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EXISTENCE OF INFINITELY MANY SOLUTIONS FOR
SEMILINEAR ELLIPTIC EQUATIONS

HUI-LAN PAN, CHUN-LEI TANG

Abstract. In this article, we study the existence and infinitely many solutions
for the elliptic boundary-value problem

−∆u + a(x)u = f(x, u) in Ω,

u = 0 on ∂Ω.

Our main tools are the local linking and symmetric mountain pass theorem in
critical point theory.

1. Introduction and statement of main results

In this article, we investigate the elliptic boundary-value problem
−∆u+ a(x)u = f(x, u) in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω ⊂ RN (N ≥ 3) is an open bounded domain with smooth boundary ∂Ω,
a ∈ LN/2(Ω), and the nonlinearity f ∈ C(Ω̄ × R,R) satisfies some of the following
hypotheses:

(H1) There exist constants α ≥ 1, C0 ≥ 0 such that

αG(x, t) + C0 ≥ G(x, st) ∀t ∈ R, x ∈ Ω̄, s ∈ [0, 1],

where

G(x, t) := tf(x, t)− 2F (x, t), F (x, t) =
∫ t

0

f(x, s)ds.

(H1’) There exists t∗ > 0 such that for all x ∈ Ω, f(x, t)/t is increasing for t ≥ t∗
and decreasing for t ≤ −t∗.

(H2) lim|t|→∞ f(x, t)/(t|t|2∗−2) = 0 uniformly for almost every (a.e.) x ∈ Ω,
2∗ = 2N/(N − 2).

(H3) lim|t|→∞ F (x, t)/t2 = +∞ uniformly for a.e. x ∈ Ω.
(H4) limt→0 f(x, t)/t = 0 uniformly in x ∈ Ω.
(H5) f ∈ C(Ω × R,R), and there exists constants C1 > 0 and p ∈ (2, 2∗) such

that
|f(x, t)| ≤ C1(1 + |t|p−1), ∀(x, t) ∈ Ω× R;

(H6) λn
2 t

2 ≤ F (x, t), for all (x, t) ∈ Ω̄×R in which λn is an eigenvalue of −∆+a.
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(H7) There exists a constant C > 0 such that

G(x, t) ≤ G(x, s) + C

for each x ∈ Ω, 0 < t < s or s < t < 0 where G(x, t) is the same as in (H1).
(H8) For some δ > 0, either

F (x, t) ≥ 0 for |t| ≤ δ, x ∈ Ω,

or
F (x, t) ≤ 0 for |t| ≤ δ, x ∈ Ω.

There has been a great deal of interest in semilinear elliptic equations in previ-
ous years. With the aid of variational methods, the existence and multiplicity of
solutions for (1.1) have been extensively investigated in the literature [1]-[12] and
references therein. According to the growth of the primitive F (x, t) :=

∫ t
0
f(x, s)ds

of the nonlinearity f near infinity in t, the existing literature usually distinguishes
between the situations of the sub-quadratic and super-quadratic. For the later sit-
uation, most of the results were obtained under the (AR) condition (see [1]): there
exits µ > 2, l0 > 0 such that

0 < µF (x, t) ≤ tf(x, t), ∀|t| ≥ l0, x ∈ Ω.

In [1], the authors developed the dual variational methods and obtained infinitely
many solutions of (1.1) under the (AR) condition. There are many other results
obtained under the (AR) condition. See [20]-[23] and the references therein. How-
ever, this condition eliminates many nonlinearities, among them the function given
in [11],

f(x, t) = 2t ln(1 + |t|) .
Some new super-quadratic conditions are established instead of (AR) in [8]-[10]

and [16]. Among them, a few are weaker than (AR), but most complement it, such
as the monotonicity condition on f(x, t)/t. In [8], the authors obtained the infinitely
many solutions of problem (1.1) under some weak super-quadratic conditions, but
the conditions there actually imply that F (x, t) is of µ-order (µ > 2) growth near
infinity with respect to t. After that, many efforts have been made to extend the
results. In [14], the authors obtained problem (1.1) possesses at least one nontrivial
solutions with a ∈ L∞(Ω), f(x, u) satisfies the (AR) condition and (H4), (H5),
(H8).

