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TOPOLOGICAL METHODS IN THE STUDY OF POSITIVE
SOLUTIONS FOR OPERATOR EQUATIONS IN ORDERED

BANACH SPACES

MOHAMMED SAID EL KHANNOUSSI, ABDERRAHIM ZERTITI

Abstract. We study completely continuous maps in ordered Banach spaces
having an invariant cone. We give conditions on minorants and majorants

which yield the existence of at least one non-zero fixed point.

1. Introduction

In the study non-linear operators in ordered Banach spaces having an invariant
cone it is often convenient to make use of minorants and majorants in order to
establish the existence of non-zero fixed points (see [8, Chapters 3 and 4]). We
present results which generalize those in Amann [1] and Krasnosel’skii [8], where
the maps are supposed to possess more restrictive monotonicity properties. The
proofs are based on the theory of topological degree in cones, more precisely, on the
fixed point index. Applications to the existence of solutions to nonlinear boundary
value problems are presented.

2. Main results

Let (E, ‖ · ‖E) be a real Banach space and P be a nonempty closed convex set
in E. A set P is called a cone if it satisfies the following two conditions:

(i) x ∈ P, λ ≥ 0⇒ λx ∈ P
(ii) x ∈ P,−x ∈ P ⇒ x = θ, where θ denotes the zero element in E.

The cone P defines a linear ordering in E by x ≤ y if and only if y − x ∈ P . The
cone P is said to be normal if there exists a constant N > 0 such that

θ ≤ x ≤ y ⇒ ‖x‖ ≤ N‖y‖, x, y ∈ P.
If L : E → E is a bounded linear operator we define, r(L), its spectral radius by

r(L) = lim
n→+∞

‖Ln‖1/n.

Let u0 ∈ P . Following [8], we say that the linear operator A is u0-bounded below
if for every non-zero x ∈ P a natural number n and a positive number α can be
found such that

αu0 ≤ Anx.
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Similarly, we say that the operator A is u0-bounded above if for every non-zero
x ∈ P a natural number m and a positive number β can be found such that

Amx ≤ βu0.

Finally, if for every x ∈ P \ {0}

αu0 ≤ Anx ≤ βu0.

for some n, then we call the operator A u0−positive.
If the cone P is solid and for every non-zero x of P an n can be found such

that Anx is an interior element of the cone, then the operator A is called strongly
positive.

Let v∗ ∈ P \{0}, furthermore, let the set P (v∗) = {x ∈ P, x ≥ ‖x‖v∗}. Therefore
(see [9]) P (v∗) is a cone which allow plastering. In particular, P (v∗) is a normal,
fully regular cone. The cone P (v∗) is solid (reproducing) if the cone P is solid
(reproducing) and if the set P (v∗) contains at least one element whose norm is less
than one.

For every open subset U of P (from now on, the topological notions of subsets
of P refer to the relative topology of P as a topological subspace of E) and every
compact map F : Ū → P (F is continuous and F (Ū) is relatively compact), which
has no fixed points on ∂U , there exists an integer, ip(F,U), called the fixed point
index of F on U with respect to P . This index satisfies the existence, homotopy,
and excision properties of the Leray-Schauder degree.

If r > 0, we denote

Pr = {x ∈ P : ‖x‖E < r}, P (v∗)r = {x ∈ P (v∗) : ‖x‖E < r}.

Let X be a nonempty set and let Y be an ordered set. Following Amann [1], a map
g : X → Y is said to be a majorant of the map f : X → Y if f(x) ≤ g(x) for all
x ∈ X. Minorant are defined by reversing the above inequality sign.

Note that, throughout the remainder of this section the derivatives are considered
to be with respect to the cone P . After these preparations we are ready for the
statement of our main results.

Theorem 2.1. Let f : P (v∗) → P (v∗) be a completely continuous map. Suppose
that f has a completely continuous, asymptotically linear minorant g : P → P such
that g′(∞) is u0-bounded below and satisfying the condition g′(∞)u0 ≥ λ∞u0 where
λ∞ > 1. Then there exists a positive number σ∞ such that for every σ ≥ σ∞,
i(f, P (v∗)σ) = 0.

