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SINGULARITIES OF SOLUTIONS TO PARTIAL DIFFERENTIAL
EQUATIONS IN A COMPLEX DOMAIN

NAOUEL BENTIBA

Abstract. We give an explicit representation of the solution of the following

singular Cauchy problem with analytic data,

utt − xuxx + Cux −B(t2 − 4x)−1u = 0.

We also study the singularities of this solution.

1. Introduction

In this article, we study the singularities of the solution to the following Cauchy
problem with analytic data in the complex domain

LU = ∂2
tU − x∂2

xU + C∂xU −B(t2 − 4x)−1U = 0,

U(0, x) = U0x),

Ut(0, x) = U1(x),

(1.1)

where C and B are real numbers. The variables t, x and the unknown U are complex
numbers. Our aim is to give an explicit representation of the solution in terms of
Gauss hypergeometric functions and study its singularities.

Equation (1.1) arises naturally by linearizing the nonlinear partial differential
equation with double characteristics in involution

∂2
tU − x∂2

xU + C∂xU = aUp,

around its self-similar solution U = (t2−4x)
−1

p−1 , where a is real number, p > 1 and
B = ap.

In the complex domain, the study of the singularities of the solutions of the
nonlinear Cauchy problem is very complicated. Especially if the roots of the char-
acteristic polynomial are double and not holomorphic at the origin (as is in our
case). Indeed the technical difficulties are such that even in the linear case there
are no methods for obtaining general theorems.

However in the case of second order equations, many authors showed that the
solutions of certain evolution or degenerate linear equations can be expressed in
terms of hypergeometric functions. Since these hypergeometric functions have in-
trinsic singularities, they permit the analysis of the structure of the solutions and
therefore to describe their singularities; see [2, 3, 4, 5, 7].
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We will show that the solution, depending on various parameters, might have
singularities on the characteristic surfaces:

K1 : x = 0, K2 : 4x− t2 = 0. (1.2)

Before developing the theory and to get some insight to the problem, we present
four concrete examples.

Example 1.1. In C2 consider the Cauchy problem

∂2
tU − x∂2

xU + 2∂xU − 28(t2 − 4x)−1U = 0,

U(0, x) = x4,

Ut(0, x) = 0.

The solution is

U(t, x) =
1
42

(4x− t2)2(x2 − t2x+
t4

6
).

We observe that U is polynomial.

Example 1.2. The Cauchy problem

∂2
tU − x∂2

xU − 2∂xU − 12(t2 − 4x)−1U = 0,

U(0, x) = x,

Ut(0, x) = 0,

has solution

U(t, x) =
1
16
x−1(4x− t2)2.

Thus it is singular only on K1 : x = 0.

Example 1.3. In C2 consider the Cauchy problem

∂2
tU − x∂2

xU + ∂xU + 6(t2 − 4x)−1U = 0,

U(0, x) = x,

Ut(0, x) = 0.

Its solution is
U(t, x) = 4x2(4x− t2)−1.

Thus, U(t, x) is singular only on K2 : 4x− t2 = 0.

Example 1.4. Consider the Cauchy problem

∂2
tU − x∂2

xU − ∂xU − 4(t2 − 4x)−1U = 0,

U(0, x) = x,

Ut(0, x) = 0.

Its solution is

U(t, x) =
1
4
[
t
√

(4x− t2) arcsin(
t

2
√
x

) + (4x− t2)
]
.

Thus, U(t, x) is singular both on K1 : x = 0 and on K2 : 4x− t2 = 0.
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2. Statement of the problem

In a neighborhood Ω of the origin of C2, we consider the Cauchy problem with
analytic data:

LU = ∂2
tU − x∂2

xU + C∂xU −B(t2 − 4x)−1U = 0,

U(0, x) = u0(x),

Ut(0, x) = u1(x),

(2.1)

where

u0(x) =
∞∑
l=0

alx
l, u1(x) =

∞∑
l=0

blx
l

are analytic and C, B are real numbers.
Our purpose is to construct an exact solution in terms of hypergeometric func-

tions and to show that the solution might have singularities on the characteristic
surfaces (1.2). We denote

ΩR = {(t, x) ∈ C2 : |t| < R, |x| < R},
K1 = {(t, x) ∈ ΩR : x = 0},

K2 = {(t, x) ∈ ΩR : 4x− t2 = 0}.

Using these notation, we have the following theorems.