Based on linking theorem, Li and Wang obtained the following theorem:

Theorem 1.1 ([13, Theorem 1.1]). Suppose that Ω is a bounded domain in RN
with N ≥ 3 and a ∈ LN/2(Ω). Under the hypotheses (H3)–(H7), problem (1.1) has
at least one nontrivial solution.

In [11], the authors obtained the following theorem:

Theorem 1.2 ([11, Theorem 1.2]). Suppose that (H1)–(H4) hold and a(x) = 0.
Then (1.1) has a weak nontrivial solution.

Motivated by [11, 13, 14], we show that (1.1) possesses at least one, or infin-
itely many nontrivial solutions by using critical point theorem. Then we have the
following theorems

Theorem 1.3. Suppose that f satisfies (H1)–(H4), (H8), and 0 is an eigenvalue
of −∆ + a. Then (1.1) has at least one nontrivial solution.
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Theorem 1.4. Suppose that f is odd and (H1)–(H3) hold. Then (1.1) has infinitely
many nontrivial solutions.

Corollary 1.5. Suppose that f is odd and the assumptions (H1’), (H2), (H3) hold.
Then problem (1.1) has infinitely many nontrivial solutions.

Remark 1.6. Comparing our results with [14, 13, 11], we obtain at least one, or
infinitely many solutions of (1.1) under fewer and weaker conditions.

Theorem 1.3 has weaker conditions than Theorem 1.1. It is obvious that (H5)
implies (H2). We can easily prove that (H1) is equivalent to (H7) if α = 1, and (H1)
gives some general sense of monotony when α > 1. There are functions satisfying
(H1) but not (H7). For example (see in [11]), if

F (x, t) = t2 ln(1 + t2) + t sin t,

then
f(x, t) = 2t ln(1 + t2) + t2 · 2t

1 + t2
+ sin t+ t cos t,

and G(x, t) = tf(x, t)− 2F (x, t) satisfies (H1) but not (H7) when α large enough.
This means (H1) is weaker than (H7).

Comparing Theorem 1.4 with Theorem 1.2, the condition on a(x) is weaker,
(H4) is eliminated, we obtain infinitely many solutions rather than one nontrivial
solution.

In (H2), we have functionals satisfying the so-called nonstandard growth condi-
tions. Because the lack of compactness of the embedding in H1

0 (Ω) ↪→ L2∗(Ω), we
cannot use the standard variational directly. We overcome this difficulty by using
the Vitaly convergence theorem and some analysis technics.

This article is organized as follows. In section 2 we present some definitions and
preliminary results. In section 3 we give the proof of our results.

2. Preliminaries

In this section we give some definitions and preliminary results, which are used in
Section 3. Let E := H1

0 (Ω) be the Sobolev space equipped with the inner product
and the norm:

〈u, v〉 =
∫

Ω

∇u · ∇vdx, ‖u‖ = 〈u, u〉1/2.

Recall that a function u ∈ E is called a weak solution of (1.1) if∫
Ω

∇u · ∇vdx+
∫

Ω

a(x)uvdx =
∫

Ω

f(x, u)vdx, ∀v ∈ E,

which is equivalent to a critical point of the C1 functional

I(u) :=
1
2

∫
Ω

|∇u|2 + a(x)u2dx−
∫

Ω

F (x, u)dx, u ∈ E.

We denote a subsequence of a sequence {un} as {un} to simplify the notation
unless specified. We need the following concept which is a weak version of the (PS)
condition (see [3]):

Definition 2.1. We say that I ∈ C1(E,R) satisfies the Cerami condition at level
c ∈ R ((Ce)c for short) if any sequence {un} ⊆ E with

I(un)→ c, (1 + ‖un ‖)‖I ′(un)‖ → 0
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possesses a convergent subsequence in E; I satisfies the (Ce) condition if I satisfies
condition (Ce)c for all c ∈ R.

The definition below is a weak version of the (PS)∗ condition.

Definition 2.2 ([17, Definition 2.1]). A functional I ∈ C1(E,R) satisfies the (Ce)∗

condition if every sequence {uαn} such that {αn} is admissible and

uαn ∈ Xαn , sup I(uαn) < +∞, (1 + ‖uαn‖)I ′(uαn)→ 0

contains a subsequence which converges to a critical point of I.

