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FAMILY OF QUADRATIC DIFFERENTIAL SYSTEMS WITH
INVARIANT HYPERBOLAS: A COMPLETE CLASSIFICATION
IN THE SPACE R!?

REGILENE D. S. OLIVEIRA, ALEX C. REZENDE, NICOLAE VULPE

ABSTRACT. In this article we consider the class QS of all non-degenerate qua-
dratic systems. A quadratic polynomial differential system can be identified
with a single point of R through its coefficients. In this paper using the
algebraic invariant theory we provided necessary and sufficient conditions for
a system in QS to have at least one invariant hyperbola in terms of its coef-
ficients. We also considered the number and multiplicity of such hyperbolas.
We give here the global bifurcation diagram of the class QS of systems with
invariant hyperbolas. The bifurcation diagram is done in the 12-dimensional
space of parameters and it is expressed in terms of polynomial invariants. The
results can therefore be applied for any family of quadratic systems in this
class, given in any normal form.

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

In this article, we consider differential systems of the form

dx dy

= _p - = 1.1
o = P@y), —=0Qy), (1.1)
where P,Q € R[z,y], i.e. P,Q are polynomials in z,y over R and their associated
vector fields

0 0

We call degree of a system the integer m = max(deg P,deg @). In particular
we call quadratic a differential system with m = 2. We denote here by QS
the whole class of real non-degenerate quadratic systems, i.e. we assume that the
polynomials P and @) are coprime.

Quadratic systems appear in the modeling of many natural phenomena described
in different branches of science, in biological and physical applications and applica-
tions of these systems became a subject of interest for the mathematicians. Many
papers have been published about quadratic systems, see for example [I3] for a
bibliographical survey.

Let V be an open and dense subset of R?, we say that a nonconstant differentiable
function H : V. — R is a first integral of a system on V if H(z(t),y(t)) is
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constant for all of the values of ¢ for which (z(¢),y(t)) is a solution of this system
contained in V. Obviously H is a first integral of systems (|1.1) if and only if
0H OH
X(H) =P +Q= =
(H) ox + dy
for all (z,y) € V. When a system (|1.1)) has a first integral we say that this system
is integrable.
The knowledge of the first integrals is of particular interest in planar differential
systems because they allow us to draw their phase portraits.
On the other hand given f € Clx,y] we say that the curve f(x,y) = 0 is an
invariant algebraic curve of systems ([1.1)) if there exists K € C|x,y] such that

of of
p=L '
Ox dy

0, (1.3)

+Q=—=Kf. (1.4)
The polynomial K is called the cofactor of the invariant algebraic curve f = 0.
When K =0, f is a polynomial first integral.

Quadratic systems with an invariant algebraic curve have been studied by many
authors, for example Schlomiuk and Vulpe [14] [16] have studied quadratic systems
with invariant straight lines, Qin Yuan-xum [I0] has investigated the quadratic
systems having an ellipse as limit cycle, Druzhkova [7] has presented necessary and
sufficient conditions for existence and uniqueness of an invariant algebraic curve
of second degree in terms of the coefficients of quadratic systems, and Cairo and
Llibre [3] have studied the quadratic systems having invariant algebraic conics in
order to investigate the Darboux integrability of such systems.

The motivation for studying the systems in the quadratic class is not only because
of their usefulness in many applications but also for theoretical reasons, as discussed
by Schlomiuk and Vulpe in the introduction of [14]. The study of non—degenerate
quadratic systems could be done using normal forms and applying the invariant
theory.

The main goal of this paper is to investigate non—degenerate quadratic systems
having invariant hyperbolas and this study is done applying the invariant theory.
More precisely in this paper we give necessary and sufficient conditions for a qua-
dratic system in Q.S to have invariant hyperbolas. We also determine the invariant
criteria which provide the number and multiplicity of such hyperbolas.

Definition 1.1. We say that an invariant conic ®(z,y) = p + qx + ry + sz +
2txy + uy? = 0, (s,t,u) # (0,0,0), (p,q,7,5,t,u) € CO for a quadratic vector
field X has multiplicity m if there exists a sequence of real quadratic vector fields
X}, converging to X, such that each X}, has m distinct (complex) invariant conics
¢l =0,...,97 = 0, converging to ® = 0 as k — oo (with the topology of their
coefficients), and this does not occur for m+ 1. In the case when an invariant conic
®(z,y) = 0 has multiplicity one we call it simple.

Our main results are stated in the following theorem.

Theorem 1.2.

(A) The conditions yv1 = v2 = 0 and either n > 0, M # 0 or Cy = 0 are necessary
for a quadratic system in the class QS to possess at least one invariant hyperbola.
(B) Assume that for a system in the class QS the condition v1 = 5 = 0 is satisfied.
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(1) If n > 0 then the necessary and sufficient conditions for this system to
possess at least one invariant hyperbola are given in Figure[l, where we can
also find the number and multiplicity of such hyperbolas.

(2) In the case n =0 and either M # 0 or Cy = 0 the corresponding necessary
and sufficient conditions for this system to possess at least one invariant
hyperbola are given in Figure [3, where we can also find the number and
multiplicity of such hyperbolas.

(C) Figures |1 and @ actually contain the global bifurcation diagram in the 12-
dimensional space of parameters of the systems belonging to family QS, which pos-
sess at least one invariant hyperbola. The corresponding conditions are given in
terms of invariant polynomials with respect to the group of affine transformations
and time rescaling.

(&
Remark 1.3. An invariant hyperbola is denoted by H if it is real and by H if
it is complex. In the case we have two such hyperbolas then it is necessary to
distinguish whether they have parallel or non-parallel asymptotes in which case we

denote them by HP (Hcp ) if their asymptotes are parallel and by H if there exists at
least one pair of non-parallel asymptotes. We denote by H;, (k = 2,3) a hyperbola
with multiplicity k; by H5 a double hyperbola, which after perturbation splits into
two HP; and by H% a triple hyperbola which splits into two H? and one H.

The term “complex invariant hyperbolas” of a real system requires some explana-
tion. Indeed the term hyperbola is reserved for a real irreducible affine conic which
has two real points at infinity. This distinguishes it from the other two irreducible
real conics: the parabola with just one real point at infinity and the ellipse which has
two complex points at infinity. We call “complex hyperbola” an irreducible affine
conic ®(z,y) = 0, with ®(z,y) = p + qx + ry + sz? + 2tzy + uy? = 0 over C, such
that there does not exist a non-zero complex number \ with A(p,q,7,s,t,u) € RS
and in addition this conic has two real points at infinity.

The invariants and comitants of differential equations (see Subsection used
for proving our main result are obtained following the theory of algebraic invariants
of polynomial differential systems, developed by Sibirsky and his disciples (see for
instance [I8|, 19} 12} 11, [4]).

2. PRELIMINARIES

Consider real quadratic systems of the form:
dx
g = Potpi(@,y) + pa(,y) = Pla,y),
dy (2.1)

il (R 71(z,y) + g2, y) = Q(x,y)

with homogeneous polynomials p; and ¢; (i =0, 1,2) of degree i in x, y:
po = a0, P1(z,y) = a0 +aoy, p2(z,y) = anz® + 2a112y + ay’,
9 =boo, q1(,y) = bz +boy, ga(x,y) = baox® + 2by12y + booy”.
Such a system can be identified with a point in R'2. Let

a = (aoo, a10, aot, a0, a11, aoz; boo, b10, bo1, b2, b11, boz)
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FI1GURE 1. Existence of invariant hyperbolas: the case n > 0

and consider the ring Rlago, aio, - - - , @02, boo, b10, - - - , boz2, T, y] which we shall denote
Rla, x,y].

2.1. Group actions on quadratic systems and invariant polynomials
with respect to these actions. On the set QS of all quadratic differential systems
acts the group Aff(2,R) of affine transformations on the plane. Indeed for
every g € Aff(2,R), g : R? — R? we have:

P )u)om v () o
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FIGURE 2. Existence of invariant hyperbolas: the case n =0

where M = ||M;;|| is a 2 x 2 nonsingular matrix and B is a 2 x 1 matrix over R.
For every S € QS we can form its transformed system S = ¢S:

az - dy =~

= P(7.§ 29 T 1 2.2

o =@y, — =09, (2.2)
where

P(,9)\ _ , ((Pog ) (&,9)
(o) = (lgos6n)
The map Aff(2,R) x QS — QS defined by
(9,5) = S =gS

satisfies the axioms for a left group action. For every subgroup G C Aff(2,R) we
have an induced action of G on QS. We can identify the set QS of systems (2.1))
with a subset of R!? via the embedding Q.S < R!'2? which associates to each system
the 12-tuple (aqo, - . -, boz) of its coefficients.

On systems (.5) such that max(deg(p), deg(q)) < 2 we consider the action of the
group Aff(2,R) which yields an action of this group on R'2. For every g € Aff(2,R)
let 7, : R? — R'2 be the map which corresponds to g via this action. We know
(cf. [18]) that r, is linear and that the map r : Aff(2,R) — GL(12,R) thus
obtained is a group homomorphism. For every subgroup G of Aff(2,R), r induces
a representation of G' onto a subgroup G of GL(12,R).

We shall denote a polynomial U in the ring R[a, z,y] by U(a, z,y).

Definition 2.1. A polynomial U(a,z,y) € Rla, z,y] is a comitant for systems (2.1)
with respect to a subgroup G of Aff(2,R), if there exists x € Z such that for every
(g9, a) € G x R? and for every (z,y) € R? the following relation holds:

U(rg(a),g(z,y)) = (det ) XU (a, z,y).
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If the polynomial U does not explicitly depend on x and y then it is an invariant.
The number x € Z is the weight of the comitant U(a,z,y). If G = GL(2,R) (or
G = Aff(2,R)) then the comitant U(a,z,y) of systems is called GL-comitant
(respectively, affine comitant).

Definition 2.2. A subset X C R'2 will be called G-invariant, if for every g € G
we have r4(X) C X.

Let T'(2,R) be the subgroup of Aff(2,R) formed by translations. Consider the
linear representation of T'(2, R) into its corresponding subgroup 7 C GL(12,R), i.e.
for every 7 € T(2,R), 7: © = Z+a, y = §+[3 we consider as above r, : R12 — R12,

Definition 2.3. A GL-comitant U(a,x,y) of systems (2.1)) is a T-comitant if for
every (7,a) € T(2,R) x R'? the relation U(r,(a),%,9) = U(a, ¥,y) holds in R[Z, 7].

Consider s homogeneous polynomials U;(a, z,y) € Rla,z,y], i =1,...,s:
d;
Ui(a,z,y) = ZUi-(&)xdi_]yj, i=1,...,s,
3=0

and assume that the polynomials U; are G L-comitants of a system (2.1) where d;
denotes the degree of the binary form U;(a, x,y) in « and y with coefficients in R[a].
We denote by

U:{Uw(d)eR[EL]Z:l,,S,jZO,L,dl},

the set of the coefficients in R[a] of the GL-comitants U;(a,x,y), i = 1,...,s, and
by V(U) its zero set:

V(U)={aecR?:U; @) =0, VU;;(a) € U}.

Definition 2.4. Let Uy, ..., U, be GL-comitants of a system . A GL-comitant
U(a,z,y) of this system is called a conditional T-comitant (or CT-comitant) mod-
ulo the ideal generated by U;;(a) (i =1,...,s;5 = 0,1,...,d;) in the ring R[a] if
the following two conditions are satisfied:

(i) the algebraic subset V(i) C R!? is affinely invariant (see Definition ;
(i) for every (r,a) € T(2,R) x V(U) we have U(r,(a),z,y) = Ula,z,y) in
R[Z, 7].

In other words a CT-comitant U(a, x,y) is a T-comitant on the algebraic subset
V(U) c R¥2.

Definition 2.5. A homogeneous polynomial U(a,z,y) € Rla,z,y] of even degree
in x, y has well determined sign on V C R'2 with respect to x,y if for every a € V,
the binary form u(x,y) = U(a,x,y) yields a function of constant sign on R? except
on a set of zero measure where it vanishes.

Remark 2.6. We draw attention to the fact that if a CT-comitant U(a,z,y) of
even weight is a binary form of even degree in x and y, of even degree in @ and has
well determined sign on some affine invariant algebraic subset V', then its sign is
conserved after an affine transformation and time rescaling.
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2.2. Main invariant polynomials associated with invariant hyperbolas.
We single out the following five polynomials, basic ingredients in constructing in-
variant polynomials for systems (2.1)):
Ci(aaxay) = ypl(xa y) - xqz(x,y), (Z = 07 ]-7 2)
Op;  0Oq; 2.3
p’L+ ql’ (7/:1’2) ( )
oxr 0Oy

As it was shown in [I8] these polynomials of degree one in the coefficients of systems
(2.1) are GL-comitants of these systems. Let f, g € Rla,z,y| and

k
k o f kg
(k) _E _1\»
(f, 9" = (-1 (h) dxk—hoyh amhayk—h'

h=0

Dz(daxay) =

The polynomial (f,¢)*) € R[a,x,y] is called the transvectant of index k of (f,g)
(cf. [8,11]).

Theorem 2.7 ([19]). Any GL-comitant of systems (2.1) can be constructed from
the elements (2.3)) by using the operations: +, —, X, and by applying the differential
operation (x, )",

Remark 2.8. We point out that the elements (2.3)) generate the whole set of GL-
comitants and hence also the set of affine comitants as well as the set of T-comitants.

We construct the following G L-comitants of the second degree with respect to
the coefficients of the initial systems

Ty = (Co, 01V, Ty = (Co,C2) Y, Ty = (Co, D)V,
Ty = (C1,C1)?, Ty = (C1,C)V, Ty = (C1,C)?, (2.4)
T; = (C17D2)(1)7 Tg = (02,02)(2), Ty = (C2yD2)(1).

Using these G L-comitants as well as the polynomials we construct the
additional invariant polynomials. In order to be able to calculate the values of the
needed invariant polynomials directly for every canonical system we shall define
here a family of T-comitants expressed through C; (i =0,1,2) and D; (j =1,2):

A= (Cy,Ts — 2Ty + D2)?) /144,
D = [2Cy(Ts — 8Ty — 2D3) + C1(6T7 — T — (C1, T5) V)
+6D,C1 Dy — T5) — 9D Cs] /36,

[D1(2Ty — Tg) — 3(Cy, To)Y) — Do (3T7 + D1 D)} /72,
[6D?(D32 — 4Ty) 4+ 4Dy Dy(Ts + 6T%) + 48Co(Dy, Ty) ™
— 9D3Ty + 288D, E — 24(Cy, D)® + 120(Dy, D)™
—36C, (Da, T7) V) + 8Dy (Do, T5) (V] /144,

E:
F\:

B= {16D1(D2, Ty)D(3C1 Dy — 200Dy + 4T5)
+ 32C,(Dy, To) M (3D, Dy — 5T + 9T%)
+2(Do, Ty) M (2701 Ty — 1801 D3. — 32D, Ty + 32(Cy, T) V)
+6(Da, Ty) [SCO(Tg —12Ty) — 12C (D1 Dy + T4) + D1 (26C5 Dy + 32T5)
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+ Co(9Ty + 96T3)} 4 6(Dy, Tg) [3200T9 — €y (12T + 52D, Dy)

- 3202D2} + 48Dy (Dy, T1)V (2D2 — Tg)
— 32D Ts(Dy, Tp) ") + 9D3T4 (T — 2T7) — 16Dy (Cy, Ts) V) (DT + 4T)
+ 12D, (Cy, T5) P (C1 Dy — 2C5Dy) + 6Dy Do Ty (Ts — 7D2 — 42Ty)
+ 12D (Cy, Ty) ™M (T + 2Dy D) + 96 D3[ D1 (C1, Tg) ™M + D1(Co, Tg) V] -
— 16D DyT3(2D3 + 3Tg) — 4D3 Dy(D3 + 3Tx + 6To) + 6D? D3(7Ts + 2T)
- 252D1D2T4T9} /(253%),

K = (Ts + 4Ty + 4D3)/72, H = (8Ty — Tx + 2D3)/72.

These polynomials in addition to (2.3)) and (2.4)) will serve as bricks in constructing
affine invariant polynomials for systems (2.1])

The following 42 affine invariants Ay, ..., A4 form the minimal polynomial basis
of affine invariants up to degree 12. This fact was proved in [2] by constructing
Aq, ..., Ays using the above bricks.

