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LOW REGULARITY SOLUTIONS FOR CHERN-SIMONS-DIRAC
SYSTEMS IN THE TEMPORAL AND COULOMB GAUGE

HARTMUT PECHER

Abstract. We prove low regularity local well-posedness results in Bourgain-
Klainerman-Machedon spaces for the Chern-Simons-Dirac system in the tem-

poral gauge and the Coulomb gauge. Under slightly stronger assumptions on

the data we also obtain “unconditional” uniqueness in the natural solution
spaces.

1. Introduction and statement of main results

Consider the Chern-Simons-Dirac system in two space dimensions

i∂tψ + iαj∂jψ = mβψ − αµAµψ (1.1)

∂µAν − ∂νAµ = −2εµνλ〈ψ, αλψ〉 (1.2)

with initial data
ψ(0) = ψ0, Aµ(0) = aµ , (1.3)

where we use the convention that repeated upper and lower indices are summed,
Latin indices run over 1,2 and Greek indices over 0,1,2 with Minkowski metric of
signature (+,−,−). Here ψ : R1+2 → C2, Aν : R1+2 → R, m ∈ R. α1, α2, β are
hermitian (2 × 2)-matrices satisfying β2 = (α1)2 = (α2)2 = I, αjβ + βαj = 0,
αjαk + αkαj = 2δjkI, α0 = I. 〈·, ·〉 denotes the C2-scalar product. A particular
representation is given by

α1 =
(

0 1
1 0

)
, α2 =

(
0 −i
i 0

)
, β =

(
1 0
0 −1

)
.

εµνλ is the totally skew-symmetric tensor with ε012 = 1 .
This model was proposed by Cho, Kim and Park [5], and by Li and Bhaduri

[11]. The equations are invariant under the gauge transformations

Aµ → A′µ = Aµ + ∂µχ , ψ → ψ′ = eiχφ .

The most common gauges are the Coulomb gauge ∂jAj = 0, the Lorenz gauge
∂µAµ = 0 and the temporal gauge A0 = 0.

Local well-posedness for data with minimal regularity assumptions was shown by
Huh [7] in the Lorenz gauge for data ψ0 ∈ H

5
8 , aµ ∈ H1/2 using a null structure, in

the Coulomb gauge for ψ0 ∈ H
1
2+ε, ai ∈ L2, and in temporal gauge for ψ0 ∈ H

3
4+ε,
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aj ∈ H
3
4+ε + L2, both without using a null structure. The result in Lorenz gauge

was improved by Huh-Oh [8] where the regularity of the data was lowered down to
ψ0 ∈ Hs, aµ ∈ Hs with s > 1/4. Their proof relies also on a null structure in the
nonlinear terms of the Dirac equation as well as the wave equation. They apply
a Picard iteration in Bourgain-Klainerman-Machedon spaces Xs,b, which implies
uniqueness in these spaces. Independently Okamoto [12] proved a similar result in
Lorenz as well as Coulomb gauge also using a null structure of the system. The
methods of Okamoto and Huh-Oh are different. Okamoto reduces the problem to a
single Dirac equation with cubic nonlinearity for ψ, which does not contain Aµ any
longer. From a solution ψ of this equation the potentials Aµ can be constructed by
solving a wave equation in Lorenz gauge and an elliptic equation in Coulomb gauge.
Huh-Oh on the other hand directly solve a coupled system of a Dirac equation for
ψ and a wave equation for Aµ. Recently Bournaveas-Candy-Machihara [4] proved
local well-posedness in Coulomb gauge under similar regularity assumptions without
use of a null structure. Their proof relies on a bilinear Strichartz estimate given by
Klainerman-Tataru [10].

A low regularity local well-posedness result in temporal gauge was given by Tao
[14] for the Yang-Mills equations.

In the present paper we consider the temporal gauge as well as the Coulomb
gauge. In temporal gauge we improve the result of Huh [7] to data ψ0 ∈ Hs,
aj ∈ Hs+ 1

8 with s > 3/8. We use Bourgain-Klainerman-Machedon spaces Xs,b

adapted to the phase functions τ ± |ξ| on one hand and τ on the other hand. We
decompose Aj into its divergence-free part Adfj and its curl-free part Acfj . The
main problem here is that there seems to be no null structure in the nonlinearity
Acfj α

jψ in the Dirac equation whereas in Lorenz gauge Acfµ α
µψ has such a null

structure. In fact all the other terms possess such a null structure. However we
are not able to use it for an improvement of our result. We apply the bilinear
estimates in wave-Sobolev spaces established in d’Ancona-Foschi-Selberg [2] which
rely on Strichartz estimates. Morover we use a variant of an estimate for the L6

xL
2
t

- norm for the solution of the wave equation which goes back to Tataru and Tao.
When applying this estimate we partly follow Tao’s arguments in the case of the
Yang-Mills equations [14]. We prove existence and uniqueness in Xs,b - spaces
first (Theorem 1.1). Then we prove unconditional uniqueness under the stronger
assumption s > 19

40 (Theorem 1.2) by using an idea of Zhou [16].
In Coulomb gauge we make the same regularity assumptions as Okamoto [12] and

Bournaveas-Candy-Machihara [4], namely ψ0 ∈ H
1
4+ε, and also reduce the problem

to a single Dirac equation with cubic nonlinearity. We give a short (alternative)
proof of local well-posedness in Xs,b - spaces without use of a null structure (The-
orem 1.3) using d’Ancona-Foschi-Selberg [2] (cf. Proposition 1.5). We also prove
unconditional uniqueness in the space ψ ∈ C0([0, T ], Hs) under the assumption
s > 1/3 (Theorem 1.4).

We first give some notation. We denote the Fourier transform with respect to
space and time by ̂. The operator |∇|α is defined by F(|∇|αf)(ξ) = |ξ|α(Ff)(ξ),
where F is the Fourier transform, and similarly 〈∇〉α, where 〈·〉 := (1+|·|2)1/2. The
inhomogeneous and homogeneous Sobolev spaces are denoted by Hs,p and Ḣs,p,
respectively. For p = 2 we simply denote them by Hs and Ḣs. We repeatedly use
the Sobolev embeddings Ḣs,p ↪→ Lq for 1 < p ≤ q < ∞ and 1

q = 1
p −

s
2 , and also



EJDE-2016/174 CHERN-SIMONS-DIRAC SYSTEMS 3

Ḣ1+ ∩ Ḣ1− ↪→ L∞ in two space dimensions. a+ := a + ε for a sufficiently small
ε > 0 , so that a < a+ < a+ +, and similarly a−− < a− < a.

We define the standard spaces Xs,b
± of Bourgain-Klainerman-Machedon type be-

longing to the half waves as the completion of the Schwarz space S(R3) with respect
to the norm

‖u‖Xs,b± = ‖〈ξ〉s〈τ ± |ξ|〉bû(τ, ξ)‖L2
τξ
.

Similarly we define the wave-Sobolev spaces Xs,b
|τ |=|ξ| with norm

‖u‖Xs,b|τ|=|ξ| = ‖〈ξ〉s〈|τ | − |ξ|〉bû(τ, ξ)‖L2
τξ

and also Xs,b
τ=0 with norm

‖u‖Xs,bτ=0
= ‖〈ξ〉s〈τ〉bû(τ, ξ)‖L2

τξ
.

We also define Xs,b
± [0, T ] as the space of the restrictions of functions in Xs,b

± to
[0, T ]×R2 and similarly Xs,b

|τ |=|ξ|[0, T ] and Xs,b
τ=0[0, T ]. We frequently use the obvious

embeddings Xs,b
|τ |=|ξ| ↪→ Xs,b

± for b ≤ 0 and Xs,b
± ↪→ Xs,b

|τ |=|ξ| for b ≥ 0.
We now formulate our main results in the case of the temporal gauge.

