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POSITIVITY AND NONEXISTENCE OF SOLUTIONS FOR
QUASILINEAR INEQUALITIES

XIAOHONG LI

Abstract. We prove a positivity property and a nonexistence theorem for

weak solutions of quasilinear differential equalities in RN . To obtain our re-
sults, we use a comparison principle. Also we establish a criterium for the

existence of positive radial solutions.

1. Introduction

In this article, we consider the positivity nonexistence for weak solutions of the
anisotropic divergence structure quasilinear differential inequality

L(u) = −divL(a(x)A(|∇Lu|)∇Lu) ≥ h(x)f(u) in RN , (1.1)

where A and f satisfy
(A1) A ∈ C(0,∞) and a, h ∈ C(R,R);
(A2) f : R → R is continuous function and nondecreasing on (−∞, 0] satisfying

f(t) > 0 for t < 0.
and L belongs to a wide class of anisotropic quasilinear operator including

divL(|∇Lu|p−2∇Lu), divL
( ∇Lu√

1 + |∇Lu|2
)
, divL

( |∇Lu|p−2∇Lu
(1 + |∇Lu|s)k

)
,

with p > 1, s > 0, k ≥ 0.
Recently, this kind of problems have received a great attention. Tools based

different forms of the maximum principle like the moving planes method or mov-
ing spheres method, nonlinear capacitary estimates and Pohozaev type identities,
energy methods and Harnack inequality type argument, have been proved to be
very successful for solving interesting problems related to be applications and to
the general theory of partial differential equations. We refer to [1]-[29] and the
references therein for some recent contributions.

In the special case of (1.1), given by a(x) = h(x) ≡ 1, the positivity results
and nonexistence theorems are of great interest. For the Euclidean gradient case
of (1.1), that is ∇Lu = ∇u, D’Ambrosio and Mitidieri [9] proved the positivity
results and nonexistence theorems of weak solution W 1,p

loc in RN . Both in [6] and
[8], the authors obtained the positivity results of solution C1 solution of (1.1) in
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the Heisenberg setting and Carnot Groups. An interesting discussion on the nonex-
istence of solutions of (1.1) for anisotropic case in RN is given by L. D’Ambrosio in
[7], who used the test function method developed by Mitidieri and Pohozaev (see
[10]–[12]). In particular, both in [2] and [5], the authors proved positivity results
by integral representation formulae, when L is the Laplacian operator or the poly-
harmonic operator in the Euclidean setting or, more generally L is a sub elliptic
Laplacian on a Carnot group and f is nonnegative.

Motivated by the above works, in the present paper, we obtain the positivity
property and the nonexistence Theorem for W 1,p

L,loc solutions of anisotropic quasi-
linear differential equality in RN . General results on the W 1,p

L,loc solutions for (1.1)
are considered, which is based on a comparison principle and the analysis of an
ordinary differential equation.

For the main results of the paper we shall present some preliminaries (see [4]-
[9]). In this paper ∇ and | · | stands respectively for usual gradient in RN and the
Euclidean norm.

Let µ ∈ C(RN ,Rm) be a matrix µ := (µij), i = 1, . . . ,m, j = 1, . . . , N . For
i = 1, . . . ,m, let Xi and its formal adjoint X∗i be defined as

Xi :=
N∑
j=1

µij(ξ)
∂

∂ξj
, X∗i := −

N∑
j=1

∂

∂ξj
(µij(ξ)·), (1.2)

where ∇L and ∇∗L are the vector field defined by

∇L := (X1, . . . , Xm)T = µ∇, ∇∗L := (X∗1 , . . . , X
∗
m)T . (1.3)

For any vector field h = (h1, . . . , hm)T ∈ C1(Ω,Rm), we shall use the notation
divL(h) := div(µTh); that is

divL(h) = −
l∑

j=1

X∗j h = −∇∗L · h. (1.4)

Let δ := (δ1, . . . , δN ) be an N -uple of positive real numbers. Let R > 0, we shall
denote by δR the anisotropic dilation δR : RN → RN defined by

δR(x) = δR(x1, . . . , xN ) := (Rδ1x1, . . . , R
δNxN ). (1.5)

The Jacobian of such a transformation is J(δR) = RQ where Q = δ1 +δ2 + . . .+δN .
A nonnegative continuous function H : RN → R+ is called a homogeneous norm

if (i) H(ξ) = 0 if and only if ξ = 0, and (ii) it is homogeneous of degree 1 with
respect to δR, i.e., H(δR(ξ)) = RH(ξ).