The following propositions are our main tools, which can be found in [14] and
[19] respectively.

Proposition 2.3 ([17, Theorem 2.2]). For a real Banach space B with a direct
decomposition B = B1 ⊕B2, the following two sequence of subspace satisfies that

B1
0 ⊂ B1

1 ⊂ · · · ⊂ B1, B2
0 ⊂ B2

1 ⊂ · · · ⊂ B2, Bj = ∪n∈NB
j
n, j = 1, 2.

and dimBjn <∞, j = 1, 2, n ∈ N. Then I ∈ C(B,R) satisfies the following:
(i) I has a local linking at 0 and B1 6= 0,
(ii) I satisfies the (Ce)∗ condition,

(iii) I maps bounded sets into bounded sets,
(iv) for every m ∈ N, I(u)→ −∞, ‖u‖ → ∞, u ∈ B1

m ⊕B2.
Then I has at least two critical points.

Proposition 2.4 ([19, Theorem 9.12]). Let E be an infinite dimensional Banach
space and let I ∈ C1(E,R) be even, satisfy (PS), and I(0) = 0. If E = V ⊕ X,
where V is finite dimensional, and I satisfies

(I1’) there are constants ρ, α > 0 such that I |∂Bρ∩X≥ α, and
(I2’) for each finite dimensional subspace Ẽ ⊂ E, there is an R = R(Ẽ) such

that I ≤ 0 on Ẽ\BR(Ẽ).
Then I possesses an unbounded sequence of critical values.

Next we recall something about the eigenvalues of elliptic operators (see [20]).
According to the theory of spectrum of compact operators, we let

−∞ < λ1 < λ2 ≤ λ3 ≤ · · · ≤ λn < 0 ≤ λn+1 ≤ λn+2 ≤ . . .

be the sequence for the eigenvalue problem

−∆u+ a(x)u = λu,

u ∈ E (2.1)

where each eigenvalue is replaced according to its multiplicity. limj→∞ λj = +∞
and λ1 = infu∈E,|u|2=1

∫
Ω

[|∇u|2 + a(x)u2]dx. Let e1, e2, . . . , en, en+1 . . . be the
corresponding orthonormal eigenfunctions in L2(Ω). Then a direct decomposition
of E can be defined as follows:

V := span{e1, e2, . . . , en},

X :=
{
u ∈ E :

∫
Ω

uvdx = 0, v ∈ V
}
.

Then dimV < +∞, dimX = +∞, E = V ⊕X.
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3. Proof of Theorems

In this section, we prove our results.

Proof of Theorem 1.3. We shall apply Proposition 2.3 to the functional

I(u) =
1
2

∫
Ω

|∇u|2dx+
1
2

∫
Ω

a(x)u2dx−
∫

Ω

F (x, u)dx

defined on E. We consider only the case when 0 is an eigenvalue of −∆ + a and

F (x, u) ≤ 0 for |u| ≤ δ. (3.1)

Then other cases are similar and simpler.
Suppose that E = V ⊕ X and V be the (finite dimensional) space spanned by

the eigenfunctions corresponding to negative eigenvalues of −∆ + a and X be its
orthogonal complement in E. Choose an Hilbertain basis (en)n≥0 for X and define

Xm = span(e0, e1, . . . , em),m ∈ R

(i) We claim that I has a local linking at 0 with respect to (V,X). Decompose
X into X1 +X2 where X1 = ker(−∆ + a), X2 = (V +X1)⊥. For u ∈ X, we have
u = u1 + u2, u1 ∈ X1, u2 ∈ X2. Since dimX1 <∞, there exists C > 0 such that

‖u1‖∞ ≤ C2‖u1‖, for all u1 ∈ X1. (3.2)

It follows from (H2) and (H4) that, for any ε > 0, there exists Cε > 0 such that

|F (x, t)| ≤ εt2 + Cε|t|2
∗
. (3.3)

Then, on V , for some C > 0,

I(u) ≤ 1
2

∫
Ω

|∇u|2dx+
1
2

∫
Ω

a(x)u2dx+ ε

∫
Ω

u2dx+ C‖u‖2
∗
,

and hence, for r > 0 small enough,

I(u) ≤ 0, u ∈ V, ‖u‖ ≤ r.