Theorem 1.1. Let ε > 0 and s > 3/8. The Chern-Simons-Dirac system (1.1),
(1.2), (1.3) in temporal gauge A0 = 0 with data ψ0 ∈ Hs(R2), aj ∈ Hs+ 1

8 (R2),
satisfying the compatibility condition ∂1a2−∂2a1 = −2〈ψ0, ψ0〉, has a local solution

ψ ∈ C0([0, T ], Hs(R2)), |∇|εAj ∈ C0([0, T ], Hs+ 1
8−ε(R2)) .

More precisely ψ = ψ+ + ψ− with ψ± ∈ X
s, 12+
± [0, T ]. If A = Adf + Acf is the

decomposition into its divergence-free part and its “curl-free” part, where

Adf = (−∆)−1(∂2(∂1A2 − ∂2A1), ∂1(∂2A1 − ∂1A2)) ,

Acf = −(−∆)−1(∂1(∂1A1 + ∂2A2), ∂2(∂1A1 + ∂2A2)) = −(−∆)−1∇divA ,

one has
Acf ∈ Xs+ 1

8 ,
1
2+

τ=0 [0, T ], |∇|εAdf ∈ Xs+ 3
8−ε,

1
2+

|τ |=|ξ| [0, T ]

and in these spaces uniqueness holds. Moreover we have ψ± ∈ Xs,1
± [0, T ].

Remark. The Chern-Simons-Dirac system is invariant under the scaling

ψ(λ)(t, x) = λψ(λt, λx) , A(λ)(t, x) = λAµ(λt, λx) .

Thus in 2+1 dimensions the scaling critical Sobolev exponent is s = 0, i.e. ψ0,
aµ ∈ Hs = L2. In Lorenz gauge Huh-Oh [8] remarked that their result s > 1/4 is
probably optimal in view of Zhou [15], who proved that is the case for a system of
nonlinear wave equations with nonlinearities, which fulfill a null condition. In our
case of the temporal gauge however the system is reduced to a coupled system of a
wave equation for ψ and a transport equation for Acf where null conditions seem
to be not useful because they are only adapted for wave equations. Nevertheless it
would be desirable to improve our result to s > 1/4 for ψ0 and aj .

Theorem 1.2. Let the assumptions of Theorem 1.1 be fulfilled. If s > 19/40,
the solution of (1.1), (1.2), (1.3) is unique in the space ψ ∈ C0([0, T ], Hs(R2)),
Acf ∈ C0([0, T ], Hs+ 1

8 (R2)), |∇|εAdf ∈ C0([0, T ], Hs+ 3
8−ε(R2)).
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Consider now the Coulomb gauge condition ∂jA
j = 0. In this case one easily

checks using (1.2) that the potentials Aµ satisfy the elliptic equations

A0 = ∆−1(∂2〈ψ, α1ψ〉 − ∂1〈ψ, α2ψ〉) ,
A1 = ∆−1∂2〈ψ,ψ〉 , A2 = −∆−1∂1〈ψ,ψ〉 .

(1.4)

Inserting this into (1.1) we obtain

i∂tψ + iαj∂jψ = mβψ +N(ψ,ψ, ψ) , (1.5)

where

N(ψ1, ψ2, ψ3)

= ∆−1 (∂1〈ψ1, α2ψ2〉 − ∂2〈ψ1, α1ψ2〉+ ∂2〈ψ1, ψ2〉α1 − ∂1〈ψ1, ψ2〉α2)ψ3 .

In the sequel we consider this nonlinear Dirac equation with initial condition

ψ(0) = ψ0 . (1.6)

Using an idea of d’Ancona - Foschi -Selberg [1] we simplify (1.5) by considering
the projections onto the one-dimensional eigenspaces of the operator −iα · ∇ =
−iαj∂j belonging to the eigenvalues ±|ξ|. These projections are given by Π± =
Π±(D), where D = ∇

i and Π±(ξ) = 1
2 (I ± ξ

|ξ| · α). Then −iα · ∇ = |D|Π+(D) −
|D|Π−(D) and Π±(ξ)β = βΠ∓(ξ). Defining ψ± := Π±(D)ψ, the Dirac equation
can be rewritten as

(−i∂t ± |D|)ψ± = mβψ∓ + Π±N(ψ+ + ψ−, ψ+ + ψ−, ψ+ + ψ−) . (1.7)

The initial condition is transformed into

ψ±(0) = Π±ψ0 . (1.8)

We now formulate our results in the case of the Coulomb gauge.

Theorem 1.3. Assume ψ0 ∈ Hs(R2) with s > 1/4. Then (1.5),(1.6) is locally
well-posed in Hs(R2). More precisely there exists T > 0, such that there exists a

unique solution ψ = ψ+ + ψ− with ψ± ∈ X
s, 12+
± [0, T ]. This solution belongs to

C0([0, T ], Hs(R2)).

The unconditional uniqueness result is the following.

Theorem 1.4. Assume ψ0 ∈ Hs(R2) with s > 1/3. The solution of (1.5), (1.6) is
unique in C0([0, T ], Hs(R2)).

Fundamental for the proof of our theorems are the following bilinear estimates
in wave-Sobolev spaces which were proven by d’Ancona, Foschi and Selberg in the
two dimensional case n = 2 in [2] in a more general form which include many limit
cases which we do not need.

Proposition 1.5. Let n = 2. The estimate

‖uv‖
X
−s0,−b0
|τ|=|ξ|

. ‖u‖
X
s1,b1
|τ|=|ξ|

‖v‖
X
s2,b2
|τ|=|ξ|

holds, provided the following conditions hold:

b0 + b1 + b2 >
1
2
, b0 + b1 ≥ 0,

b0 + b2 ≥ 0, b1 + b2 ≥ 0,
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s0 + s1 + s2 >
3
2
− (b0 + b1 + b2),

s0 + s1 + s2 > 1−min(b0 + b1, b0 + b2, b1 + b2),

s0 + s1 + s2 >
1
2
−min(b0, b1, b2), s0 + s1 + s2 >

3
4
,

(s0 + b0) + 2s1 + 2s2 > 1, 2s0 + (s1 + b1) + 2s2 > 1,

2s0 + 2s1 + (s2 + b2) > 1, s1 + s2 ≥ max(0,−b0),

s0 + s2 ≥ max(0,−b1), s0 + s1 ≥ max(0,−b2) .

Another decisive tool are the estimates for the wave equation in the following
proposition.

Proposition 1.6. The following estimates hold

‖u‖L6
xt
. ‖u‖

X
1
2 ,

1
2 +

|τ|=|ξ|

, (1.9)

‖u‖LpxL2
t
. ‖u‖

X
1
2−

2
p
, 12 +

|τ|=|ξ|

for 6 ≤ p <∞ , (1.10)

especially ‖u‖L6
xL

2
t
. ‖u‖

X
1
6 ,

1
2 +

|τ|=|ξ|

, (1.11)

‖u‖L∞x L2
t
. ‖u‖

X
1
2 +, 12 +

|τ|=|ξ|

, (1.12)

‖u‖L∞x L2+
t
. ‖u‖

X
1
2 +, 12 +

|τ|=|ξ|

, (1.13)

‖u‖L6
xL

2+
t
. ‖u‖

X
1
6 +, 12 +

|τ|=|ξ|

, (1.14)

‖u‖L4
xL

2+
t
. ‖u‖

X
1
8 +, 38 +

|τ|=|ξ|

, (1.15)

‖u‖LpxL2+
t
. ‖u‖

X
1
2−

2
p

+, 12 +

|τ|=|ξ|

for 6 ≤ p <∞ . (1.16)

Proof. (1.9) is the standard Strichartz estimate combined with the transfer princi-
ple. Concerning (1.10) we use [9] (appendix by D. Tataru) Thm. B2:

‖Ftu‖L2
τL

6
x
. ‖u0‖

Ḣ
1
6
x

,

if u = eit|∇|u0 , and F denotes the Fourier transform with respect to time. This
implies by Plancherel, Minkowski’s inequality and Sobolev’s embedding theorem

‖u‖LpxL2
t

= ‖Ftu‖LpxL2
τ
. ‖Ftu‖L2

τL
p
x
. ‖Ftu‖

L2
τH

1
3−

2
p
,6

x

. ‖u0‖
H

1
2−

2
p
,2

x

.