Notice that if H is a homogeneous norm differentiable a.e, then |∇LH| is homo-
geneous of degree 0 with respect to δR; hence |∇LH| is bounded.

For the rest of this article, we shall fix a homogeneous norm H differentiable
away from 0. We set

ψ := |∇LH| (1.6)
and for R > 0, we define BR as the ball of radius R > 0 generated by the norm H;
that is, BR := {x : H(x) < R}. Therefore

|BR| =
∫
BR

dx = RQ
∫
H(x)<1

dx = CHR
Q. (1.7)

We shall assume that if ∇Lu = 0 on a connected region Ω, then u ≡ constant
in such region.
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Example 1.1. A simple canonical framework is the the Euclidean space (RN , | · |)
with the Euclidean norm | · |. In this case, µ = IN is the identity matrix in N
dimension, ∇L = ∇ is the isotropic gradient and divL is the divergence operator.
The dilation δR defined by

δR(x) = δR(x1, . . . , xN ) := (Rx1, . . . , RxN )

is isotropic. Here, Q = N is the dimension of the space. In this case, ψ ≡ 1 and
BR is the the Euclidean open ball of radius R centered at the origin.

Example 1.2 (Baouendi-Grushin type operator). Let ξ = (x, y) ∈ Rn×Rk(= RN ).
Let γ ≥ 0 and let µ be the following matrix(

In 0
0 |x|γIk

)
.

The corresponding vector field is ∇γ = (∇x, |x|γ∇y)T and the linear opera-
tor L = divL(∇L·) = ∆x + |x|2γ∆y is the so-called Baouendi-Grushin opera-
tor. Notice that if k = 0 or γ = 0, the L coincides with the usual Lapla-
cian operator. The vector field ∇γ is homogeneous with respect to the dilation
δR(x) = (Rx1, . . . , Rxn, R

1+γy1, . . . , R
1+γyk) and Q = N + kγ.

Example 1.3 (Heisenberg-Kohn operator). Let ξ = (x, y, t) ∈ Rn × Rn × R =
Hn(= RN ) and let µ be the matrix(

In 0 2y
0 In −2x

)
.

The corresponding vector field ∇H is the Heisenberg gradient on the Heisenberg
group Hn. The vector field ∇H is homogeneous with respect to the dilation δR(x) =
(Rx,Ry, , R2t) and Q = 2n + 2. In H1 the corresponding vector fields are X =
∂x + 2y∂t, Y = ∂y − 2x∂t. In this case Q = 4. This is the simplest case of more
general setting: the Carnot group. More details are given in [4]-[9].

Example 1.4 (Heisenberg-Greiner operator). Let ξ = (x, y, t) ∈ Rn × Rn × R
(= RN ), r := |(x, y)|, γ ≥ 1 and let µ be the following matrix(

In 0 2γyr2γ−2

0 In −2γxr2γ−2

)
.

The corresponding vector fields are Xi = ∂xi
+2γyir2γ−2∂t, Yi = ∂yi

−2γxir2γ−2∂t
for i = 1, . . . , n.

For γ ≥ 1, L = divL(∇L·) is the sub-Laplacian ∆H on the Heisenberg group
Rn. If γ = 2, 3, . . . , L is a Greiner operator. The vector field associated to µ is
homogeneous with respect to the dilation δR(x) = (Rx,Ry,R2γt) and Q = 2n+2γ.