Let u = u1 + u2 ∈ X such that ‖u‖ ≤ δ
2C2

and set

Ω1 = {x ∈ Ω : |u2(x)| ∈ δ/2}, Ω2 = Ω \ Ω1.

On Ω1, we have, by (3.2),

|u(x)| ≤ |u1(x)|+ |u2(x)| ≤ ‖u1‖∞ +
δ

2
≤ δ,

hence, by (3.1), ∫
Ω1

F (x, u)dx ≤ 0.

On Ω2, we have, also by (3.2),

|u(x)| ≤ |u1(x)|+ |u2(x)| ≤ 2|u2(x)|.

Hence, by (3.3),

|F (x, u)| ≤ ε|u|2 + Cε|u|2
∗
≤ 4ε|u2|2 + 22∗Cε|u2|2

∗

and for some c > 0, ∫
Ω2

F (x, u)dx ≤ 4ε
∫

Ω

u2
2dx+ c‖u2‖2

∗
.
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Therefore,

I(u) ≥ 1
2

∫
Ω

|∇u2|2dx+
1
2

∫
Ω

a(x)u2
2dx− 4ε

∫
Ω

u2
2dx− c‖u2‖2

∗
−
∫

Ω1

F (x, u)dx

and for 0 < r < δ/(2C) small enough,

I(u) ≥ 0, u ∈ X, ‖u‖ ≤ r.

(ii) We claim that I satisfies (Ce)∗ condition. Consider a sequence {uαn} such
that {αn} is admissible and

uαn ∈ Eαn , c = sup I(uαn) < +∞, (1 + ‖uαn‖)I ′(uαn)→ 0. (3.4)

Here, c ∈ R, Eαn = Vαn ⊕Xαn , αn ∈ N, and Vα1 ⊂ Vα2 ⊂ · · · ⊂ V = ∪αn∈NVαn ,
Xα1 ⊂ Xα2 ⊂ · · · ⊂ X = ∪αn∈NXαn , Vαi and Xαi are subspaces, i = α1, . . . , αn.
We note uαn with un for short.

We first prove that {un} is bounded in E. If not, then ‖un‖ → ∞ as n → ∞.
Let ωn = un

‖un‖ , then ωn ∈ E and ‖ωn‖ = 1. Then there is an ω ∈ E such that

ωn ⇀ ω in E;

ωn → ω in Lp(Ω), where 2 ≤ p < 2∗;
ωn → ω a.e. in Ω.

By the Sobolev Embedding theorem one gets

|ωn|2∗ ≤ C3‖ωn‖ = C3,

where C3 is a positive constant. Denote Ω 6= = {x ∈ Ω : ω(x) 6= 0}. Then |Ω 6=| = 0.
In fact,

lim
n→∞

un(x)
‖un‖

= lim
n→∞

ωn(x) = ω(x) 6= 0inΩ6=.

Which implies |un(x)| → +∞ a.e. in Ω6=. Then we obtain

lim
n→+∞

F (x, u(x))
|un(x)|2

= +∞ a.e. in Ω6=. (3.5)

By (H3), there exists a constant C4 > 0 such that

F (x, t)
|t|2

> 1

for all x ∈ Ω and t ≥ C4. Since F (x, t) is continuous on Ω̄× [−C4, C4], there exists
C > 0 such that

|F (x, t)| ≤ C for all (x, t) ∈ Ω̄× [−C4, C4].

Then we see that there exists a constant C̃ such that

F (x, t) ≥ C̃ for all (x, t) ∈ Ω̄× R. (3.6)

This implies
F (x, un(x))
|un(x)|2

|ωn(x)|2 − C̃

‖un‖2
≥ 0. (3.7)

By the definition of (Ce)∗ condition, we have

c ≥ I(un) =
1
2
‖un‖2 +

1
2

∫
Ω

a(x)u2
ndx−

∫
Ω

F (x, un)dx. (3.8)



EJDE-2016/167 EXISTENCE OF INFINITELY MANY SOLUTIONS 7

We have
1
2

+
1
2

∫
Ω

a(x)ω2
ndx =

∫
Ω

F (x, un)
|un|2

ω2
ndx+ o(1). (3.9)