Proof. Let p ∈ P (v∗) \ {0}, we claim that it is sufficient to prove that there exists
σ∞ > 0 such that if x ∈ P (v∗) and λ > 0 satisfy x = f(x) + λp, then ‖x‖ < σ∞.
In fact, if the claim is true, then i(f, P (v∗)σ) = 0 for every σ ≥ σ∞. Suppose that
is not true, then we can find sequences λn ∈ R+ and
xn ∈ P (v∗) such that ‖xn‖ → ∞ as n→∞ and

xn = f(xn) + λnp ≥ g(xn),

where the partial ordering is that induced by the cone P . Dividing the last inequal-
ity By ‖xn‖ we obtain

xn
‖xn‖

≥ g(xn)
‖xn‖

=
g(xn)− g′(∞)xn

‖xn‖
+
g′(∞)xn
‖xn‖

.
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By letting δn = xn

‖xn‖ we have

δn −
g(xn)− g′(∞)xn

‖xn‖
− g′(∞)δn ∈ P. (2.1)

Since g′(∞) is a positive linear map (see the proof of [1, Theorem 7.3]), we obtain

g′(∞)δn − g′(∞)
(g(xn)− g′(∞)xn

‖xn‖

)
− g′(∞)(g′(∞)δn) ∈ P. (2.2)

On the other hand, since g′(∞)
∣∣P is completely continuous (see [1, Theorem 7.3]),

we may as well assume that g′(∞)δn → y ∈ P . Then passing to the limit in (2.2)
we obtain

y − g′(∞)y ∈ P,
whence

y ≥ g′(∞)y.

Next, we prove that y ∈ P \ {0}. Indeed, since xn ∈ P (v∗), we have δn ≥ v∗.
Whence, it follows that g′(∞)δn − g′(∞)v∗ ∈ P . Then passing to the limit we find
that y ≥ g′(∞)v∗, and therefore y ∈ P \ {0}, because g′(∞) is u0-bounded below.
The inequality obtained y ≥ g′(∞)y contradicts [8, Theorem 2.17 p. 91] and this
completes the proof. �

Remark 2.2. If the cone P is solid and g′(∞) is strongly positive then for every
non-zero x of P an n can be found such that g′(∞)nx is an interior element of the
cone, then for a sufficiently small α > 0 the element g′(∞)nx−αu0 also will be an
element of the cone, i.e. αu0 ≤ g′(∞)nx where u0 is an arbitrary non zero element
of P , that is g′(∞) is u0-bounded below. On the other hand, it is well known that
the spectral radius of g′(∞) is an eigenvalue to a positive eigenvector, and in fact
the only eigenvalue with this property.

As a consequence of this we have this result.

Theorem 2.3. Let f : P (v∗) → P (v∗) be a completely continuous map. Suppose
that f has a completely continuous, asymptotically linear minorant g : P → P such
that g′(∞) is strongly positive and satisfying the condition r(g′(∞)) > 1. Then
there exists a positive number σ∞ such that for every σ ≥ σ∞, i(f, P (v∗)σ) = 0.

Proof. There exists an u0 ∈ P \ {0} such that g′(∞)u0 = λ∞u0 where λ∞ =
r(g′(∞)) > 1. Therefore, all conditions of the preceding theorem are satisfied. �

Theorem 2.4. Let f : P (v∗) → P (v∗) be a completely continuous map. Suppose
that f has a completely continuous, asymptotically linear majorant h : P → P such
that h′(∞) is u0-bounded above and satisfying the condition h′(∞)u0 ≤ λ∞u0 where
λ∞ < 1. Let h′(∞)v∗ ∈ P \ {0}, then there exists a positive number σ∞ such that
for every σ ≥ σ∞, i(f, P (v∗)σ) = 1.

