invariant hyperbolas if and only if β6 = 0 and either
(B1) β2 6= 0, β7 6= 0, γ8 = 0, β10R7 6= 0 and δ4 = 0 (⇒ 2 H), or
(B2) β2 6= 0, β7 = 0, γ9 = 0, R8 6= 0 and δ5 = 0 (⇒ 2 H), or
(B3) β2 = 0, β7 6= 0, β10 6= 0, γ7γ8 = 0, R5 6= 0 and β8 = δ2 = 0 (⇒ 2 H),

or
(B4) β2 = 0, β7 6= 0, β10 = 0, γ7 6= 0, R3 6= 0 and γ10 < 0 (⇒ 2

c

Hp)), or
(B5) β2 = 0, β7 6= 0, β10 = 0, γ7 6= 0, R3 6= 0 and γ10 > 0 (⇒ 2 Hp), or
(B6) β2 = 0, β7 = 0, γ7 = 0, R3 6= 0 (⇒ 2 H);

(C) one double (Hp2) invariant hyperbola if and only if β6 = β2 = 0, β7 6= 0,
β10 = 0, γ7 6= 0, R3 6= 0 and γ10 = 0.

Proof. For systems (3.16) we calculate

β6 = (c− f)(h− 1)(h+ 1)/4, β7 = −2(2h+ 1)(2h− 1),

β10 = −2(3h+ 1)(3h− 1), β2 =
[
(c+ f)(h2 − 1)− 8(c− f)h)

]
/4.

(3.19)

According to Lemma 3.7 in order to have at least two invariant hyperbolas the con-
dition c− f = 0 must hold. This condition is governed by the invariant polynomial
β6 and in what follows we assume β6 = 0 (i.e. f = c).

Case β2 6= 0. Then we have c 6= 0 and the conditions given by the statement I of
Lemma 3.7 could not be satisfied.

Case β7 6= 0. We observe that in this case due to c 6= 0 we could have two invariant
hyperbolas if and only if (3h−1)(3h+1) 6= 0 (i.e β10 6= 0), E2 = E3 = 0 and ab 6= 0.
The system of equations E2 = E3 = 0 with respect to the parameters a and b gives
the solution

a = −2c2(1 + h)3(2h− 1)
(3h− 1)2(1 + 3h)2

≡ a0, b = −2c2(h− 1)3(1 + 2h)
(3h− 1)2(1 + 3h)2

≡ b0, (3.20)

which exists and ab 6= 0 by the condition (2h− 1)(2h+ 1)(3h− 1)(3h+ 1) 6= 0.
In this case systems (3.16) with a = a0 and b = b0 possess the two hyperbolas

Φ(1)
1 (x, y) =

4c2(1 + h)3

(3h− 1)2(1 + 3h)2
− 4c

3h− 1
x+ 2x(x− y) = 0,

Φ(1)
2 (x, y) =

4c2(h− 1)3

(3h− 1)2(1 + 3h)2
− 4c

1 + 3h
y + 2y(x− y) = 0.

Since c 6= 0 by Lemma 3.7 we could not have a third invariant hyperbola.
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Now we need the invariant polynomials which govern the condition E2 = E3 = 0.
First we recall that for these systems we have γ8 = 42(h−1)(h+ 1)E2E3, and hence
the condition γ8 = 0 is necessary. In order to set E2 = 0 we use the following
parametrization:

c = c1(3h− 1)2, a = a1(2h− 1)

and then the condition E2 = 0 gives b = 2(h−1)(a1 +c21). Herein for systems (3.16)
with

f = c = c1(3h− 1)2, a = a1(2h− 1), b = 2(h− 1)(a1 + c21)

we calculate

E3 = 3
[
2c21(1 + h)3 + a1(1 + 3h)2

]
, δ4 = (h− 1)(2h− 1)E3/2

and hence the condition E3 = 0 is equivalent to δ4 = 0.
It remains to observe that in this case R7 = −3a1(h−1)4(h+1)/4 6= 0, otherwise

a1 = 0 and then the condition δ4 = 0 implies c1 = 0, i.e. c = 0 and this contradicts
to β2 6= 0. So we arrive at the statement (B1) of the lemma.

Case β7 = 0. Then (2h−1)(2h+1) = 0 and by Remark 3.6 we may assume h = 1/2.
In this case by Lemma 3.7 in order to have at least two hyperbolas the conditions
II; (iii) and III (i) have to be satisfied simultaneously. Therefore we arrive at the
conditions

a = 0, b+ 4c2 6= 0, E3 = (50a− 75b+ 24c2)/4 = 0

and as a = 0 we have b = 24c2/75 and b + 4c2 = 108c2/25 6= 0 due to β2 6= 0. So
we obtain the family of systems

dx

dt
= cx− x(x+ y)/2,

dy

dt
= 8c2/25 + cy − y(3x− y)/2 (3.21)

which possess the two invariant hyperbolas

Φ(2)
1 (x, y) = 216c2/25− 8cx+ 2x(x− y) = 0,

Φ(2)
2 (x, y) = −8c2/25− 8cy/5 + 2y(x− y) = 0.

These hyperbolas are irreducible due to β2 6= 0 (i.e. c 6= 0).
We need to determine the affine invariant conditions which are equivalent to

a = E3 = 0. For systems (3.16) with f = c and h = 1/2 we calculate

γ9 = 3a/2, δ5 = −3(25b− 8c2)/2

and obviously these invariant polynomials govern the conditions mentioned before.
It remains to observe that for systems (3.21) we have R8 = 108c2/25 6= 0 due to
β2 6= 0. This completes the proof of the statement (B2) of the lemma.

Case β2 = 0. Then c = 0 and by Lemma 3.7 systems (3.16) with f = c = 0 could
possess at least two invariant hyperbolas if and only if one of the following sets of
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conditions holds:
(φ1) E1 = E2 = 0, (2h− 1)(3h− 1) 6= 0, a 6= 0;

(φ2) E1 = E3 = 0, (2h+ 1)(3h+ 1) 6= 0, b 6= 0;

(φ3) E2 = E3 = 0, (2h− 1)(2h+ 1)(3h− 1)(3h+ 1) 6= 0, ab 6= 0;

(φ4) E1 = 0, h = 1/3, a 6= 0;

(φ5) E1 = a = 0, h = 1/2, b 6= 0;

(φ6) E1 = 0, h = −1/3, b 6= 0;

(φ7) E1 = b = 0, h = −1/2, a 6= 0.

(3.22)

As for systems (3.16) with f = c = 0 we have

β7 = −2(2h+ 1)(2h− 1), β10 = −2(3h+ 1)(3h− 1)

we consider two subcases: β7 6= 0 and β7 = 0.

Subcase β7 6= 0. Then (2h + 1)(2h − 1) 6= 0 and we examine two possibilities:
β10 6= 0 and β10 = 0.

(1) Possibility β10 6= 0. In this case (3h + 1)(3h − 1) 6= 0. We observe that
due to f = c = 0 all tree polynomials Ei are linear (homogeneous) with respect to
the parameters a and b. So each one of the sets of conditions (φ1)–(φ3) could be
compatible only if the corresponding determinant vanishes, i.e.

det(E1, E2)⇒ −(2h− 1)(3h− 1)2(4h− 1) = 0,

det(E1, E3)⇒ (2h+ 1)(3h+ 1)2(4h+ 1) = 0,

det(E2, E3)⇒ −3(3h− 1)2(3h+ 1)2 = 0,

(3.23)

otherwise we obtain the trivial solution a = b = 0. Clearly the third determinant
could not be zero due to the condition β10 6= 0, i.e. the conditions in the set (φ3)
are incompatible in this case. As regard the conditions (φ1) (respectively (φ2)) we
observe that they could be compatible only if 4h− 1 = 0 (respectively 4h+ 1 = 0).

On the other hand we have β8 = −6(4h − 1)(4h + 1) and we conclude that for
the existence of two hyperbolas in these case the condition β8 = 0 is necessary.

Assuming β8 = 0 we may consider h = 1/4 due to Remark 3.6 and we obtain

E1 = (3a− b)/2 = −16E2 = 0.

So we obtain b = 3a and we arrive at the systems
dx

dt
= a− x2/4− 3xy/4,

dy

dt
= 3a− 5xy/4 + y2/4, (3.24)

which possess the two invariant hyperbolas

Φ(3)
1 (x, y) = −4a+ 2xy = 0, Φ(3)

2 (x, y) = 4a+ 2x(x− y) = 0.

Clearly these hyperbolas are irreducible if and only if a 6= 0.
On the other hand for systems (3.16) with f = c = 0 and h = 1/4 we have

γ7 = −15(3a− b), γ8 = 15435(3a− 5b)(3a− b))/8192,

δ2 = −6(3a− b), R5 = 9(bx− ay)(25x− 9y)(x− y)/4.