The transfer principle gives (1.10). (1.12) follows similarly using H
1
3+,6
x ↪→ L∞x .

(1.14) is obtained by interpolation between (1.11) and (1.9), and (1.15) by inter-
polation between (1.14) and the trivial identity ‖u‖L2

xt
= ‖u‖X0,0

|τ|=|ξ|
. Moreover we

obtain (1.13) and (1.16) by interpolation between (1.12) and (1.10), resp., and the
estimate ‖u‖L∞xt . ‖u‖X1+, 12 +

|τ|=|ξ|

. �

2. Reformulation of the problem in temporal gauge

Imposing the temporal gauge condition A0 = 0 the system (1.1), (1.2) is equiv-
alent to

i∂tψ + iαj∂jψ = mβψ − αjAjψ (2.1)
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∂tA1 = −2〈ψ, α2ψ〉 , ∂tA2 = 2〈ψ, α1ψ〉 (2.2)

∂1A2 − ∂2A1 = −2〈ψ,ψ〉 . (2.3)

We first show that (2.3) is fulfilled for any solution of (2.1), (2.2), if it holds initially,
i.e., if the following compatability condition holds:

∂1A2(0)− ∂2A1(0) = −2〈ψ(0), ψ(0)〉 , (2.4)

which we assume from now on. Indeed one easily calculates using (2.1):

∂t〈ψ,ψ〉 = −∂j〈ψ, αjψ〉 , (2.5)

which implies by (2.2)

∂t(∂1A2 − ∂2A1) = 2∂j〈ψ, αjψ〉 = −2∂t〈ψ,ψ〉 ,

so that (2.3) holds, if it holds initially. Thus we only have to solve (2.1) and (2.2).
We decompose A = (A1, A2) into its divergence-free part Adf and its “curl-free”

part Acf , namely A = Adf +Acf , where

Adf = (−∆)−1(∂2(∂1A2 − ∂2A1), ∂1(∂2A1 − ∂1A2)) ,

Acf = −(−∆)−1(∂1(∂1A1 + ∂2A2), ∂2(∂1A1 + ∂2A2)) = −(−∆)−1∇divA .

Then (2.3) and (2.2) imply

Adf = −2(−∆)−1(∂2〈ψ,ψ〉,−∂1〈ψ,ψ〉) , (2.6)

∂tA
cf
j = −2(−∆)−1∂j(∂2〈ψ, α1ψ〉 − ∂1〈ψ, α2ψ〉) . (2.7)

Reversely, defining A = Adf +Acf , we show that our new system (2.1), (2.6), (2.7)
implies (2.1), (2.2), (2.3), so that both systems are equivalent. It only remains to
show that (2.2) holds. By (2.6), (2.7), (2.5) we obtain

∂tA1 = ∂tA
df
1 + ∂tA

cf
1

= −2(−∆)−1
(
∂2∂t〈ψ,ψ〉+ ∂1(∂2〈ψ, α1ψ〉 − ∂1〈ψ, α2ψ〉)

)
= 2(−∆)−1

(
∂2∂j〈ψ, αjψ〉 − ∂1(∂2〈ψ, α1ψ〉 − ∂1〈ψ, α2ψ〉)

)
= 2(−∆)−1(∂2

2 + ∂2
1)〈ψ, α2ψ〉 = −2〈ψ, α2ψ〉

and similarly
∂tA2 = 2〈ψ, α1ψ〉 .

In the same way in which we obtained (1.7) the Dirac equation (2.1) can be rewritten
as

(−i∂t ± |∇|)ψ± = −mβψ∓ −Π±(αjAjψ) , (2.8)

where Aj = Adfj +Acfj , and in (2.6),(2.7) and (2.8) we replace ψ by ψ+ + ψ−.

3. Proof of Theorem 1.1

Taking the considerations of the previous section into account Theorem 1.1 re-
duces to the following proposition and its corollary.

Proposition 3.1. Let ε > 0 and s > 3/8. Then there exists T > 0 such that

system (2.6), (2.7), (2.8) has a unique local solution ψ± ∈ X
s, 12+
± [0, T ] , Acf ∈

X
s+ 1

8 ,
1
2+

τ=0 [0, T ]. Also Adf satisfies |∇|εAdfj ∈ X
s+ 3

8−ε,
1
2+

|τ |=|ξ| [0, T ] and ψ± ∈ Xs,1
± [0, T ].
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Corollary 3.2. The solution satisfies ψ ∈ C0([0, T ], Hs), Acf ∈ C0([0, T ], Hs+ 1
8 ),

|∇|εAdf ∈ C0([0, T ], Hs+ 3
8−ε) .

Proof of Proposition 3.1. We want to apply a Picard iteration. For the Cauchy
problem for the Dirac equation

(−i∂t ± |∇|)ψ± = F±, ψ±(0) = ψ±0

we use the well-known estimate (cf. e.g. [6])

‖ψ±‖Xs,b± [0,T ] . ‖ψ±0‖Hs + T 1+b′−b‖F±‖Xs,b′± [0,T ]
,

which holds for 0 < T ≤ 1 , − 1
2 < b′ ≤ 0 ≤ b ≤ b′ + 1, s ∈ R. Thus by standard

arguments it suffices to show the following estimates for the right hand side of the
Dirac equation (2.8):

‖Acfj α
jψ‖

X
s,− 1

2 ++

|τ|=|ξ|

. ‖Acf‖
X
s+ 1

8 ,
1
2 +

τ=0

‖ψ‖
X
s, 12 +

|τ|=|ξ|

, (3.1)

‖Adfj α
jψ‖

X
s,− 1

2 ++

|τ|=|ξ|

. ‖|∇|εAdfj ‖
X
s+ 3

8−ε,
1
2 +

|τ|=|ξ|

‖ψ‖
X
s, 12 +

|τ|=|ξ|

, (3.2)

‖|∇|εAdfj ‖
X
s+ 3

8−ε,
1
2 +

|τ|=|ξ|

. ‖ψ‖2
X
s, 12 ++

|τ|=|ξ|

. (3.3)

Similarly, for the right hand side of (2.7) we need

‖〈ψ, αjψ〉‖
X
s+ 1

8 ,−
1
2 ++

τ=0

. ‖ψ‖2
X
s, 12 +

|τ|=|ξ|

. (3.4)

Proof of (3.1): We even prove the estimate with Xs,− 1
2++

|τ |=|ξ| replaced by Xs,0
|τ |=|ξ| on

the left hand side. It reduces to∫
∗

û1(τ1, ξ1)
〈ξ1〉s+

1
8 〈τ1〉

1
2+

û2(τ2, ξ2)
〈ξ2〉s〈|τ2| − |ξ2|〉

1
2+
〈ξ3〉sû3(τ3, ξ3)dξdτ .

3∏
i=1

‖ui‖L2
xt
,

where * denotes integration over ξ = (ξ1, ξ2, ξ3), τ = (τ1, τ2, τ3) with ξ1+ξ2+ξ3 = 0
and τ1 +τ2 +τ3 = 0. We assume here and in the following without loss of generality
that the Fourier transforms are non-negative.