Proof. We claim that it is sufficient to prove that there exists σ∞ > 0 such that if
x ∈ P (v∗) and t ∈ [0, 1] satisfy x = tf(x), then ‖x‖ < σ∞. In fact, if the claim is
true, then i(f, P (v∗)σ) = 1 for every σ ≥ σ∞. In fact, Assuming the contrary, then
we can find sequences λn ∈ [0, 1] and xn ∈ P (v∗) such that ‖xn‖ → ∞ as n → ∞
and

xn = λnf(xn) ≤ h(xn),
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By letting δn = xn/‖xn‖ we rewrite the last inequality in the form

h′(∞)
(h(xn)− h′(∞)xn

‖xn‖

)
+ h′(∞)(h′(∞)δn)− h′(∞)δn ∈ P. (2.3)

Without loss of generality, it can be assumed that h′(∞)δn → y ∈ P \ {0} (which
is different from zero by the condition y ≥ h′(∞)v∗), then passing to the limit in
(2.3), we obtain

h′(∞)y − y ∈ P.
Then

y ≤ h′(∞)y.
This inequality obtained contradicts [8, Theorem 2.18]. This completes the proof.

�

Remark 2.5. Under the hypotheses of the last theorem and by the solution prop-
erty of the fixed point index, f has a fixed point in P (v∗)σ.

Note that the last theorem contains an essential restriction that f maps the
cone P (v∗) into the cone P (v∗). In the following statement this assumption can be
replaced by f : P → P where the cone P is supposed to be normal.

Theorem 2.6. Let f : P → P be a completely continuous map. Suppose that f has
a completely continuous, asymptotically linear majorant h : P → P such that h′(∞)
is u0-bounded above and satisfying the condition h′(∞)u0 ≤ λ∞u0 where λ∞ < 1.
Then there exists a positive number σ∞ such that for every σ ≥ σ∞, i(f, Pσ) = 1.

Proof. It is sufficient to prove that there exists σ∞ > 0 such that if x ∈ P and
t ∈ [0, 1] satisfy x = tf(x), then ‖x‖ < σ∞. Assuming the contrary, similarly, by
letting δn = xn

‖xn‖ (where xn ∈ P, ‖xn‖ → ∞) we obtain

h(xn)− h′(∞)xn
‖xn‖

+ h′(∞)δn − δn ∈ P. (2.4)

Applying h′(∞) to this relation, we have

h′(∞)
(h(xn)− h′(∞)xn

‖xn‖

)
+ h′(∞)(h′(∞)δn)− h′(∞)δn ∈ P. (2.5)

Without loss of generality, we can assume that h′(∞)δn → y ∈ P , then passing to
the limit in (2.5), we obtain

y ≤ h′(∞)y. (2.6)
Next, we prove that y ∈ P \ {0}. Indeed, suppose that y = 0. By (2.4) we obtain

0 ≤ δn ≤
h(xn)− h′(∞)xn

‖xn‖
+ h′(∞)δn.

Since P is normal we obtain

1 ≤ N
∥∥h(xn)− h′(∞)xn

‖xn‖
+ h′(∞)δn

∥∥
where N is the normal constant of P . From the limits

h(xn)− h′(∞)xn
‖xn‖

+ h′(∞)δn → 0 as n→∞,

we obtain a contradiction. The inequality (2.6) obtained contradicts [8, Theorem
2.18]. This completes the proof. �
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In what follows, we shall use the following theorem of Krein and Rutman [10,
Theorem 6.2].

Theorem 2.7. Let A be a completely continuous linear operator satisfying the
following two conditions:

(1) A(P ) ⊂ P ,
(2) there exists an element u ∈ P , ‖u‖ = 1, a scalar c > 0, and a natural

number p such that Apu ≥ cu.
Then A has nonzero eigenvalues; among those of maximal modulus there is a posi-
tive one not less than c

1
p , to which corresponds a characteristic vector v ∈ P of the

operator A:
Av = ρv (ρ ≥ c

1
p , v ∈ P, v 6= 0).

This theorem is also found in Krasnoselskii’s book [8, p.67]. It should be noted
that the requirement ‖u‖ = 1 in the above theorem is not essential. Now, we can
prove the following result.

Theorem 2.8. Let (E,P ) be an ordered Banach space with normal cone, and let
f : P → P be a completely continuous map. Suppose that f has a completely
continuous, asymptotically linear majorant h : P → P , such that h′(∞) does not
possess a positive eigenvector to an eigenvalue greater than or equal to 1. Then f
has a fixed point.

