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SINGULARITIES OF SOLUTIONS TO PARTIAL DIFFERENTIAL
EQUATIONS IN A COMPLEX DOMAIN

NAOUEL BENTIBA

ABSTRACT. We give an explicit representation of the solution of the following
singular Cauchy problem with analytic data,
utt — Tuzy + Cug — B(t2 - 4x)_1u =0.

We also study the singularities of this solution.

1. INTRODUCTION

In this article, we study the singularities of the solution to the following Cauchy
problem with analytic data in the complex domain

LU = 02U — 20°U 4+ CO,U — B(t* — 42)~'U =0,
U(0,z) = Upx), (1.1)
U:(0,2) = Uy (),

where C' and B are real numbers. The variables ¢, z and the unknown U are complex
numbers. Our aim is to give an explicit representation of the solution in terms of
Gauss hypergeometric functions and study its singularities.

Equation arises naturally by linearizing the nonlinear partial differential
equation with double characteristics in involution

U — 202U + CO,U = aU?,

around its self-similar solution U = (#? — 4x)v;—11, where a is real number, p > 1 and
B = ap.

In the complex domain, the study of the singularities of the solutions of the
nonlinear Cauchy problem is very complicated. Especially if the roots of the char-
acteristic polynomial are double and not holomorphic at the origin (as is in our
case). Indeed the technical difficulties are such that even in the linear case there
are no methods for obtaining general theorems.

However in the case of second order equations, many authors showed that the
solutions of certain evolution or degenerate linear equations can be expressed in
terms of hypergeometric functions. Since these hypergeometric functions have in-
trinsic singularities, they permit the analysis of the structure of the solutions and
therefore to describe their singularities; see [2) Bl 4] 5] [7].
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We will show that the solution, depending on various parameters, might have
singularities on the characteristic surfaces:

Ki:x=0, Koy:dx—1>=0. (1.2)

Before developing the theory and to get some insight to the problem, we present
four concrete examples.

Example 1.1. In C? consider the Cauchy problem
02U — 202U +20,U — 28(t* — 4z)~'U = 0,

U(0,2) = z*,
Ut(O,I)ZO
The solution is
Ut —14 t2)2(x? — 2 t
(t,2) = (4o = 2P — o+ ).

We observe that U is polynomial.
Example 1.2. The Cauchy problem
02U — 202U — 20,U — 12(t* — 42)™'U = 0,
U(0,z) ==z,
U:(0,2) =0,
has solution )
Ult,z) = 176:(1(4% — )2,
Thus it is singular only on K; : x = 0.
Example 1.3. In C? consider the Cauchy problem
02U — 202U + 0,U + 6(1* — 4z)~*U = 0,
U0,z) ==z,
U:(0,2) = 0.
Its solution is
Ul(t,z) = 4a* (4o — %) 1,
Thus, U(t, ) is singular only on Ko : 4z — t? = 0.
Example 1.4. Consider the Cauchy problem
02U — 20U — 0,U — 4(t* — 4x)"'U = 0,
U0,z) ==z,
U(0,2) = 0.

Its solution is

Ult,z) = i[t (4x — t2) arcsin( )+ (dz — t%)].

t
2\/x

Thus, U(t, x) is singular both on K; : 2 =0 and on K : 4z — t> = 0.
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2. STATEMENT OF THE PROBLEM

In a neighborhood € of the origin of C?, we consider the Cauchy problem with
analytic data:

LU = 0?U — x0?U 4+ CO,U — B(t* —42)"'U =0,
U(0,2) = ug(x), (2.1)
Ut(07$) = ul(m),

where
oo oo
uo(x) = Zalxl, up(z) = Z byt
=0 =0

are analytic and C, B are real numbers.
Our purpose is to construct an exact solution in terms of hypergeometric func-
tions and to show that the solution might have singularities on the characteristic

surfaces . We denote
Qr ={(t,r) € C*: |t| < R, |z| < R},
Ky ={(t,x) € Qr:x =0},
Ko = {(t,x) € Qg : 4z — t* = 0}.
Using these notation, we have the following theorems.

Theorem 2.1. The Cauchy problem (2.1)) has a unique solution of the form :
U(t, :L‘) = Z(alVlﬂ + lel,ﬁ/)a

1>0
with
V(t,x) =V s(t,x)
PV ~ 1 ¢2 (2.2)
= (4)7"(x) (4:C—t)F(ﬁ—l,C+ﬁ—l+1,§;ﬂ)7
where (B satisfies
1 1
BEI-5-C—3) =B,
W(t,x) = VVl”g/ (t,I) =
/ ’ / 2 (23)
= () @) (o~ )~ LCH 41,5 ),
where
5’(21—ﬁ’—0+1) _1p
27 477

and F' denotes the Gauss hypergeometric function. This solution might have singu-
larities on K = K1 U K>.

2.1. Construction of the solutions. According to the principle of superposition,
it is sufficient to study the following two Cauchy problems:
LV =0,
V(0,z) = 2!, (2.4)
Vt(07 .’L‘) =0,
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and
LW =0,
W(0,z) =0, (2.5)
Wi (0,z) = 2.
First we solve . Setting the Characteristics equations r=2¢ and 4o — 2 =
&. Let V(t,z) = Vi(t,z) = €v(2) with z = 1 — 2. Substituting ¢lv(z) for V ,

LV =0 becomes
1
LV = 5glflv’ 4 267 = 226y 226 Y 4 ey

B
SV =

+ 27 (1= DEFY 4 ol — 27V 4 ;i
2

Simplifying this equation and replacing & L by 4(1 =y we have

2(1—2)v" + (% —(C+2(1=1)2)

1 1 (2.6)
+(Z(C—l+1)—ZB( 1)) v=0.
The substitution v = (1 — 2)?y leads to
2(1—2)y" + (1 (CH+2(1—1+08))2)y (2.7)

+(U(C—1+1)+B(B+C+1-20)y=0.
Therefore ([2.7)) is equivalent to a Gauss differential equation with parameters

(ﬁ—l,C—s—ﬁ—l—H,%),

if and only if
1

B2 -5-C—3) =B (2.8)

According to hypergeometric equation theory, we have: A first solution of Gauss
equation for |z| < 1 is

1
ni(2) = Fla,bie;2) = F(B—1,C+ B=1+1;5;2).
A second solution is

yg(z)zzl/zF( —c+1,b—c+1;2—¢2)

=R -1+ 2 C+ﬁ—l+gg z).