Case 1: |ξ1| ≥ |ξ2| ⇒ 〈ξ3〉s . 〈ξ1〉s. It suffices to show∫
∗

û1(τ1, ξ1)
〈τ1〉

1
2+

û2(τ2, ξ2)
〈ξ2〉s+

1
8 〈|τ2| − |ξ2|〉

1
2+
û3(τ3, ξ3)dξdτ .

3∏
i=1

‖ui‖L2
xt
.

This follows under the assumption s > 3/8 from the estimate∣∣∣ ∫ v1v2v3dxdt
∣∣∣ . ‖v1‖L2

xL
∞
t
‖v2‖L∞x L2

t
‖v3‖L2

xL
2
t

. ‖v1‖
X

0, 12 +
τ=0

‖v2‖
X

1
2 +, 12 +

|τ|=|ξ|

‖v3‖X0,0
|τ|=|ξ|

,
(3.5)

where we used (1.12).
Case 2: |ξ2| ≥ |ξ1| ⇒ 〈ξ3〉s . 〈ξ2〉s. In this case the desired estimate follows

from∫
∗
m(ξ1, ξ2, ξ3, τ1, τ2, τ3)û1(ξ1, τ1)û2(ξ2, τ2)û3(ξ3, τ3)dξdτ .

3∏
i=1

‖ui‖L2
xt
, (3.6)
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where

m =
1

〈|τ2| − |ξ2|〉
1
2+〈ξ1〉

1
2+〈τ1〉

1
2+

.

The following argument is closely related to the proof of a similar estimate in [14].
By two applications of the averaging principle [13, Prop. 5.1], we may replace m
by

m′ =
χ||τ2|−|ξ2||∼1χ|τ1|∼1

〈ξ1〉
1
2+

.

Let now τ2 be restricted to the region τ2 = T + O(1) for some integer T . Then τ3
is restricted to τ3 = −T + O(1), because τ1 + τ2 + τ3 = 0, and ξ2 is restricted to
|ξ2| = |T | + O(1). The τ3-regions are essentially disjoint for T ∈ Z and similarly
the τ2-regions. Thus by Schur’s test [13, Lemma 3.11], we only have to show

sup
T∈Z

∫
∗

χτ3=−T+O(1)χτ2=T+O(1)χ|τ1|∼1χ|ξ2|=|T |+O(1)

〈ξ1〉
1
2+

× û1(ξ1, τ1)û2(ξ2, τ2)û3(ξ3, τ3)dξdτ .
3∏
i=1

‖ui‖L2
xt
.

The τ -behaviour of the integral is now trivial, thus we reduce to

sup
T∈N

∫
P3
i=1 ξi=0

χ|ξ2|=T+O(1)

〈ξ1〉
1
2+

f̂1(ξ1)f̂2(ξ2)f̂3(ξ3)dξ .
3∏
i=1

‖fi‖L2
x
. (3.7)

An elementary calculation shows that

L.H.S. of (3.7) . sup
T∈N
‖χ|ξ|=T+O(1) ∗ 〈ξ〉−1−‖1/2L∞(R2)

3∏
i=1

‖fi‖L2
x
.

3∏
i=1

‖fi‖L2
x
,

so that the desired estimate follows.
Proof of (3.4): This reduces to∫
∗

û1(τ1, ξ1)
〈ξ1〉s〈|τ1| − |ξ1|〉

1
2+

û2(τ2, ξ2)
〈ξ2〉s〈|τ2| − |ξ2|〉

1
2+

〈ξ3〉s+
1
8 û3(τ3, ξ3)
〈τ3〉

1
2−

dξdτ .
3∏
i=1

‖ui‖L2
xt
.

Assuming without loss of generality |ξ1| ≤ |ξ2| we have to show∫
∗

û1(τ1, ξ1)
〈ξ1〉s〈|τ1| − |ξ1|〉

1
2+

û2(τ2, ξ2)
〈|τ2| − |ξ2|〉

1
2+

〈ξ3〉1/8û3(τ3, ξ3)
〈τ3〉

1
2−

dξdτ .
3∏
i=1

‖ui‖L2
xt
.

Case 1: |τ2| � |ξ2|. We reduce to∫
∗

û1(τ1, ξ1)
〈ξ1〉s〈|τ1| − |ξ1|〉

1
2+

û2(τ2, ξ2)
〈ξ2〉

3
8+

û3(τ3, ξ3)
〈τ3〉

1
2−

dξdτ .
3∏
i=1

‖ui‖L2
xt
.

This follows from∣∣∣ ∫ v1v2v3dxdt
∣∣∣ . ‖v1‖L6

xL
2+
t
‖v2‖L3

xL
2
t
‖v3‖L2

xL
∞−
t

. ‖v1‖
X

1
6 +, 12 +

|τ|=|ξ|

‖v2‖
X

1
3 ,0

|τ|=|ξ|

‖v3‖
X

0, 12−
τ=0

,

where we used (1.14) for the first factor and Sobolev for the others. Obviously here
is some headroom left.



EJDE-2016/174 CHERN-SIMONS-DIRAC SYSTEMS 9

Case 2: |τ2| & |ξ2|. In this case we use τ1 + τ2 + τ3 = 0 to estimate

1 .
〈τ2〉

1
2−

〈ξ2〉
1
2−
.
〈τ1〉

1
2−

〈ξ2〉
1
2−

+
〈τ3〉

1
2−

〈ξ2〉
1
2−

.

2.1: If the second term on the right hand side is dominant we have to show,
using also 〈ξ3〉1/8 . 〈ξ2〉1/8 :∫

∗

û1(τ1, ξ1)
〈ξ1〉s〈|τ1| − |ξ1|〉

1
2+

û2(τ2, ξ2)
〈ξ2〉

3
8−〈|τ2| − |ξ2|〉

1
2+
û3(τ3, ξ3)dξdτ .

3∏
i=1

‖ui‖L2
xt
,

which follows for s > 3
8 by Prop. 1.5.

2.2: If the first term on the right hand side is dominant we consider two subcases.
2.2.1: |τ1| . |ξ1|. We reduce to∫

∗

û1(τ1, ξ1)〈ξ1〉
1
2−s−

〈|τ1| − |ξ1|〉
1
2+

û2(τ2, ξ2)
〈ξ2〉

3
8−〈|τ2| − |ξ2|〉

1
2+

û3(τ3, ξ3)
〈τ3〉

1
2−

dξdτ .
3∏
i=1

‖ui‖L2
xt
.

Using |ξ2| ≥ |ξ1| and s > 3
8 it suffices to show∫

∗

û1(τ1, ξ1)
〈ξ1〉

1
8+〈|τ1| − |ξ1|〉

1
2+

û2(τ2, ξ2)
〈ξ2〉

1
8+〈|τ2| − |ξ2|〉

1
2+

û3(τ3, ξ3)
〈τ3〉

1
2−

dξdτ .
3∏
i=1

‖ui‖L2
xt
.

This follows from∣∣∣ ∫ v1v2v3dxdt
∣∣∣ . ‖v1‖L4

xL
2+
t
‖v2‖L4

xL
2+
t
‖v3‖L2

xL
∞−
t

. ‖v1‖
X

1
8 +, 38 +

|τ|=|ξ|

‖v2‖
X

1
8 +, 38 +

|τ|=|ξ|

‖v3‖
X

0, 12−
τ=0

,

where we used (1.15).
2.2.2: |τ1| � |ξ1| ⇒ 〈|τ1| − |ξ1|〉

1
2− ∼ 〈τ1〉

1
2−. We have to show∫

∗

û1(τ1, ξ1)
〈ξ1〉s

û2(τ2, ξ2)
〈ξ2〉

3
8−〈|τ2| − |ξ2|〉

1
2+

û3(τ3, ξ3)
〈τ3〉

1
2−

dξdτ .
3∏
i=1

‖ui‖L2
xt
.