A=A, Ay=(Cy,D)® /12, — [Cy, D), D2)(1) )(1)/48,
Ay=(H,H)?®, A;=(H, K)(z)/2 Ag = (B, 1)@ 2,

Ar = [C2, E)® D)8, Ag = [D,H)® Dy)V /48, Ay = [D, D)™, Dy),
A = [ﬁ K)®, Dz)(l)/& Ay = (F,R)?/4, Ay = (F,H)?/4,
Az = [Co, HYYD H) (2),D2)(1)/24, A= (B, C2)® /36, A5 = (B, F)? /4,
Ass = [E, D)V, o)V BYP /16, Ay7 = [D, D), D), Do) /64,

A = [D,F)®, Dy) V16, Ay = [D, D), B)® /16,

Agy = [C, D) F)? /16, Ay = [D, D), R)? 16,

Agy — 11152 €5, D)V, D), D)V, D)V Dy) Y, Ay — [F, YD, R)P s,
Agy = [C2, D )(2) K)(l),ﬁ)(?)/327 Ay = [ﬁ A)(2),E)(2)/16,

Ags = (B,D)® /36, Agr = [B, D)V, 1) j24,

Agg = [(12’[?)(2),13)(1)’@)(2)/16) Ay = [13 »Ho ﬁ)(S)/%,

Ago = [C5, D), D)V, DY j288, A3y = [D, D)@, KV, 7)? /64,

@, D), 1), o) /64,
7D2)(1)7ﬁ)(l),Dg)(l),Dg)(l)/IQ&
Ass = [D. D), D), &), Dy)™ J6s,
Ass = [ﬁ7ﬁ)(2)71§)(1),D2)(1),Dg)(l)/128,
Age = [D.B)®, D) ) /16, Ay7 = [D,D)?,D)", D)™ /576,
Agg = [Co, D)@, D)? DYV B f64, Ao = [D, D), F)Y H)® J64,
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Ago = [ﬁ,ﬁ)@),ﬁ)(l),[/{')@)/&L’ Ay = [02’1’5)(2)’B) (2),F‘)(1)’D2)(1)/64,
Agp = [D, ), F)Y Dy)" /16,

In the above list, the bracket “[” is used in order to avoid placing the otherwise

necessary up to five parentheses “(”.
Using the elements of the minimal polynomial basis given above we construct

the affine invariant polynomials
v1(a) = AT(3A46 + 2A7) — 2A6(As + Ar2),
Yo (@) = 9A% A5 (2325245 + 23689A4,) — 144045 A5(3A10 + 13A411)
— 1280A413(2417 + A1g + 23419 — 4A50) — 320A424(50As + 341
+ 45411 — 18A15) + 1204, Ag(6718Ag + 4033 A9 + 35424,
+ 2786 A12) + 30A1 A15(14980A45 — 2029A, — 48266 As)
— 304, A7(76626 A% — 15173 Ag + 11797 Ao + 16427 A1, — 30153 A1)
+ 845 A7(75515A¢ — 32954 A7) + 245 A3(33057 Ag — 98759 A415)
— 6048042 Ay + Az A4(68605Ag — 131816 Ag + 131073 A0 + 129953 A11)
— 2A5(141267A2 — 208741 A5A15 4+ 320042 A413),
v3(a@) = 843696 A5 Ag A1 + A1 (—27(689078 Ag + 419172 A9 — 2907149 A1
— 2621619A11) A3 — 26(21057 A3 Aoz + 4900544 Aoz — 166774 A3 Agy
+ 11564144 Asy)).
y4(a) = —9A3(14A17 + Agy) + A2(—560A17 — 518415 + 881419 — 2844
+509A91) — Ag(171A2 + 3A5(367Ag — 107 A1) + 4(99A2 + 9349 A1,
+ A5(—63A18 — 69A19 + TAog + 24 451))) + 72A23 Asg,
v5(a) = —488A3 Ay + Ag(12(4468A32 + 32A% — 915A%, + 32049 A1, — 3898410411
— 333147, + 2A5(78A9 + 199410 + 2433A11)) + 2A45(25488 A5
— 60259A19 — 16824 Ao1) + T79A4 A21) + 4(7380A19 A3
— 24(Aq0 + 41A11) Azz + Ag(33453A31 + 19588 A35 — 468 A33 — 19120A434)
+96Ag(—Asz + Agy) + 556 A4 Agy — As(27773Azs + 41538 Asg
— 2304 A41 + 5544 A42)),
~Y6(a) = 2A20 — 33Aa1,
v7(a) = Ay (64A3 — 541A,) A7 + 86Ag A3 + 12849 A3 — 54A10A13
— 12843 A5 + 256 A5 Agg + 101 A3 Agy — 27T A4 Aoy,
vg(@) = 306344 A2 — 42A2(304Ag + 43(Ag — 11419)) — 64349 (159 A5
+ 2849 + 409A10) + 21004549 A5 + 315045 A7 A
+24A2(34A19 — 11Az0) + 840A2 Ay — 93245 A3 Aoy + 52545 A4 Agy
+ 844 A2, — 630A13A33,
Yo(a) = 2Ag — 6Ag 4 A1g, v0(a) = 3As + Aq1,
711(a) = —5A7Ag + A7Ag + 1043414, 712(a) = 254343 + 1843,
713(8) = Aa,  714(a@) = Ag Ay + 18A5A5 — 236 Ag3 + 188 A0y,
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Yi5(@, v, y) = 144 T7 — TP (Tha + 2T413) — A(ToTi1 + AT5Tis + 507513
+ 2Ty Tos + 215 Ty + 4Ty Toy),
Ye6(a@, z,y) = Tis, (@, 2, y) = —(Tu1 + 12T13),
F18(@, z,y) = C1(Ca, C2)'?) — 2C5(Cy, C2) @,
F10(@, 2, y) = Di(C1, C2)®) = ((C, C2)®), o)V,

61(a) = 9Ag + 31Ag + 6410, 02(a) = 41 Ag + 44 A9 + 3241,
03(a) = 3A19 — 4A17,04(a) = —5AsA3 + 3A5A, + Aoy,
05(a) = 6245 + 10249 — 125410, 06(a) = 213 + 3Ty,
B1(a) = 3A2 — 245 — 2419, B2(a) = 247 — 9As,

B3(a) = Ag, f4(a) = —5A4 + 845,
fs(a) = Ay, fBs(a) = Ay,

Br(a) = 8Az — 3A, — 445, Bg(@) = 24A5 + 11A4 + 2045,
Bo(a) = —8As + 114, + 445, B10(a) = 8As + 2TA4 — 54 As,
Br1(a,x,y) = TE — 20T — 8Ty, Bia(a, z,y) = T,
Bis(a,z,y) = Ts,

R1(a) = —2A7(1247 + Ag + Aya) + 5A6(A10 + A11) — 241 (Asg — Asy)
+2A5(A1a + Ais) + As(9A4s + TA12),
Ro(a) = Ag + Ag — 2410, Rs(a) = Ay,
Ra(a) = *31431411 +4A,4 A9,
Rs(a,z,y) = (2Co(Ts — 8Ty — 2D3) + C1(6Tx — Ts) — (C1,T5) ™
+ 6D (C1Dy — Ts) — 9D3Cy),
Re(@) = —213A3A¢ 4+ A1(2057Ag — 1264 A9 + 677A19 + 1107A15)
+ T46(Ag7 — Agg),
Ro(a) = —6A%2 — AyAg +2A3A9 — 5A4Ag +4A4A10 — 245413,
Re(d) = Ay, Rola) = —5Ag + 3Ag,
Rio(a) = 7TAs + 5410+ 11411, Ru1(a,z,y) = Tis.

His(a,,y) = (D, D)),
N7(@) = 12D1(Co, D2)M) +2DF + 9D1(C1, C2)) + 36 [Co, C1)M, Do),

We remark the the last two invariant polynomials Hia(a,z,y) and N7(a) are
constructed in [15].

2.3. Preliminary results involving polynomial invariants. Considering the
G L-comitant Co(a, x,y) = yp2(a, x,y) —xqa2(a, z,y) as a cubic binary form of z and
y we calculate

n(a) = Discrim[Co,&], M (a,xz,y) = Hessian[Cs],
where £ = y/x or £ = x/y. According to [17] we have the next result.
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Lemma 2.9 ([I7]). The number of infinite singularities (real and imaginary) of a
quadratic system in QS is determined by the following conditions:

(i) 3 real if n > 0;

(ii) 1 real and 2 imaginary if n < 0;

(iii) 2 real if n =0 and M # 0;

(iv) 1 real if n =M =0 and Cy # 0;

(v) o0 ifn=M=Cs=0.
Moreover, for each one of these cases the quadratic systems can be brought
via a linear transformation to one of the following canonical systems:

(S) i =a+cx+dy+gx®+ (h—1ay,
! y=b+ex+ fy+ (g — zy+ hy%

(Si1) & =a+cx+dy+ gx®+ (h+ 1)y,
T\ =0ter+ fy - 2® + gay + hy®;

i =a+cx+dy+ gr? + hay,
(Strr) . 5
y=b+exr+ fy+ (g — Dy + hy*;

& =a+ cx +dy + gz + hay,
(Srv) 1. ) )
y=b+ex+ fy—a”+ gy + hy*;

& =a+cx+dy+ 2,
(Sv) 1.
y=b+er+ fy+ zy.

Lemma 2.10. If a quadratic system (2.6) possesses a non-parabolic irreducible
conic then the conditions v1 = v2 = 0 hold.

Proof. According to [5] a system (2.6) possessing a second order non-parabolic
irreducible curve as an algebraic particular integral can be written in the form

i =a®(z,y) + O, (gz+hy+ k), §="00(x,y)—P,(9z+ hy+k),

where a,b, g, h, k are real parameters and ®(x,y) is the conic

O(z,y) = p+ qr +ry + sz + 2toy +uy? = 0. (2.5)
A straightforward calculation gives 73 = o = 0 for the above systems and this
completes the proof. O

Assume that a conic (2.5 is an affine algebraic invariant curve for quadratic
systems ([2.1)), which we rewrite in the form:
d
o a+ cx + dy + g 4 2hxy + ky? = P(x,y),
di (2.6)

d
d—‘z{ =b+ex + fy+ 12?4+ 2may + ny? = Q(z,y).
Remark 2.11. Following [J] we construct the determinant
s t q/2
A=t u  r/2|,
q/2 r/2 p

associated to the conic (2.5). By [9] this conic is irreducible (i.e. the polynomial ®
defining the conic is irreducible over C) if and only if A # 0.
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To detect if an invariant conic of a system has the multiplicity greater
than one, we shall use the notion of k-th extactic curve &.(X) of the vector field
X (see ), associated to systems . This curve is defined in the paper [6]
Definition5.1] as follows:

(%1 V2 R V1
X (v1) X(va) ... X(uw)
&, (X) = det . . ,
X)) X)) oo X Y(w)
where vy, vs,...,v; is the basis of C,[z,y], the C-vector space of polynomials in

Cplz,y] and I = (k + 1)(k + 2)/2. Here X°(v;) = v; and X7 (v1) = X(X7~1(v1)).
Considering the Definition [I.1] of a multiplicity of an invariant curve, according
to [6] the following statement holds:

Lemma 2.12. If an invariant curve ®(z,y) = 0 of degree k has multiplicity m,
then ®(x,y)™ divides & (X).

We shall apply this lemma in order to detect additional conditions for a conic to
be multiple. According to definition of an invariant curve (see page[2)) considering
the cofactor K = Uz + Vy + W € C[z,y] the following identity holds:

e P (@) + 5 QL) = Bay) (U + Vy + 7).
This identity yields a system of 10 equations for determining the 9 unknown pa-
rameters p, ¢, v, s, t, u, U, V, W:

Eq =s2g—-U)+20t=0,

Eq =2t(g+2m —U)+s(4h— V) +2lu =0,

Egs =2t2h+n—-V)+u(dm —U) + 2ks =0,

Eqy =u(2n—V)+ 2kt =0,

Eqg =q(g—U)+s(2c— W)+ 2et+1lr =0, @7
Eq =r(2m —U) +q(2h —=V)+2t(c+ f — W) + 2(ds + eu) = 0,

Eqr =r(n—=V)+u2f-W)+2dt+ kq =0,

Eqs = q(c—W) +2(as +bt) +er —pU =0,

Eqo =7r(f = W) +2(bu+ at) +dq—pV =0,
Eq aq + br — pW = 0.

3. PROOF OF THE MAIN THEOREM

Assuming that a quadratic system in @S has an invariant hyperbola ,
we conclude that this system must possess at least two real distinct infinite sin-
gularities. So according to Lemmas [2.9] and the conditions y; = 72 = 0 and
either n > 0 and M # 0 or Cy = 0 have to be fulfilled.

In what follows, supposing that the conditions 73 = 2 = 0 hold, we shall
examine three families of quadratic systems : systems with three real distinct
infinite singularities (corresponding to the condition 1 > 0); systems with two real
distinct infinite singularities (corresponding to the conditions n = 0 and M # 0)
and systems with infinite number of singularities at infinity, i.e. with degenerate
infinity (corresponding to the condition Cy = 0).
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3.1. Systems with three real infinite singularities and 6 # 0. In this case
according to Lemma systems (2.6)) via a linear transformation could be brought
to the following family of systems

d
d—f =a+cx+dy+ gx* + (h— 1)y,
d (3.1)
d—z =b+ex+ fy+ (g — Lay+ hy’.
For this systems we calculate
Co(z,y) =ay(z —y), 0=—(g—1)(h—1)(g+h)/2 (3-2)

and we shall prove the next lemma.

Lemma 3.1. Assume that for a system (3.1) the conditions 8 # 0 and v; = 0 hold.

Then this system via an affine transformation could be brought to the form
dz d
E:a+cx+gx2+(h71)xy, d—z;:bfcyqt(gfl)nyrhyz. (3.3)

Proof. Since 6 # 0 the condition (g—1)(h—1)(g+h) # 0 holds and by a translation
we may assume d = e = 0 for systems (3.1]). Then we calculate
1
=gl 1)2(h = 1)*D1 Dy Dy,
where
D1:C+f7 DZZC(9+4h_1)+f(1+g_2h)a
Ds=c(1—-2g9+h)+ f(4dg+h—1).

Since 8 #£ 0 (i.e. (g—1)(h—1) # 0) the condition v; = 0 is equivalent to D1 DyD3 =
0. We claim that without loss of generality we may assume D; = ¢+ f = 0, as
other cases could be brought to this one via an affine transformation.

Indeed, assume first D; # 0 and Dy = 0. Then as g + h # 0 (due to 0 # 0) we
apply to systems (3.1) with d = e = 0 the affine transformation

d'=y—xz—(c—f)/lg+h), y=-z (3.4)
and we obtain the systems
dxz’ ) o dy’

E :a/+C,I/+gIE +(h/71)x/y/, E :b/+f/y/+(g/fl):rly/#»h,ya. (3.5)

These systems have the following new parameters:
a' = [*h— f*g+cf(g—h) —(a—b)(g+h)*]/(g+h)?,
bV =—a, ¢ =(cg—2fg—ch)/(g+h), (3.6)
f'=(—f-cg+2fg+fn)/(g+h), ¢=h NIN=1-g—h
A straightforward computation gives
Di=c +f =[clg+4h—1)+ f(1+g—2h)]/(g+h) =Ds/(g+h) =0

and hence, the condition Dy = 0 is replaced with D; = 0 via an affine transforma-
tion.
Suppose now D; # 0 and D3 = 0. Then we apply to systems (3.1) the affine

transformation
12

' =—y, y'=z-y+(c—f)/lg+h)
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and we obtain the systems

dz” v o ” oo dy” v oenn . v e
i =ad" +"2"+g"2"+ (0 —1)x"y", e ="+ "y + (" ="y +h"y",
having the following new parameters:
a"=-b, V' =[f’g—h+cf(—g+h)+(a—b)(g+h)?]/(g+h)?
" =(c—f—cg+2fg+ fh)/(g+h),
f"=(cg—2fg—ch)/(g+h), ¢"=1-g—h, " =g
We calculate
DY ="+ " =[e(1—2g+h) + f(4g+h —1)] /(g +h) = D3/(g + h) = 0.

Thus our claim is proved and this completes the proof of the lemma. ([l

Lemma 3.2. A system possesses an invariant hyperbola of the indicated
form if and only if the corresponding conditions indicated on the right hand side
are satisfied:
(I) ®(z,y) =p+gz+ry+2zy < By =b2h—-1)—a29-1) =0,
(2h —1)2+ (29 — 1)2 #0, a®> + b2 #£ 0;
(II) ®(z,y)=p+qr+ry+2z(x—y) <  either
(i) ¢ =0, By = b(1—2h)+2a(g+2h—1) =0, (2h—1)?+(g+2h—1)2 £ 0,
a?+ b2 #0, or
(i) h=1/3, By = (1+39)%(b — 2a + 6ag) + 6¢*(1 — 3g) =0, a # 0;
(II) ®(z,y) =p+qgx+ry+2ylx —y) <  either
(i) ¢=0, B3 =a(1-29)+2b(2g+h—1) =0, (29—1)2+(2g+h—1)% # 0,
a?+b%#0, or
(i) g =1/3, B, = (1 + 3h)%*(a — 2b + 6bh) + 6¢*(1 — 3h) =0, b # 0.

Proof. Since for systems (3.3]) we have Cy = zy(z —y) (i.e. the infinite singularities
are located at the “ends” of the lines © = 0, y = 0 and x —y = 0) it is clear that if a
hyperbola is invariant for these systems, then its homogeneous quadratic part has
one of the following forms: (i) kxy, (ii) kz(z —y), (iii) ky(z — y), where k is a real
nonzero constant. Obviously we may assume k = 2 (otherwise instead of hyperbola
(2.5) we could consider 2®(z,y)/k = 0).