We observe that the conditions E1 = E2 = 0 and a 6= 0 are equivalent to γ7 = 0 and
R5 6= 0. However to insert this possibility in the generic diagram (see Figure 1) we
remark that these conditions are equivalent to γ7γ8 = δ2 = 0 and R5 6= 0.
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It remains to observe that for the systems above we have E3 = 147a/8 6= 0 and,
hence we could not have a third hyperbola. So the statement (B3) of the lemma is
proved.

(2) Possibility β10 = 0. In this case (3h + 1)(3h − 1) = 0 and without loss of
generality we may assume h = 1/3 due to the change (x, y, a, b, h) 7→ (y, x, b, a,−h),
which conserves systems (3.16) with f = c = 0 and transfers the conditions (φ6) to
(φ4).

So h = 1/3 and we arrive at the following 2-parameter family of systems

dx

dt
= a− x2/3− 2xy/3,

dy

dt
= b− 4xy/3 + y2/3, (3.25)

for which we have E1 = (5a− b)/3 and we shall prove the next statements:
• if E1 6= 0, 4a − b < 0 and a 6= 0 we have 2 complex invariant hyperbolas

c

Hp;
• if E1 6= 0, 4a− b > 0 and a 6= 0 we have 2 real invariant hyperbolas Hp;
• if E1 6= 0, 4a− b = 0 and a 6= 0 we have one double invariant hyperbola Hp2.
• if E1 = 0, 4a− b > 0 and a 6= 0 we have 3 real invariant hyperbolas (two of

them being Hp);
• if E1 = 0, 4a − b < 0 and a 6= 0 we have 1 real and two complex invariant

hyperbolas (of the type
c

Hp).
So we consider two cases: E1 6= 0 and E1 = 0

(a) Case E1 6= 0. In this case by Lemma 3.7 we could not have an invariant
hyperbola with the quadratic part of the form xy. However systems (3.25) possess
the following two invariant hyperbola:

Φ(4)
1,2(x, y) = 3a±

√
3(4a− b)x+ x(x− y) = 0

and these conics are irreducible if and only if a 6= 0. Moreover the above hyperbolas
have parallel asymptotes and they are real if 4a− b > 0 (i.e . we have two Hp) and

complex if 4a−b < 0 (i.e. we have two
c

Hp). We observe that in the case 4a−b = 0
the hyperbola Φ(4)

1,2(x, y) = 0 collapse and we obtain a hyperbola of multiplicity two
(i.e . we have Hp2).

(b) Case E1 = 0. Then b = 5a and we obtain the following 1-parameter family
of systems

dx

dt
= a− x2/3− 2xy/3,

dy

dt
= 5a− 4xy/3 + y2/3. (3.26)

which possess three invariant hyperbolas

Φ(4)
1,2(x, y) = 3a±

√
−3a x+ x(x− y) = 0, Φ(4)

3 (x, y) = 3a− xy = 0.

These conics are irreducible if and only if a 6= 0. Also the hyperbolas Φ(4)
1,2(x, y) = 0

have parallel asymptotes and they are real if a < 0 and complex if a > 0.
Thus the above statements are proved and in order to determine the correspond-

ing invariant conditions, for systems (3.16) with c = f = 0 and h = 1/3 we calculate

γ7 = −64(5a− b)/27, γ10 = 8(4a− b)/27, R3 = −4a/9.

Considering the conditions given by the above statements it is easy to observe that
the corresponding invariant conditions are given by the statements (B4), (B5), (C)
and (A) of Lemma 3.9, respectively.
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Subcase β7 = 0. Then (2h + 1)(2h − 1) = 0 and by Remark 3.6 we may assume
h = 1/2. Considering (3.23) we conclude that only the case (φ5) could be satisfied
and we obtain the additional conditions: a = 0, b 6= 0. Therefore we arrive at the
family of systems

dx

dt
= −x2/2− xy/2, dy

dt
= b− 3xy/2 + y2/2, (3.27)

which possess the following two hyperbolas

Φ(5)
1 , (x, y) = −b+ 2xy = 0, Φ(5)

2 (x, y) = 2b+ 2x(x− y) = 0.

We observe that the condition a = 0 is equivalent to γ7 = −12a = 0. Regarding
the condition b 6= 0, in the case a = 0 it is equivalent to R3 = −b/16 6= 0. Since for
these systems we have E3 = 75b/4 6= 0 we deduce that we could not have a third
invariant hyperbola. This completes the proof of the statement (B6) of the lemma.

Since all the cases are examined, Lemma 3.9 is proved. �

3.2.2. Case N = 0. As θ = −(g − 1)(h − 1)(g + h)/2 = 0 we observe that the
condition N = 0 implies the vanishing of two factors of θ. We may assume g =
1 = h, otherwise in the case g + h = 0 and g − 1 6= 0 (respectively h − 1 6= 0) we
apply the change (x, y, g, h) 7→ (−y, x − y, 1 − g − h, g) (respectively (x, y, g, h) 7→
(y − x,−x, h, 1− g − h)) which preserves the form of systems (3.1).

So g = h = 1 and from an additional translation, systems (3.1) become

dx

dt
= a+ dy + x2,

dy

dt
= b+ ex+ y2. (3.28)

Lemma 3.10. A system (3.28) possesses at least one invariant hyperbola of the
indicated form if and only if the corresponding conditions on the right hand side
are satisfied:

I Φ(x, y) = p+ qr + ry + 2xy ⇔ d = e = 0 and a− b = 0;
II Φ(x, y) = p + qr + ry + 2x(x − y) ⇔ d = 0, M1 ≡ 64a − 16b − e2 = 0,

16a+ e2 6= 0;
III Φ(x, y) = p + qr + ry + 2y(x − y) ⇔ e = 0, M2 ≡ 64b − 16a − d2 = 0,

16b+ d2 6= 0.

Proof. As it was mentioned in the proof of Lemma 3.2 (see page 14) we may assume
that the quadratic part of an invariant hyperbola has one of the following forms:
(i) 2xy, (ii) 2x(x− y), (iii) 2y(x− y). Considering the equations (2.7) we examine
each one of these possibilities.

(i) Φ(x, y) = p+ qx+ ry + 2xy; in this case we obtain

t = 1, s = u = 0, p = (4b+ q2 + qr)/2, U = 1, V = 1, W = −(q + r)/2,

Eq9 = (4a− 4b− q2 + r2)/2, Eq10 = 4aq + 4b(q + 2r) + q(q + r)2,
Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = Eq6 = Eq7 = Eq8 = 0.

Calculating the resultant of the non-vanishing equations with respect to the pa-
rameter r we obtain

Resr(Eq9, Eq10) = (a− b)(4b+ q2)2/4.

If b = −q2/4 then we obtain the hyperbola Φ(x, y) = (r+ 2x)(q+ 2y)/2 = 0, which
is reducible.
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Thus b = a and we obtain

Eq9 = −(q − r)(q + r)/2 = 0, Eq10 = (q + r)(8a+ q2 + qr)/4 = 0.

It is not too difficult to observe that the case q+r 6= 0 (then q = r) leads to reducible
hyperbola (as we obtain b = a = −q2/4, see the case above). So q = −r and the
above equations are satisfied. This leads to the invariant hyperbola Φ(x, y) =
2a− rx+ ry + 2xy = 0. Considering Remark 2.11 we calculate ∆ = −(4a+ r2)/2.
So the hyperbola above is irreducible if and only if 4a + r2 6= 0. Thus any system
belonging to the family

dx

dt
= a+ x2,

dy

dt
= a+ y2 (3.29)

possesses one-parameter family of invariant hyperbolas Φ(x, y) = 2a − r(x − y) +
2xy = 0, where r ∈ R is a parameter satisfying the relation 4a + r2 6= 0. This
completes the proof of the statement I of the lemma.

(ii) Φ(x, y) = p+ qx+ ry + 2x(x− y); in this case we obtain

s = 2, t = −1, u = 0, p = (8a− 4b+ 4de− 2e2 + q2)/4,

r = 2d− e− q, U = 2, V = 1, W = −(2e+ q)/2, Eq7 = −2d

and hence the condition d = 0 is necessary. Then we calculate

Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = Eq6 = Eq7 = Eq8 = 0,

Eq9 = −4a+ b− (2e2 + 6eq + 3q2)/4,

Eq10 =
[
16a(e+ q)− 4b(4e+ 3q) + (2e+ q)(q2 − 2e2)

]
/8,

Resq(Eq9, Eq10) = −(64a− 16b− e2)(4a− 4b− e2)2/256.