This follows from∣∣∣ ∫ v1v2v3dxdt
∣∣∣ . ‖v1‖L3

xL
2
t
‖v2‖L6

xL
2+
t
‖v3‖L2

xL
∞−
t

. ‖v1‖
X

1
3 ,0

|τ|=|ξ|

‖v2‖
X

1
6 +, 12 +

|τ|=|ξ|

‖v3‖
X

0, 12−
τ=0

,

where we used Sobolev for the first and last factor and (1.14) for the second one.
This completes the proof of (3.4).
Proof of (3.3): We distinguish between low and high frequencies of Adfj . For high
frequencies, i.e. , supp(FAdfj ) ⊂ {|ξ| ≥ 1}, we obtain by (2.6) and Prop. 1.5 for
s > 3/8:

‖|∇|εAdfj ‖
X
s+ 3

8−ε,
1
2 +

|τ|=|ξ|

. ‖〈ψ,ψ〉‖
X
s− 5

8 ,
1
2 +

|τ|=|ξ|

. ‖ψ‖2
X
s, 12 ++

|τ|=|ξ|

.

In the low frequency case |ξ3| ≤ 1, where 〈ξ1〉 ∼ 〈ξ2〉, it suffices to show∫
∗

û1(τ1, ξ1)
〈ξ1〉s〈|τ1| − |ξ1|〉

1
2++

û2(τ2, ξ2)
〈ξ2〉s〈|τ2| − |ξ2|〉

1
2++
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×
û3(τ3, ξ3)〈|τ3| − |ξ3|〉

1
2+〈ξ3〉s+

3
8−εχ{|ξ3|≤1}

|ξ3|1−ε
dξdτ .

3∏
i=1

‖ui‖L2
xt
.

Assuming without loss of generality 〈τ2〉 ≤ 〈τ1〉, we obtain 〈|τ3|−|ξ3|〉
1
2+ ∼ 〈τ3〉

1
2+ .

〈τ1〉
1
2+ + 〈τ2〉

1
2+ . 〈τ1〉

1
2+.

If |τ1| � |ξ1| or |τ1| � |ξ1| , it suffices to show∫
∗

û1(τ1, ξ1)
〈ξ1〉s

û2(τ2, ξ2)
〈ξ2〉s〈|τ2| − |ξ2|〉

1
2++

û3(τ3, ξ3)χ{|ξ3|≤1}

|ξ3|1−ε
dξdτ .

3∏
i=1

‖ui‖L2
xt
.

This follows from ∣∣∣ ∫ v1v2v3dxdt
∣∣∣ . ‖v1‖L2

xt
‖v2‖L∞t L2

x
‖v3‖L2

tL
∞
x
,

which gives the desired result using Ḣ1−ε
x ↪→ L∞x for low frequencies.

If |τ1| ∼ |ξ1|, we use 〈ξ1〉 ∼ 〈ξ2〉 and reduce to∫
∗
û1(τ1, ξ1)

û2(τ2, ξ2)
〈ξ2〉2s−

1
2−〈〈|τ2| − |ξ2|〉

1
2++

û3(τ3, ξ3)χ{|ξ3|≤1}

|ξ3|1−ε
.

3∏
i=1

‖ui‖L2
xt
,

which can be shown as before. We remark that we only used s > 1/4 in the low
frequency case.
Proof of (3.2): We even prove the estimate with Xs,− 1

2++

|τ |=|ξ| replaced by Xs,0
|τ |=|ξ| on

the left hand side. For high frequencies of Adfj we have to show

‖Adfj α
jψ‖Xs,0|τ|=|ξ| . ‖A

df‖
X
s+ 3

8 ,
1
2 +

|τ|=|ξ|

‖ψ‖
X
s, 12 +

|τ|=|ξ|

,

which follows by Proposition 1.5. For the low frequency case of Adfj it suffices to
show ∫

∗

û1(τ1, ξ1)
〈ξ1〉s〈|τ1| − |ξ1|〉

1
2+
û2(τ2, ξ2)〈ξ2〉s

û3(τ3, ξ3)χ{|ξ3|≤1}

|ξ3|ε〈‖τ3| − |ξ3|〉
1
2+〈ξ3〉s+

3
8−ε

dξdτ

.
3∏
i=1

‖ui‖L2
xt
.

Using 〈ξ1〉 ∼ 〈ξ2〉 and 〈ξ3〉 ∼ 1 and Ḣε
x ↪→ L∞x for low frequencies this easily follows

from the estimate∣∣∣ ∫ v1v2v3dxdt
∣∣∣ . ‖v1‖L∞t L2

x
‖v2‖L2

tL
2
x
‖v3‖L2

tL
∞
x
.

This completes the proof of (3.1)-(3.4). The property ψ± ∈ Xs,1
± [0, T ] follows

immediately from the proof of (3.1) and (3.2). �

4. Proof of Theorem 1.2

Proof. Assume s > 19/40 , say s = 19
40 + δ with 1� δ > 0. Let ψ ∈ C0([0, T ], Hs),

Aj ∈ C0([0, T ], Hs+ 1
8 ).

Claim 1: ψ± ∈ X
1
4+α, 12+
± [0, T ], where α = 1

40 + 3
2δ−. By Sobolev’s multiplication

law we obtain

‖Ajαjψ±‖
L2([0,T ],H2s− 7

8 )
. ‖A‖

C0([0,T ],Hs+
1
8 )
‖ψ‖C0([0,T ],Hs)T

1/2 <∞ .
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Thus ψ± ∈ X
2s− 7

8 ,1
± [0, T ]. Interpolation with ψ± ∈ Xs,0

± [0, T ] ⊂ C0([0, T ], Hs)

gives ψ± ∈ X
1
4+ 3

2 s−
11
16−,

1
2+

± [0, T ] = X
1
4+α, 12+
± [0, T ].

We now iteratively improve the regularity of ψ±, Acf and Adf in order to end
up in a class where uniqueness holds by Theorem 1.1. Let us assume that ψ± ∈
X

min( 1
4+αk,s),

1
2+

± [0, T ] with αk = 1
40 +

(
3
2

)k
δ− for some k ∈ N. This was just shown

for k = 1. If 1
4 + αk ≥ s, we obtain by (3.3) and (3.4) |∇|εAdfj ∈ X

s+ 3
8−ε,

1
2+

|τ |=|ξ| and

Acfj ∈ X
s+ 1

8 ,
1
2+

τ=0 [0, T ], so that uniqueness follows from Theorem 1.1.
Otherwise we now prove

Claim 2: Acfj ∈ X
min( 1

4+2αk−,s+ 1
8 ), 12+

τ=0 [0, T ]. This reduces to

‖〈ψ, αjψ〉‖
X

1
4 +2αk−,−

1
2 ++

τ=0

. ‖ψ‖2
X

1
4 +αk,

1
2 +

|τ|=|ξ|

,

which is equivalent to∫
∗

û1(τ1, ξ1)
〈ξ1〉

1
4+αk〈|τ1| − |ξ1|〉

1
2+

û2(τ2, ξ2)
〈ξ2〉

1
4+αk〈|τ2| − |ξ2|〉

1
2+

〈ξ3〉
1
4+2αk−û3(τ3, ξ3)
〈τ3〉

1
2−

dξdτ

.
3∏
i=1

‖ui‖L2
xt
.

Assuming without loss of generality |ξ1| ≤ |ξ2| we reduce to∫
∗

û1(τ1, ξ1)
〈ξ1〉

1
4+αk〈|τ1| − |ξ1|〉

1
2+

û2(τ2, ξ2)
〈|τ2| − |ξ2|〉

1
2+

〈ξ3〉αk−û3(τ3, ξ3)
〈τ3〉

1
2−

dξdτ .
3∏
i=1

‖ui‖L2
xt
.