If |Ω 6=| > 0, then by (H3), (3.5) and (3.7), combining with Fatou’s Lemma, one has

+∞ =
∫

Ω6=

lim inf
n→∞

F (x, un(x))
|un(x)|2

|ωn(x)|2dx−
∫

Ω6=

lim sup
n→∞

C̃

‖un‖2
dx

≤
∫

Ω6=

lim inf
n→∞

(F (x, un(x))
|un(x)|2

|ωn(x)|2 − C̃

‖un‖2
)
dx

≤ lim inf
n→∞

∫
Ω6=

(F (x, un(x))
|un(x)|2

|ωn(x)|2 − C̃

‖un‖2
)
dx

≤ lim inf
n→∞

∫
Ω

(F (x, un(x))
|un(x)|2

|ωn(x)|2 − C̃

‖un‖2
)
dx

= lim inf
n→∞

∫
Ω

F (x, un(x))
‖un(x)‖2

dx

≤ 1
2

+
1
2

∫
Ω

a(x)ω2
ndx+ o(1)

≤ 1
2

+ C2
3 |a(x)|N

2
+ o(1).

It is a contradiction. Then we obtain |Ω 6=| = 0. Hence ω(x) = 0 a.e. in Ω.
Since I(tun) is continuous in t ∈ [0, 1], there exists tn ∈ [0, 1] such that

I(tnun) = max
t∈[0,1]

I(tun).

As 〈I ′(un), un〉 = o(1), we see that

〈I ′(tnun), tnun〉 = o(1).

From (H1), for t ∈ [0, 1], we obtain

2I(tun) ≤ 2I(tnun)

= 2I(tnun)− 〈I ′(tnun), tnun〉+ o(1)

=
∫

Ω

[tnunf(x, tnun)− 2F (x, tnun)]dx+ o(1)

≤
∫

Ω

[α(unf(x, un)− 2F (x, un)) + C0]dx+ o(1)

= α[2I(un)− 〈I ′(un), un〉] + C0|Ω|+ o(1)

≤ 2αc+ C0|Ω|+ o(1)

(3.10)

Furthermore, by (H2), for any ε ≥ 0, there exists Cε > 0 such that

|F (x, t)| ≤ 1
2C2∗

3

ε|t|2
∗

+ Cε, for t ∈ R, a.e. x ∈ Ω.

Let δ = ε/(2Cε) > 0, A ⊆ Ω, measA < δ. Then∣∣ ∫
A

F (x, ωn)dx
∣∣ ≤ ∫

A

|F (x, ωn)|dx

≤
∫
A

Cεdx+
1

2C2∗
3

ε

∫
A

|ωn|2
∗
dx
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≤
∫
A

a(ε)dx+
1

2C2∗
3

ε

∫
Ω

|ωn|2
∗
dx

≤ 1
2
ε+

1
2
ε = ε

So we obtain {
∫

Ω
F (x, ωn)dx, n ∈ N} is equi-absolutely continuous. Then∫

Ω

F (x, ωn)dx→
∫

Ω

F (x, 0)dx = 0

from the Vitali’s convergence theorem.
On the other hand, the functional

χ : u 7→
∫

Ω

a(x)u2dx

is weakly continuous when a ∈ LN
2 (Ω). Then∫

Ω

a(x)ω2
ndx→ 0 when n→∞.

This implies for any s > 0,

2I(sωn) = ‖sωn‖2 + s2

∫
Ω

a(x)ω2
ndx− 2

∫
Ω

F (x, sωn)dx

= s2 + o(1).

Combining with (3.10) we obtain

s2 + o(1) = 2I(sωn) ≤ 2αc+ C0|Ω|+ o(1).

For the arbitrariness of s, we obtain a contradiction. Hence ‖un‖ is bounded in E.
Then, going if necessary to a subsequence, we can assume that un ⇀ u in X.

Then we have

‖un − u‖2 =〈I ′(un)− I ′(u), un − u〉 −
∫

Ω

[a(un − u)2

− (f(x, un)− f(x, u))(un − u)]dx.

this means that un → u in E and I ′(u) = 0.
(iii) It is obvious that I maps bounded sets into bounded sets.
(iv) Finally, we claim that, for every m ∈ N,

I(u)→ −∞ for ‖u‖ → ∞, u ∈ V ⊕Xm.