Considering the equations (2.7) we examine each one of the above mentioned
possibilities.

(i) ®(z,y) = p+ qx + ry + 2zy; in this case we obtain

t=1,q=r=s=u=0,U=29g—1, V=2h—-1, W=0,
Egs = p(1 —2g) +2b, Eq9 = p(1l —2h) + 2a,
Eq = Eq = Eq3 = Equ = Eqs = Eqs = Eq7 = Eqi0 = 0.

Calculating the resultant of the non-vanishing equations with respect to the pa-
rameter p we obtain

Res,(Egs, Eqy) = a(l —2g) +b(2h — 1) = B;.
So if (2h — 1)% + (29 — 1)? # 0 then the hyperbola exists if and only if B; = 0. We
may assume 2h— 1 # 0, otherwise the change (z,y, a, b, ¢, g, h) — (y,z,b,a,—c, h, g)
(which preserves systems ({3.3)) could be applied. Then we obtain

p=2a/(2h—1), b=a2g—1)/(2h—-1), P(x,y) =

20 ony—0
oh—1 YT
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and clearly for the irreducibility of the hyperbola the condition a? + b? # 0 must
hold. This completes the proof of the statement (I) of the lemma.

(ii) ®(z,y) = p+qx +ry+ 2z(x — y); since g+ h # 0 (because 6 # 0) we obtain
s=2,t=-1, r=u=0, g=4c¢/(g+h), U=2¢g, V=2h—1, W = —hq/2,
Egs = 4a — 2b —2gp + 4c*(g — h) /(g + h)?,

Eqg = p(1—2h) —2a, Eqio =2c(2a —hp)/(g+ h),
Eq = Eqa = Eq3 = Eqy = Eqs = Eqs = Eq7r = 0.

(1) Assume first ¢ # 0. Then considering the equations Fqg = 0 and Egq19 = 0
we obtain p(3h — 1) = 0. Taking into account the relations above we obtain the
hyperbola

®(z,y) =p+dcx/(g+h)+2z(x—y) =0
which evidently is reducible if p = 0. So p # 0 and this implies h = 1/3. Then from
the equation Fgg = 0 we obtain p = 6a. Since 6§ = (g — 1)(3g + 1)/9 # 0 we have
Eqy = Eqio =0, Eqs = —2B5/(3g+1)2. So the equation Eqg = 0 gives B) = 0 and
then systems (3.3) with A = 1/3 possess the hyperbola
12¢

3g+1
which is irreducible if and only if a # 0.

(2) Suppose now ¢ = 0. In this case there remain only two non-vanishing
equations:

b(z,y) = 6a + x4+ 2zx(x —y) =0,

Egqs =4a—2b—2gp =0, Eq9=p(1—2h)—2a=0.

Calculating the resultant of these equations with respect to the parameter p we
obtain

Res,(Eqs, Eqo) = b(1 — 2h) + 2a(g + 2h — 1) = Bs.
If (1—2h)%+ (g+2h —1)? # 0 (which is equivalent to (1 —2h)? 4 g2 # 0) then the
condition Bj = 0 is necessary and sufficient for a system with ¢ = 0 to possess
the invariant hyperbola

where p is the parameter determined from the equation Eqg = 0 (if 2h — 1 # 0),
or Eqs = 0 (if g # 0). We observe that the hyperbola is irreducible if and only if
p # 0 which due to the mentioned equations is equivalent to a? + b2 # 0.

Thus the statement II of the lemma is proved.

(iii) ®(z,y) = p + gz + ry + 2y(xz — y); we observe that due to the change
(x,y,a,b,¢,9,h) — (y,z,b,a,—c, h,g) (which preserves systems ) this case
could be brought to the previous one and hence, the conditions could be constructed
directly applying this change. This completes the proof of Lemma [3.2} O

In what follows the next remark will be useful.

Remark 3.3. Consider systems .
(i) The change (x,y,a,b,¢,g,h) — (y,z,b,a,—c, h,g) which preserves these
systems replaces the parameter g by h and h by g.
(if) Moreover if ¢ = 0 then having the relation (2h—1)(2g—1)(1—2g—2h) =0
(respectively (4h — 1)(4g — 1)(3 — 4g — 4h) = 0) due to a change we may
assume 2h — 1 = 0 (respectively 4h — 1 = 0).
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To prove the statement (ii) it is sufficient to observe that in the case 2g — 1 =0
(respectively 49 —1 = 0) we could apply the change given in the statement (i) (with
¢ = 0), whereas in the case 1 — 2¢g — 2h = 0 (respectively 3 —4g — 4h = 0) we apply
the change (z,y,a,b,9,h) — (y —x,—x,b — a,—a,h,1 — g — h), which conserves
systems with ¢ = 0.

Next we determine the invariant criteria which are equivalent to the conditions
given by Lemma[3.2]

Lemma 3.4. Assume that for a quadratic system ([2.6)) the conditionsn >0, 0 #0
and y1 = 2 = 0 hold. Then this system possesses at least one invariant hyperbola
if and only if one of the following sets of the conditions are satisfied:

(i) If B1 # O then either
(i.1) B2 #0, Ry #0, or
(i2) B2=0,B83#0,73=0,R1 #0, or
(i.3) B2 =PB3=0, BsfBsRa #0, or
(i4) fo=PB3=01=0,73=0, Ry #0;
(ii) If B1 = 0 then either
(ii.1) B6 #0, B2 #0, 74 =0, Rz #0, or
(ii2) Bs #0, B2=0,v5=0, Ry #0, or
(it.3) Bs =0, B7 #0, 75 =0, R5 # 0, or
(ii4)
)

Proof. Assume that for a quadratic system the conditions n > 0, # # 0 and
~v1 = 0 are fulfilled. According to Lemma due to an affine transformation and
time rescaling this system could be brought to the canonical form , for which
we calculate

2 = —1575¢%(g — 1)%(h — 1)%(g 4+ h)(3g — 1)(3h — 1)(3g + 3h — 4) By,

fi=—c(g—1)(h—1)(3g — 1)(3h — 1)/4, (3.7)
B2 = —c(g—h)(3g+3h—4)/2.

3.1.1. Case 1 # 0. According to Lemma the condition v = 0 is necessary
for the existence of a hyperbola. Since 637 # 0 in this case the condition v5 = 0 is
equivalent to (3g +3h —4)B; = 0.

Subcase By # 0. Then (3g + 3h — 4) # 0 and the condition v2 = 0 gives B; = 0.
Moreover the condition 33 # 0 yields g—h # 0 and this implies (2h—1)2+4(29—1)? #
0. According to Lemma systems possess an invariant hyperbola, which is
irreducible if and only if a® 4 b? # 0.

On the other hand for these systems we calculate

Ry = —3c(a — b)(g — 1)°(h — 1)2(g + h)(3g — 1)(3h — 1)/8

and we claim that for By = 0 the condition R; = 0 is equivalent to a = b =
0. Indeed, as the equation By = 0 is linear homogeneous in a and b, as well as
the second equation a — b = 0, calculating the respective determinant we obtain
—2(g + h) # 0 due to @ # 0. This proves our claim and hence the statement (i.1)
of Lemma [3.4] is proved.
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Subcase B2 = 0. Since (1 # 0 (i.e. ¢ # 0) we obtain (¢ — h)(3g+3h —4) =0. On
the other hand for systems ([3.3) we have

Bz =—clg—h)(g—1)(h-1)/4

and we consider two possibilities: f3 # 0 and 83 = 0.

Possibility B3 # 0. In this case we have g — h # 0 and the condition F2 = 0 implies
39 +3h—4=0,ie g=4/3—h. So the condition (2h — 1) + (29 — 1)2 # 0 for
systems becomes (2h — 1)? + (6h — 5)? # 0 and obviously this condition is
satisfied.

For systems with g = 4/3 — h we calculate

v3 = 22971c(h — 1)3(3h — 1)By, Ri = (a — b)e(h — 1)3(3h — 1)3/6,
By =—c*(h—1)*(3h —1)?/4, B3 = —c(h—1)(3h —2)(3h —1)/18.

So because 81 # 0 the condition 3 = 0 is equivalent to B; = 0. Moreover if in
addition R; = 0 (i.e. a —b = 0) we obtain @ = b = 0, because the determinant of
the systems of linear equations

3B; =a(5—6h) —3b(2h—1) =0, a—b=0

with respect to the parameters a and b equals 4(3h — 2) # 0 due to the condition
B3 # 0. So the statement (i.2) of the lemma is proved.

Possibility B3 = 0. Since 81 # 0 (i.e. ¢(g—1)(h — 1) # 0) we obtain g = h and for
systems ((3.3) we calculate

v2 = 6300c2h(h — 1)*(3h — 2)(3h — 1)®By, 6 = —h(h — 1),
By =—c*(h—1)*(3h — 1)?/4, B4 =2h(3h—2), [5=—2h*12h—1).

So by the condition 68, # 0 we obtain that the necessary condition 7, = 0 is
equivalent to B1(3h — 2) = 0 and we shall consider two cases: 4 # 0 and 34 = 0.

(1) Case B4 # 0. Therefore 3h — 2 # 0 and this implies B; = 0. Considering
Lemmathe condition (2h — 1)? + (29 — 1)? # 0 for g = h becomes 2h — 1 # 0.
So for the existence of a invariant hyperbola the condition 85 # 0 is necessary.
Moreover this hyperbola is irreducible if and only if a? 4+ b2 # 0. Since for these
systems we have

Ro = (a+b)(h—1)*(3h—1)/2, By =—(2h—1)(a —b)

we conclude, that when B; = 0 the condition Ry # 0 is equivalent to a? + b2 # 0
and this completes the proof of the statement (i.3) of the lemma.

(2) Case B4 = 0. Then by 6 # 0 we obtain h = 2/3 and arrive at the 3-parameter
family of systems

d d

d;: =a+cx+22?/3 - xy/3, ditJ =
For these systems we calculate 3 = 7657¢B1/9, 31 = —c?/36, R2 = (a + b)/18,
where By = (b—a)/3. Since for these systems the condition (2h —1)2 + (29 —1)% =
2/9 # 0 holds, according to Lemma [3.2 we conclude that the statement (i.4) of the
lemma is proved.

b—cy—ay/3+2y%/3, (3.8)
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3.1.2. Case 51 = 0. Considering (3.7) and the condition 6 # 0 we obtain ¢(3g —
1)(3h — 1) = 0. On the other hand for systems (3.3) we calculate

Bs = —clg —1)(h—1)/2

and we shall consider two subcases: (g # 0 and (g = 0.

Subcase fg # 0. Then ¢ # 0 and the condition 1 = 0 implies (3g — 1)(3h —1) = 0.
Therefore by Remark we may assume h = 1/3 and this leads to the following
4-parameter family of systems

%:a+cx+gz2—2:ﬂy/3, %:b—cy+(g—1)xy+y2/3, (3.9)
which is a subfamily of . According to Lemma the above systems possess
a hyperbola if and only if either By = a(1 — 2g) — b/3 = 0 and a? + b* # 0 (the
statement 1), or By = (1 + 39)2(b — 2a + 6ag) + 6c*(1 — 3g) = 0 and a # 0 (the
statement II). We observe that in the first case, when a(l — 2g) — b/3 = 0 the
condition a? + b2 # 0 is equivalent to a # 0.

On the other hand for these systems we calculate

v1=—16(g — 1)*(3g — 1)®B1B5/81, B = c(g—1)/3,
By =clg—1)(3g—1)/2, Rz =a(3g—1)>%/18.

So we consider two possibilities: 82 # 0 and f3 = 0.

Possibility B2 # 0. In this case (¢ — 1)(3g — 1) # 0 and the conditions v4 = 0 and
R3 # 0 are equivalent to BB, = 0 and a # 0, respectively. This completes the
proof of the statement (ii.1).

Possibility B2 = 0. From the condition G # 0 we obtain ¢ = 1/3 and this leads to
the following 3-parameter family of systems:
dx

e a+cx+x?/3 — 2xy/3,

dy _
dt

Since ¢ # 0 (because g # 0) according to Lemma these systems possess an
invariant hyperbola if and only if one of the following sets conditions are fulfilled:

b—cy—2xy/3+y*/3. (3.10)

Bi=(a—b)/3=0, a*+b*#0;
By=4b=0, a#0; B,=4a=0, b#0.

We observe that the last two conditions are equivalent to ab = 0 and a? + b2 # 0.
On the other hand for systems (3.10) we calculate

75 = 16B1B5B5 /27, R4 = 128(a® — ab + b*)/6561.

It is clear that the condition R4 = 0 is equivalent to a® 4+ b? = 0. So the statement
(ii.2) is proved.
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Subcase Bg = 0. Since 0 # 0 (i.e. (¢ — 1)(h — 1) # 0) the condition G = 0 yields
¢ = 0. Therefore according to Lemma systems (3.3) with ¢ = 0 possess an
invariant hyperbola if and only if one of the following sets of conditions holds:

Bi=b2h—1)—a(2g—-1)=0, (2h—1)*>+(29—1)*>#0, a> +b* #0;

By =b(1—2h) +2a(g+2h—1) =0, (2h—1)>+ (g+2h—1)>#0, a® +b*> #0;
Bi=a(l —29)+2b(2g+h—1)=0, (29—1)*+ (29+h—1)2#0, a*> +b>*#0.
Considering the following three expressions

a1 =29g—1, as=2h—-1, az=1-29—2h
we observe that the condition (2h —1)? + (29 — 1)? # 0 (respectively (2h — 1)? +
(g+2h—1)2 #0; (29— 1)2 + (29 + h — 1)% # 0) is equivalent to a2 + a2 # 0
(respectively a3 + a3 # 0; af + a3 # 0).

On the other hand for these systems we calculate
V5 = —288(g — 1)(h — 1)(g + h)B1B2Bs,
0=—(g—1(h-1(g+h)/2
Br =2a1a003, P9 = 2(a102 + araz + azas),
Rs =36(bx — ay) [(g — 1)°2 + 2(g + h+ gh — Dy + (h — 1)*y°].

We observe that if ay = @y = 0 (respectively as = a3 = 0; a1 = ag = 0) then the
factor By (respectively Ba; Bs) vanishes identically. Considering the values of the
invariant polynomials 87 and B9 we conclude that two of the factors a; (i = 1,2, 3)

vanish if and only if 8; = B9 = 0. So we have to consider two subcases: 32+ (32 # 0
and (32 + 53 = 0.

Possibility 32 + 32 # 0. In this case by 6 # 0 the conditions y5 = 0 and R5 # 0
are equivalent to B1B2B; = 0 and a? + b? # 0, respectively. So by Lemma there
exists at least one hyperbola and hence the statements (i7.3) and (i7.4) are valid.

Possibility 32 + 32 = 0. As it was mentioned above, in this case two of the factors
a; (i =1,2,3) vanish. Considering Remark without loss of generality we may
assume a1 = as = 0.
Thus we have g = h = 1/2 and we obtain the family of systems

(c% =a+2%/2—2y/2, % =
Since ¢ = 0 and the conditions of the statement I of Lemma [3.2] are not satisfied
for these systems, according to Lemma [3.2] the above systems possess an invariant
hyperbola if and only if a® + b? # 0 and either B, = a = 0 or B3 = b = 0. For
systems we calculate

V6 = —9B2B3,  Rs = 9(bx — ay)(x +y)?

and we conclude that the statement (ii.5) of the lemma holds.
As all the cases are examined, Lemma [3.4] is proved. (]

b—ay/2 +y?/2. (3.11)

The next lemma is related to the number of the invariant hyperbolas that qua-
dratic systems with n > 0 and 6 # 0 could have.

Lemma 3.5. Assume that for a quadratic system ([2.6)) the conditionsn >0, 0 #0
and 1 = v2 = 0 are satisfied. Then this system possesses:
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(A) two invariant hyperbolas if and only if either
(Al) ﬂlzoy 66#07 /627&0’ 74:0z R37£0 and(sl:(); or
(A2) /31:0) 6620} ﬁ75£0: 75:0, RE,#O and,@8:52:0, or
(A?)) 51:07 /66257207 597&07 ’75:0) R57é0 and63:07 /887&07'
(B) three invariant hyperbolas if and only if f1 = 0, Bs = B7 = 0, By # 0,
’7/520, R57£O and53=ﬂ8:0.
Proof. For systems (3.3]) we have
Bs=—clg—1)(h—1)/2, 0=—(9—1)(h—1)(g+h)/2,
Bi=—c*(g—1)(h—1)(3g — 1)(3h — 1)/4.
3.1.3. Case s # 0. Then ¢ # 0 and according to Lemma/[3.2] we could have at least
two hyperbolas only if the conditions given either by the statements I and II; (ii)
(i.e. By = B4 = 0and h = 1/3), or by the statements I and IIT; (ii) (i.e. By =B =0
and g = 1/3) are satisfied. Therefore the condition (3g—1)(3h—1) = 0 is necessary.