Case 1: |τ2| � |ξ2|. The left hand side is bounded by∫
∗

û1(τ1, ξ1)
〈ξ1〉

1
4+αk〈|τ1| − |ξ1|〉

1
2+

û2(τ2, ξ2)
〈ξ2〉

1
2−αk+

û3(τ3, ξ3)
〈τ3〉

1
2−

dξdτ

.
∫
∗

û1(τ1, ξ1)
〈ξ1〉

3
4 〈|τ1| − |ξ1|〉

1
2+
û2(τ2, ξ2)

û3(τ3, ξ3)
〈τ3〉

1
2−

dξdτ .
3∏
i=1

‖ui‖L2
xt
,

because by (1.13)∣∣∣ ∫ v1v2v3dxdt
∣∣∣ . ‖v1‖L∞x L2+

t
‖v2‖L2

xt
‖v3‖L2

xL
∞−
t
. ‖v1‖

X
1
2 +, 12 +

|τ|=|ξ|

‖v2‖X0,0
|τ|=|ξ|

‖v3‖0, 12−
τ=0

Case 2: |τ2| & |ξ2|. In this case we obtain

1 .
〈τ2〉

1
2−

〈ξ2〉
1
2−
.
〈τ1〉

1
2−

〈ξ2〉
1
2−

+
〈τ3〉

1
2−

〈ξ2〉
1
2−

.

2.1: Concerning the second term we use 〈ξ3〉 . 〈ξ2〉 and reduce to∫
∗

û1(τ1, ξ1)
〈ξ1〉

1
4+αk〈|τ1| − |ξ1|〉

1
2+

û2(τ2, ξ2)
〈ξ2〉

1
2−αk+〈|τ2| − |ξ2|〉

1
2+
û3(τ3, ξ3)dξdτ .

3∏
i=1

‖ui‖L2
xt
,

which follows from Proposition 1.5.
2.2: Concerning the first term we consider two subcases.
2.2.1: |τ1| . |ξ1|. This follows from∫

∗

û1(τ1, ξ1)〈ξ1〉
1
4−αk−

〈|τ1| − |ξ1|〉
1
2+

û2(τ2, ξ2)
〈ξ2〉

1
2−αk〈|τ2| − |ξ2|〉

1
2+

û3(τ3, ξ3)
〈τ3〉

1
2−

dξdτ
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.
∫
∗

û1(τ1, ξ1)
〈ξ1〉

1
8+〈|τ1| − |ξ1|〉

1
2+

û2(τ2, ξ2)
〈ξ2〉

1
8+〈|τ2| − |ξ2|〉

1
2+

û3(τ3, ξ3)
〈τ3〉

1
2−

dξdτ

.
3∏
i=1

‖ui‖L2
xt
.

Here we used |ξ1| ≤ |ξ2| and αk < 1/4, and the last step uses (1.15) just as in the
proof of (3.4).

2.2.2: |τ1| � |ξ1| =⇒ 〈|τ1| − |ξ1|〉
1
2− ∼ 〈τ1〉

1
2−. We reduce to∫

∗

û1(τ1, ξ1)
〈ξ1〉

1
4+αk

û2(τ2, ξ2)
〈ξ2〉

1
2−αk〈|τ2| − |ξ2|〉

1
2+

û3(τ3, ξ3)
〈τ3〉

1
2−

dξdτ .
3∏
i=1

‖ui‖L2
xt
.

This is implied by∣∣∣ ∫ v1v2v3dxdt
∣∣∣ . ‖v1‖

L
8
3
x L

2
t

‖v2‖L8
xL

2+
t
‖v3‖L2

xL
∞−
t

. ‖v1‖
X

1
4 ,0

|τ|=|ξ|

‖v2‖
X

1
4 +, 12 +

|τ|=|ξ|

‖v3‖
X

0, 12−
τ=0

,

where we used Sobolev, (1.16) and αk < 1/4.

Claim 3: |∇|εAdfj ∈ X
1
2+2αk−ε−, 12+

|τ |=|ξ| . For high frequencies we obtain

‖|∇|εAdfj ‖X 1
2 +2αk−ε−,

1
2 + . ‖〈ψ,ψ〉‖X− 1

2 +2αk−,
1
2 + . ‖ψ‖2

X
1
4 +αk,

1
2 ++

by use of Proposition 1.5. The low frequency case can be handled as in the proof
of (3.3).

If after such an iteration step we obtained an αk such that αk > 1
8 , we ob-

tain by (3.1) and (3.2) combined with claim 2 and claim 3 the regularity ψ± ∈
X

1
4+αk,

1
2+

± [0, T ] ⊂ X
3
8+, 12+
± [0, T ], |∇|εAdfj ∈ X

1
2+2αk−ε−, 12+

|τ |=|ξ| ⊂ X
3
4−ε,

1
2+

|τ |=|ξ| [0, T ] and

Acfj ∈ X
1
4+2αk−, 12+
τ=0 [0, T ] ⊂ X

1
2+, 12+
τ=0 [0, T ], where uniqueness holds by Theorem 1.1

and we are done.
If however αk ≤ 1

8 we need a further iteration step.
Claim 4: The following estimate holds:

‖Acfj α
jψ±‖L2

t (H
3αk−−
x )

. ‖Acf‖
X

1
4 +2αk−,

1
2 +

τ=0

‖ψ±‖
X

1
4 +αk,

1
2 +

±

.

This reduces to∫
∗

û1(τ1, ξ1)
〈ξ1〉

1
4+2αk−〈τ1〉

1
2+

û2(τ2, ξ2)
〈ξ2〉

1
4+αk〈|τ2| − |ξ2|〉

1
2+
û3(τ3, ξ3)〈ξ3〉3αk−−dξdτ

.
3∏
i=1

‖ui‖L2
xt
.

Case 1: |ξ1| ≥ |ξ2| ⇒ 〈ξ3〉 . 〈ξ1〉. Using αk ≤ 1/4 it suffices to show∫
∗

û1(τ1, ξ1)
〈τ1〉

1
2+

û2(τ2, ξ2)
〈ξ2〉

1
2+〈|τ2| − |ξ2|〉

1
2+
û3(τ3, ξ3)dξdτ .

3∏
i=1

‖ui‖L2
xt
,

which holds by (3.5).
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Case 2: |ξ2| ≥ |ξ1| ⇒ 〈ξ3〉 . 〈ξ2〉. Here we use αk ≤ 1
8 . We only have to show∫

∗

û1(τ1, ξ1)
〈ξ1〉

1
2+〈τ1〉

1
2+

û2(τ2, ξ2)
〈|τ2| − |ξ2|〉

1
2+
û3(τ3, ξ3)dξdτ .

3∏
i=1

‖ui‖L2
xt
,

which follows from (3.6).
Claim 5: The following estimate holds:

‖Adfj α
jψ±‖L2

t (H
3αk−−
x )

. ‖|∇|εAdf‖
X

1
2 +2αk−ε−,

1
2 +

|τ|=|ξ|

‖ψ±‖
X

1
4 +αk,

1
2 +

±

.