(1) Assume first 64a− 16b− e2 = 0. Then b = 4a− e2/16 and we obtain

Eq9 = −3(e+2q)(3e+2q)/16 = 0, Eq10 = −(3e+2q)(64a+4e2−eq−2q2)/32 = 0.

(1a) If q = −3e/2 all the equations vanish and we arrive at the invariant hyper-
bola

Φ(x, y) = −2a+ e2/8 + e(−3x+ y)/2 + 2x(x− y) = 0

for which we calculate ∆ = (16a+ e2)/8. Therefore this hyperbola is irreducible if
and only if 16a+ e2 6= 0.

(1b) In the case 3e + 2q 6= 0 we have q = −e/2 6= 0 and the equation Eq10 = 0
implies e(16a+ e2) = 0. Therefore because e 6= 0 we obtain 16a+ e2 = 0. However
in this case we have the hyperbola

Φ(x, y) = −(16a+ 3e2)/8− e(x+ y)/2 + 2x(x− y) = 0,

the determinant of which equals (16a+ e2)/8 and hence the condition above leads
to an irreducible hyperbola.

(2) Suppose now 4a− 4b− e2 = 0, i.e. b = a− e2/4. Herein we obtain

Eq9 = −3
[
4a+ (e+ q)2

]
/4 = 0, Eq10 = q

[
4a+ (e+ q)2

]
/8 = 0

and the hyperbola

Φ(x, y) = 2x(x− y) + qx− (e+ q)y + (4a− e2 + q2)/4 = 0,

for which we calculate ∆ = −[4a + (e + q)2
]
/4. Obviously the condition Eq9 = 0

implies ∆ = 0 and hence the invariant hyperbola is reducible. So in the case d = 0
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and 4a− 4b− e2 = 0 systems (3.28) could not possess an invariant hyperbola and
the statement II of the lemma is proved.

(iii) Φ(x, y) = p + qx + ry + 2y(x − y); we observe that because the change
(x, y, a, b, d, e) 7→ (y, x, b, a, e, d) (which preserves systems (3.28)) this case could be
brought to the previous one and hence, the conditions could be constructed directly
applying this change. Thus Lemma 3.10 is proved. �

Lemma 3.11. Assume that for a quadratic system (2.6) the conditions η > 0 and
θ = N = 0 hold. Then this system could possess either a single invariant hyperbola
or a family of invariant hyperbolas. More precisely, it possesses:

(i) one invariant hyperbola if and only if β1 = 0, R9 6= 0 and either (i.1)
β2 6= 0 and γ11 = 0, or (i.2) β2 = γ12 = 0;

(ii) a family of such hyperbolas if and only if β1 = β2 = γ13 = 0.

Proof. For systems (3.28) we calculate

β1 = 4de, β2 = −2(d+ e), γ11 = 19de(d+ e) + eM1 + dM2,

R9

∣∣
d=0

=
[
5(16a+ e2)−M1

]
/2, R9

∣∣
e=0

=
[
5(16b+ d2)−M2

]
/2.

By Lemma 3.10 the condition de = 0 (i.e. β1 = 0) is necessary for a system (3.28)
to possess an invariant hyperbola.

Subcase β2 6= 0. Then d2 +e2 6= 0 and considering the values of the above invariant
polynomials by Lemma 3.10 we deduce that the statement (i.1) of the lemma is
proved.

Subcase β2 = 0. In this case we obtain d = e = 0 and we calculate

γ13 = 4(a− b), R9 = 8(a+ b), γ12 = −128(a− 4b)(4a− b) =M1M2/2.

Therefore by Lemma 3.10 in the case γ12 = 0 we arrive at the statement (i.2),
whereas for γ13 = 0 we arrive at the statement (ii) of the lemma.

It remains to observe that if the systems (3.28) possess the family we men-
tioned of invariant hyperbolas, then they have the form (3.29), depending on the
parameter a. We may assume a ∈ {−1, 0, 1} due to the rescaling (x, y, t) 7→
(|a|1/2x, |a|1/2y, |a|−1/2t).

3.3. Systems with two real distinct infinite singularities and θ 6= 0. For this
family of systems by Lemma 2.9 the conditions η = 0 and M 6= 0 are satisfied and
then via a linear transformation and time rescaling systems (2.6) could be brought
to the following family of systems:

dx

dt
= a+ cx+ dy + gx2 + hxy,

dy

dt
= b+ ex+ fy + (g − 1)xy + hy2.

(3.30)

For this systems we calculate

C2(x, y) = x2y, θ = −h2(g − 1)/2 (3.31)
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and since θ 6= 0 due to a translation we may assume d = e = 0. So in what follows
we consider the family of systems

dx

dt
= a+ cx+ gx2 + hxy,

dy

dt
= b+ fy + (g − 1)xy + hy2.

(3.32)

�

Lemma 3.12. A system (3.32) could not posses more than one invariant hyperbola.
And it possesses one such hyperbola if and only if c+f = 0, G1 ≡ a(1−2g)+2bh = 0
and a 6= 0.

Proof. Since C2 = x2y we may assume that the quadratic part of an invariant
hyperbola has the form 2xy. Considering the equations (2.7) and the condition
θ 6= 0 (i.e. h(g − 1) 6= 0) for systems (3.32) we obtain

t = 1, s = u = q = r = 0, p = a/h, U = 2g − 1, V = 2h, W = c+ f,

Eq8 = (a− 2ag + 2bh)/h = G1/h, Eq10 = −a(c+ f)/h,
Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = Eq6 = Eq7 = Eq9 = 0.

Since the hyperbola (2.5) in this case becomes Φ(x, y) = a/h+2xy = 0 the condition
a 6= 0 is necessary in order to have an invariant hyperbola. Then the equation
Eq10 = 0 implies c+ f = 0 and the condition Eq8/h = 0 yields G1 = 0. Since h 6= 0
we set b = a(2g − 1)/(2h) and this leads to the family of systems

dx

dt
= a+ cx+ gx2 + hxy,

dy

dt
=
a(2g − 1)

2h
− cy + (g − 1)xy + hy2,

(3.33)

which possess the invariant hyperbola

Φ(x, y) =
a

h
+ 2xy = 0.

This completes the proof of the lemma. �

Next we determine the corresponding affine invariant conditions.

Lemma 3.13. Assume that for a quadratic system (2.6) the conditions η = 0,
M 6= 0 and θ 6= 0 hold. Then this system possesses a single invariant hyperbola
(which could be simple or double) if and only if one of the following sets of the
conditions hold, respectively:

(i) β2β1 6= 0, γ1 = γ2 = 0, R1 6= 0: simple;
(ii) β2 6= 0, β1 = γ1 = γ4 = 0, R3 6= 0: simple if δ1 6= 0 and double if δ1 = 0;
(iii) β2 = β1 = γ14 = 0, R10 6= 0: simple if β7β8 6= 0 and double if β7β8 = 0.

Proof. For systems (3.32) we calculate

γ1 = (2c− f)(c+ f)2h4(g − 1)2/32, β2 = h2(2c− f)/2.

According to Lemma 2.10 for the existence of an invariant hyperbola the condition
γ1 = 0 is necessary and therefore we consider two cases: β2 6= 0 and β2 = 0.
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3.3.1. Case β2 6= 0. Then 2c − f 6= 0 and the condition γ1 = 0 implies f = −c.
Then we calculate

γ2 = 14175c2h5(g − 1)2(3g − 1)G1, β2 = 3ch2/2,

β1 = −3c2h2(g − 1)(3g − 1)/4, R1 = −9ach4(g − 1)2(3g − 1)/8

and we examine two subcases β1 6= 0 and β1 = 0.

Subcase β1 6= 0. Then the necessary condition γ2 = 0 (see Lemma 2.10) gives G1 = 0
and by Lemma 3.12 systems (3.32) possess an invariant hyperbola. We claim that
this hyperbola could not be double. Indeed, since the condition θ 6= 0 holds we
apply Lemma 3.5 which provides necessary and sufficient conditions in order to
have at least two hyperbolas. According to this lemma the condition β1 = 0 is
necessary for the existence of at least two hyperbolas. So it is clear that in this case
the hyperbola of systems (3.33) could not be double due to β1 6= 0. This completes
the proof of the statement (i) of the lemma.

Subcase β1 = 0. Because β2 6= 0 (i.e. c 6= 0) this implies g = 1/3 and then γ2 = 0
and

γ4 = 16h6(a+ 6bh)2/3 = 48h6G2
1 , R3 = 3bh3/2.