Theorem 2.1. The Cauchy problem (2.1) has a unique solution of the form :

U(t, x) =
∑
l≥0

(alVl,β + blWl,β′),

with
V (t, x) = Vl,β(t, x)

= (4)−β(x)l−β(4x− t2)βF
(
β − l, C + β − l + 1,

1
2

;
t2

4x
)
,

(2.2)

where β satisfies

β(2l − β − C − 1
2

) =
1
4
B,

W (t, x) = Wl,β′(t, x) =

= (4)−β
′
(x)l−β

′
(4x− t2)β

′
tF
(
β′ − l, C + β′ − l + 1,

3
2

;
t2

4x
)
,

(2.3)

where

β′(2l − β′ − C +
1
2

) =
1
4
B,

and F denotes the Gauss hypergeometric function. This solution might have singu-
larities on K = K1 ∪K2.

2.1. Construction of the solutions. According to the principle of superposition,
it is sufficient to study the following two Cauchy problems:

LV = 0,

V (0, x) = xl,

Vt(0, x) = 0,

(2.4)
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and
LW = 0,

W (0, x) = 0,

Wt(0, x) = xl.

(2.5)

First we solve (2.4). Setting the Characteristics equations x = ξ1 and 4x− t2 =
ξ2. Let V (t, x) = Vl(t, x) = ξl1v(z) with z = 1 − ξ2

4ξ1
. Substituting ξl1v(z) for V ,

LV = 0 becomes

LV =
1
2
ξl−1
1 V ′ + zξl−1

1 V ′′ − z2ξl−1
1 V ′′ − 2zξl−1

1 V ′ + lzξl−1
1 V ′

+ zlξl−1
1 V ′ − l(l − 1)ξl−1

1 V + C(lξl−1
1 V − zξl−1

1 V ′) +
B

ξ2
ξl1V = 0.

Simplifying this equation and replacing ξ1
ξ2

by 1
4(1−z) , we have

z(1− z)v′′ +
(1

2
− (C + 2(1− l))z

)
v′

+ (l(C − l + 1)− 1
4
B(

1
z − 1

))v = 0.
(2.6)

The substitution v = (1− z)βy leads to

z(1− z)y′′ +
(1

2
− (C + 2(1− l + β))z

)
y′

+
(
l(C − l + 1) + β(β + C + 1− 2l)

)
y = 0.

(2.7)

Therefore (2.7) is equivalent to a Gauss differential equation with parameters(
β − l, C + β − l + 1,

1
2
)
,

if and only if

β
(
2l − β − C − 1

2
)

=
1
4
B. (2.8)

According to hypergeometric equation theory, we have: A first solution of Gauss
equation for |z| < 1 is

y1(z) = F (a, b; c; z) = F
(
β − l, C + β − l + 1;

1
2

; z
)
.

A second solution is

y2(z) = z1/2F
(
a− c+ 1, b− c+ 1; 2− c; z

)
= z1/2F

(
β − l +

1
2
, C + β − l +

3
2
,

3
2

; z
)
.

A complete solution of the Gauss equation is

y = DF
(
β − l, C + β − l + 1,

1
2

; z
)

+ Ez1/2F
(
β − l +

1
2
, C + β − l +

3
2
,

3
2

; z
)
,

(2.9)

with z = t2

4x , for |z| < 1, where D and E are constants.
It follows that V = xl(1− z)βy is a solution of LV = 0. Taking into account the

Cauchy data
V (0, x) = xl, Vt(0, x) = 0.
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we have to choose D = 1 and E = 0. Hence V (t, x) reduces to

V (t, x) = Vlβ(t, x) = xl
(
1− t2

4x
)β
F
(
β − l, C + β − l + 1,

1
2

;
t2

4x
)
. (2.10)

In a similar way, we solve the second Cauchy problem (2.4) by setting

W (t, x) = txl
(
1− t2

4x
)β′
y;

we obtain
W (t, x) = Wl,β′(t, x)

= t(4)−β
′
xl−β

′
(4x− t2)β

′
F
(
β′ − l, C + β′ − l + 1,

3
2

;
t2

4x
)
,

(2.11)

where β′ and l satisfy

β′(
1
2

+ 2l − C − β′) =
B

4
.