This condition is governed by the invariant polynomial 3. So we assume 31 = 0
and due to Remark we may consider h = 1/3. Then we calculate

va=—16(g — 1)*(3g — 1)’B1B5/81, 1 =0,
0=(g—-1)(1+39)/9#0, [2=c(g—1)(3g—1)/2.

Solving the systems of equations B, = B, = 0 with respect to a and b we

‘h:1/3

obtain
6c(3g —1) 18¢*(2g —1)(3g — 1) _
= = 40, - = = Bo.
(14 3g)? (1+3g)?
In this case we obtain the family of systems

d d

an = Ao + cx + go® — 2wy/3, dit/ =By —cy+ (9 — Dy +v*/3, (3.12)
which possess two invariant hyperbolas:

36c%(3g — 1)
®i(z,y) =——F———"+22y =0,

36c?(3g — 1 12¢
(I)Q(xay)zi (g 2)

(1+3g) 1+3g
where ¢(3g — 1) # 0 due to a # 0. Thus for the irreducibility of the hyperbolas
above, the condition ¢(3g — 1) # 0 (i.e. B2 # 0) is necessary.

Since the condition 4 = 0 gives B85 = 0 it remains to find out the invariant

polynomial which in addition to ~4 is responsible for the relation B; = B, = 0. We
observe that in the case By =0 (i.e. b= 3a(1l — 2g)) we have

61 = (3g — 1)[a(1 + 39)*> — 6¢*(3g — 1)] /18 = (3g — 1)BB;/18.

It remains to observe that in the case considered we have R3 = a(3g — 1)3/18 # 0
and that due to the condition (85 # 0 (i.e. ¢(3g — 1) # 0) by Lemma [3.2] we could
not have a third hyperbola of the form ®(z,y) = p+ qx +ry + 2y(z —y) = 0. This
completes the proof of the statement (A;) of the lemma.

3.1.4. Case B = 0. Then ¢ = 0 and we calculate for systems (|3.3))
ﬂ7 = 20410420&3, ﬁg = 2(0[1042 +oias —|-062013), 68 = 2(4g—1)(4h—1)(3—4g—4h),
where a; =29 — 1, ap =2h — 1 and ag =1 — 29 — 2h.

x+2zx(r—y)=0,
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Subcase B7 # 0. Then ajasasz # 0 and we consider two possibilities: (g # 0 and
Os = 0.

Possibility Bs # 0. We claim that in this case we could not have more than one
hyperbola. Indeed, as ¢ = 0 we observe that all five polynomials B; (i = 1,2,3),
B, and Bj are linear (and homogeneous) with respect to a and b and the condition
a?+b? # 0 must hold. So in order to have nonzero solutions in (a, b) of the equations

U=V =0, UYVEe{B,Bs,Bs,B,B}, UV

it is necessary that the corresponding determinants det(i,)V) = 0. We have for
each couple, respectively:

(w1) det(By,Bs) = —(2h —1)(4h — 1) = 0;

(w2) det(Bi,Bs) = —(2g—1)(4g — 1) =0;

(w3) det(Ba,Bs) = (1 —2g9 —2h)(3 —4g — 4h) = 0;

(we) det(B1,By)[,_, 5= (3g+1)*/3;

(ws) d t<81,83>| = (3h+1)%/3; (3.13)
(wr) det(Bg,B )|{c 0.go1/ = 1+ 3h)%(6h — 1)(12h — 5)/3 = 0;

(ws) det(82,83)‘{h 1/3.g=1/3) = —16 # 0.

We observe that the determinant (ws) is not zero. Moreover since 37 # 0 and
Bs # 0 we deduce that none of the determinants (w;) (i = 1,2, 3) could vanish.

On the other hand for systems with ¢ = 0 we have § = (¢ —1)(3g+1)/9 in
the case h = 1/3 and § = (h — 1)(3h + 1)/9 in the case g = 1/3. Therefore due to
0 # 0 in the cases (w4) and (ws) we also could not have zero determinants.

Thus it remains to consider the cases (wg) and (wr). Considering Remark [3.3| we
observe that the case (w7) could be brought to the case (wg). So assuming h = 1/3
we calculate

Br=2(29-1)(6g —1)/9, fPs=-2(4g—1)(129-5)/9, 0=(g9—1)(3g+1)/9
and hence the determinant corresponding to the case (wg) could not be zero due to
008705 # 0. This completes the proof of our claim.

Possibility Bs = 0. In this case we obtain (4g —1)(4h —1)(3—4g —4h) = 0 and due
to Remark we may assume h = 1/4. Then det(By,Bs) = 0 (see the case (w1))
and we obtain By = (2a — b — 4ag)/2 = —By = 0. Since in this case we have
b2 =2(29 —1)(49 —1)(b—2a +dag), Fr=(29—1)(49—1)/2
we conclude that due 87 # 0 the condition 2a — b —4ag = 0 is equivalent to do = 0.
So setting b = 2a(1 — 2¢g) we arrive at the family of systems
dx dy

2
& _ 4.
o a+ gx 3xy/4, 7

These systems possess the invariant hyperbolas
Y (z,y) = —da+2zy =0, P5(z,y) =4a+2zx(x —y) =0,
which are irreducible if and only if a # 0. Since for these systems we have

R5 = 9a(2z — gz — y) [16(g — 1)*z* + 8(5g — 3)zy + 9y?] /4

= 2a(1 — 2g) + (g — Vay + y*/4. (3.14)
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the condition a # 0 is equivalent to R5 # 0. On the other hand for these systems
we calculate
Bs = —2a(2g — 1)(4g — 1), Bgyh:1/4 = 49a/24

and because 37R5 # 0 we obtain B384 # 0, i.e. systems (3.14) could not possess a
third hyperbola. This completes the proof of the statement (A2).

Subcase 37 = 0. Then (2g —1)(2h — 1)(1 — 2g — 2h) = 0 and due to Remark [3.3] we
may assume i = 1/2. Then by Lemma [3.2] we must have g(2¢g — 1) # 0 and this is
equivalent to B9 = —4¢(2g — 1) # 0. Herein we have det(B1, B2) = 0 and we obtain
Bi =a(l —2g) =0 and B = 2ag = 0. This implies a = 0, which due to §g # 0 is
equivalent to d3 = 16a%g?(2g — 1)2 = 0. So we obtain the family of systems

d d
o = gr® — xy/2, —y:b+(g—1)xy+y2/2 (3.15)
dt dt
which possess the following two hyperbolas
2b b
Py (2,y) = “oy 1 T2w=0, Py(z,y) = -5t 2z(z —y) =0.

These hyperbolas are irreducible if and only if b # 0 which is equivalent to R5 =
9bxz:[4(g — 1)%22 + 4(3g — Day + y?]| # 0.

For the above systems we have Bs = b(4g — 1) and Bf = 25b/4. Since b # 0 only
the condition Bs = 0 could be satisfied and this implies g = 1/4. It is not too hard
to find out that in this case we obtain the third hyperbola:

P5(z,y) = —4b+2y(z —y) = 0.

We observe that for the systems above 3s = —2(4g — 1)? and hence the third
hyperbola exists if and only if G = 0. So the statements (A3z) and (B) are proved.
Since all the possibilities are examined, Lemma [3.5] is proved. a

3.2. Systems with three real infinite singularities and # = 0. Considering
for systems we obtain (g—1)(h—1)(g+h) = 0 and we may assume g = —h,
otherwise in the case g = 1 (respectively h = 1) we apply the change (z,y,g,h) —
(—y,x —y,1 — g — h,g) (vespectively (z,y,g9,h) — (y — x,—x,h,1 — g — h)) which
preserves the quadratic parts of systems (3.1)).

So g = —h and for systems we calculate N = 9(h?—1)(z—y)?. We consider
two cases: N # 0 and N = 0.

3.2.1. Case N # 0. Then (h — 1)(h + 1) # 0 and due to a translation we may
assume d = e = 0 and this leads to the family of systems

d d
CT?;:a—i—c:v—th—i—(h—1)gcy, dii;/:

Remark 3.6. We observe that by changing (z,y,a,b,¢, f,h) — (y,2,b,a, f,c,—h)
which conserves systems (3.16]) we can change the sign of the parameter h.

Lemma 3.7. A system with (h—1)(h+1) # 0 possesses at least one invariant
hyperbola of the indicated form if and only if the following conditions are satisfied,
respectively:
(D) ®(z,y) =p+qr+ry+2zy & c+f=0,E =al2h+1)+b(2h—1) =0,
a?+ b2 #£0;
(1) ®(z,y)=p+qr+ry+2z(z—y) < c— f =0 and either

b+ fy— (h+ Dy + hy?. (3.16)
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(i) (2h —1)(3h —1) £ 0, & = 2¢2(h — 1)(2h — 1) + (3h — 1)2(b — 2a +
2ah —2bh) =0, a # 0, or
(ii) h=1/3,¢=0,a#0, or
(iii) h=1/2, a =0, b+4c #0;
(III) ®(z,y) =p+gqr+ry+2y(x —y) & c— f =0 and either
() (2h+1)(Bh+1) £ 0, & = 2(h + 1)(2h + 1) + (3h + 1)%(a — 2b —
2bh +2ah) =0, b#£ 0, or
(ii)) h=-1/3,¢=0,b#0, or
(iii) h=—1/2,b=0, a+4c® # 0.

Proof. As it was mentioned in the proof of Lemma (see page[14)) we may assume
that the quadratic part of an invariant hyperbola has one of the following forms:
(i) 2zy, (i) 2z(x — y), (iii) 2y(x — y). Considering the equations (2.7]) we examine
each one of these possibilities.

(i) ®(z,y) = p+qax+ry+2zxy; in this case because N # 0 (i.e. (h—1)(h+1) #0)
we obtain

t=1, g=r=s=u=0, U=-2h—-1, V=2h—-1, W=c+H+f,
Egs =p(142h)+2b, Eqg=p(l—2h)+2a, Eqo=—plc+ f),
Eq =FEq = Eq3 = Equ = Eqs = Eqs = Eq7r = 0.

Since in this case the hyperbola has the form ®(x,y) = p + 2zy it is clear that
p # 0, otherwise we obtain a reducible hyperbola. So the condition ¢+ f = 0 is
necessary.

Calculating the resultant of the non-vanishing equations with respect to the
parameter p we obtain

Resy,(Egs, Eqy) = 2[a(2h + 1) + b(2h — 1)] = 2&;.

Since (2h —1)? + (2h 4+ 1)? # 0 we conclude that an invariant hyperbola exists if
and only if & = 0. Due to Remark [3.6] we may assume 2h — 1 # 0. Then we obtain
2a
2h — 1

and clearly for the irreducibility of the hyperbola the condition a # 0 must hold.
This completes the proof of the statement I of the lemma.
(ii) ®(z,y) = p+qx +ry +2z(x —y); since (h — 1)(h + 1) # 0 (because N # 0)
we obtain

s=2, t=-1, r=u=0, U=-2h, V=2h—-1, W = (4dc+ hq)/2,
Eqs =2(c— f), Eqs=4a—2b+2hp —cg — hq*/2,
Eqg =p(1 —2h) —2a, Eqo = —2cp+aq— hpq/2,
Eq = Eq = Eq3 = Equ = Eqs = Eq7 = 0.

p=2a/(2h—1), b=a(2h+1)/(2h—1), P(z,y)= +2zy =0

(3.17)

We observe that the equation Egs = 0 implies the condition ¢ — f = 0.
(1) Assume first (2h — 1)(3h — 1) # 0. Then considering the equation Eqy = 0
we obtain p = 2a/(1 — 2h). As the hyperbola ®(z,y) = p+ qr + 2x(x — y) = 0 has
to be irreducible the condition p # 0 holds and this implies a # 0. Therefore from

a(4c — q+ 3hq)

oh—1 =0

Eqio =
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From 3h — 1 # 0 we obtain ¢ = 4¢/(1 — 3h) and then we obtain

b 28, B
B= on—1n)Br-12

So we deduce that the conditions ¢ — f = 0, & = 0 and a # 0 are necessary and
sufficient for the existence of a hyperbola of systems in the case (2h—1)(3h—
1) #0.

(2) Suppose now h = 1/3. Then considering we have Fqg = (p — 6a)/3 =
0, i.e. p = 6a # 0 (otherwise we obtain a reducible hyperbola). Therefore the
equation Fqi9 = —12ac = 0 yields ¢ = 0. Herein the equation Fqg = 0 becomes
Eqgs = [12(4a — b) — ¢%]/6 = 0, i.e. ¢ = £21/3(4a — b) and obviously we obtain at
leas one real hyperbola if 4a — b > 0 and two complex if 4a — b < 0.

Thus in the case h = 1/3 we have at least one hyperbola if and only if the
conditions f = ¢ =0 and a # 0 hold.

(3) Assume finally h = 1/2. In this case we obtain Fqg = —2a =0, i.e. a =0
and we have

Eqgg=—-2b+p—cq—q*/4=0, Eqo=—p8c+q)/4=0,
O(z,y) =p+qr + 2z(x —y).

0.

Therefore p # 0 and we obtain ¢ = —8c and p = 2(b + 4c?) # 0. This completes
the proof of the statement II of the lemma.

(i) ®(x,y) = p + qx + ry + 2y(z — y); we observe that due to the change
(z,y,a,b,¢, f,h) — (y,x,b,a,c, f,—h) (which preserves systems ) this case
could be brought to the previous one and hence, the conditions could be constructed
directly applying this change.

Thus Lemma is proved. [

We shall construct now the affine invariant conditions for the existence of at least
one invariant hyperbola for quadratic systems in the considered family.

Lemma 3.8. Assume that for a quadratic system (2.6)) the conditionsn > 0, § =0,
N #£ 0, and v1 = v2 = 0 hold. Then this system possesses at least one invariant
hyperbola if and only if one of the following sets of the conditions is satisfied:

(i) If B # O then either

(i.1) B0 #0, 97 =0, R¢ # 0, or

(12) 510 = O, Y4 = 0, ﬁng 7é 0,’
(ii) If Bs = O then either

(ii.1) B2 #0, Br #0, 13 =0, B1oR7 # 0, or

(112) ﬂg # 0, ﬂ7 = 0, Y9 = 0, Rs # 0, or
(113) 62 = O; 67 7é 07 /610 7é O> Yrys = O; R5 7é 0; or
(ii4) B2 =0, Br#0, B1o =0, R3 #0, v7 #0, or
(ii.5) ﬁg = 0, ﬁ7 7é 0, ﬁlo = 0, Rg 75 0, Yr = O, or

(ii.6) B2 =0, 7 =0, 97 =0, R3 #0.

Proof. Assume that for a quadratic system the conditions n > 0, § = 0 and
N # 0 are fulfilled. As it was mentioned earlier due to an affine transformation

and time rescaling this system could be brought to the canonical form (3.16)), for
which we calculate

= (c=f)P(c+ f)lh=1)%(h+1)*(3h — 1)(3h + 1) /64,
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Be = (c— /)b =1)(h+1)/4, Bro=—23h—1)@Bh+1).

Subcase s # 0. By Lemma [2.10] for the existence of an invariant hyperbola of
systems ([3.16)) the condition 1 = 0 is necessary and this condition is equivalent to
(c+ f)(3h —1)(3h 4+ 1) = 0. We examine two possibilities: 819 # 0 and S19 = 0.

Possibility B10 # 0. Then we obtain f = —¢ (this implies 75 = 0) and we have
v =8h—1)(h+1)&.

Therefore becuase g # 0 the condition v; = 0 is equivalent to & = 0. So we have
a=A2h—1), b= —A(2h+1) (where A # 0 is an arbitrary parameter) and then
we calculate

Re = —632xc(h — 1)(h + 1).

Since s # 0 we deduce that the condition Rg # 0 is equivalent to a® + b> # 0.
This completes the proof of the statement (i.1) of the lemma.

Possibility 310 = 0. Then we have (3h —1)(3h +1) = 0 and by Remark [3.6 we may
assume h = 1/3. Then we obtain the 4-parameter family of systems
dz

i a+cr —x?/3 — 2xy/3,

for which we calculate y; = 0 and

Yo = 44800(c — f)*(c + f)(2c — f)/243,
Be = —2(c—f)/9, P2=—4(2c— [)/9.

Since s # 0 (i.e. ¢ — f # 0) by Lemma the necessary condition v = 0 gives
(c+ f)(2¢— f) = 0. We claim that for the existence of an invariant hyperbola the
condition 2¢ — f # 0 (i.e. B2 # 0) must be satisfied. Indeed, setting f = 2¢ we
obtain Gg = 2¢/9 # 0. However, according to the Lemma for the existence of
a hyperbola of systems , the condition (¢+ f)(¢— f) = 0 is necessary , which
for f = 2c¢ becomes —3c? = 0. The contradiction obtained proves our claim.