Therefore the condition γ4 = 0 is equivalent to G1 = 0 and in this case R3 6= 0
gives b 6= 0 which is equivalent to a 6= 0. By Lemma 3.12 systems (3.32) possess
a hyperbola. We claim that this hyperbola is double if and only if the condition
a = −12c2 holds.

Indeed, as we would like after some perturbation to have two hyperbolas, then
the respective conditions provided by Lemma 3.5 must hold. We calculate:

β1 = 0, β2 = 3ch2/2, β6 = ch/3, γ4 = 0, δ1 = −(a+ 12c2)h2/4

and since β6 6= 0 (because β2 6= 0) we could have a double hyperbola only if the
identities provided by the statement (A1) are satisfied. Therefore the condition
δ1 = 0 is necessary and due to θ 6= 0 (i.e. h 6= 0) we obtain a = −12c2.

So our claim is proved and we obtain the family of systems
dx

dt
= −12c2 + cx+ x2/3 + hxy,

dy

dt
= 2c2/h− cy − 2xy/3 + hy2, (3.34)

which possess the hyperbola Φ(x, y) = −12c2/h+ 2xy = 0. The perturbed systems

dx

dt
= −18c2(2h+ ε)(3h+ ε)

(3h− ε)2
+ cx+ x2/3 + (h+ ε)xy,

dy

dt
=

6c2(3h+ ε)
(3h− ε)2

− cy − 2xy/3 + hy2, |ε| � 1
(3.35)

possess the two distinct invariant hyperbolas:

Φε1(x, y) = −36c2(3h+ ε)
(3h− ε)2

+ 2xy = 0,

Φε2(x, y) = −36c2(3h+ ε)
(3h− ε)2

− 12cε
3h− ε

y + 2y(x+ εy) = 0.

It remains to observe that the hyperbola Φ(x, y) = −12c2/h+2xy = 0 could not be
triple, because in this case for systems (3.34) the necessary conditions provided by
the statement (B) of Lemma 3.5 to have three invariant hyperbolas are not satisfied:
we have β6 6= 0.
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Thus the statement (ii) of the lemma is proved.

3.3.2. Case β2 = 0. Then f = 2c and this implies γ1 = 0. On the other hand we
calculate

γ2 = −14175ac2(g − 1)3(1 + 3g)h5, β1 = −9c2(g − 1)2h2/16

and since f = 2c, according to Lemma 3.12 the condition c = 0 is necessary in
order to have an invariant hyperbola. The condition c = 0 is equivalent to β1 = 0
and this implies γ2 = 0. It remains to detect invariant polynomials which govern
the conditions G1 = 0 and a 6= 0. For c = 0 we have

γ14 = 80h3
[
a(1− 2g) + 2bh

]
= 80h3G1, R10 = −4ah2.

So for β1 = β2 = 0, γ14 = 0 and R10 6= 0 systems (3.33) (with c = 0) possess the
invariant hyperbola Φ(x, y) = a/h+ 2xy = 0.

Next we shall determine the conditions under which this hyperbola is simple or
double. In accordance with Lemma 3.5 we calculate:

β1 = β6 = 0, β7 = −8(2g − 1)h2.

We examine two possibilities: β7 6= 0 and β7 = 0.

Possibility β7 6= 0. According to Lemma 3.5 for systems (3.33) with c = 0 could be
satisfied only the identities given by the statement (A2). So we have to impose the
following conditions:

γ5 = β8 = δ2 = 0.

We have β8 = −32(4g − 1)h2 = 0 which implies g = 1/4. Then we obtain γ5 =
δ2 = 0 and we obtain the family of systems

dx

dt
= a+ x2/4 + hxy,

dy

dt
= −a/(4h)− 3xy/4 + hy2, (3.36)

which possess the hyperbola Φ(x, y) = a/h + 2xy = 0. On the other hand we
observe that the perturbed systems

dx

dt
= a+

ε

2h
+ x2/4 + (h+ ε)xy,

dy

dt
= −a/(4h)− 3xy/4 + hy2, (3.37)

which possess the two distinct invariant hyperbolas:

Φε1(x, y) = a/h+ 2xy = 0, Φε2(x, y) = a/h+ 2y(x+ εy) = 0.

Since β7 6= 0, according to Lemma 3.5 the hyperbola Φ(x, y) = a/h+2xy = 0 could
not be triple.

Possibility β7 = 0. In this case we obtain g = 1/2 and this implies γ8 = δ3 = 0.
Hence the identities given by the statement (A3) of Lemma 3.5 are satisfied. In
this case we obtain the family of systems

dx

dt
= a+ x2/2 + hxy,

dy

dt
= −xy/2 + hy2, (3.38)

which possess the hyperbola Φ(x, y) = a/h + 2xy = 0. On the other hand we
observe that the perturbed systems

dx

dt
= a+ x2/2 + (h+ ε)xy,

dy

dt
= −xy/2 + hy2, (3.39)
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possess the two distinct invariant hyperbolas:

Φε1(x, y) =
2a

2h+ ε
+ 2xy = 0, Φε2(x, y) = a/h+ 2y(x+ εy) = 0.

Since for systems (3.38) we have β8 = −32h2 6= 0, according to Lemma 3.5 the
hyperbola Φ(x, y) = a/h+ 2xy = 0 could not be triple.

It remains to observe that the conditions of the statement (B) of Lemma 3.5 in
order to have three invariant hyperbolas could not be satisfied for systems (3.33)
(i.e. the necessary conditions for these systems to possess a triple hyperbola).
Indeed for systems (3.33) we have

β7 = −8(2g − 1)h2, β8 = −32(4g − 1)h2, θ = −(g − 1)h2/2

and hence the conditions β7 = 0 and β8 = 0 are incompatible due to θ 6= 0. As all
the cases are examined we deduce that Lemma 3.13 is proved. �

3.4. Systems with two real distinct infinite singularities and θ = 0. By
Lemma 2.9 systems (2.6) via a linear transformation could be brought to the sys-
tems (3.30) for which we have

θ = −h2(g − 1)/2, β4 = 2h2, N = (g2 − 1)2x2 + 2h(g − 1)xy + h2y2. (3.40)

We shall consider to cases: N 6= 0 and N = 0.

3.4.1. Case N 6= 0. Since θ = 0 we obtain h(g − 1) = 0 and (g2 − 1)2 + h2 6= 0. So
we examine two subcases: β4 6= 0 and β4 = 0.

Subcase β4 6= 0. Then h 6= 0 (this implies N 6= 0) and we obtain g = 1. Applying
a translation and the additional rescaling y → y/h we may assume c = f = 0 and
h = 1. So in what follows we consider the family of systems

dx

dt
= a+ dy + x2 + xy,

dy

dt
= b+ ex+ y2. (3.41)

Lemma 3.14. A system (3.41) possesses an invariant hyperbola if and only if
e = 0, L1 ≡ 9a− 18b+ d2 = 0 and a+ d2 6= 0.

Proof. Since C2 = x2y we determine that the quadratic part of an invariant hy-
perbola has the form 2xy. Considering the equations (2.7) for systems (3.41) we
obtain

t = 1, s = u = 0, r = 2d, p = 2b+ 2de+ dq + q2/2,

U = 1, V = 2, W = −(q + r)/2, Eq5 = e,

Eq1 = Eq2 = Eq3 = Eq4 = Eq6 = Eq7 = Eq8 = 0.

Therefore the condition Eq5 = 0 yields e = 0 and then we have

Eq9 = 2a− 4b+ 2d2 − q2, Eq10 = aq + b(4d+ q) + q(2d+ q)2/4.

Clearly in order to have a common solution of the equations Eq9 = Eq10 = 0 with
respect to the parameter q the condition

Resq(Eq9, Eq10) = (a+ d2)2(9a− 18b+ d2)/2 = 0

is necessary. We claim that the condition a+ d2 = 0 leads to a hyperbola. Indeed,
setting a = −d2 we obtain Eq9 = −(4b+ q2) = 0. On the other hand we obtain the
hyperbola

Φ(x, y) = 2b+ dq + q2/2 + qx+ 2dy + 2xy = 0
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for which by considering Remark 2.11 we calculate ∆ = −(4b + q2)/2. Therefore
the equation Eq9 = −(4b + q2) = 0 leads to an invariant hyperbola. This proves
our claim.

So a+d2 6= 0 and we set b = (9a+d2)/18. Then Eq9 = 0 gives (4d−3q)(4d+3q) =
0 and we examine two subcases: q = 4d/3 and q = −4d/3.