Proof. The proof is carried out analogously to the proof of the preceding theorem
with the following modifications: from (2.6), we obtain by using Theorem 2.6 that
h′(∞) has a positive eigenvector to an eigenvalue greater than or equal to 1, which
contradicts the hypothesis of the theorem. �

Remark 2.9. The last theorem is a generalization of [1, Theorems 7.4, 13.7] by
Amann, and it is a generalization of [8, Theorem 4.9’] by Krasnosel’skii, where the
maps are supposed to be monotone, which is a restrictive hypothesis. And also
it is a generalization of [8, Theorems 4.8] where the norm is also supposed to be
monotone.

Remark 2.10. Suppose, in addition, that P has nonempty interior and that h′(∞)
is strongly positive. Then the conditions of the above theorem can be replaced by
r(h′(∞)) < 1.

Remark 2.11. We observe that the statement of the previous theorems remains
valid if the map f is supposed to have a minorant or a majorant only on the set
Ξ = {x ∈ P (v∗), ‖x‖ ≥ R0}, where R0 is a large number.

Analogously, in the determination of the values of the fixed point index of the
map f on the set Pr, where r is a small number, it is convenient to make use of the
right derivative at zero. Corresponding statements follows from the same arguments
which were applied above. Therefore, we shall not repeat these arguments. We
observe only that instead of subsequences of elements the norm of which increases
indefinitely subsequences converging to zero must be considered.

Theorem 2.12. Let f : P (v∗) → P (v∗) be a completely continuous map. Sup-
pose that f has a completely continuous, right differentiable at zero minorant g :
P → P such that g(0) = 0, g′+(0) is u0-bounded below and satisfying the condition
g′+(0)u0 ≥ λ0u0 where λ0 > 1. Then there exists a positive number σ0 such that
for every 0 < σ ≤ σ0, i(f, P (v∗)σ) = 0.
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As a consequence of the last theorem if the cone P is solid, we have the following
statement.

Theorem 2.13. Let f : P (v∗) → P (v∗) be a completely continuous map. Sup-
pose that f has a completely continuous, right differentiable at zero minorant g :
P → P such that g(0) = 0, g′+(0) is strongly positive and satisfying the condi-
tion r(g′+(0)) > 1. Then there exists a positive number σ0 such that for every
0 < σ ≤ σ0, i(f, P (v∗)σ) = 0.

The following statement is analogous to Theorem 2.4.

Theorem 2.14. Let f : P (v∗)→ P (v∗) be a completely continuous map. Suppose
that f has a completely continuous, right differentiable at zero majorant h : P →
P such that h(0) = 0, h′+(0) is u0-bounded above and satisfying the condition
h′+(0)u0 ≤ λ0u0 where λ0 < 1, Let h′+(0)v∗ ∈ P \ {0}, then there exists a positive
number σ0 such that for every 0 < σ ≤ σ0, i(f, P (v∗)σ) = 1.

Remark 2.15. Note that the statement of the last three theorems remains valid if
the map f is supposed to have a minorant or a majorant only on the set Ξ = {x ∈
P (v∗), ‖x‖ ≤ r0}, where r0 is a small number.

We assume that f(θ) = θ and raise the question concerning the existence in
the cone of other (different from θ) fixed points for the positive map f . In this
connection, we first mention some conditions following from Theorems 2.1 and
2.14.

Theorem 2.16. Let f : P (v∗)→ P (v∗) be a completely continuous map. Suppose
that f has a completely continuous, asymptotically linear minorant g : P → P such
that g′(∞) is u0-bounded below and satisfying the condition g′(∞)u0 ≥ λ∞u0 where
λ∞ > 1. Suppose that f has a completely continuous, right differentiable at zero
majorant h : P → P such that h(0) = 0, h′+(0) is u0-bounded above and satisfying
the condition h′+(0)u0 ≤ λ0u0 where λ0 < 1. Let h′+(0)v∗ ∈ P \ {0}, then f has at
least one positive fixed point x ∈ P (v∗) \ {0}.
Proof. Theorems 2.1 and 2.14, imply the existence of a real numbers σ0, σ∞ with
0 < σ0 < σ∞ such that i(f, P (v∗)σ∞) = 0 and i(f, P (v∗)σ0) = 1, hence by the addi-
tivity property i(f, P (v∗)σ∞ \ P (v∗)σ0) = −1. Consequently, the solution property
of the fixed point index implies the existence of at least one fixed point x with
σ0 < ‖x‖E < σ∞. �

Remark 2.17. We remark that under the hypotheses of the last theorem, if it is

assumed that P has nonempty interior and that v∗ ∈
◦
P , then it follows from the

fact that the fixed point obtained x ∈ P (v∗) that it belongs to the interior of the

cone P (x ∈
◦
P ).