Thus the condition §5 # 0 is necessary and then we have f = —c. By Lemma
in the case h = 1/3 we have an invariant hyperbola (which is of the form
®(z,y) = p+qr+ry+ 2wy = 0) if and only if & = (5a —b)/3 = 0 and a® +b* # 0.

On the other hand for systems with f = —c we calculate

dy

o =b+ fy —4zy/3 +y*/3, (3.18)

vy = —4096¢%E1 /243, s = —4¢/9, Rz = —4a/9.

So the statement (i.2) of the lemma is proved.

Subcase fg = 0. Then f = ¢ (this implies 72 = 0) and we calculate

vs = 42(h — 1)(h + 1)&2&3, Bo=c(h—1)(h+1)/2,
Br=-2(2h—1)(2h + 1), pio=—-2(3h—1)(3h+1),
Ry = —(h—1)(h+1)U(a,b,c,h)/4,

where U(a,b,c,h) = 2c*(h —1)(h +1) —=b(h + 1)(3h — 1)2 + a(h — 1)(3h + 1)%.
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Possibility B2 # 0. Then ¢ # 0 and we shall consider two cases: 87 # 0 and 57 = 0.

(1) Case 87 # 0. We observe that in this case for the existence of a hyperbola
the condition 19 # 0 is necessary. Indeed, since f = ¢ # 0 and (2h—1)(2h+1) # 0,
according to Lemma (see the statements II and III for the existence of at least
one invariant hyperbola it is necessary and sufficient (3h—1)(3h+1) # 0 and either
E=0and a#0,or &3 =0 and b # 0.

We claim that the condition a # 0 (when £ = 0) as well as the condition b # 0
(when & = 0) is equivalent to U(a,b,c¢,h) # 0. Indeed, as & as well as & and
U(a,b,c, h) are linear polynomials in @ and b, then the equations &, = U(a, b, ¢, h) =
0 (respectively & = U(a,b,c,h) = 0) with respect to a and b gives a = 0 and
b=2c2(h—1)/(3h —1)? (respectively b = 0 and a = —2¢?(h + 1)/(3h + 1)?). This
proves our claim.

It remains to observe that the condition £E35 = 0 is equivalent to v5 = 0. So
this completes the proof of the statement (%i.1) of the lemma.

(2) Case B7 = 0. Then by Remark [3.6] we may assume h = 1/2 and since f = c,
by Lemma for the existence of a hyperbola of systems (with h = 1/2 and
f = ¢) the conditions a = 0 and b + 4c? # 0. On the other hand we calculate

Yo =3a/2, Rg=(Ta+b+4c?)/8

and clearly these invariant polynomials govern the above conditions. So the state-
ment (ii.2) of the lemma is proved.

Possibility B2 = 0. In this case we have f = ¢ =0.

(1) Case B7 #0. Then (2h — 1)(2h + 1) # 0.

(a) Subcase B19 # 0. In this case (3h — 1)(3h + 1) # 0. By Lemma we
could have an invariant hyperbola if and only if £,E2,E3 = 0. On the other hand for

systems (3.16]) with f = ¢ =0 we have
Yrys = —336(h — 1)2(1 + h)2515283,
Rs = 36(bx — ay)(z — y)[(1 + h)*z — (h — 1)?y]

and therefore the condition R5 # 0 is equivalent to a? + b% # 0. This completes
the proof of the statement (ii.3) of the lemma.

(b) Subcase f10 = 0. Then we have (3h — 1)(3h + 1) = 0 and by Remark [3.6{ we
may assume h = 1/3. By Lemma we could have an invariant hyperbola if and
only if either the conditions I or IT; (ii) of Lemma are satisfied. In this case we
calculate

7 = —64£1/9, Rz = —4a/9

and hence, the condition R3 # 0 implies the irreducibility of the hyperbola. There-
fore in the case 7 # 0 we arrive at the statement (4.4) of the lemma, whereas for
~v7 = 0 the statement (7.5) of the lemma holds.

(2) Case B7 = 0. Then (2h — 1)(2h + 1) = 0 and by Remark [3.6] we may assume
h =1/2. By Lemma we could have an invariant hyperbola if and only if either
the conditions & = 2a = 0 and b # 0 (see statement I) or ¢ = 0 and b # 0
(see statement IT; (iii) of the lemma) are fulfilled. As we could see the conditions
coincide and hence by this lemma we have two hyperbolas: the asymptotes of one
of them are parallel to the lines x = 0 and y = 0, whereas the asymptotes of the
other hyperbola are parallel to the lines z = 0 and y = z.
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On the other hand for systems (3.16]) (with h = 1/2 and f = ¢ = 0) we calculate
vr =—12a, Rz = (ba —b)/16

and this leads to the statement (ii.6) of the lemma.
Since all the possibilities are considered, Lemma [3.8]is proved. ([l

Lemma 3.9. Assume that for a quadratic system (2.6)) the conditionsn > 0, § =0,

N £ 0 and v1 = 2 = 0 are satisfied. Then this system possesses:
(A) three distinct invariant hyperbolas if and only if B = B2 = 10 = 7 = 0,
07Rs # 0 and y10 # 0; more precisely all three hyperbolas are real (1 H

and 2 H?) if y10 > 0 and one is real and two are complex (1 H and 2 7%’)
if 10 < 0;

(B) two distinct invariant hyperbolas if and only if B¢ = 0 and either
(Bl) B2 #0, B £0, v =0, B1o0R7 #0 and 6, =0 (= 2°H), or
(B2) B2 #0, 87 =0, 7%9=0,Rs #0 and 65 =0 (= 2'H), or
(B?)) 52:0, 57750, ,310#0, ’}/7’7820, R57é0and58:52=0 (=> 27‘(),

or

(B4) B2 =0, 87 #0, 10 =0,77 #0, R3 # 0 and y10 <0 (= 2 H?)), or
(B5) /32:0) 677&0) /610:0; 777&0; RS#O and%o >0 (:> QHP)! or
(B6) B2 =0, 87 =0,v=0,R3#0 (= 2H);

(C) one double (H5) invariant hyperbola if and only if s = B2 = 0, 7 # 0,
Bro =0, v7 # 0, Rg #0 and y10 = 0.

Proof. For systems we calculate
Bo=(c—f)(h=1)(h+1)/4, B =-202h+1)(2h 1),
Bio=—=2Bh+1)Bh—1), fy=[(c+ f)(h* —1) =8(c— f)h)] /4.

According to Lemma [3.7]in order to have at least two invariant hyperbolas the con-
dition ¢ — f = 0 must hold. This condition is governed by the invariant polynomial
B6 and in what follows we assume g = 0 (i.e. f = c).

(3.19)

Case (33 # 0. Then we have ¢ # 0 and the conditions given by the statement I of
Lemma [3.7] could not be satisfied.

Case 87 # 0. We observe that in this case due to ¢ # 0 we could have two invariant
hyperbolas if and only if (3h—1)(3h+1) # 0 (i.e B10 # 0), &2 = E3 = 0 and ab # 0.
The system of equations & = £ = 0 with respect to the parameters a and b gives

the solution
2¢2(1+ h)3(2h — 1 2¢2(h — 1)3(1 + 2k
( )°( ) _ b=— c( ) )—_— bo, (3.20)

(Bh—12(1+3h)2 (3h — 1)2(1 + 3h)2

which exists and ab # 0 by the condition (2h —1)(2h +1)(3h —1)(3h +1) # 0.
In this case systems ([3.16)) with a = ag and b = by possess the two hyperbolas

2 3
1) _ 4c (1 + h) B 4c B .
@) = G T ra e a1t TRy =0,
2 3
1) 4c*(h—1) 4c
o - - 2(x —y) = 0.
2 (@) Gh—12(1 4302 143" ylr—y) =0

Since ¢ # 0 by Lemma [3.7] we could not have a third invariant hyperbola.
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Now we need the invariant polynomials which govern the condition & = &5 = 0.
First we recall that for these systems we have vg = 42(h — 1)(h +1)&2&3, and hence
the condition vg = 0 is necessary. In order to set & = 0 we use the following
parametrization:

c=ci(3h—1)2, a=a1(2h—1)
and then the condition & = 0 gives b = 2(h—1)(a; +¢?). Herein for systems
with
f=c=ci(3h—1)% a=a;(2h—1), b=2(h—1)(a; +c)
we calculate

E=3[2c1(1+h)® + a1 (1 +3h)?], 6s=(h—1)(2h —1)&5/2

and hence the condition & = 0 is equivalent to d4 = 0.

It remains to observe that in this case R; = —3a1(h—1)*(h+1)/4 # 0, otherwise
a1 = 0 and then the condition §4 = 0 implies ¢; = 0, i.e. ¢ = 0 and this contradicts
to B2 # 0. So we arrive at the statement (B1) of the lemma.

Case (37 = 0. Then (2h—1)(2h+1) = 0 and by Remark[3.6|we may assume h = 1/2.
In this case by Lemma |3.7|in order to have at least two hyperbolas the conditions
IT; (iii) and IIT (i) have to be satisfied simultaneously. Therefore we arrive at the
conditions

a=0, b+4c>#0, &= (50a—T75b+ 24c*)/4 =0

and as a = 0 we have b = 24¢%/75 and b + 4¢®> = 108¢?/25 # 0 due to 32 # 0. So
we obtain the family of systems

dx dy
2 - 2. 2=
cr—aw+y)/2,

7 8¢ /25 + cy — y(3x — y)/2 (3.21)

which possess the two invariant hyperbolas
0\ (z,y) = 216¢*/25 — 8cx + 2u(x — y) = 0,
o3 (x,y) = —8¢%/25 — 8cy /5 + 2y(x — ) = 0.

These hyperbolas are irreducible due to 52 # 0 (i.e. ¢ # 0).
We need to determine the affine invariant conditions which are equivalent to
a = &3 = 0. For systems (3.16]) with f = ¢ and h = 1/2 we calculate

Yo = 3a/2, 05 = —3(25b— 8c%)/2

and obviously these invariant polynomials govern the conditions mentioned before.
It remains to observe that for systems (3.21) we have Rg = 108¢?/25 # 0 due to
B2 # 0. This completes the proof of the statement (B2) of the lemma.

Case B2 = 0. Then ¢ = 0 and by Lemma systems (3.16) with f = ¢ = 0 could
possess at least two invariant hyperbolas if and only if one of the following sets of
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conditions holds:
(61) E1=E =0, (2h—1)(3h—1)£0, a+0;
$2) &1 =E3=0, (2h+1)(Bh+1)#0, b#0;

(
(
(
(
(

¢3) E=E3=0, (2h—1)(2h+1)(3h —1)(3h+1) #0, ab # 0;
¢1) E1=0, h=1/3, a#0; (3.22)
(Z)5) 5120,:0, h:1/2, b7é0,

)

ds) €1 =0, h=-1/3, b#0;
(p7) E6=b=0, h=-1/2, a#0.
As for systems with f = ¢ =0 we have
fr=—=2(2h +1)(2h = 1), PBio=—2(3h+1)(3h — 1)
we consider two subcases: Gy # 0 and 7 = 0.

Subcase (7 # 0. Then (2h 4+ 1)(2h — 1) # 0 and we examine two possibilities:
B1o # 0 and B1g = 0.

(1) Possibility $10 # 0. In this case (3h + 1)(3h — 1) # 0. We observe that
due to f = ¢ =0 all tree polynomials & are linear (homogeneous) with respect to
the parameters a and b. So each one of the sets of conditions (¢1)—(¢3) could be
compatible only if the corresponding determinant vanishes, i.e.

det(£1,&) = —(2h — 1)(3h — 1)*(4h — 1) = 0,
det(&£1,E3) = (2h +1)(3h + 1)*(4h + 1) = 0, (3.23)
det (&, E3) = —3(3h — 1)%(3h +1)* =0,
otherwise we obtain the trivial solution @ = b = 0. Clearly the third determinant
could not be zero due to the condition (19 # 0, i.e. the conditions in the set (¢3)
are incompatible in this case. As regard the conditions (¢1) (respectively (¢2)) we
observe that they could be compatible only if 4h — 1 = 0 (respectively 4h +1 = 0).
On the other hand we have g = —6(4h — 1)(4h + 1) and we conclude that for
the existence of two hyperbolas in these case the condition G = 0 is necessary.
Assuming s = 0 we may consider h = 1/4 due to Remark and we obtain
&1 =Ba—-0)/2=-16E = 0.
So we obtain b = 3a and we arrive at the systems
dx dy

Z—a-—2%/4— 4, 2 =3q-— 44 y%/4 .24
i x*/4 — 3zy /4, o = 30 Sxy/4+y~/4, (3.24)

which possess the two invariant hyperbolas
O (2,y) = —da+ 20y =0, @ (2,y) =40+ 22(z —y) = 0.

Clearly these hyperbolas are irreducible if and only if a # 0.
On the other hand for systems (3.16)) with f = ¢ =0 and h = 1/4 we have

vr=—15(3a —b), ~s = 15435(3a — 5b)(3a — b))/8192,
ds = —6(3a—b), Rs=9(bx — ay)(252 — Yy)(x — y)/4.

We observe that the conditions & = & = 0 and a # 0 are equivalent to v; = 0 and
R5 # 0. However to insert this possibility in the generic diagram (see Figure [1]) we
remark that these conditions are equivalent to v7vs = d2 = 0 and R5 # 0.
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It remains to observe that for the systems above we have & = 147a/8 # 0 and,
hence we could not have a third hyperbola. So the statement (B3) of the lemma is
proved.

(2) Possibility 10 = 0. In this case (3h + 1)(3h — 1) = 0 and without loss of
generality we may assume h = 1/3 due to the change (x,y,a,b, h) — (y,x,b,a, —h),
which conserves systems with f = ¢ = 0 and transfers the conditions (¢g) to
(¢4).

So h =1/3 and we arrive at the following 2-parameter family of systems

d d
d—fza—x2/3—2xy/3, d—ztjzb—4:cy/3+y2/3, (3.25)

for which we have & = (5a — b)/3 and we shall prove the next statements:

o if & # 0, 4a — b < 0 and a # 0 we have 2 complex invariant hyperbolas
7'??’ ;

o if & #0,4a — b > 0 and a # 0 we have 2 real invariant hyperbolas H?;

e if & #0,4a—b =0 and a # 0 we have one double invariant hyperbola H5.

e if & =0,4a—b > 0 and a # 0 we have 3 real invariant hyperbolas (two of
them being HP);

e if £ =0, 4a —b < 0 and a # 0 we have 1 real and two complex invariant

hyperbolas (of the type ﬁp ).

So we consider two cases: £ # 0 and & =0

(a) Case & # 0. In this case by Lemma we could not have an invariant
hyperbola with the quadratic part of the form xy. However systems possess
the following two invariant hyperbola:

<I>(12(x,y) =3at+/3M4da—-b)z+xz(x—y)=0

and these conics are irreducible if and only if a # 0. Moreover the above hyperbolas
have parallel asymptotes and they are real if 4a —b > 0 (i.e . we have two H?) and

complex if 46 —b < 0 (i.e. we have two HP). We observe that in the case 4a—b =0

the hyperbola @g‘}% (z,y) = 0 collapse and we obtain a hyperbola of multiplicity two
(i.e . we have Hb).

(b) Case & = 0. Then b = 5a and we obtain the following 1-parameter family
of systems
W5,y 2
ikl zy/3+y°/3. (3.26)
which possess three invariant hyperbolas

@g,%(x, y) =3a++vV-3ax+z(x —y)=0, ¢g4) (z,y) = 3a — 2y = 0.

These conics are irreducible if and only if @ # 0. Also the hyperbolas @gg(x, y)=0

have parallel asymptotes and they are real if a < 0 and complex if a > 0.
Thus the above statements are proved and in order to determine the correspond-
ing invariant conditions, for systems (3.16)) with ¢ = f = 0 and h = 1/3 we calculate

vr = —64(5a — b)/27, y10 = 8(4a —b)/27, Rs3 = —4a/9.

Considering the conditions given by the above statements it is easy to observe that
the corresponding invariant conditions are given by the statements (B4), (B5), (C)
and (A) of Lemma respectively.
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Subcase By = 0. Then (2h + 1)(2h — 1) = 0 and by Remark we may assume
h =1/2. Considering we conclude that only the case (¢5) could be satisfied
and we obtain the additional conditions: @ = 0, b # 0. Therefore we arrive at the
family of systems

dz dy _
dt dt

which possess the following two hyperbolas

= —22/2 —xy/2, b—3xy/2 +y?/2, (3.27)

We observe that the condition a = 0 is equivalent to 77 = —12a = 0. Regarding
the condition b # 0, in the case a = 0 it is equivalent to R3 = —b/16 # 0. Since for
these systems we have & = 75b/4 # 0 we deduce that we could not have a third
invariant hyperbola. This completes the proof of the statement (B6) of the lemma.