(1) Assuming q = 4d/3 we obtain Eq10 = 4d(a + d2) = 0. Since a + d2 6= 0 we
have d = 0 and this leads to the family of systems

dx

dt
= a+ x2 + xy,

dy

dt
= a/2 + y2. (3.42)

These systems possess the invariant hyperbola Φ(x, y) = a+ 2xy = 0.
(2) Suppose now q = −4d/3. This implies Eq10 = 0 and we obtain the systems

dx

dt
= a+ dy + x2 + xy,

dy

dt
= (9a+ d2)/18 + y2, (3.43)

which possess the invariant hyperbola

Φ1(x, y) = (3a− d2)/3− 2d(2x− 3y)/3 + 2xy = 0.

Its determinant ∆ equals −(a+ d2) and hence, the conic is irreducible if and only
if a+ d2 6= 0.

It remains to observe that the family of systems (3.42) is a subfamily of the family
(3.43) (corresponding to d = 0) and this complete the proof of the lemma. �

Subcase β4 = 0. This implies h = 0 and the condition N 6= 0 gives g2−1 6= 0. Using
a translation we may assume e = f = 0 and we arrive at the family of systems

dx

dt
= a+ cx+ dy + gx2,

dy

dt
= b+ (g − 1)xy. (3.44)

Lemma 3.15. A system (3.44) possesses at least one invariant hyperbola if and
only if d = 0, 2g − 1 6= 0 and either

(i) 3g − 1 6= 0, K1 ≡ c2(1− 2g) + a(3g − 1)2 = 0 and b 6= 0, or
(ii) g = 1/3, c = 0 and b 6= 0.

Moreover in the second case we have two real hyperbolas (Hp) if a < 0; two complex

hyperbolas (
c

Hp) if a > 0 and these hyperbolas coincide if a = 0.

Proof. As earlier we assumed that the quadratic part of an invariant hyperbola has
the form 2xy and considering the equations (2.7) for systems (3.44) we obtain

t = 1, s = u = q = 0, U = 2g − 1, V = 0, W = c− gr/2,
Eq7 = 2d, Eq8 = 2b+ p(1− 2g), Eq9 = 2a− cr + gr2/2,

Eq10 = br − cp+ gpr/2, Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = Eq6 = 0.

Therefore the condition Eq7 = 0 yields d = 0 and we claim that the condition
2g−1 6= 0 must hold. Indeed, supposing g = 1/2 the equation Eq8 = 0 yields b = 0
and then

Eq9 = 2a+ r(r − 4c)/4 = 0, Eq10 = p(r − 4c)/4 = 0.

Since p 6= 0 (otherwise we obtain a reducible hyperbola) we obtain r = 4c, however
in this case Eq9 = 0 implies a = 0 and we arrive at degenerate systems. This
completes the proof of our claim.
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Thus we have 2g − 1 6= 0 and then the equation Eq8 = 0 gives p = 2b/(2g − 1)
and we obtain:

Eq10 = b(2c+ r − 3gr))/(1− 2g).

Since in this case the hyperbola is of the form

Φ(x, y) =
2b

2g − 1
+ ry + 2xy = 0

it is clear that the condition b 6= 0 must hold and, therefore we obtain 2c+r(1−3g) =
0.

(1) Assume first 3g − 1 6= 0. Then we obtain r = 2c/(3g − 1) and the equation
Eq9 = 0 becomes

Eq9 =
2

(3g − 1)2
[
c2(1− 2g) + a(3g − 1)2

]
=

2
(3g − 1)2

K1 = 0.

The condition K1 = 0 implies a = c2(2g − 1)/(3g − 1)2 and we arrive at the family
of systems

dx

dt
=
c2(2g − 1)
(3g − 1)2

+ cx+ gx2,
dy

dt
= b+ (g − 1)xy, (3.45)

possessing the invariant hyperbola

Φ(x, y) =
2b

2g − 1
+

2c
3g − 1

y + 2xy = 0,

which is irreducible if and only if b 6= 0.
(2) Suppose now g = 1/3. In this case the equation Eq10 = 0 yields c = 0 and

then we obtain p = −6b and the equation Eq9 = 0 becomes Eq9 = (12a+ r2)/6 =
0. Therefore for the existence of an invariant hyperbola the condition a ≤ 0 is
necessary. In this case setting a = −3z2 ≤ 0 we arrive at the family of systems

dx

dt
= a+ x2/3,

dy

dt
= b− 2xy/3, (3.46)

possessing the two invariant conics

Φ1,2(x, y) = 3b±
√
−3a y − xy = 0,

which are irreducible if and only if b 6= 0. Clearly these hyperbolas are real for
a < 0, they are complex for a > 0 and coincide (and we obtain a double one) if
a = 0. �

Lemma 3.16. Assume that for a quadratic system (2.6) the conditions η = 0,
M 6= 0, θ = 0 and N 6= 0 are satisfied. Then this system could possess either
a single invariant hyperbola, or two distinct (Hp) such hyperbolas, or one triple
invariant hyperbola. More precisely, it possesses:

(i) one invariant hyperbola if and only if either
(i.1) β4 6= 0, β3 = γ8 = 0 and R7 6= 0 (simple if δ4 6= 0 and double if

δ4 = 0), or
(i.2) β4 = β6 = 0, β11R11 6= 0, β12 6= 0 and γ15 = 0 (simple if γ2

16 + δ26 6= 0
and double if γ16 = δ6 = 0);

(ii) two distinct invariant hyperbolas (both simple) if and only if β4 = β6 = 0,
β11R11 6= 0, β12 = γ16 = 0 and γ17 6= 0. Moreover these hyperbolas are real

(Hp) if γ17 < 0 and they are complex (
c

Hp) if γ17 > 0;
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(iii) one triple invariant hyperbola (which splits into three distinct hyperbolas,
two of them being (Hp)) if and only if β4 = β6 = 0, β11R11 6= 0, β12 =
γ16 = 0 and γ17 = 0.

Proof. Assume that for a quadratic system (2.6) the conditions η = 0, M 6= 0,
θ = 0 and N 6= 0.

Case β4 6= 0. As it was shown earlier in this case via an affine transformation
and time rescaling the system could be brought to the form (3.41), for which we
calculate

γ1 = −9de2/8, β3 = −e/4,
and by Lemma 3.14 the condition β3 = 0 is necessary in order to have an invariant
hyperbola. In this case we obtain

γ8 = 42(9a− 18b+ d2)2 = 42L2
1, R7 = −L1/8− (a+ d2)/3

and considering Lemma 3.14 for β3 = γ8 = 0 we obtain systems (3.43) possessing
the hyperbola Φ(x, y) = (3a − d2)/3 − 2d(2x − 3y)/3 + 2xy = 0. To detect its
multiplicity we apply Lemma 2.12 setting k = 2. So in order to have the polynomial
Φ(x, y) as a double factor in Ek, we force its cofactor in E2 to be zero along the
curve Φ(x, y) = 0 (i.e we set y = (−3a+ d2 + 4dx)/(6(d+ x))). We obtain

E2

Φ(x, y)
=

(a+ d2)4(81a+ 17d2)
211312(d+ x)10

(7d+ 15x)(3a+ d2 + 4dx+ 6x2)10 = 0

and since a+ d2 6= 0 (see Lemma 3.14) we obtain 81a+ 17d2 = 0. So we obtain the
family of systems

dx

dt
= −17d2/81 + dy + x2 + xy,

dy

dt
= −4d2/81 + y2, (3.47)

which possess the invariant hyperbola: Φ(x, y) = −44d2/81−4dx/3+2dy+2xy = 0.
The perturbed systems

dx

dt
= −d

2(17− 2ε+ ε2)
(ε2 − 9)2

+ dy + x2 + (1 + ε)xy,
dy

dt
= − 4d2

(ε2 − 9)2
+ y2, (3.48)

possess the two hyperbolas:

Φε1(x, y) = −4d2(11− 4ε+ ε2

(ε2 − 9)2(1 + ε)
− 4d

(1 + ε)(3 + ε)
x+

2d
1 + ε

y + 2xy = 0,

Φε2(x, y) =
4d2(11 + 4ε+ ε2

(ε2 − 9)2(ε− 1)
− 4d

(1− ε)(3− ε)
x− 6d

ε− 3
y + 2y(x+ εy) = 0,

We observe that for systems (3.43) we have δ4 = (81a + 17d2)/6 and β7 = −8.
Therefore if δ4 = 0 the invariant hyperbola is double and by Lemma 3.5 it could
not be triple due to β7 6= 0. This completes the proof of the statement (i.1) of the
lemma.