Similarly, from Theorems 2.4 and 2.12 we have the following result.

Theorem 2.18. Let f : P (v∗)→ P (v∗) be a completely continuous map. Suppose
that f has a completely continuous, asymptotically linear majorant h : P → P such
that h′(∞) is u0-bounded above and satisfying the condition h′(∞)u0 ≤ λ∞u0 where
λ∞ < 1. Suppose that f has a completely continuous, right differentiable at zero
minorant g : P → P such that g(0) = 0, g′+(0) is u0-bounded below and satisfying
the condition g′+(0)u0 ≥ λ0u0 where λ0 > 1. Let h′(∞)v∗ ∈ P \ {0}, then f has at
least one positive fixed point x ∈ P (v∗) \ {0}.
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If P is solid and normal, then Theorems 2.8 and 2.13 imply the following state-
ment.

Theorem 2.19. Let f : P (v∗)→ P (v∗) be a completely continuous map. Suppose
that f has a completely continuous, right differentiable at zero minorant g : P → P
such that g(0) = 0, g′+(0) is strongly positive and satisfying the condition r(g′+(0)) >
1. Suppose that f has a completely continuous, asymptotically linear majorant
h : P → P , such that h′(∞) does not possess a positive eigenvector to an eigenvalue
greater than or equal to 1. Then f has at least one positive fixed point x ∈ P \ {0}.

Remark 2.20. It is not difficult to prove another statements following from the
previous results concerning the existence of a non-trivial solution x ∈ P .

3. Applications to nonlinear differential equations

Consider the second-order two-point boundary problem for the ordinary differ-
ential equation

−x” = f(t, x), 0 ≤ t ≤ 1,

x(0) = x(1) = 0,
(3.1)

where f(t, x) is continuous on 0 ≤ t ≤ 1, x ≥ 0, f(t, x) ≥ 0 for all (t, x) ∈ [0, 1]×R+

and f(t, 0) ≡ 0. Then the boundary problem (3.1) has a trivial solution x(t) ≡ 0.
Problems of the form (3.1) arise in many applications (see [6]), where usually the
existence of positive solutions is of interest.

In this section, we are interested in producing sufficient conditions for the exis-
tence of positive solution to (3.1) in the special case when

g(s, y) ≤ f(s, y) ≤ h(s, y), ∀(s, y) ∈ [0, 1]× [0,∞),

where h, g : [0, 1)× R+ → R+ are continuous functions and h(t, 0) ≡ 0.
Let E = C[0, 1] and P = {x ∈ C[0, 1] : x(t) ≥ 0}. Then P is a normal cone in

E. Also define the norm
‖x‖ = max

0≤t≤1
|x(t)|.

It is well-known that x ∈ C2[0, 1] is a solution of (3.1) if and only if x ∈ C[0, 1] is
a solution of the integral equation

x(t) =
∫ 1

0

G(t, s)f(s, x(s))ds,

where G(t, s) is the Green function of the differential operator −x” with the bound-
ary condition x(0) = x(1) = 0; that is,

G(t, s) =

{
t(1− s), t ≤ s
s(1− t), t ≥ s.

Now, Consider the operator

Fx(t) =
∫ 1

0

G(t, s)f(s, x(s))ds.

Then equation (3.1) has a continuous, non-negative and non-trivial solution if and
only if there exists x ∈ P \ {0} such that x = Fx. Define the operators:

Gx(t) =
∫ 1

0

G(t, s)g(s, x(s))ds, Hx(t) =
∫ 1

0

G(t, s)h(s, x(s))ds.
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Obviously, Gx(t) ≤ Fx(t) ≤ Hx(t) for every t ∈ [0, 1] and x ∈ C[0, 1]. The
following theorem gives sufficient condition so that (3.1) has a solution in P \ {0}.