Remark 2.2. When β − l = −n or C + β − l + 1 = −n, n ∈ N, the solution V of
(2.4) is

V (t, x) = (4)l−n(x)n(4x− t2)l−n
( n∑
i=0

αi(
t2

4x
)i
)
,

= (4)l−n(4x− t2)l−n
( n∑
i=0

αix
n−i(

t2

4
)i
)

;

its last term is
cnt

2n(4x− t2)l−n,
where cn depends on parameters C, l and β.

Therefore, we have some results for V .
(1) When l − n ≥ 0, the solution V (t, x) is a polynomial.
(2) When l − n < 0, the solution is singular on the surface K2 : 4x− t2 = 0.
(3) When C + β − l + 1 = −n, we have the following results:

(i) For C < −n− 1, the solution is singular on the surface K1.
(ii) For C > −n− 1 and l − (C + n + 1) < 0, the solution is singular on

the surface K2.
(iii) For C > −n− 1 and l − (C + n+ 1) > 0, the solution is polynomial.

2.2. Singularities. In this section, we study the singularities of the solution. The
mapping

z =
t2

4x
,

transforms

t = 0, into z = 0,

K2 : t2 − 4x = 0, into z = 1,
K1 : x = 0, into z =∞.

By construction, the solution U is composed of a hypergeometric function which
is holomorphic on D − (0, 1,∞), where D is the Riemann sphere. So, the study
of the singularities of the solution is reduced to those corresponding well known
properties of Gauss functions. It follows that U is ramified around K1 ∪K2.
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2.3. Convergence of the solution. The study of the convergence of this solution
is reduced to estimate the Gauss functions. For this, we apply the following result.

Lemma 2.3. If a ≥ b > c > 0 and d = a+ b− c, then for |z| < 1,

F (a, b; c; z)� (1− z)−dΓ(c)Γ(d)
Γ(a)Γ(b)

. (2.12)

For the proof of this lemma, see [6].

Theorem 2.4. The series
∑
l≥0 alVl and

∑
l≥0

∑
blWl converge for |x| < R

4 , where
R is the radius of convergence of u0 and u1.

Proof. We have

V (t, x) = Vl(t, x) = (x)l
(
1− t2

4x
)β
F
(
β − l, C + β − l + 1;

1
2

;
t2

4x
)
.

Let

β = β1 =
2l − C − 1

2 −
√

∆
2

be one of the roots of the equation (2.8), where

∆ =
(
2l − C − 1

2
)2 −B (2.13)

Putting : a = β − l, b = C + β − l + 1, and c = 1
2 , we have

d = a+ b− c = 2β − 2l + C +
1
2

= −
√

∆ < 0.

In this case, we recall the Euler transformation

F (α, δ; γ; z) = (1− z)γ−α−δF (γ − α, γ − δ; γ; z).

Applying this transformation to F (β − l, C + β − l + 1; 1
2 ; t

2

4x ), we obtain

F
(
β − l, C + β − l + 1;

1
2

;
t2

4x
)

=
(
1− t2

4x
)√∆

F
(
l − β +

1
2
, l − C − β − 1

2
;

1
2

;
t2

4x
)
.

For l large, l− β = l+ o(1), and so by applying Lemma 2.3 to F
(
l− β + 1

2 , l−C −
β − 1

2 ; 1
2 ; t

2

4x

)
we have

F
(
l − β +

1
2
, l − C − β − 1

2
;

1
2

;
t2

4x
)
�
(
1− t2

4x
)−√∆

M,

where y =
√

∆
2 and

M =
Γ( 1

2 )Γ(2y)
Γ(y − 2C+1

4 )Γ(y + 2C+3
4 )

.

Stirling’s formula gives

M ∼ 22y−1

√
2π(y)y−

1
2 e−y

√
2π(y)ye−y(√

2π(y)y−( 2C+3
4 )e−y

)(√
2π(y)y+( 2C+1

4 )e−y
) ;

then M ∼ 22y−1. Therefore,

|V (t, x)| 6 22y−1|x|l|1− t2

x
|β1 |1− t2

x
|
√

∆|1− t2

x
|−
√

∆
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6 22y−1|x|l|1− t2

x
|β1 .

As β1 → 0 for l large, we deduce that

lim sup
l→∞

|Vl|1/l ≤ 4|x|.

It follows that
∑
l≥0 alVl converges for

|x| < R

4
.

In the similar way, we show that
∑
blWl converges for

|x| < 1
4
R.

This completes the proof. �
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