Case β4 = 0. Then we arrive at the family of systems (3.44), for which we have

β6 = d(g2 − 1)/4, N = 4(g2 − 1)x2, β11 = 4(2g − 1)2x2, β12 = (3g − 1)x,

So from N 6= 0 the necessary conditions d = 0 and 2g − 1 6= 0 (see Lemma 3.15)
are equivalent to β6 = 0 and β11 6= 0, respectively.
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Subcase β12 6= 0. In this case 3g − 1 6= 0 and then by Lemma 3.15 an invariant
hyperbola exists if and only if K1 = 0 and b 6= 0. On the other hand for systems
(3.44) with d = 0 we calculate

γ15 = 4(g − 1)2(3g − 1)K1x
5, R11 = −3b(g − 1)2x4

and hence the above conditions are governed by the invariant polynomials γ15 and
R11. So we obtain systems (3.45) possessing the hyperbola Φ(x, y) = 2b/(2g− 1) +
2cy/(3g − 1) + 2xy = 0.

By to Lemma 2.12 we calculate the polynomial E2 and we observe that E2 con-
tains the polynomial Φ(x, y) as a simple factor.

To have this polynomial as a double factor in E2, we force its cofactor in E2 to be
zero along the curve Φ(x, y) = 0 (i.e we set y = b(3g − 1)/((2g − 1)(c− x+ 3gx))).
We obtain

E2

Φ(x, y)
=

288b3(g − 1)[c+ (3g − 1)x]3

(2g − 1)3(3g − 1)16
[
c(2g − 1) + g(3g − 1)x

]10[
c2(31

− 87g + 62g2) + 6c(3g − 2)(3g − 1)2x+ (3g − 1)3(4g − 1)x2
]

= 0

and since (2g−1)(3g−1) 6= 0 we obtain c = 0 and either g = 1/4 or g = 0. However
in the second case we obtain degenerate systems. So g = 1/4 and we arrive at the
family of systems

dx

dt
= x2/4,

dy

dt
= b− 3xy/4, (3.49)

which possess the hyperbola Φ(x, y) = −4b + 2xy = 0. On the other hand the
perturbed systems

dx

dt
= −2bε+ εxy + x2/4,

dy

dt
= b− 3xy/4 (3.50)

possess the two invariant hyperbolas

Φε1(x, y) = −2b+ xy = 0, Φε2(x, y) = −2b+ y(x+ εy) = 0.

It remains to determine the invariant polynomials which govern the conditions c = 0
and g = 1/4. We observe that for systems (3.45) we have γ16 = −c(g − 1)2x3/2
and δ6 = (g − 1)(4g − 1)x2/2.

To deduce that the hyperbola Φ(x, y) = −4b+ 2xy = 0 could not be triple it is
sufficient to calculate E2 for systems (3.49):

E2 = −135x15

65536
Φ(x, y)2(5b− 3xy)(17b− 7xy)

and to observe that the cofactor of Φ(x, y)2 could not vanish along the curve
Φ(x, y) = 0. This leads to the statement (i.2) of the lemma.

Subcase β12 = 0. Then g = 1/3 and by Lemma 3.15 at least one invariant hyperbola
exists if and only if c = 0, a ≤ 0 and b 6= 0. On the other hand for systems (3.44)
with d = 0 and g = 1/3 we calculate

γ16 = −2cx3/9, γ17 = 32ax2/9, R11 = −4bx4/3

Therefore the condition c = 0 (respectively b 6= 0) is equivalent to γ16 = 0 (respec-
tively R11 6= 0). Considering the statement (ii) of Lemma 3.15 we examine two
possibilities: γ17 6= 0 (i.e. a 6= 0) and γ17 = 0 (i.e. a = 0).

(1) Possibility γ17 6= 0. By Lemma 3.15 in this case we arrive at systems (3.46)
possessing the two invariant hyperbolas Φ1,2(x, y) = 3b ±

√
−3a y − xy = 0. We
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claim that none of the hyperbolas could be double. Indeed calculating E2 (see
Lemma 2.12) we obtain:

E2 = −2560(x2 ± 3a)6

177147
Φ1Φ2(2bx− x2y ± ay)

[
3bx2 − x3y ± 9a(xy − b)

]
.

So each hyperbola appears as a factor of degree one and we could not increase there
degree because of b 6= 0. This proves our claim and we arrive at the statement (ii)
of the lemma.

(2) Possibility γ17 = 0. In this case we have a = 0 and this leads to the systems

dx

dt
= x2/3,

dy

dt
= b− 2xy/3, (3.51)

possessing the hyperbola Φ(x, y) = −3b+xy = 0. Calculating E2 for this systems we
obtain that Φ(x, y) is a triple factor of E2. According to Lemma 2.12 this hyperbola
is triple, as it is shown by the following perturbed systems:

dx

dt
= −12b2ε2 + x2/3,

dy

dt
= b− 2xy/3 + 3bε2y2, (3.52)

possessing the three distinct invariant hyperbolas:

Φ1,2 = −3b± 3bεy + xy = 0, Φ3 = −3b+ y(x− 3bε2y).

So we arrive at the statement (iii) of Lemma 3.16 and this completes the proof of
this lemma. �

3.4.2. Case N = 0. Considering (3.40) the condition N = 0 implies h = 0 and
g = ±1. On the other hand for (3.30) with h = 0 we have β13 = (g − 1)2x2/4 and
we consider two cases: β13 6= 0 and β13 = 0.

Subcase β13 6= 0. Then g− 1 6= 0 (this implies g = −1) and due to a translation we
may assume e = f = 0. So we obtain the family of systems

dx

dt
= a+ cx+ dy − x2,

dy

dt
= b− 2xy. (3.53)

Lemma 3.17. A system (3.53) possesses at least one invariant hyperbola if and
only if d = 0, 16a+ 3c2 = 0 and b 6= 0.

Proof. We again assume that the quadratic part of an invariant hyperbola has the
form 2xy and considering the equations (2.7) for systems (3.53) we obtain

t = 1, s = u = q = 0, p = −2b/3, r = −c/2, U = −3,

V = 0, W = c+ r/2, Eq7 = 2d, Eq9 = (16a+ 3c2)/8,
Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = Eq6 = Eq8 = Eq10 = 0.

Therefore the conditions Eq7 = 0 and Eq9 = 0 yield d = 0 and 16a + 3c2 = 0. In
this case we obtain the systems

dx

dt
= −3c2/16 + cx− x2,

dy

dt
= b− 2xy, (3.54)

which possess the invariant hyperbola

Φ(x, y) = −2b/3− cy/2 + 2xy = 0.

Obviously this conic is irreducible if and only if b 6= 0. So Lemma 3.17 is proved. �
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Subcase β13 = 0. Then g = 1 and due to a translation we may assume c = 0. So
we obtain the following family of systems

dx

dt
= a+ dy + x2,

dy

dt
= b+ ex+ fy. (3.55)

Lemma 3.18. A system (3.55) could not possess a finite number of invariant
hyperbolas. And it has 1-parameter family of invariant hyperbolas if and only if
d = e = 0 and 4a+ f2 = 0.

Proof. Considering the equations (2.7) and the fact that the quadratic part of an
invariant hyperbola has the form 2xy, for systems (3.55) we calculate

t = 1, s = u = 0, U = 1, V = 0, W = f − r/2,
Eq5 = 2e, Eq7 = 2d, Eq1 = Eq2 = Eq3 = Eq4 = Eq6 = 0.

Therefore the conditions Eq5 = 0 and Eq7 = 0 yield d = e = 0 and then we have

Eq8 = 2b− p− fq + qr/2, Eq9 = (4a+ r2)/2, Eq10 = aq + br − p(2f − r)/2.

The equations Eq8 = Eq10 = 0 have a common solution with respect to the param-
eter q only if

Resq(Eq8, Eq10) = −2ab+ p(a+ f2)− fr(b+ p) + r2(2b+ p)/4 = 0.

On the other hand in order to have a common solution of the above equations with
respect to r the following condition is necessary:

Resr
(
Eq9,Resq(Eq8, Eq10)

)
= (4a+ f2)(4ab2 + f2p2)/4 = 0.

We claim, that the condition 4a + f2 = 0 is necessary for the existence of an
invariant hyperbola.

Indeed, supposing 4a + f2 6= 0 we deduce that the condition 4ab2 + f2p2 = 0
must hold.

(1) Assume first f 6= 0. If b = 0 then we obtain p = 0 and the equation Eq10 = 0
gives aq = 0. In the case q = 0 we obtain a reducible conic. If a = 0 then the
equation Eq9 = 0 implies r = 0 and we again get a reducible conic.

Thus b 6= 0 and hence a ≤ 0. We set a = −z2 ≤ 0 and then r = ±2z and
p = ±2bz/f . It is not too hard to convince ourselves that all four possibilities lead
either to reducible conics, or to the equality 4a + f2 = 0, which contradicts our
assumption.