Theorem 3.1. Suppose that
(A1) there exists a continuous function a : [0, 1]→ R (a(s) 6= 0) such that

lim
y→0+

h(t, y)
y

= a(t), uniformly for t ∈ [0, 1]

where
a(t) ≤ m <

48
5
, for all t ∈ [0, 1] (3.2)

(A2) there exists a continuous function b : [0, 1]→ R such that

lim
y→+∞

g(t, y)
y

= b(t), uniformly for t ∈ [0, 1]

where
b(t) ≥M > 12, for all t ∈ [0, 1] (3.3)

Then equation (3.1) has a non-trivial solution x ∈ C2[0, 1] satisfying x(t) ≥ ‖x‖t(1−
t) for all 0 ≤ t ≤ 1.

Proof. We are going to prove that all conditions of Theorem 2.16 are satisfied. For
it, we must observe that F : P → P is a completely continuous map. Moreover:

(a) To prove that F (P ) ⊂ P (u0), where (u0(t) = t(1− t)), it suffices to observe
that (which is not difficult to prove) for every t, τ, s ∈ [0, 1], the inequality

G(t, s) ≥ u0(t)G(τ, s) (3.4)

is valid. In fact, if x(t) ≥ 0, t, τ ∈ [0, 1], then from (3.4) we have

Fx(t) =
∫ 1

0

G(t, s)f(s, x(s))ds

≥
∫ 1

0

u0(t)G(τ, s)f(s, x(s))ds

= u0(t)Fx(τ).

for any t, τ ∈ [0, 1]. from which it follows that Fx(t) ≥ ‖F (x)‖u0(t), (t ∈ [0, 1]),
and therefore F (P ) ⊂ P (u0).

(b) By using (A2), we shall prove the existence of G′(∞) the derivative of G
along P at infinity. In fact, we are going to see that for all x ∈ P .

G′(∞)x(t) =
∫ 1

0

G(t, s)b(s)x(s)ds;

that is,

lim
‖x‖→∞

x∈P

G(x)−G′(∞)x
‖x‖

= 0.

For it, we must prove that for all ε ∈ R+ there exists K1(ε) ∈ R+ such that

‖x‖ ≥ K1(ε)(x ∈ P )⇒ ‖G(x)−G′(∞)x‖
‖x‖

≤ ε.

Let ε > 0, then from (A2) there is K(ε) ∈ R+ such that

|g(s, y)− b(s)y| ≤ ε|y|, ∀s ∈ [0, 1] ∀y ∈ R : y ≥ K(ε).
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Let,

M(ε) = sup
{
|g(s, y)− b(s)y|, s ∈ [0, 1], y ∈ [0,K(ε]

}
+ 1

and K1(ε) = M(ε)
ε .

Then if x ∈ P satisfies ‖x‖ ≥ K1(ε), we obtain

|G(x)(t)−G′(∞)x(t)| ≤
∫ 1

0

G(t, s)|g(s, x(s))− b(s)x(s)|ds.

Take

B1 = {s ∈ [0, 1] : x(s) ≥ K(ε)} and B2 = {s ∈ [0, 1] : x(s) < K(ε)},

then

|G(x)(t)−G′(∞)x(t)| ≤
∫

[0,1]∩B1
|g(s, x(s))− b(s)x(s)|ds

+
∫

[0,1]∩B2
|g(s, x(s))− b(s)x(s)|ds

≤
∫ 1

0

ε|x(s)|ds+
∫ 1

0

M(ε)ds

≤ ε‖x‖+M(ε)

≤ ε‖x‖+K1(ε)ε

≤ 2ε‖x‖, ∀t ∈ [0, 1].

Therefore
‖G(x)−G′(∞)x‖ ≤ 2ε‖x‖, ∀x ∈ P ; ‖x‖ ≥ K1(ε).