In the case of high frequencies of Adfj this follows from Proposition 1.5, where we
have to use our assumption αk ≤ 1

8 . In the case of low frequencies we can reduce
to ∫

∗

û1(τ1, ξ1)χ{|ξ1|≤1}

|ξ1|ε〈|τ1| − |ξ1|〉
1
2+

û2(τ2, ξ2)
〈ξ2〉

1
4+αk〈|τ2| − |ξ2|〉

1
2+
û3(τ3, ξ3)〈ξ3〉3αk−−dξdτ

.
∫
∗

û1(τ1, ξ1)χ{|ξ1|≤1}

|ξ1|ε〈|τ1| − |ξ1|〉
1
2+

û2(τ2, ξ2)
〈ξ2〉

1
4−2αk〈|τ2| − |ξ2|〉

1
2+
û3(τ3, ξ3)dξdτ

.
3∏
i=1

‖ui‖L2
xt
,

which easily follows from the estimate∣∣ ∫ v1v2v3dxdt
∣∣ . ‖v1‖L∞xt‖v2‖L2

xt
‖v3‖L2

xt

for low frequencies of v1, where we used again αk ≤ 1/8.
We recall that αk = 1

40 +
(

3
2

)k
δ →∞ (k →∞) and s = 19

40 + δ with 1� δ > 0.
Thus for some k ∈ N we have αk ≤ 1

8 and αk+1 >
1
8 . Claim 4 and claim 5 imply

that ψ± ∈ Xmin(3αk−,s),1
± [0, T ]. Interpolation with ψ± ∈ Xs,0

± [0, T ] ⊃ C0([0, T ], Hs)

gives ψ± ∈ X
min( 3

2αk+
s
2−,s),

1
2+

± [0, T ]. We notice that 3
2αk+ s

2 = 1
4 +
(

1
40 +

(
3
2

)k+1
δ)+

δ
2 > 1

4 + αk+1. Therefore ψ± ∈ X
min( 1

4+αk+1,s),
1
2+

± [0, T ] ⊂ X
3
8+, 12+
± [0, T ], and by

(3.3) and (3.4) we obtain Acfj ∈ X
1
2+, 12+
τ=0 [0, T ] and |∇|εAdf ∈ X

3
4−ε+,

1
2+

± [0, T ]. In
these spaces however uniqueness holds by Theorem 1.1. �

5. Proof of Theorem 1.3 and Theorem 1.4

Proof of Theorem 1.3. By standard arguments we only have to show

‖N(ψ1, ψ2, ψ3)‖
X
s,− 1

2 ++
±4

.
3∏
i=1

‖ψi‖
X
s, 12 +
±i

,

where ±i (i = 1, 2, 3, 4) denote independent signs. By duality this is reduced to the
estimates

J :=
∫
〈N(ψ1, ψ2, ψ3), ψ4〉dt dx .

3∏
i=1

‖ψi‖
X
s, 12 +
±i

‖ψ4‖
X
−s, 12−−
±4

.

By Fourier-Plancherel we obtain

J =
∫
∗
q(ξ1, . . . , ξ4)

4∏
j=1

ψ̂j(ξj , τj)dξ1 dτ1 . . . dξ4 dτ4 ,
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where * denotes integration over ξ1 − ξ2 = ξ4 − ξ3 =: ξ0 and τ1 − τ2 = τ4 − τ3 and

q =
1
|ξ0|2

[(ξ01(〈ψ̂1, α2ψ̂2〉〈ψ̂3, ψ̂4〉 − 〈ψ̂1, ψ̂2〉〈α2ψ̂3, ψ̂4〉)

− ξ02(〈ψ̂1, α1ψ̂2〉〈ψ̂3, ψ̂4〉 − 〈ψ̂1, ψ̂2〉〈α1ψ̂3, ψ̂4〉)] .
The specific structure of this term, namely the form of the matrices αj plays no
role in the following, thus the null structure is completely ignored.

We first consider the case |ξ0| ≤ 1. In this case we estimate J as follows:

‖〈∇〉−s−1|∇|− 1
2 〈ψ1, αiψ2〉‖L2

xt
. ‖〈ψ1, αiψ2〉‖

L2
xH
−s−1, 43
x

. ‖ψ1‖L4
tH

s
x
‖ψ2‖L4

tH
−s
x
.

In the last step we used

‖fg‖Hsx . ‖f‖Hsx‖g‖L∞x + ‖f‖L2
x
‖g‖Hs,∞x . ‖f‖Hsx‖g‖Hs+1,4

x

which holds by the Leibniz rule for fractional derivatives and Sobolev’s embedding
theorem, and which is by duality equivalent to the required estimate

‖fg‖
H
−s−1, 43
x

. ‖f‖Hsx‖g‖H−sx .

The same estimate holds for αi = I. Similarly we obtain

‖〈∇〉−s−1|∇|− 1
2 〈αiψ3, ψ4〉‖L2

xt
. ‖ψ3‖L4

tH
s
x
‖ψ4‖L4

tH
−s
x

for arbitrary matrices αi, so that we obtain

J . ‖ψ1‖
X
s, 14
±1

‖ψ2‖
X
−s, 14
±2

‖ψ3‖
X
s, 14
±3

‖ψ4‖
X
−s, 14
±4

,

which is more than enough.
From now on we assume |ξ0| ≥ 1. We obtain

|J | .
2∑
j=1

(
‖〈ψ1, αjψ2〉‖

X
s− 1

2 ,
1
4

|τ|=|ξ|

‖〈ψ3, ψ4〉‖
X
−s− 1

2 ,−
1
4

|τ|=|ξ|

+ ‖〈ψ1, ψ2〉‖
X
s− 1

2 ,
1
4

|τ|=|ξ|

‖〈αjψ3, ψ4〉‖
X
−s− 1

2 ,−
1
4

|τ|=|ξ|

)
.

By Proposition 1.5 with s0 = 1
2 − s, b0 = −1/4, s1 = s2 = s, b1 = b2 = 1

2 + ε for
the first factors and s0 = s+ 1

2 , b0 = 1/4, s1 = s, s2 = −s, b1 = 1
2 + ε, b2 = 1

2 − 2ε
for the second factors we obtain

|J | .
3∏
j=1

‖ψj‖
X
s, 12 +ε

|τ|=|ξ|

‖ψ4‖
X
−s, 12−2ε

|τ|=|ξ|

.

Using the embedding Xs,b
± ⊂ Xs,b

|τ |=|ξ| for s ∈ R and b ≥ 0 we obtain the desired
estimate. �

Remark: The potentials are completely determined by ψ and (1.4). We have
Aµ ∼ |∇|−1〈ψ,ψ〉, so that for s ≤ 1

2 :

‖Aµ‖Ḣ2s . ‖〈ψ,ψ〉‖Ḣ2s−1 . ‖〈ψ,ψ〉‖
L

1
1−s
. ‖ψ‖2

L
2

1−s
. ‖ψ‖2Hs <∞

and for 1
2 < s < 1:

‖Aµ‖Ḣ2s . ‖〈ψ,ψ〉‖Ḣ2s−1 . ‖ψ‖
Ḣ2s−1, 2

s
‖ψ‖

L
2

1−s
. ‖ψ‖2Hs <∞

as well as
‖Aµ‖Ḣε . ‖〈ψ,ψ〉‖Ḣε−1 . ‖ψ‖2

L
4

2−ε
. ‖ψ‖2Hs <∞ ,
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thus we obtain for 0 < ε� 1 and s < 1:

Aµ ∈ C0([0, T ], Ḣ2s ∩ Ḣε) .

Proof of Theorem 1.4. We first show ψ± ∈ X0,1
± [0, T ]. We have to prove

‖N(ψ1, ψ2, ψ3)‖L2
t ([0,T ],L2

x)
.

3∏
j=1

‖ψj‖
L∞t ([0,T ],H

1
3
x )
,

where the implicit constant may depend on T . This follows from the estimate

‖|∇|−1〈ψj , αiψk〉ψ3‖L2
x
. ‖|∇|−1〈ψj , αiψk〉‖L6

x
‖ψ3‖L3

x

. ‖〈ψj , αiψk〉‖
L

3
2
x

‖ψ3‖L3
x

. ‖ψj‖L3
x
‖ψk‖L3

x
‖ψ3‖L3

x

. ‖ψj‖
H

1
3
x

‖ψk‖
H

1
3
x

‖ψ3‖
H

1
3
x

,

and a similar estimate for the term ‖|∇|−1〈ψj , ψk〉αiψ3‖L2
x
. Assume now ψ ∈

C0([0, T ], H
1
3+ε), ε > 0. Then we have shown that ψ± ∈ X

1
3+ε,0
± [0, T ] ∩X0,1

± [0, T ].