Since all the cases are examined, Lemma [3.9]is proved. g

3.22. Case N =0. As 0 = —(g —1)(h — 1)(¢g + h)/2 = 0 we observe that the
condition N = 0 implies the vanishing of two factors of #. We may assume g =
1 = h, otherwise in the case g +h = 0 and g — 1 # 0 (respectively h — 1 # 0) we
apply the change (z,y,g,h) — (—y,x —y,1 — g — h, g) (respectively (z,y,g,h) —
(y —x,—x,h,1 — g — h)) which preserves the form of systems (3.1)).
So g = h =1 and from an additional translation, systems become
%:a—&—dy—i—ﬁ, %:b—l—ex—i—yz. (3.28)
Lemma 3.10. A system possesses at least one invariant hyperbola of the
indicated form if and only if the corresponding conditions on the right hand side
are satisfied:
I &(z,y)=p+qr+ry+2zy & d=e=0anda—b=0;
I ®(x,y)=p+qgr+ry+22(x—y) & d=0, My =64a — 16b — e = 0,
16a + €2 # 0;
I ®(z,y) =p+qr+ry+2ylx—y) & e=0, My = 64b— 16a — d*> = 0,
16b + d? # 0.

Proof. As it was mentioned in the proof of Lemma 3.2 (see page[14)) we may assume
that the quadratic part of an invariant hyperbola has one of the following forms:
(i) 2zy, (i) 2z(xr —y), (iii) 2y(x —y). Considering the equations (2.7]) we examine
each one of these possibilities.
(i) ®(x,y) = p+ gz + ry + 2zy; in this case we obtain
t=1, s=u=0, p=U@b+¢+qr)/2, U=1 V=1, W=—(q+7)/2,
Eqo = (4a — 4b — ¢* +12)/2, Equo = 4aq + 4b(q + 2r) 4+ q(q + 1),
Eq = Eq; = Eqs = Equ = Eqs = Eqs = Eq7 = Eqs = 0.

Calculating the resultant of the non-vanishing equations with respect to the pa-
rameter r we obtain

Res, (Eqo, Equo) = (a — b)(4b + ¢*)? /4.

If b = —q?/4 then we obtain the hyperbola ®(x,y) = (r + 2x)(q + 2y)/2 = 0, which
is reducible.
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Thus b = a and we obtain
Eq=—(q—7)(q+7r)/2=0, Eqo=(q+7)Ba+q>+qr)/4=0.

It is not too difficult to observe that the case g+r # 0 (then ¢ = r) leads to reducible
hyperbola (as we obtain b = a = —¢?/4, see the case above). So ¢ = —r and the
above equations are satisfied. This leads to the invariant hyperbola ®(x,y) =
2a — rz + ry + 2zy = 0. Considering Remark we calculate A = —(4a +r?) /2.
So the hyperbola above is irreducible if and only if 4a 4+ r2 # 0. Thus any system
belonging to the family

dx > dy 2
e -7 — 3.29
g oate. —p=aty (3.29)
possesses one-parameter family of invariant hyperbolas ®(x,y) = 2a — r(z — y) +
22y = 0, where r € R is a parameter satisfying the relation 4a + r2 # 0. This
completes the proof of the statement I of the lemma.
(ii) ®(x,y) = p+ qx + ry + 2z(x — y); in this case we obtain
s=2, t=-1, u=0, p=(8a—4b+ 4de— 2+ ¢*)/4,
r=2d—e—gq, U=2 V=1 W=-2e+¢q)/2, FEqr=-2d
and hence the condition d = 0 is necessary. Then we calculate
Eq = Eq = Eqs = Equ = Eqs = Eqs = Eq7 = Eqs = 0,
Eqgy = —4a+ b — (2% + 6eq + 3¢%) /4,
Eq = [16a(e +q) —4b(4e + 3q) + (2e + q)(q2 — 262)] /8,
Res,(Eqo, Eqio) = —(64a — 16b — €?)(4a — 4b — €)% /256.
(1) Assume first 64a — 16b — e? = 0. Then b = 4a — €2/16 and we obtain
Eqo = —3(e+2q)(3e+2¢)/16 =0, Eqio = —(3e+2q)(64a+4e? —eq—2¢*)/32 = 0.

(la) If ¢ = —3e/2 all the equations vanish and we arrive at the invariant hyper-

bola
O(x,y) = —2a+e*/8+e(—3x+1vy)/2 +2zx(x —y) =0

for which we calculate A = (16a + €2)/8. Therefore this hyperbola is irreducible if
and only if 16a + €2 # 0.

(1b) In the case 3e + 2¢ # 0 we have ¢ = —e/2 # 0 and the equation Ego =0
implies e(16a + €?) = 0. Therefore because e # 0 we obtain 16a + €2 = 0. However
in this case we have the hyperbola

®(x,y) = —(16a + 3¢?)/8 —e(x +y)/2 + 2z(x —y) = 0,

the determinant of which equals (16a + ¢2)/8 and hence the condition above leads
to an irreducible hyperbola.
(2) Suppose now 4a — 4b — €2 = 0, i.e. b= a — e?/4. Herein we obtain

Eqo = —3[da+ (e +q)*]/4=0, Eqo=q[da+(e+q)*]/8=0
and the hyperbola
(z,y) =22(z —y) + gz — (e + @y + (da— e + ¢*) /4 =0,

for which we calculate A = —[4a + (e + ¢)?] /4. Obviously the condition Eqg = 0
implies A = 0 and hence the invariant hyperbola is reducible. So in the case d = 0



EJDE-2016/162 FAMILY OF QUADRATIC DIFFERENTIAL SYSTEMS 33

and 4a — 4b — €2 = 0 systems could not possess an invariant hyperbola and
the statement II of the lemma is proved.

(iii) ®(z,y) = p + qz + ry + 2y(x — y); we observe that because the change
(x,y,a,b,d,e) — (y,z,b,a,e,d) (which preserves systems ) this case could be
brought to the previous one and hence, the conditions could be constructed directly
applying this change. Thus Lemma [3.10] is proved. O

Lemma 3.11. Assume that for a quadratic system the conditions n > 0 and
0 = N =0 hold. Then this system could possess either a single invariant hyperbola
or a family of invariant hyperbolas. More precisely, it possesses:
(i) one invariant hyperbola if and only if 81 = 0, Rg # 0 and either (i.1)
B2 #0 and y11 =0, or (i.2) B2 = 12 = 0;
(ii) @ family of such hyperbolas if and only if 81 = P2 = 113 = 0.

Proof. For systems ([3.28)) we calculate

B1 =4de, [o=-2(d+e), 11 =19de(d+ e)+eM;y + dMo,

Rol|,_, = [5(16a +€*) — M1]/2, Ro|,_, = [5(16b+ d*) — Ma]/2.
By Lemma the condition de = 0 (i.e. #1 = 0) is necessary for a system ((3.28))
to possess an invariant hyperbola.

Subcase B2 # 0. Then d?+e? # 0 and considering the values of the above invariant
polynomials by Lemma we deduce that the statement (i.1) of the lemma is
proved.

Subcase B2 = 0. In this case we obtain d = e = 0 and we calculate
Y13 :4(a—b), Rg = 8((l+b), Y12 = 7128(@74%))(4(1*&7) :M1M2/2

Therefore by Lemma in the case y12 = 0 we arrive at the statement (i.2),
whereas for 13 = 0 we arrive at the statement (i7) of the lemma.

It remains to observe that if the systems (3.28) possess the family we men-
tioned of invariant hyperbolas, then they have the form , depending on the
parameter a. We may assume a € {—1,0,1} due to the rescaling (z,y,t) —
(af! /2, af" 2y, o] /).

3.3. Systems with two real distinct infinite singularities and 6 # 0. For this
family of systems by Lemma the conditions n = 0 and M # 0 are satisfied and
then via a linear transformation and time rescaling systems could be brought
to the following family of systems:

d

d—x:a+cx+dy+g:c2+h:cy,

. t (3.30)
d—z:b+ex+fy+(gfl)xy+hy2.

For this systems we calculate

Co(z,y) =2y, 0=—h*(g—1)/2 (3.31)
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and since 6 # 0 due to a translation we may assume d = ¢ = 0. So in what follows
we consider the family of systems
dx

a:a+cx+gx2+hxy,

=b+ fy+ (g — Dy + hy?.

ay (3.32)

dt
O

Lemma 3.12. A system ([3.32)) could not posses more than one invariant hyperbola.
And it possesses one such hyperbola if and only if c+ f =0, G1 = a(1—2g)+2bh =0
and a # 0.

Proof. Since Cy = x?y we may assume that the quadratic part of an invariant
hyperbola has the form 2zy. Considering the equations (2.7) and the condition

0 #0 (i.e. h(g— 1) # 0) for systems we obtain
t=1, s=u=q=r=0, p=a/h, U=29—1, V=2h, W=c+/,
Eqs = (a — 2ag + 2bh)/h = G1/h, Eqo = —alc+ f)/h,
Eqi = Eqy = Eq3 = Eqs = Eqs = Eqs = Eq7 = Eqy = 0.
Since the hyperbola in this case becomes ®(x,y) = a/h+2zy = 0 the condition
a # 0 is necessary in order to have an invariant hyperbola. Then the equation

Eqgi0 = 0 implies ¢+ f = 0 and the condition Egg/h = 0 yields G; = 0. Since h # 0
we set b = a(2g — 1)/(2h) and this leads to the family of systems

dx 9
T =a+ cx + gz° + hxy,
(3.33)
@ — M_cy+(g_1)$y+hy2
dt 2h ’
which possess the invariant hyperbola
O(z,y) = % + 22y = 0.
This completes the proof of the lemma. ([

Next we determine the corresponding affine invariant conditions.

Lemma 3.13. Assume that for a quadratic system the conditions n = 0,
M # 0 and 0 # 0 hold. Then this system possesses a single invariant hyperbola
(which could be simple or double) if and only if one of the following sets of the
conditions hold, respectively:
(i) B2 #0, v1 =72 =0, Ry # 0: simple;
(ii) B2 #£0, f1 =71 =71 =0, Rs #0: simple if 61 # 0 and double if 61 = 0;
(iii) P2 = 1 =714 =0, R1g # 0: simple if B70s # 0 and double if 3705 = 0.

Proof. For systems we calculate
n = (2= f)le+ f)*h'(g —1)%/32, B2 =h*(2c— f)/2.

According to Lemma [2.10] for the existence of an invariant hyperbola the condition
~v1 = 0 is necessary and therefore we consider two cases: f2 # 0 and Gy = 0.
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3.3.1. Case Pz # 0. Then 2¢ — f # 0 and the condition 7; = 0 implies f = —c.
Then we calculate

yo = 14175¢*h° (g — 1)%(3g — 1)G1, B2 = 3ch?/2,
B = —3c*h*(g—1)(3g — 1)/4, Ry = —9ach*(g —1)*(3g —1)/8
and we examine two subcases 3; # 0 and §; = 0.

Subcase 1 # 0. Then the necessary condition v2 = 0 (see Lemma givesG; =0
and by Lemma systems possess an invariant hyperbola. We claim that
this hyperbola could not be double. Indeed, since the condition 6 # 0 holds we
apply Lemma which provides necessary and sufficient conditions in order to
have at least two hyperbolas. According to this lemma the condition £; = 0 is
necessary for the existence of at least two hyperbolas. So it is clear that in this case
the hyperbola of systems could not be double due to 81 # 0. This completes
the proof of the statement (i) of the lemma.

Subcase 31 = 0. Because 33 # 0 (i.e. ¢ # 0) this implies g = 1/3 and then 75 =0
and
v4 = 16h5(a + 6bh)?/3 = 48h5G7, R3 = 3bh*/2.

Therefore the condition 4 = 0 is equivalent to G; = 0 and in this case Rz # 0
gives b # 0 which is equivalent to a # 0. By Lemma systems possess
a hyperbola. We claim that this hyperbola is double if and only if the condition
a = —12¢? holds.

Indeed, as we would like after some perturbation to have two hyperbolas, then
the respective conditions provided by Lemma must hold. We calculate:

B =0, fB2=3ch?/2, [s=ch/3, ~v4=0, & =—(a+12¢%)h?/4
and since fg # 0 (because B2 # 0) we could have a double hyperbola only if the
identities provided by the statement (Al) are satisfied. Therefore the condition
81 = 0 is necessary and due to § # 0 (i.e. h # 0) we obtain a = —12¢2.
So our claim is proved and we obtain the family of systems

d d
d—f = —12¢? + cx + 2%/3 + hxy, d—i’ =2¢%/h — cy — 2xy/3 + hy?, (3.34)

which possess the hyperbola ®(x,y) = —12¢?/h + 2xy = 0. The perturbed systems
dr _ 18¢°(2h +¢)(3h +¢)

+cx + 2?3+ (h + &)y,

dt 3h —¢)?

dy 6 2(3(h + )E) (3.35)

Y c € 2
— = ——"—cy—22y/3+h 1
- Ghooz Y zy/3+hy”, || <

possess the two distinct invariant hyperbolas:
36¢2(3h + ¢)
S (z,y) = — 4 9gy =0,
1(1’ y) (3h . €)2 + Yy

36¢2(3h+¢)  12ce
3 ) _ i€y+2y(w+€y)=0-

D5 =
Q(xvy) (Bh_€)2 3h
It remains to observe that the hyperbola ®(z,y) = —12¢?/h+2zy = 0 could not be
triple, because in this case for systems (3.34]) the necessary conditions provided by
the statement (B) of Lemmato have three invariant hyperbolas are not satisfied:
we have g # 0.
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Thus the statement (ii) of the lemma is proved.

3.3.2. Case 5 = 0. Then f = 2¢ and this implies y; = 0. On the other hand we
calculate

Yo = —14175ac?*(g — 1)*(1 + 3g)h°, B = —9c*(g — 1)*h*/16

and since f = 2¢, according to Lemma the condition ¢ = 0 is necessary in
order to have an invariant hyperbola. The condition ¢ = 0 is equivalent to §; = 0
and this implies 75 = 0. It remains to detect invariant polynomials which govern
the conditions G; = 0 and a # 0. For ¢ = 0 we have

Y14 = 80h*[a(1 — 2g) + 2bh] = 80K*Gy, Rig = —4dah®.

So for 1 = B2 =0, 714 = 0 and R1g # 0 systems (with ¢ = 0) possess the
invariant hyperbola ®(z,y) = a/h + 2zy = 0.

Next we shall determine the conditions under which this hyperbola is simple or
double. In accordance with Lemma [3.5] we calculate:

Br =6 =0,8; = —8(29 — 1)h*.
We examine two possibilities: 87 # 0 and (7 = 0.

Possibility B7 # 0. According to Lemma for systems ([3.33)) with ¢ = 0 could be
satisfied only the identities given by the statement (A2). So we have to impose the
following conditions:

Y5 = P = 02 = 0.
We have g = —32(4g — 1)h? = 0 which implies g = 1/4. Then we obtain v; =
02 = 0 and we obtain the family of systems

d d
d—f = a+ 2%/4 + hay, d—gi = —a/(4h) — 3xy/4 + hy?, (3.36)

which possess the hyperbola ®(z,y) = a/h + 22y = 0. On the other hand we
observe that the perturbed systems

de € 5 dy 2
i a+ o +a°/4+ (h+e)xy, i a/(4h) — 3zy/4 + hy*, (3.37)

which possess the two distinct invariant hyperbolas:
®i(z,y) =a/h+2zy =0, ®5(x,y) =a/h+2y(x+ey)=0.

Since f7 # 0, according to Lemmathe hyperbola ®(z,y) = a/h+2xy = 0 could
not be triple.

Possibility B7 = 0. In this case we obtain g = 1/2 and this implies y3 = d3 = 0.
Hence the identities given by the statement (A3) of Lemma are satisfied. In
this case we obtain the family of systems
d d
which possess the hyperbola ®(z,y) = a/h + 2zy = 0. On the other hand we
observe that the perturbed systems
dx

— =a+2%/2+ (h + ¢)ay,

dy _ 2
o o= —xy/2 + hy~, (3.39)
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possess the two distinct invariant hyperbolas:
2a

T =
l(x?y) 2h+€

Since for systems we have g = —32h? # 0, according to Lemma the
hyperbola ®(z,y) = a/h 4+ 22y = 0 could not be triple.

It remains to observe that the conditions of the statement (B) of Lemma in
order to have three invariant hyperbolas could not be satisfied for systems
(i.e. the necessary conditions for these systems to possess a triple hyperbola).

Indeed for systems (3.33]) we have
Br = —8(29 — 1)h?, fPs = —32(4g — 1)h?, 0= —(g—1)h?/2

and hence the conditions 37 = 0 and g = 0 are incompatible due to 6 # 0. As all
the cases are examined we deduce that Lemma [3.13|is proved. (I

+22y =0, ®5(z,y)=a/h+2y(z+ey)=0.

3.4. Systems with two real distinct infinite singularities and 6 = 0. By

Lemma systems (2.6) via a linear transformation could be brought to the sys-
tems (3.30]) for which we have

0=—h*g—1)/2, Bs=2h* N =(g>—1)%2>+2h(g— Day+h%y>. (3.40)
We shall consider to cases: N # 0 and N = 0.