(c) Analogously, one may verify, by using (A1) that there exists H ′+(0) the right
derivative of H along P at 0, and that

H ′+(0)(x)(t) =
∫ 1

0

G(t, s)a(s)x(s)ds

(d) Now, let y(t) ≥ 0 and y(t) 6= 0, then from [8, Lemma 7.6, p.283], positive
numbers α and β can be found such that

αt(1− t) ≤
∫ 1

0

G(t, s)y(s)ds ≤ βt(1− t),

then by (3.2) and (3.3), positive numbers α′ and β′ can be found such that

α′t(1− t) ≤ G′(∞)y(t),

H ′+(0)y(t) ≤ β′t(1− t),

that is H ′+(0) is u0-bounded above, and G′(∞) is u0− bounded below.
(e) Direct calculation shows that∫ 1

0

G(t, s)s(1− s)ds = (1− t)
∫ t

0

s2(1− s)ds+ t

∫ 1

t

s(1− s)2ds

= (1− t)
∫ t

0

s2(1− s)ds+ t

∫ 1−t

0

s2(1− s)ds

= (1− t)
( t3

3
− t4

4
)

+ t
( (1− t)3

3
− (1− t)4

4
)
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= t(1− t)
(−t2 + t+ 1

12
)
.

We consider the function φ(t) = −t2 + t + 1. Obviously, φ′(t) = −2t + 1 ≥ 0 for
0 ≤ t ≤ 1

2 and φ′(t) ≤ 0 for 1
2 ≤ t ≤ 1. Therefore, the inequalities φ(1) = φ(0) =

1 ≤ φ(t) ≤ φ( 1
2 ) = 5

4 hold. From this, and by virtue of (3.2) and (3.3) we obtain
that the operators H ′+(0) and G′(∞) satisfy the condition

G′(∞)u0 ≥ λ′∞u0,

H ′+(0)u0 ≤ λ′0u0

where λ′∞ = M/12 > 1 and λ′0 = 5m/48 < 1.
Finally, from (a), (b), (c), (d), and Theorem 2.16, we obtain the existence of

a point x ∈ P (u0) \ {0} satisfying Fx = x. This completes the proof of the
theorem. �

4. Applications to nonlinear integral equations

In this section we shall study the existence of positive solutions of integral equa-
tions of the form

x(t) =
∫ τ(t)

0

f(t, s, x(t− s− l)) ds, (4.1)

which formulate a model to explain the evolution of certain infectious diseases and
it may also be considered as a growth equation for single species populations when
the birth rate varies seasonally. It include, on a particular case, different equations
suggested by other authors (see [3, 5, 7, 12, 13, 11]). We are interested in producing
sufficient conditions for the existence of positive periodic solution to (4.1) in the
special case where

f(t, s, y) ≤ g(t, s, y), ∀(t, s, y) ∈ R× R× [0,+∞[,

under the following assumptions (H) on functions f and g :
f, g : R× R× [0,+∞[→ R are continuous functions with :

(A3) f(t, s, 0) = 0 for all (t, s) ∈ R× R,
(A4) f(t, s, y) ≥ 0, g(t, s, y) ≥ 0, f(t, s, y) ≤ g(t, s, y) for all (t, s, y) ∈ R × R ×

[0,+∞[ and there exists a positive number w, (w > 0) such that f(t +
w, s, y) = f(t, s, y) and g(t + w, s, y) = g(t, s, y), for all (t, s, y) ∈ R × R ×
[0,+∞[,

(A5) l is a nonnegative constant and τ : R→ R+ is a continuous and λ-periodic
function (λ > 0) such that ω

λ = p
q , p, q ∈ N.

Denote by P the cone of nonnegative functions in the real Banach space E, of
all real and continuous qω− periodic functions defined on R, where if x ∈ E

‖x‖ = max
0≤t≤qω

|x(t)|.

We are interested in the existence of solution of (4.1) in P \ [0]. Define the
operator F,G : E → E by

Fx(t) =
∫ τ(t)

0

f(t, s, x(t− s− l)) ds,

Gx(t) =
∫ τ(t)

0

g(t, s, x(t− s− l)) ds.
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Then equation (4.1) has a continuous, nonnegative, and nontrivial qω-periodic so-
lution if and only if there exists x ∈ P \ [0] satisfying x = Fx. Now, we present
and prove our main results.