By interpolation we get ψ± ∈ X
1
4+ ε

4 ,
1
4+ε

± [0, T ] for ε� 1. Assume now that ψ,ψ′ ∈
C0([0, T ], H

1
3+ε) are two solutions of (1.5),(1.6), Then we have∑
±
‖ψ± − ψ′±‖

X
0, 12 +
± [0,T ]

. T 0+
∑
±
‖N(ψ,ψ, ψ)−N(ψ′, ψ′, ψ′)‖

X
0,− 1

2 ++
± [0,T ]

. T 0+
∑

±,±1,±2,±3

(
‖N(ψ±1 − ψ′±1

, ψ±2 , ψ±3)‖
X

0,− 1
2 ++

± [0,T ]

+ ‖N(ψ′±1
, ψ±2 − ψ′±2

, ψ±3)‖
X

0,− 1
2 ++

± [0,T ]

+ ‖N(ψ′±1
, ψ′±2

, ψ±3 − ψ′±3
)‖
X

0,− 1
2 ++

± [0,T ]

)
(5.1)

Here ±, ±j (j = 1, 2, 3) denote independent signs. We want to show that for the
first term the following estimate holds:

J :=
∫
〈N(ψ±1 − ψ′±1

, ψ±2 , ψ±3), ψ4〉dx dt

.‖ψ±1 − ψ′±1
‖
X

0, 12 +
±1

‖ψ±2‖
X

1
4 + ε

4 ,
1
4 +ε

±2

‖ψ±3‖
X

1
4 + ε

4 ,
1
4 +ε

±3

‖ψ4‖
X

0, 12−−
±4

.
(5.2)

We consider the case |ξ0| ≤ 1 first. Similarly as in the proof of Theorem 1.3 we
obtain

|J | . ‖ψ±1 − ψ′±1
‖
X
− 1

4−
ε
4 ,

1
4

±1

‖ψ±2‖
X

1
4 + ε

4 ,
1
4

±2

‖ψ±3‖
X

1
4 + ε

4 ,
1
4

±3

‖ψ4‖
X
− 1

4−
ε
4 ,

1
4

±4

,

which is more than sufficient. For |ξ0| ≥ 1 we obtain

|J | .
2∑
j=1

(
‖〈(ψ±1 − ψ′±1

), αjψ±2〉‖
X
− 1

2 ,0

|τ|=|ξ|

‖〈ψ±3 , ψ4〉‖
X
− 1

2 ,0

|τ|=|ξ|

+ ‖〈ψ±1 − ψ′±1
, ψ±2〉‖

X
− 1

2 ,0

|τ|=|ξ|

‖〈αjψ±3 , ψ4〉‖
X
− 1

2 ,0

|τ|=|ξ|

)
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. ‖ψ±1 − ψ′±1
‖
X

0, 12 +

|τ|=|ξ|

‖ψ±2‖
X

1
4 + ε

4 ,
1
4 +ε

|τ|=|ξ|

‖ψ±3‖
X

1
4 + ε

4 ,
1
4 +ε

|τ|=|ξ|

‖ψ4‖
X

0, 12−−
|τ|=|ξ|

,

where we used Proposition 1.5 for the first factor with the choice s0 = 1
2 , b0 = 0,

s1 = 0, b1 = 1
2+, s2 = 1

4 + ε
4 , b2 = 1

4 + ε and for the second factor with s0 = 1
2 ,

b0 = 0, s1 = 1
4 + ε

4 , b1 = 1
4 + ε, s2 = 0, b2 = 1

2 −−. The embedding Xs,b
± ⊂ X

s,b
|τ |=|ξ|

for b ≥ 0 gives (5.2). The other terms in (5.1) are treated similarly. We obtain∑
±
‖ψ± − ψ′±‖

X
0, 12 +
± [0,T ]

. T 0+
2∑
j=1

(
‖ψ±j‖2

X
1
4 + ε

4 ,
1
4 +ε

±j
[0,T ]

+ ‖ψ′±j‖
2

X
1
4 + ε

4 ,
1
4 +ε

±j
[0,T ]

)∑
±
‖ψ± − ψ′±‖

X
0, 12 +
± [0,T ]

.

We recall that ψ± , ψ
′
± ∈ X

1
4+ ε

4 ,
1
4+ε

± [0, T ], so that for sufficiently small T this
implies ‖ψ± − ψ′±‖

X
0, 12 +
± [0,T ]

= 0, thus local uniqueness. By iteration T can be

chosen arbitrarily. �
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[3] J. Bergh J. Löfström; Interpolation spaces. Springer Berlin 1976.

[4] N. Bourneveas, T. Candy, S. Machihara; A note on the Chern-Simons-Dirac equations in
the Coulomb gauge. Discr. Cont. Dyn. Syst. 34(7) (2014), 2693-2701.

[5] Y. M. Cho, J. W. Kim, D.H. Park; Fermionic vortex solutions in Chern-Simons electrody-

namics. Phys. Rev. D 45 (1992), 3802-3806.
[6] J. Ginibre, Y. Tsutsumi, G. Velo; On the Cauchy problem for the Zakharov system. J. Funct.

Anal. 151 (1997), 384-436.
[7] H. Huh; Cauchy problem for the Fermion field equation coupled with the Chern-Simons gauge.

Lett. Math. Phys. 79 (2007), 75-94.

[8] H. Huh, S.-J. Oh; Low regularity solutions to the Chern-Simons-Dirac and the Chern-Simons-
Higgs equations in the Lorenz gauge. Comm. PDE 41(3) (2016), 375-397.

[9] S. Klainerman, M. Machedon (Appendices by J. Bougain and D. Tataru); Remark on

Strichartz-type inequalities. Int. Math. Res. Notices 1996, no.5, 201-220.
[10] S. Klainerman, D. Tataru; On the optimal local regularity for Yang-Mills equations in R4+1.

J. Amer. Math. Soc. 12(1) (1999), 93-116.

[11] S. Li, R. K. Bhaduri; Planar solitons of the gauged Dirac equation. Phys. Rev. D 43 (1991),
3573-3574.

[12] M. Okamoto; Well-posedness of the Cauchy problem for the Chern-Simons-Dirac system in

two dimensions. J. Hyp. Diff. Equ. 10(4) (2013), 735-771.
[13] T. Tao; Multilinear weighted convolution of L2-functions and applications to non-linear dis-

persive equations. Amer. J. Math. 123 (2001), 838-908.
[14] T. Tao; Local well-posedness of the Yang-Mills equation in the temporal gauge below the

energy norm. J. Diff. Equ. 189 (2003), 366-382.
[15] Y. Zhou; Local existence with minimal regularity for nonlinear wave equations. Amer. J.

Math. 119(3) (1997), 671-703.
[16] Y. Zhou; Uniqueness of generalized solutions to nonlinear wave equations. Amer. J. Math.

122(5) (2000), 939-965.

Hartmut Pecher
Fakultät für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal,

Gaußstr. 20, 42119 Wuppertal, Germany
E-mail address: pecher@math.uni-wuppertal.de


	1. Introduction and statement of main results
	Remark

	2. Reformulation of the problem in temporal gauge
	3. Proof of Theorem 1.1
	4. Proof of Theorem 1.2
	5. Proof of Theorem 1.3 and Theorem 1.4
	References