In fact, from (H3), we know that for all M > 0, there exists CM such that

F (x, u) ≥Mu2 − CM . (3.11)

Then

I(u) =
1
2
‖u‖2 +

1
2

∫
Ω

au2dx−
∫

Ω

F (x, u)dx

≤ 1
2
‖u‖2 + |a|N

2
|u|22∗ −

∫
Ω

F (x, u)dx

≤ 1
2
‖u‖2 + C‖u‖2 −MC‖u‖2 − CM |Ω|

=
(1

2
+ C −MC

)
‖u‖2 − CM |Ω|.

(3.12)
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In the above inequality, one can always find M > 0 large enough such that 1
2 +

C −MC < 0. This implies I(u) → −∞ for ‖u‖ → ∞, u ∈ V ⊕Xm. The proof is
complete. �

Proof of Theorem 1.4. We use Proposition 2.4. It is clear that I(0) = 0. Similar to
the proof of (ii) in Theorem 1.3, we know I satisfies the (Ce) condition. According
to [21] we know, Proposition 2.4 holds under the (Ce) condition. Then in this
section, we need only to prove I satisfies (I1’) and (I2’). Similar to the analysis
in [22], we obtain E possesses the orthogonal decomposition E = E− ⊕ E0 ⊕ E+

with E− = L− = span{e1, e2, . . . , en−1}, E0 = L0 = ker(−∆ + a), E+ = L+ =
span{en, en+1, . . . }. Then for all u ∈ E, we have u = u−+u0 +u+ ∈ E−⊕E0⊕E+

and the corresponding functional of (1.1) as follows:

I(u) =
1
2

∫
Ω

(|∇u|2 + a(x)u2)dx−
∫

Ω

F (x, u)dx

=
1
2
‖u+‖2 − 1

2
‖u−‖2 −

∫
Ω

F (x, u)dx.

For f ∈ C(Ω̄×R,R) and (H2), then for any ε > 0, there exists a constant Cε > 0
such that f(x, u) ≤ 2∗ε|u|2∗−1 + Cε. Then

F (x, u) ≤ εu2∗ + Cεu. (3.13)

Then for all u ∈ E+, we have u = u+ and |u|22 ≤ 1
λn
‖u‖2, λn is an eigenvalue of

−∆ + a. Let ε = 1 in (3.13), combining with the Hölder inequality, for all u ∈ E+,
we obtain

I(u) =
1
2
‖u+‖2 − 1

2
‖u−‖2 −

∫
Ω

F (x, u)dx

=
1
2
‖u‖2 −

∫
Ω

F (x, u)dx

≥ 1
2
‖u‖2 − |u|2

∗

2∗ − C|u|1

≥ 1
2
‖u‖2 − C‖u‖2

∗
− C|u|1

≥ 1
2
‖u‖2 − C‖u‖2

∗
− C 1√

λn
‖u‖

=
(1

4
‖u‖2 − C‖u‖2

∗
)

+
(1

4
‖u‖2 − C 1√

λn
‖u‖
)
.

In the above inequality, one can find a u0 ∈ E+ such that 1
4‖u0‖2 − C‖u0‖2

∗
> 0.

When λn ≥ ( 4Cε
‖u0‖ )

2, we have 1
4‖u0‖2 − Cε 1√

λn
‖u0‖ ≥ 0.

For k ∈ N such that λk ≥ ( 4C
‖u0‖ )

2, and let

Z = span{ek, ek+1, . . . }, Y = {u ∈ E :
∫

Ω

uv dx = 0, v ∈ Z},

then E = Y ⊕Z. Let α = 1
4‖u0‖2−εC‖u0‖2

∗
> 0, then we obtain for all ‖u‖ = ‖u0‖

in Z, I(u) ≥ α > 0. This implies I(u) satisfies (I1’).
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Now we prove I(u) satisfies (I2’). Take Ẽ as a finite dimensional subspace of E.
Then for any u ∈ Ẽ, combining with (3.11), we have

I(u) =
1
2
‖u+‖2 − 1

2
‖u−‖2 −

∫
Ω

F (x, u)dx

≤ 1
2
‖u+‖2 −

∫
Ω

(Mu2 − CM )dx

=
1
2
‖u+‖2 −M |u|22 + C

=
1
2
‖u+‖2 −M |u+|22 −M |u−|22 + C

≤
(1

2
−MC̃

)
‖u+‖2 −M2‖u−‖2 + C.