Theorem 4.1. Suppose that f and g satisfy assumptions (H) and:
(A7) there exists a continuous function a : R× R→ R such that

lim
y→0+

f(t, s, y)
y

= a(t, s), uniformly for (t, s) ∈ R× R,

(A8) there exists a continuous function b : R× R→ R such that

lim
y→+∞

g(t, s, y)
y

= b(t, s), uniformly for (t, s) ∈ R× R,

(A9)
◦
At = ∅ ∀t ∈ R, where At = [s ∈ R : a(t, t− s) = 0].

Then if
r(L(τ, a)) > 1, and r(L(τ, b)) < 1, (4.2)

equation (4.1) has a solution in P \ [0], where r(L(τ, a)) means the spectral radius
of the linear operator L(τ, a) : E → E defined by

L(τ, a)x(t) =
∫ τ(t)

0

a(t, s)x(t− s− l) ds, ∀x ∈ E,

(analogously for r(L(τ, b)) and L(τ, b)).

Proof. We must observe that (E,P ) is an ordered Banach space with
◦
P 6= ∅ and

P is normal. Also it is not difficult to see that F,G : P → P are completely
continuous. Moreover:

(a) It is easy to prove (see[3, Theorem 2.1]) the existence of G′(+∞), the deriv-
ative of G along P at infinity. In fact

G′(+∞)(x)(t) = L(τ, b)x(t), ∀x ∈ E

(b) Also, it’s not difficult to prove the existence of F ′+(0) the right derivative of
F along P at 0, and

F ′+(0)(x)(t) = L(τ, a)x(t), ∀x ∈ E,

(c) It is easily seen (see[3, Theorem 2.1]) that F ′+(0) is strongly positive. Now,
from (b), (c) and (4.2) and by using [1, Lemma 13.1] there exists a number σ > 0
such that iP (F, Pσ) = 0. On the other hand from (a) and (4.2) we can assure
from the proof of Theorem 2.8 that there exists a number R > σ > 0 such that
iP (F, PR) = 1. Hence by the additivity property i(F, PR \ P̄σ) = 1. Consequently,
the solution property of the fixed point index implies the existence of at least one
fixed point x with σ < ‖x‖E < R. This completes the proof of the theorem. �

Now we present an example of Theorem 4.1 which cannot be studied from the
results of [3, 5, 11].

Example 4.2. Let h : [0,+∞]→ R+ be a continuous function satisfying

h(0) = 0 h′(0) = α > 0, lim
y→+∞

h(y)
y

= β > 0
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and take d : R → R a continuous, positive and ω-periodic function (ω > 0) and
l = 0. If

f(t, s, y) = d(t− s)h(y)(1 + sin2 y), ∀(t, s, y) ∈ R× R× [0,+∞]

and
g(t, s, y) = 2d(t− s)h(y), ∀(t, s, y) ∈ R× R× [0,+∞],

then hypotheses (A7)–(A9) of Theorem 4.1 are satisfied with a(t, s) = αd(t − s),
and b(t, s) = 2βd(t− s). Consequently if

1 < r(L(τ, a)), r(L(τ, b)) < 1, (4.3)

equation (4.1) has a solution in P \ {0}. Note that in the particular case where
d(t) ≡ d ∈ R+ conditions (4.3) are satisfied if we take

1
αd

< min
t∈R

τ(t) ≤ max
t∈R

τ(t) <
1

2βd
.

Here we use that fact that (see [11] and [3]).

min
t∈R

∫ τ1(t)

0

α(t, s)ds ≤ r(L(τ1, α)) ≤ max
t∈R

∫ τ1(t)

0

α(t, s)ds.

for every continuous function α : R× R→ R which is ω-periodic in t.

Note that this example cannot be studied by [3, Theorem 2.1] because the con-
dition (A8) is not satisfied (limy→+∞ f(t, s, y)/y does not exist!).

References

[1] H. Amann; Fixed point equations and nonlinear eigenvalue problems in ordered Banach

spaces, SIAM, Rev. 18 (1976), pp. 620-709.
[2] H. Amann; Fixed points of Asymptotically Linear Maps in Ordered Banach Spaces, Journal

of Functional Analysis. 14 (1973), pp. 162-171.
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