(2) Suppose now f = 0. This implies ab = 0 and since b 6= 0 (otherwise we obtain
degenerate systems) we have a = 0 and this again contradicts to 4a+ f2 6= 0. This
completes the proof of our claim.

Thus 4a+ f2 = 0 and setting a = −f2/4 we arrive at the family of systems

dx

dt
= −f2/4 + x2,

dy

dt
= b+ fy, (3.56)

which possess the family of invariant hyperbolas

Φ(x, y) = (4b− fq)/2 + qx+ fy + 2xy = 0,

depending on the free parameter q. Since the corresponding determinant ∆ (see
Remark 2.11) for this family equals fq − 2b, we conclude that all the conics are
irreducible, except the hyperbola, for which the equality fq − 2b = 0 holds. Thus
the lemma is proved. �
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We observe that in the above systems we may assume b = 1. Indeed, if b = 0
then f 6= 0 (otherwise we obtain a degenerate system) and therefore due to the
translation y → y + b′/f with b′ 6= 0 and the addition rescaling y → b′y we
obtain b′ = 1. Moreover, in this case we may assume f ∈ {0, 1} due to rescaling
(x, y, t) 7→ (fx, fy, t/f) in the case f 6= 0.

Lemma 3.19. Assume that for a quadratic system (2.6) the conditions η = 0,
M 6= 0, θ = 0 and N = 0 hold. Then this system could possess either a single
invariant hyperbola, or a family of such hyperbolas. More precisely this system
possesses

(i) one simple invariant hyperbola if and only if β13 6= 0, γ10 = γ17 = 0 and
R11 6= 0;

(ii) one family of invariant hyperbolas if and only if β13 = γ9 = γ̃18 = γ̃19 = 0.

Proof. Assume that for a quadratic system (2.6) the conditions η = 0, M 6= 0 θ = 0
and N = 0 hold.

Subcase β13 6= 0. In this case we consider systems (3.53) for which we calculate

γ10 = 14d2, R11 = −12bx4 + 6dxy2(cx+ dy),

γ17 = 8(16a+ 3c2)x2 − 4dy(14cx+ 9dy).

So for γ10 = γ17 = 0 andR11 6= 0 we obtain systems (3.54) possessing the hyperbola
Φ(x, y) = −2b/3 − cy/2 + 2xy = 0. We claim that this hyperbola is a simple one.
Indeed calculating E2 we obtain that the polynomial Φ(x, y) is a factor of degree
one in E2. So setting y = −4b/(3(c− 4x)) (i.e. Φ(x, y) ≡ 0) we obtain

E2

Φ(x, y)
= −2−245b3(c− 4x)3(3c− 4x)12/3 6= 0

because b 6= 0. So the hyperbola above could not be double and this proves our
claim.

Thus the statement (i) of lemma is proved.

Subcase β13 = 0. Then we consider systems (3.55) and we calculate

γ9 = −6d2, γ̃18 = 8ex4, γ̃19 = 4(4a+ f2)x.

So the conditions d = e = 0 are equivalent to γ9 = γ̃18 = 0 and 4a + f2 = 0 is
equivalent to γ̃19 = 0. Considering Lemma 3.18 we arrive at the statement (ii).

It remains to observe that for systems (3.55) with d = e = 0 and a = −f2/4 we
have γ17 = 8f2x2 and this invariant polynomial governs the condition f = 0. As
all the cases are examined, Lemma 3.19 is proved. �

To complete the proof of the Main Theorem we remark, that both generic families
of quadratic systems (with three and with two distinct real infinite singularities)
are examined and now we could compare the obtained results with the statements
of the Main Theorem.

So comparing the statements of Lemmas 3.4, 3.5, 3.8, 3.9 and 3.11 with the
conditions given by Figure 1, it is not too difficult to conclude that the statement
(B)(1) of the Main Theorem is valid.

Analogously, comparing the statements of Lemmas 3.13, 3.16 and 3.19 with
the conditions given by Figure 2 we deduce that the statement (B2) of the Main
Theorem is valid.
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3.5. Systems with infinite number of singularities at infinity: C2 = 0.
In this section we construct the conditions for a quadratic system with C2 = 0
to possess at least one invariant hyperbola. So consider the family of quadratic
systems (2.6) assuming C2 = 0 and we prove the next assertion.

Lemma 3.20. If for a quadratic system (2.6) the condition C2(x, y) = 0 holds,
then this system possesses invariant hyperbola if and only if N7 = 0.

Proof. Assume that for a quadratic system (2.6) the condition C2(x, y) = 0 is
satisfied. Then the line at infinity is filled up with singularities and according to
Lemma 2.9 in this case via an affine transformation and time rescaling quadratic
systems could be brought to the following systems

ẋ = â+ ĉx+ d̂y + x2, ẏ = b̂+ xy. (3.57)

We observe that for d̂ = 0 these systems possess two parallel invariant lines and we
consider two subcases: d̂ 6= 0 and d̂ = 0.

3.5.1. Subcase d̂ 6= 0. As it was shown in [15, page 749] in this case via some
parametrization and using an additional affine transformation and time rescaling
we arrive at the following 2-parameter family of systems

ẋ = a+ y + (x+ c)2, ẏ = xy. (3.58)

Considering (2.7) for these systems we obtain Eq1 = s(2− U) = 0. We claim that
U = 2 due to the condition s2 + t2 + u2 6= 0. Indeed, supposing U 6= 2 we obtain
s = 0 and then calculations yield

Eq2 = 2t(2− U) = 0 Eq3 = u(2− U)− 2tV = 0.

Clearly because U 6= 2 we have t = u = 0 which contradicts to s2 + t2 +u2 6= 0 and
this completes the proof of our claim. So we assume U = 2, and calculations yield
Eq2 = −sV = 0, Eq3 = −2tV = 0, Eq4 = −uV = 0. Since Φ(x, y) = 0 must be a
conic (i.e. s2 + t2 + u2 6= 0) the above relations imply V = 0. Then we have

Eq5 = −q + 4cs− sW = 0, Eq6 = −r + 2s+ 4ct− 2tW = 0,

Eq7 = 2t− uW = 0, Eq8 = −2p+ 2cq + 2as+ 2c2s− qW = 0

and this gives

q = s(4c−W ), r = 2s+ 2cuW − uW 2, t = uW/2,

p = s(2a+ 10c2 − 6cW +W 2)/2.

Considering the values of the parameters we detected we finally obtain

Eqi = 0, i = 1, 2, . . . , 8, Eq10 = s(2c−W )(4a+ 4c2 − 4cW +W 2)/2 = 0,

Eq9 = 4cs+ (au− 3s+ c2u)W − 2cuW 2 + uW 3 = 0.

We observe that s 6= 0, otherwise we obtain Φ(x, y) = uy(2cW −W 2 + Wx + y),
i.e. the conic becomes reducible. So we consider the two possibilities defined by
the equality (2c−W )

[
4a+ (W − 2c)2

]
= 0.

Possibility W = 2c. Then we obtain Eq10 = 0 and Eq9 = 2c(au− s+ c2u) = 0.
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Case c = 0. In this case we obtain the 1-parameter family of systems

ẋ = a+ y + x2, ẏ = xy (3.59)

which possess the 2-parameter family of invariant conics Φ(x, y) = as+2sy+sx2 +
uy2 = 0 which will be of hyperbolic type if and only if the condition su < 0 holds.
Moreover following Remark 2.11 we calculate ∆ = s2(au − s) and this conic is
irreducible if and only if s(au− s) 6= 0.

Since su < 0 we may set a new parameter u = −sm2 and this leads to the
1-parameter family of hyperbolas

Φ̃(s, x, y) = a+ 2y + x2 −m2y2 = 0. (3.60)

Case au − s + au + c2u = 0. Then s = (a + c2)u and systems (3.58) possess the
following invariant conic Φ(x, y) = (a+c2)(a+c2+2cx+2y)+(a+c2)x2+2cxy+y2 =
0 for which we calculate ∆ = 0, i.e. by Remark 2.11 this conic is reducible.

Possibility 4a + (W − 2c)2 = 0. If a = 0 then W = 2c and as it was shown above
for the existence of a hyperbola it is necessary c = 0. So we arrive at the particular
case of the family of hyperbolas (3.60) defined by the condition a = 0. Therefore
we consider two cases: a < 0 and a > 0.