3.4.1. Case N # 0. Since § = 0 we obtain h(g —1) = 0 and (¢°> — 1)2 + h% # 0. So
we examine two subcases: 34 # 0 and 84 = 0.

Subcase 34 # 0. Then h # 0 (this implies N # 0) and we obtain ¢ = 1. Applying
a translation and the additional rescaling y — y/h we may assume ¢ = f = 0 and
h = 1. So in what follows we consider the family of systems

dx 2 dy 2
i -7 = . 41
pr a+dy+x° + xy, o b+exr+y (3.41)

Lemma 3.14. A system (3.41) possesses an invariant hyperbola if and only if
e=0,L1 =9~ 180+ d>=0 and a + d* # 0.

Proof. Since Cy = z?y we determine that the quadratic part of an invariant hy-
perbola has the form 2zy. Considering the equations (2.7) for systems (3.41]) we
obtain
t=1, s=u=0, r=2d, p=2b+2de+dq+q*/2,
U=1, V=2 W=—(¢q+7r)/2, Eg =e,
Eq = Eq = Eqs = Equ = Eqs = Eq7 = Eqs = 0.
Therefore the condition Eqs = 0 yields e = 0 and then we have
Eqg =2a —4b+2d*> — ¢*, Eqio = aq + b(4d + q) + q(2d + ¢)* /4.

Clearly in order to have a common solution of the equations Eq9 = Fq19 = 0 with
respect to the parameter g the condition

Res,(Eqo, Eqi0) = (a+d*)*(9a — 18b+d*)/2 =0

is necessary. We claim that the condition a + d? = 0 leads to a hyperbola. Indeed,
setting a = —d? we obtain Fqg = —(4b+¢?) = 0. On the other hand we obtain the
hyperbola

O(z,y) =2b+dq+ ¢*/2 + qx + 2dy + 22y =0
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for which by considering Remark we calculate A = —(4b + ¢?)/2. Therefore
the equation Eqg = —(4b + ¢*) = 0 leads to an invariant hyperbola. This proves
our claim.

So a+d? # 0 and we set b = (9a+d?)/18. Then Eqq = 0 gives (4d—3q)(4d+3q) =
0 and we examine two subcases: ¢ = 4d/3 and ¢ = —4d/3.

(1) Assuming g = 4d/3 we obtain Eqio = 4d(a + d*) = 0. Since a + d* # 0 we
have d = 0 and this leads to the family of systems

dx 2 dy 2
—_— _— = 2 . .42
= a+ x° + xy, = a/2+y (3.42)

These systems possess the invariant hyperbola ®(z,y) = a + 2zy = 0.
(2) Suppose now g = —4d/3. This implies Eq1p = 0 and we obtain the systems

fl—f:aererxQery, %:(9a+d2)/18+y2, (3.43)
which possess the invariant hyperbola

@ (2,y) = (3a — d?)/3 — 2d(2x — 3y)/3 + 2zy = 0.
Its determinant A equals —(a + d?) and hence, the conic is irreducible if and only
if a+d? #0.

It remains to observe that the family of systems ([3.42)) is a subfamily of the family
(3.43) (corresponding to d = 0) and this complete the proof of the lemma. ([l

Subcase B4 = 0. This implies h = 0 and the condition N # 0 gives g —1 # 0. Using
a translation we may assume e = f = 0 and we arrive at the family of systems

%:a+cx+dy+gx2, %:b+(g—1)zy. (3.44)
Lemma 3.15. A system possesses at least one invariant hyperbola if and
only ifd =0, 29 — 1 # 0 and either

(i) 3¢ =140, K1 =c*(1—-29)+a(3¢g—1)>=0 and b # 0, or

(ii) g=1/3, ¢c=0 and b # 0.
Moreover in the second case we have two real hyperbolas (HP) if a < 0; two complex
hyperbolas (7—?”) if a > 0 and these hyperbolas coincide if a = 0.
Proof. As earlier we assumed that the quadratic part of an invariant hyperbola has
the form 2xy and considering the equations for systems we obtain

t=1, s=u=q=0, U=29—1, V=0, W=c—gr/2,
Eq; =2d, Egs=2b+p(l—2g), Egqo=2a—cr+gr’/2,
Eqo=br—cp+gpr/2, Eq = Eq = FEq3 = Eqy = Eqs = Eqs = 0.

Therefore the condition Eq7; = 0 yields d = 0 and we claim that the condition

2g —1 # 0 must hold. Indeed, supposing g = 1/2 the equation Egg = 0 yields b =0
and then

Eqo =2a+r(r—4c¢)/4=0, Eqo=p(r—4c)/4=0.
Since p # 0 (otherwise we obtain a reducible hyperbola) we obtain r = 4¢, however

in this case Fq9 = 0 implies ¢ = 0 and we arrive at degenerate systems. This
completes the proof of our claim.
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Thus we have 2g — 1 # 0 and then the equation Eqs = 0 gives p = 2b/(2g — 1)
and we obtain:

Eqgi0 =b(2c+ 1 —3gr))/(1 — 2g).

Since in this case the hyperbola is of the form

[6)) =
(2,9) 59— 1

it is clear that the condition b # 0 must hold and, therefore we obtain 2¢+r(1—3g) =
0.

(1) Assume first 3g — 1 # 0. Then we obtain r = 2¢/(3g — 1) and the equation
Eq9 = 0 becomes

+ry+2zy =0

2
Eqy = 5 [¢*(1—29)+a(3g—1)*] = K1 =0.

2
(39 —1) (39— 1)
The condition K; = 0 implies a = ¢*>(2g — 1)/(3g — 1)? and we arrive at the family
of systems

dv (29 —1) 5 dy
- = —~Z =p -1 3.45
it~ (310 tertgat, — + (g — Dy, (3.45)
possessing the invariant hyperbola
2b 2c
O(x,y) = + Y+ 2zy =0,

2g—1 3g-—-1
which is irreducible if and only if b # 0.

(2) Suppose now g = 1/3. In this case the equation Eq;o = 0 yields ¢ = 0 and
then we obtain p = —6b and the equation Eqg = 0 becomes Eqg = (12a +1r2)/6 =
0. Therefore for the existence of an invariant hyperbola the condition a < 0 is

necessary. In this case setting a = —322 < 0 we arrive at the family of systems
dz 9 dy
— = 3, — =0b—2xy/3 3.46
a et /3 dt /3, (8.46)

possessing the two invariant conics
®y5(x,y) =3b+ vV—3ay —zy =0,

which are irreducible if and only if b # 0. Clearly these hyperbolas are real for
a < 0, they are complex for ¢ > 0 and coincide (and we obtain a double one) if
a=0. (Il

Lemma 3.16. Assume that for a quadratic system the conditions n = 0,
M # 0,0 =0 and N # 0 are satisfied. Then this system could possess either
a single invariant hyperbola, or two distinct (HP) such hyperbolas, or one triple
invariant hyperbola. More precisely, it possesses:

(i) one invariant hyperbola if and only if either
(i.1) B4 #0, B3 =95 = 0 and Ry # 0 (simple if 04 # 0 and double if
04 =0), or
(12) /64 = 56 = O, ﬁllRll 7é 0, /612 # 0 and Y15 = 0 (szmple Zf’}/%G‘i’(Sg 7£ 0
and double if y16 = d¢ = 0);
(il) two distinct invariant hyperbolas (both simple) if and only if By = s =0,
B11R11 # 0, B12 = 116 = 0 and v17 # 0. Moreover these hyperbolas are real

(HP) if v17 < 0 and they are complex ('Hp) if y17 > 0;
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(iii) one triple invariant hyperbola (which splits into three distinct hyperbolas,
two of them being (HP)) if and only if B4 = B = 0, S11R11 # 0, P12 =
Y16 = 0 and y17 = 0.

Proof. Assume that for a quadratic system ([2.6) the conditions n = 0, M # 0,
0 =0and N # 0.

Case B4 # 0. As it was shown earlier in this case via an affine transformation
and time rescaling the system could be brought to the form (3.41)), for which we
calculate

Y1 = —9d€2/8, 53 = —6/4:7
and by Lemma the condition B3 = 0 is necessary in order to have an invariant
hyperbola. In this case we obtain

vg = 42(9a — 18b + d*)? = 42L3, Ry = —L1/8 — (a+d*)/3

and considering Lemma for B3 = 45 = 0 we obtain systems ([3.43)) possessing
the hyperbola ®(z,y) = (3a — d?)/3 — 2d(2x — 3y)/3 + 2zy = 0. To detect its
multiplicity we apply Lemma [2.12]setting £ = 2. So in order to have the polynomial
®(x,y) as a double factor in &, we force its cofactor in &5 to be zero along the
curve ®(z,y) = 0 (i.e we set y = (—3a + d? + 4dz)/(6(d + z))). We obtain
&y (a + d?)*(81a + 17d?) 9 2110
= d+1 d® 4+ 4d =
B(z.9) STI312(q + )10 (7d + 152)(3a + d* + 4dx + 6z*) 0

and since a +d? # 0 (see Lemma [3.14]) we obtain 81a+ 17d? = 0. So we obtain the
family of systems

d d
dit” = —17d?/81 + dy + 2> + x, di; = —4d?/81 + 2, (3.47)

which possess the invariant hyperbola: ®(z,y) = —44d?/81—4dx/3+2dy+2xy = 0.
The perturbed systems

dx d*(17 — 2 + &2) dy 4d>
ar )iy 24 (1 27 % (3.48
possess the two hyperbolas:
4d%(11 — 4e + €2 4d 2d
oc = - - 22y = 0
@) == g1 o6t 1l P20
4d? (11 + 4e 4 €2 4d 6d
D5(ay) = LUt AeHe o -y 2yt ey) =0,

(e2-9)2e-1) (1-¢)(383-¢) e—3

We observe that for systems (3.43) we have 6, = (81la + 17d?)/6 and 3; = —8.
Therefore if §, = 0 the invariant hyperbola is double and by Lemma [3.5] it could
not be triple due to 87 # 0. This completes the proof of the statement (i.1) of the
lemma.

Case 4 = 0. Then we arrive at the family of systems ([3.44)), for which we have
ﬁﬁ = d(g2 - 1)/4a N = 4(g2 - l)an ﬂll = 4(29 - 1)23;27 ﬂlQ = (39 - 1)33,

So from N # 0 the necessary conditions d = 0 and 29 — 1 # 0 (see Lemma [3.15))
are equivalent to g = 0 and (11 # 0, respectively.
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Subcase 12 # 0. In this case 3¢ — 1 # 0 and then by Lemma [3.15] an invariant
hyperbola exists if and only if ;1 = 0 and b # 0. On the other hand for systems
(3-44]) with d = 0 we calculate

Y15 = 4(g — 1)2(3g — 1)K12°, Ry = —3b(g — 1)%z*

and hence the above conditions are governed by the invariant polynomials 715 and
Ri1. So we obtain systems possessing the hyperbola ®(z,y) = 2b/(2g — 1) +
2cy/(3g — 1)+ 2zy = 0.

By to Lemma we calculate the polynomial & and we observe that & con-
tains the polynomial ®(x,y) as a simple factor.

To have this polynomial as a double factor in &5, we force its cofactor in &5 to be
zero along the curve ®(z,y) =0 (i.e we set y = b(3g — 1)/((29 — 1)(¢c — z + 3gx))).
We obtain

& 2880 (g —1)[c+ (3g — 1)z]? 107 9
ey 20 17(3g _ 116 [c(29 — 1) 4+ g(3g — 1)z [*(31
— 87+ 62g°) + 6¢(3g — 2)(3g — 1)°z + (3g — 1)*(4g — 1)z*] =0

and since (2g—1)(3g—1) # 0 we obtain ¢ = 0 and either g = 1/4 or g = 0. However
in the second case we obtain degenerate systems. So g = 1/4 and we arrive at the
family of systems

dz 9 dy

e, 4, L =p— 4 4
o L =b-suya, (3.49)
which possess the hyperbola ®(z,y) = —4b + 2zy = 0. On the other hand the

perturbed systems

d d
d—j = —2be + exy + 2% /4, d—ztl =b—3zy/4 (3.50)

possess the two invariant hyperbolas
i(2,y) = =2b+ay =0, P5(z,y) = =20+ y(r +ey) = 0.

It remains to determine the invariant polynomials which govern the conditions ¢ = 0
and g = 1/4. We observe that for systems we have 16 = —c(g — 1)%23/2
and 6 = (g — 1)(4g — 1)2?/2.

To deduce that the hyperbola ®(z,y) = —4b + 2zy = 0 could not be triple it is
sufficient to calculate & for systems ([3.49)):

135215
& = — ®(z,y)*(5b — 3xy) (170 — 7
2 = —rrsg 2@, 9)%( zy)( zy)
and to observe that the cofactor of ®(z,y)? could not vanish along the curve

®(x,y) = 0. This leads to the statement (i.2) of the lemma.

Subcase B12 = 0. Then g = 1/3 and by Lemma at least one invariant hyperbola
exists if and only if ¢ =0, a < 0 and b # 0. On the other hand for systems (3.44)
with d = 0 and g = 1/3 we calculate

Y16 = —2cx3/9, Y17 = 32a2%/9, Ry = —4ba?/3

Therefore the condition ¢ = 0 (respectively b # 0) is equivalent to 36 = 0 (respec-
tively R11 # 0). Considering the statement (i3) of Lemma we examine two
possibilities: 17 # 0 (i.e. a # 0) and 17 =0 (i.e. a =0).

(1) Possibility 17 # 0. By Lemma in this case we arrive at systems
possessing the two invariant hyperbolas ®1 2(x,y) = 3b £ vV/—3ay —zy = 0. We
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claim that none of the hyperbolas could be double. Indeed calculating & (see

Lemma [2.12]) we obtain:

B 2560 (2% £ 3a)°
177147

So each hyperbola appears as a factor of degree one and we could not increase there
degree because of b # 0. This proves our claim and we arrive at the statement (i7)
of the lemma.

(2) Possibility v17 = 0. In this case we have a = 0 and this leads to the systems

dz 5 dy
- ~Z =p—-2 b1
o =3 gy = 2ay/3, (3.51)

possessing the hyperbola ®(x,y) = —3b+zy = 0. Calculating &, for this systems we
obtain that ®(z,y) is a triple factor of &. According to Lemma this hyperbola
is triple, as it is shown by the following perturbed systems:

d d
dit” = 12022 4 2%/3, d—i{ = b — 22y/3 + 3be2y?, (3.52)

possessing the three distinct invariant hyperbolas:
@19 =-3b+3bcy +ay =0, &3=—3b+y(x— 3bey).
So we arrive at the statement (iii) of Lemma and this completes the proof of

this lemma. O

3.4.2. Case N = 0. Considering (3.40) the condition N = 0 implies h = 0 and
g = £1. On the other hand for (3.30) with h = 0 we have 13 = (g — 1)%z%/4 and
we consider two cases: 313 # 0 and (13 = 0.

& = @1 P, (2b — 2%y £ ay) [3bz® — 2y £ 9a(zy — b)].

Subcase $13 #0. Then g — 1 # 0 (this implies g = —1) and due to a translation we
may assume e = f = 0. So we obtain the family of systems

d d
d—fza—kcx—l—dy—:cQ, dit/:
Lemma 3.17. A system (3.53|) possesses at least one invariant hyperbola if and

only if d =0, 16a + 3¢ =0 and b # 0.

b—2xy. (3.53)

Proof. We again assume that the quadratic part of an invariant hyperbola has the
form 2zy and considering the equations (2.7)) for systems (3.53)) we obtain
t=1, s=u=q=0, p=-2b/3, r=-—¢/2, U=-3,
V=0, W=c+r/2, Eq;=2d, Eqo=(16a+3c?)/8,
Eq = Eq = Eqs = Equ = Eqs = Eqs = Eqs = Eq10 = 0.
Therefore the conditions Eq; = 0 and Eqg = 0 yield d = 0 and 16a + 3¢? = 0. In
this case we obtain the systems
dx

i —3¢%/16 + cx — 22,

which possess the invariant hyperbola

O(z,y) = —2b/3 — cy/2+ 22y = 0.

dy
2 —p-2 54
= xy, (3.54)

Obviously this conic is irreducible if and only if b # 0. So Lemma|3.17]is proved. O
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Subcase 13 = 0. Then g = 1 and due to a translation we may assume ¢ = 0. So
we obtain the following family of systems

dr s dy
E-a—&—dy—i—x, dt—b+ex+fy. (3.55)

Lemma 3.18. A system (3.55) could not possess a finite number of invariant
hyperbolas. And it has I1-parameter family of invariant hyperbolas if and only if
d=e=0 and 4a + f? = 0.

Proof. Considering the equations (2.7 and the fact that the quadratic part of an
invariant hyperbola has the form 2xzy, for systems (3.55]) we calculate

t=1, s=u=0, U=1, V=0, W=f-r/2
Eqs =2e, FEqr=2d, Eq =FEq = Eq =Fq = Eq =0.
Therefore the conditions Eq; = 0 and Fq; = 0 yield d = e = 0 and then we have
BEgs=2b—p— fq+qr/2, Eq=(4a+71%)/2, Bqo=aq+br—p2f—r)/2.