From the above inequality, one can always find a u0 ∈ Ẽ and M large enough such
that 1

2 −MC̃ < 0 and I(u0) < 0. Then there exists R = R(Ẽ) such that I(u) ≤ 0
for all ‖u‖ ≥ ‖u0‖ > R(Ẽ). This means I(u) satisfies (I2’). Then the proof is
complete. �

Proof of Corollary 1.5. According to [15, Lemma 2.3], one can show that (H1’)
implies (H7). Combining Remark 1.6 and the proof of Theorem 1.4, Corollary 1.5
is obtained. �
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[5] D. G. Costa, C. A.,Magalhães; Variational elliptic problems which are nonquadratic at in-

finity. Nonlinear Anal. 23 (1994), no. 11, 1401-1412.

[6] Y. H. Ding; Infinitely many entire solutions of an elliptic system with symmetry. Topol.
Methods Nonlinear Anal. 9 (1997), no. 2, 313-323.

[7] Y. H. Ding, S. J. Li; Existence of entire solutions for some elliptic systems. Bull. Austral.

Math. Soc. 50 (1994), no. 3, 501-519.
[8] X. He, W. Zou; Multiplicity of solutions for a class of elliptic boundary value problems.

Nonlinear Anal. 71 (2009), no. 7-8, 2606-2613.

[9] L. Jeanjean; On the existence of bounded Palais-Smale sequences and application to a
Landesman-Lazer-type problem set on RN . Proc. Roy. Soc. Edinburgh Sect. A 129 (1999),

no. 4, 787-809.

[10] L. Jeanjean, K. Tanaka; Singularly perturbed elliptic problems with superlinear or asymptoti-
cally linear nonlinearities. Calc. Var. Partial Differential Equations 21 (2004), no. 3, 287-318.



EJDE-2016/167 EXISTENCE OF INFINITELY MANY SOLUTIONS 11

[11] Y. Y. Lan, C. L. Tang; Existence of solutions to a class of semilinear elliptic equations

involving general subcritical growth. Proc. Roy. Soc. Edinburgh Sect. A 144 (2014), no. 4,

809-818.
[12] G. B. Li, A. Szulkin; An asymptotically periodic Schrödinger equation with indefinite linear

part. Commun. Contemp. Math. 4 (2002), no. 4, 763-776.

[13] G. B. Li, C. H. Wang; The existence of a nontrivial solution to a nonlinear elliptic problem
of linking type without the Ambrosetti-Rabinowitz condition. Ann. Acad. Sci. Fenn. Math. 36

(2011), no. 2, 461-480.

[14] S. J. Li, M. Willem; Applications of local linking to critical point theory. J. Math. Anal. Appl.
189 (1995), no. 1, 6-32.

[15] S. B. Liu; On superlinear problems without the Ambrosetti and Rabinowitz condition. Non-

linear Anal. 73 (2010), no. 3, 788-795.
[16] S. B. Liu, S. J. Li; Infinitely many solutions for a superlinear elliptic equation. (Chinese)

Acta Math. Sinica 46 (2003), no. 4, 625-630.
[17] S. Luan, A. Mao; Periodic solutions for a class of non-autonomous Hamiltonian systems.

Nonlinear Anal. 61 (2005), no. 8, 1413-1426.

[18] D. Qin, X. Tang, J. Zhang; Multiple solutions for semilinear elliptic equations with sign-
changing potential and nonlinearity. Electron. J. Differential Equations 2013, No. 207, 9 pp.

[19] P. H. Rabinowitz; Minimax methods in critical point theory with applications to differential

equations. CBMS Regional Conference Series in Mathematics, 65. Published for the Confer-
ence Board of the Mathematical Sciences, Washington, DC; by the American Mathematical

Society, Providence, RI, 1986.

[20] M. Willem; Minimax theorems. Progress in Nonlinear Differential Equations and their Ap-
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