A complete solution of the Gauss equation is

y:DF(ﬂ—l,C-i-ﬂ—l—&-L%'z)
(2.9)
+Ez'?F(B - l+ ,C+B—1+

l\D\OJ
I\D\OO

72)7

with z = %, for |z| < 1, where D and E are constants.
It follows that V' = z!(1 — 2)Py is a solution of LV = 0. Taking into account the
Cauchy data
V(0,z) =2', V,(0,2) =0.
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we have to choose D = 1 and E = 0. Hence V (¢, z) reduces to

2 2

V(t,z) = Vig(t,z) = 2'(1 - i—x)BF(ﬁ —L,C+B-1+1, %; i—x) (2.10)

In a similar way, we solve the second Cauchy problem by setting
! g
Wt z) =tz' (1 - E) Y

we obtain

W(t,z) =W, gt x)

3 2 (2.11)

=t(4) P2 4 I F (B —1L,C+ 5 —1+1, 5 g),

where 3’ and [ satisfy

sy

ﬁ’(%+21—0—ﬁ’):z.

Remark 2.2. When f—l=-nor C+ 0 —1+1=—n, n €N, the solution V of
©4) is

n 2
V(ta) = (@) @) o — ) (Y a1,

= (@) "4z — 2 ( g aixn_i(g)i>;

its last term is
ent?(4z — t2)I7,
where c¢,, depends on parameters C,[ and (3.

Therefore, we have some results for V.

(1) When I —n > 0, the solution V' (¢,z) is a polynomial.
(2) When [ —n < 0, the solution is singular on the surface Ky : 4z — t? = 0.
(3) When C' + 8 — 1+ 1= —n, we have the following results:

(i) For C < —n — 1, the solution is singular on the surface Kj.

(ii) For C > —n—1 and [ — (C' +n + 1) < 0, the solution is singular on

the surface Ks.
(iii) For C > —n — 1 and [ — (C' + n+ 1) > 0, the solution is polynomial.

2.2. Singularities. In this section, we study the singularities of the solution. The
mapping
t2
= @’
transforms
t =20, into z =0,
Ky:t? —4x =0, into z =1,
K;:x2 =0, into z = c0.

By construction, the solution U is composed of a hypergeometric function which

is holomorphic on D — (0,1, 00), where D is the Riemann sphere. So, the study

of the singularities of the solution is reduced to those corresponding well known
properties of Gauss functions. It follows that U is ramified around K; U Ks.
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2.3. Convergence of the solution. The study of the convergence of this solution
is reduced to estimate the Gauss functions. For this, we apply the following result.

Lemma 2.3. Ifa>b>c>0andd=a+b—c, then for|z| <1,
_aT(e)T(d)

e d
F(a,b;c;2z) < (1 —2) (@)

For the proof of this lemma, see [6].

Theorem 2.4. The series leo a;V; and leo S bWy converge for |x| < %,

R is the radius of convergence of ug and uy.

Proof. We have

. 2.5 1 ¢
V(t,x) =Vi(t,z) = (z) (17£) F(ﬂ*l,C‘Fﬂ*l*f’l;i;@).

Let /A

20-C -1 — VA

B=p0= 22

be one of the roots of the equation (2.8]), where

1
A= (2;—0—5)2—3
Putting: a=06—-1,b=C+08—-1+1, andc:%,wehave
d:a+b—c:2672l+0+§:f\/5<0.
In this case, we recall the Euler transformation
Fla,0;7;2) = (L= 2) " F(y —a,y = 673 2).
Applying this transformation to F(8 —1,C + 3 — 1+ 1; 1; ﬁ), we obtain

120 4z
F(B-1 C+ﬂ—l+1-1-ﬁ)

’ "2 4x
7 2\ VA 1 11 ¢
7(175) F(l—ﬂ+§,l—0—ﬂ—§,§,@).

For [ large, I — 3 =1+ o(1), and so by applying Lemmato F(l—p+3,1
g—1 1'ﬁ) we have

2720 4z
1 11 ¢ 2 _VA
F(l - - 1-C-p—=;=;— 1—— M
( ﬁ+2’ C-# 2’2’4x)<<( 4a:> ’
whereyz@and
L(3)0(2y)

M =

Dy — 20y + 252)
Stirling’s formula gives

\/ZW(y)y_%e_y\/ 27 (y)¥e v
(\/27r(y)y‘(204+3)6*y> (v 2W(y)y+(%)e*-”)
then M ~ 22¥—1 Therefore,

M ~ 2%t

)

2 2 2
V(ta)| < 22 Vel l — =21 — =YL - —|7VA
X X X

(2.12)

where

(2.13)

—C—
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As

It

In

t2
<27 a1 - — |7
x
61 — 0 for [ large, we deduce that
lim sup|Vi|/* < 4]|.
l—o00

follows that »,~, a;V; converges for

o) < 2
i3

the similar way, we show that > b;W; converges for

1

This completes the proof. O
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