The equations Fqs = Fq19 = 0 have a common solution with respect to the param-
eter ¢ only if

Resq(Eqs, Equo) = —2ab+ p(a+ f*) = fr(b+p) +r*(2b+p)/4 = 0.

On the other hand in order to have a common solution of the above equations with
respect to r the following condition is necessary:

Res, (Eqg, Resq(Egs, Eqio)) = (4a + f2)(4ab® + f?p?)/4 = 0.

We claim, that the condition 4a + f? = 0 is necessary for the existence of an
invariant hyperbola.

Indeed, supposing 4a + f? # 0 we deduce that the condition 4ab® 4+ f2p? = 0
must hold.

(1) Assume first f # 0. If b = 0 then we obtain p = 0 and the equation Eg;g =0
gives aqg = 0. In the case ¢ = 0 we obtain a reducible conic. If @ = 0 then the
equation Fqg9 = 0 implies » = 0 and we again get a reducible conic.

Thus b # 0 and hence a < 0. We set a = —22 < 0 and then r = +2z and
p = £2bz/f. Tt is not too hard to convince ourselves that all four possibilities lead
either to reducible conics, or to the equality 4a + f? = 0, which contradicts our
assumption.

(2) Suppose now f = 0. This implies ab = 0 and since b # 0 (otherwise we obtain
degenerate systems) we have a = 0 and this again contradicts to 4a + f2 # 0. This
completes the proof of our claim.

Thus 4a + f? = 0 and setting a = —f2/4 we arrive at the family of systems

dx d
—=-Pla+a’ F=b+fy, (3.56)

which possess the family of invariant hyperbolas
O(x,y) = (4b— fq)/2 + qu + fy + 2xy =0,

depending on the free parameter ¢. Since the corresponding determinant A (see
Remark for this family equals fq — 2b, we conclude that all the conics are
irreducible, except the hyperbola, for which the equality fqg — 2b = 0 holds. Thus
the lemma is proved. [
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We observe that in the above systems we may assume b = 1. Indeed, if b = 0
then f # 0 (otherwise we obtain a degenerate system) and therefore due to the
translation y — y + b'/f with ¥ # 0 and the addition rescaling y — by we
obtain ¥’ = 1. Moreover, in this case we may assume f € {0,1} due to rescaling

(x,y,t) — (fz, fy,t/f) in the case f # 0.

Lemma 3.19. Assume that for a quadratic system the conditions n = 0,
M # 0,0 =0 and N = 0 hold. Then this system could possess either a single
invariant hyperbola, or a family of such hyperbolas. More precisely this system
possesses

(i) one simple invariant hyperbola if and only if 13 # 0, y10 = v17 = 0 and

Rll 7& 0,’
(ii) one family of invariant hyperbolas if and only if B13 = v9 = F18 = 19 = 0.

Proof. Assume that for a quadratic system (2.6) the conditionsn =0, M #2060 =0
and N = 0 hold.

Subcase 13 # 0. In this case we consider systems (3.53|) for which we calculate
Y10 = 14d?, Ry = —12bz* + 6day?(cx + dy),
Y17 = 8(16a + 3¢*)x? — 4dy(14cx + 9dy).
So for 19 = v17 = 0 and R1; # 0 we obtain systems (3.54)) possessing the hyperbola
O(x,y) = —2b/3 — cy/2 + 2zy = 0. We claim that this hyperbola is a simple one.
Indeed calculating & we obtain that the polynomial ®(z,y) is a factor of degree
one in &. So setting y = —4b/(3(c — 4z)) (i.e. ®(x,y) =0) we obtain
&
®(z,y)
because b # 0. So the hyperbola above could not be double and this proves our

claim.
Thus the statement (i) of lemma is proved.

= 2724503 (¢ — 42)3(3¢c — 4x)'2 /3 £ 0

Subcase B13 = 0. Then we consider systems (3.55) and we calculate
Y9 = —6d27 Y18 = 861’4, Y19 = 4(4(1 + fz)l’

So the conditions d = e = 0 are equivalent to 79 = J15 = 0 and 4a + f? = 0 is
equivalent to §19 = 0. Considering Lemma [3.18| we arrive at the statement (ii).

It remains to observe that for systems (3.55) with d = e =0 and a = — f?/4 we
2

have ;7 = 8222 and this invariant polynomial governs the condition f = 0. As
all the cases are examined, Lemma is proved. O

To complete the proof of the Main Theorem we remark, that both generic families
of quadratic systems (with three and with two distinct real infinite singularities)
are examined and now we could compare the obtained results with the statements
of the Main Theorem.

So comparing the statements of Lemmas and with the
conditions given by Figure (1} it is not too difficult to conclude that the statement
(B)(1) of the Main Theorem is valid.

Analogously, comparing the statements of Lemmas [3.13] [3.16] and [3.19] with
the conditions given by Figure [2| we deduce that the statement (B2) of the Main
Theorem is valid.
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3.5. Systems with infinite number of singularities at infinity: C; = 0.
In this section we construct the conditions for a quadratic system with Co = 0
to possess at least one invariant hyperbola. So consider the family of quadratic
systems assuming Cy = 0 and we prove the next assertion.

Lemma 3.20. If for a quadratic system (2.6]) the condition Co(x,y) = 0 holds,
then this system possesses invariant hyperbola if and only if N7 = 0.

Proof. Assume that for a quadratic system the condition Cs(x,y) = 0 is
satisfied. Then the line at infinity is filled up with singularities and according to
Lemma in this case via an affine transformation and time rescaling quadratic
systems could be brought to the following systems

i=a+cx+dy+a® §=b+uxy. (3.57)

We observe that for d = 0 these systems possess two parallel invariant lines and we
consider two subcases: d # 0 and d = 0.

3.5.1. Subcase d # 0. As it was shown in [I5, page 749] in this case via some
parametrization and using an additional affine transformation and time rescaling
we arrive at the following 2-parameter family of systems

t=a+y+(x+c)? §=ay (3.58)

Considering (2.7)) for these systems we obtain Eq; = s(2 — U) = 0. We claim that
U = 2 due to the condition s? + 2 4+ u? # 0. Indeed, supposing U # 2 we obtain
s = 0 and then calculations yield

Eg;=2t(2-U)=0 Eg=u(2-U)—-2tV =0.

Clearly because U # 2 we have t = v = 0 which contradicts to s? +t% +u2 # 0 and
this completes the proof of our claim. So we assume U = 2, and calculations yield
Eg = —sV =0, Eq3 = -2tV =0, Eqs = —uV = 0. Since ®(x,y) = 0 must be a
conic (i.e. s?2+t2 +u? # 0) the above relations imply V = 0. Then we have

Eqs =—q+4cs —sW =0, Eqs = —r+2s+4ct —2tW =0,
Eq; =2t —uW =0, Eqs=—2p+2cq+ 2as+2c*s —qW =0
and this gives
q=s(4c—W), 7r=25+2culWV —uW? t=uW/2,
p = s(2a +10c? — 6cW + W?)/2.
Considering the values of the parameters we detected we finally obtain
Eq;i=0, i=1,2,...,8, FEqp=s(2c—W)(4a+ 4c* — 4cW + W?)/2 =0,
Eqg = 4cs + (au — 35 + u)W — 2culW? + ulW?3 = 0.

We observe that s # 0, otherwise we obtain ®(z,y) = uy(2cW — W2 + Wax +y),
i.e. the conic becomes reducible. So we consider the two possibilities defined by
the equality (2¢c — W)[4a + (W — 2¢)?] = 0.

Possibility W = 2c. Then we obtain Eqig = 0 and Eqg = 2¢(au — s + c*u) = 0.
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Case ¢ = 0. In this case we obtain the 1-parameter family of systems
t=a+y+a23 y=uay (3.59)

which possess the 2-parameter family of invariant conics ®(z,y) = as+2sy + sz? +
uy? = 0 which will be of hyperbolic type if and only if the condition su < 0 holds.
Moreover following Remark we calculate A = s?(au — s) and this conic is
irreducible if and only if s(au — s) # 0.

Since su < 0 we may set a new parameter u = —sm? and this leads to the
1-parameter family of hyperbolas

5(8, z,y) =a+2y+ 2 —m?*y? =0. (3.60)

Case au — s + au + c?u = 0. Then s = (a + ¢*)u and systems (3.58) possess the
following invariant conic ®(x,y) = (a+c?)(a+c*+2cx+2y)+(a+c?)z? +2cxy+y? =
0 for which we calculate A = 0, i.e. by Remark [2.11] this conic is reducible.

Possibility 4a + (W — 2¢)2 = 0. If a = 0 then W = 2c and as it was shown above
for the existence of a hyperbola it is necessary ¢ = 0. So we arrive at the particular
case of the family of hyperbolas defined by the condition a = 0. Therefore
we consider two cases: a < 0 and a > 0.

Case a < 0. Then we may assume a = —k? and after the rescaling (z,y,t) —
(kx, k?y,t/k) we obtain the systems

i=y—1+(x+c)? y=uay, (3.61)

for which we have W = 2(c£ 1) and we obtain Eqig = 0, Eqe = 2(c£3)[(c£1)? —
5] = 0. We consider the two subcases given by two factors of Eqq.

(1) Subcase ¢+ 3 = 0. We may assume ¢ > 0 because of the rescaling (x,y,t) —
(—z,y,—t) in the above systems. Therefore we set ¢ = 3 and then systems
could be brought to system with ¢ = 0 and @ = —1 via the transformation
(z,y,t) — (2(x — 1), 4(y —xz — 1), t/2). So we arrive at the system with
a = —1 and as it was shown above this system possesses the family of hyperbolas
with a = —1.

(2) Subcase (c41)? —s=0. Then s = (c £ 1)? and this leads to the reducible
conics ®(z,y) = (*—1+z+cx+y)?=0.

Case a > 0. Then we may assume a = k? and applying the same rescaling as
above we arrive at the family systems @ = 1 +y + (z + ¢)?, ¥ = xy. So we have
W = 2(c + i) and we obtain Eqq = 0 Eqy = 2(c £ 3i)[(c +1)* — 5] = 0.
Since ¢ € R we obtain s = (¢ +4)? and this again leads to the reducible conics
O(x,y) = (2 —1+iz+cx+y)?=0.

Thus we detect that in the case d # 0 a system could possesses an invariant
hyperbola if and only if either the conditions ¢ = 0 or @ < 0 (then a = —1) and
¢?2—9 = 0 hold. On the other hand for these systems we calculate N7 = c(9a+c?)/2
and we claim that the above conditions are equivalent to N; = 0. Indeed, if ¢ = 0
or a = —1 and ¢ — 9 = 0 we obtain N; = 0. Conversely, assuming Ny = 0 we have
either ¢ = 0 or 9a + ¢? = 0. However in the second case the condition a < 0 must
hold. If a = 0 we obtain ¢ = 0 and we arrive at the first case. If a < 0 as it was
mentioned earlier due to a rescaling we may assume a = —1 (see systems )
and then we obtain ¢? 4+ 9a = ¢ —9 = 0 and this completes the proof of our claim.
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3.5.2. Subcase d = 0. In this case systems (B.57) become as systems
i=a+cér+a2, §=>b+ay, (3.62)

for which following [I5] we calculate the value of invariant polynomial His =
—8a2x? and we consider two possibilities: @ # 0 and a = 0.

Possibility 6 # 0. As it was shown in [I5, page 750] in this case via an affine
transformation and time rescaling after some additional parametrization we arrive
at the following 2-parameter family of systems

t=a+(z+c)? Y=uzy (3.63)

for which the condition Hi5 = —8(a + 02)2302 # 0 must hold.

Next, to determine the conditions for the existence of a hyperbola as earlier we
apply the equations . Since the quadratic parts of the above systems coincide
with quadratic parts of systems by the same reasons from the first four
equations we determine that s #£ 0, U = 2 and V = 0 and then calculations
yield

Eqs = —q+4cs —sW =0, FEqgs=—r—+4ct —2tW =0,
Eqr = —uW =0, Eqg=—2p+2cq+ 2as+ 2c*s — gW = 0.

So we obtain ¢ = s(4c — W), r = 2t(2c — W), p = s(2a + 10c¢*> — 6cW + W?)/2,
uW = 0 and we consider two cases: u =0 and u # 0.

Case uw = 0. In this case we have Fq; =0,i=1,2,...,8 and

Eqg = 2t(a+c® — 2cW + W?) =0,
Eqio = 5(2¢ — W)(4a + 4c* — 4cW + W?) =0

and we observe that ¢ # 0 otherwise we obtain
®(z,y) = s(2a + 10¢* — 6¢W + W2 + 8cx — 2Wa + 222)/2 = 0,

ie. ®(z,y) is a product of two parallel lines. It was mentioned above that the
condition s # 0 also must hold, i.e. st # 0 and we calculate Resw (Fqo, Eqi0) =
25%t3(a + c?)?(9a + ¢?) and clearly for the existence of a common solution of the
equations Eqg = Eqjo = 0 the condition (a+c?)?(9a+c?) = 0 is necessary. However
the condition Hyz # 0 implies a + ¢ # 0 and therefore we obtain 9a + ¢ = 0.

So a = —c?/9 and we detect that in this case the polynomials Eqg and Eqi
have as a common factor 4c — 3W. Therefore we obtain W = 4¢/3 and we arrive
at the systems

& = (2¢+ 3z)(4c+ 32)/9, ¢y ==y,
which possess the following family of hyperbolas ®(z,y) = 16¢%s + 24csw + 9sz? +
12cty + 18txy = 0. In order to have irreducible invariant conics we determine

A = —324¢%st? # 0. So s # 0 and setting a new parameter m = 6t/s we arrive at
the 1-parameter family of hyperbolas

®(z,y) = 16¢* + 24cx + 2cmy + 92° + 3may = 0.
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Case u # 0. Then we obtain W = 0 and we calculate
B =0, i=1,2,...,8, FEq=2a+c*)t=0, Eqo=4c(a+c*)s=0

and since s # 0 and a + ¢? # 0 (due to Hi2 # 0) we obtain t = ¢ = 0. So we arrive
at the 1-parameter family of systems @ = a + x2, ¥ = xy, which possess the family
of conics

®(z,y) = as + sz +uy? = 0.
Clearly these conics are of hyperbolic type if su < 0 and they are irreducible if in
addition we have a # 0. So setting u = —m?s we obtain the following 1-parameter
family of hyperbolas:

O(z,y) =a+ 2% —m?y? = 0.

Thus we detect that in the case d = 0 and & # 0 a system could be
brought to which possess an invariant hyperbola if and only if the condition
c(9a+c?) = 0 holds. On the other hand for these systems we have N7 = ¢(9a+c?)/2
and we deduce that in the case under consideration Lemma is valid.

Possibility a = 0. This condition implies b # 0 (otherwise we obtain degenerate

systems (3.62)). So we may assume b = 1 due to the rescaling y — by and this
leads to the 1-parameter family of systems (we set ¢ = ¢)

t=cr+a2%, y=1+uxy, (3.64)

And again, since the quadratic parts of the above systems coincides with quadratic
parts of systems (3.58)) by the same reasons from the first four equations (2.7) we
determine that s # 0, U = 2 and V = 0 and then calculations yield

Eqs = —q+2cs —sW =0, FEqg=—r+2ct —2tW =0,
Eqr=—uW =0, Eq=—-2p+cq+2t—qW =0.

So we obtain ¢ = s(2c—W), r = 2t(c—=W), p = (2c?s+2t—3csW +sW?2) /2, uW = 0
and we claim that the condition u = 0 must hold. Indeed supposing u # 0 we obtain
W = 0 and this implies Fq9 = 2u = 0 and this contradiction proves our claim. So
u = 0 and calculations yield Fq; = 0, i = 1,2,...,8, Eqg = —2t(c — W)W = 0,
and Eqig = (4ct — 2¢2sW — 6tW + 3csW?2 — sW3)/2 = 0. We observe that t # 0
otherwise we obtain ®(x,y) = s(2c? — 3c¢W + W2 + dex — 2Wa + 222)/2 = 0, i.e.
®(x,y) is a product of two parallel lines. So we obtain W(c — W) = 0 and we
have to consider the two subcases given by these two factors. However we obtain
Eqo=2ct=0if W =0 and FEqi9p = —ct = 0 if W = ¢ and therefore due to t # 0
in both cases we obtain ¢ = 0. So we arrive at the system
t=2% g=1+ay,

which possess the following family of hyperbolas ®(z,y) =t + sx? + 2txy = 0 and
for the irreducibility of these conics the condition ¢ # 0 is necessary. Then setting
m = s/t we obtain the 1-parameter family of hyperbolas

®d(z,y) = 1+ ma? + 2y = 0.

Thus in the case d = a =0 a system could be brought to which possess
an invariant hyperbola if and only if the condition ¢ = 0 holds. On the other hand
for these systems we have N; = —16¢® and this completes the proof of Lemma
3. 20 O

Then, we conclude that the Main Theorem is completely proved.
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