Case a < 0. Then we may assume a = −k2 and after the rescaling (x, y, t) 7→
(kx, k2y, t/k) we obtain the systems

ẋ = y − 1 + (x+ c)2, ẏ = xy, (3.61)

for which we have W = 2(c± 1) and we obtain Eq10 = 0, Eq9 = 2(c± 3)
[
(c± 1)2−

s
]

= 0. We consider the two subcases given by two factors of Eq9.
(1) Subcase c± 3 = 0. We may assume c > 0 because of the rescaling (x, y, t) 7→

(−x, y,−t) in the above systems. Therefore we set c = 3 and then systems (3.61)
could be brought to system (3.58) with c = 0 and a = −1 via the transformation
(x, y, t) 7→

(
2(x − 1), 4(y − x − 1), t/2

)
. So we arrive at the system (3.59) with

a = −1 and as it was shown above this system possesses the family of hyperbolas
(3.60) with a = −1.

(2) Subcase (c± 1)2 − s = 0. Then s = (c± 1)2 and this leads to the reducible
conics Φ(x, y) = (c2 − 1± x+ cx+ y)2 = 0.

Case a > 0. Then we may assume a = k2 and applying the same rescaling as
above we arrive at the family systems ẋ = 1 + y + (x + c)2, ẏ = xy. So we have
W = 2(c ± i) and we obtain Eq10 = 0 Eq9 = 2(c ± 3i)

[
(c ± i)2 − s

]
= 0.

Since c ∈ R we obtain s = (c ± i)2 and this again leads to the reducible conics
Φ(x, y) = (c2 − 1± ix+ cx+ y)2 = 0.

Thus we detect that in the case d 6= 0 a system (3.58) could possesses an invariant
hyperbola if and only if either the conditions c = 0 or a < 0 (then a = −1) and
c2−9 = 0 hold. On the other hand for these systems we calculate N7 = c(9a+c2)/2
and we claim that the above conditions are equivalent to N7 = 0. Indeed, if c = 0
or a = −1 and c2 − 9 = 0 we obtain N7 = 0. Conversely, assuming N7 = 0 we have
either c = 0 or 9a + c2 = 0. However in the second case the condition a ≤ 0 must
hold. If a = 0 we obtain c = 0 and we arrive at the first case. If a < 0 as it was
mentioned earlier due to a rescaling we may assume a = −1 (see systems (3.61))
and then we obtain c2 + 9a = c2− 9 = 0 and this completes the proof of our claim.
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3.5.2. Subcase d̂ = 0. In this case systems (3.57) become as systems

ẋ = â+ ĉx+ x2, ẏ = b̂+ xy, (3.62)

for which following [15] we calculate the value of invariant polynomial H12 =
−8â2x2 and we consider two possibilities: â 6= 0 and â = 0.

Possibility â 6= 0. As it was shown in [15, page 750] in this case via an affine
transformation and time rescaling after some additional parametrization we arrive
at the following 2-parameter family of systems

ẋ = a+ (x+ c)2, ẏ = xy (3.63)

for which the condition H12 = −8(a+ c2)2x2 6= 0 must hold.
Next, to determine the conditions for the existence of a hyperbola as earlier we

apply the equations (2.7). Since the quadratic parts of the above systems coincide
with quadratic parts of systems (3.58) by the same reasons from the first four
equations (2.7) we determine that s 6= 0, U = 2 and V = 0 and then calculations
yield

Eq5 = −q + 4cs− sW = 0, Eq6 = −r + 4ct− 2tW = 0,

Eq7 = −uW = 0, Eq8 = −2p+ 2cq + 2as+ 2c2s− qW = 0.

So we obtain q = s(4c −W ), r = 2t(2c −W ), p = s(2a + 10c2 − 6cW + W 2)/2,
uW = 0 and we consider two cases: u = 0 and u 6= 0.

Case u = 0. In this case we have Eqi = 0, i = 1, 2, . . . , 8 and

Eq9 = 2t(a+ c2 − 2cW +W 2) = 0,

Eq10 = s(2c−W )(4a+ 4c2 − 4cW +W 2) = 0

and we observe that t 6= 0 otherwise we obtain

Φ(x, y) = s(2a+ 10c2 − 6cW +W 2 + 8cx− 2Wx+ 2x2)/2 = 0,

i.e. Φ(x, y) is a product of two parallel lines. It was mentioned above that the
condition s 6= 0 also must hold, i.e. st 6= 0 and we calculate ResW (Eq9, Eq10) =
2s2t3(a+ c2)2(9a+ c2) and clearly for the existence of a common solution of the
equations Eq9 = Eq10 = 0 the condition (a+c2)2(9a+c2) = 0 is necessary. However
the condition H12 6= 0 implies a+ c2 6= 0 and therefore we obtain 9a+ c2 = 0.

So a = −c2/9 and we detect that in this case the polynomials Eq9 and Eq10
have as a common factor 4c − 3W . Therefore we obtain W = 4c/3 and we arrive
at the systems

ẋ = (2c+ 3x)(4c+ 3x)/9, ẏ = xy,

which possess the following family of hyperbolas Φ(x, y) = 16c2s+ 24csx+ 9sx2 +
12cty + 18txy = 0. In order to have irreducible invariant conics we determine
∆ = −324c2st2 6= 0. So s 6= 0 and setting a new parameter m = 6t/s we arrive at
the 1-parameter family of hyperbolas

Φ(x, y) = 16c2 + 24cx+ 2cmy + 9x2 + 3mxy = 0.
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Case u 6= 0. Then we obtain W = 0 and we calculate

Eqi = 0, i = 1, 2, . . . , 8, Eq9 = 2(a+ c2)t = 0, Eq10 = 4c(a+ c2)s = 0

and since s 6= 0 and a+ c2 6= 0 (due to H12 6= 0) we obtain t = c = 0. So we arrive
at the 1-parameter family of systems ẋ = a+ x2, ẏ = xy, which possess the family
of conics

Φ(x, y) = as+ sx2 + uy2 = 0.
Clearly these conics are of hyperbolic type if su < 0 and they are irreducible if in
addition we have a 6= 0. So setting u = −m2s we obtain the following 1-parameter
family of hyperbolas:

Φ(x, y) = a+ x2 −m2y2 = 0.

Thus we detect that in the case d̂ = 0 and â 6= 0 a system (3.62) could be
brought to (3.63) which possess an invariant hyperbola if and only if the condition
c(9a+c2) = 0 holds. On the other hand for these systems we have N7 = c(9a+c2)/2
and we deduce that in the case under consideration Lemma 3.20 is valid.

Possibility â = 0. This condition implies b̂ 6= 0 (otherwise we obtain degenerate
systems (3.62)). So we may assume b̂ = 1 due to the rescaling y → b̂y and this
leads to the 1-parameter family of systems (we set ĉ = c)

ẋ = cx+ x2, ẏ = 1 + xy, (3.64)

And again, since the quadratic parts of the above systems coincides with quadratic
parts of systems (3.58) by the same reasons from the first four equations (2.7) we
determine that s 6= 0, U = 2 and V = 0 and then calculations yield

Eq5 = −q + 2cs− sW = 0, Eq6 = −r + 2ct− 2tW = 0,
Eq7 = −uW = 0, Eq8 = −2p+ cq + 2t− qW = 0.

So we obtain q = s(2c−W ), r = 2t(c−W ), p = (2c2s+2t−3csW+sW 2)/2, uW = 0
and we claim that the condition u = 0 must hold. Indeed supposing u 6= 0 we obtain
W = 0 and this implies Eq9 = 2u = 0 and this contradiction proves our claim. So
u = 0 and calculations yield Eqi = 0, i = 1, 2, . . . , 8, Eq9 = −2t(c −W )W = 0,
and Eq10 = (4ct − 2c2sW − 6tW + 3csW 2 − sW 3)/2 = 0. We observe that t 6= 0
otherwise we obtain Φ(x, y) = s(2c2 − 3cW + W 2 + 4cx − 2Wx + 2x2)/2 = 0, i.e.
Φ(x, y) is a product of two parallel lines. So we obtain W (c − W ) = 0 and we
have to consider the two subcases given by these two factors. However we obtain
Eq10 = 2ct = 0 if W = 0 and Eq10 = −ct = 0 if W = c and therefore due to t 6= 0
in both cases we obtain c = 0. So we arrive at the system

ẋ = x2, ẏ = 1 + xy,

which possess the following family of hyperbolas Φ(x, y) = t+ sx2 + 2txy = 0 and
for the irreducibility of these conics the condition t 6= 0 is necessary. Then setting
m = s/t we obtain the 1-parameter family of hyperbolas

Φ(x, y) = 1 +mx2 + 2xy = 0.

Thus in the case d̂ = â = 0 a system (3.62) could be brought to (3.64) which possess
an invariant hyperbola if and only if the condition c = 0 holds. On the other hand
for these systems we have N7 = −16c3 and this completes the proof of Lemma
3.20. �

Then, we conclude that the Main Theorem is completely proved.
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