Let Ω ⊂ RN be an open set and p > 1. Throughout this paper we shall denote
by

W 1,p
L (Ω) = {u ∈ Lp(Ω) : |∇Lu| ∈ Lp(Ω)},

W 1,p
L,loc(Ω) = {u ∈ Lploc(Ω) : |∇Lu| ∈ Lploc(Ω)}.

Notice that when µ = In, where In is the identity matrix, then W 1,p
L (Ω) = W 1,p(Ω)

and W 1,p
L,loc(Ω) = W 1,p

loc (Ω).
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Definition 1.5. We shall say that u ∈ W 1,p
L,loc(Ω) satisfies (1.1) in the weak sense

and for any nonnegative test function ϕ ∈ C1
0 (Ω) such that∫

Ω

a(x)A(|∇Lu|)∇Lu · ∇Lϕdx ≥
∫

Ω

h(x)f(u)ϕdx (1.8)

holds.

Definition 1.6. Let d : Ω→ R be a nonnegative non constant measurable function.
For α 6= 0, dα is called an Lp–harmonic function if

Lpd
α = divL(|∇Ldα|p−2∇Ldα) = 0

in the weak sense; that is, for every nonnegative ϕ ∈ C1
0 (Ω), we have∫

Ω

|∇Ldα|p−2∇Ldα ·∇Lϕ = α|α|p−2

∫
Ω

d(α−1)(p−2)|∇Ld|p−2∇Ld ·∇Lϕ = 0, (1.9)

where d(α−1)(p−1)|∇Ld|p−2 ∈ L1
loc(Ω).

The main result in this paper is the following theorems.

Theorem 1.7. Let dα be defined as Definition 1.6 and h(x) ≥ M
∣∣∇Ld∣∣p, where

p > 1 and M is a positive constant. Assume (A1), (A2), a(x) > M and∫ +∞

−∞

(∫ +∞

t

f(s)ds
)−1/p

dt = +∞ (1.10)

hold. Let A satisfy (i) A(t) ≥ tp−2 or (ii) A(t) ≤ tp−2, and let tA(t) be strictly
increasing for t > 0. If u is a W 1,p

L,loc solution of (1.1), then u ≥ 0.

Remark 1.8. The condition that t 7−→ tA(t) is strictly increasing is a minimal
requirement for ellipticity of (1.1). Furthermore, it allows singular and degenerate
behavior of the operator A at t = 0.

Remark 1.9. Similar results have been proved in [6]–[9], when a(x) = h(x) ≡ 1,
under different conditions. In particular, if we set d(x) = |x|, then the condition
h(x) ≥M

∣∣∇Ld∣∣p reduces to h(x) ≥M in the Euclidean case.

Theorem 1.10. Assume that dα is defined as Definition 1.6 and h(x) ≥M
∣∣∇Ld∣∣p,

where p > 1 and M is a positive constant. Let f : R → R be a positive, non-
increasing and continuous function satisfying (1.10). Then (1.1) has no solutions.

2. Proofs of Theorems 1.7 and 1.10

To prove theorem 1.7, we establish some preliminary results in this section. Now,
we shall prove a comparison lemma that it is useful when considering solutions of
inequalities of the form

divL (a(x)A1(|∇Lu|)∇Lu) ≥ g1(x, u) in Ω, (2.1)

divL(MA2(|∇Lv|)∇Lv) ≤ g2(x, v) in Ω, (2.2)

where M is a positive constant. Here, for i = 1, 2, Ai is a continuous function such
that Ai > 0 for t > 0 and gi : Ω× R→ R is continuous.

In a similar manner to Definition 1.5, we can define the solution of equalities
(2.1) and (2.2).
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Definition 2.1. We shall say that u ∈W 1,p
L,loc(Ω) satisfies (2.1) (resp. (2.2)) in the

weak sense, and for any nonnegative test function ϕ ∈ C1
0 (Ω) such that

−
∫

Ω

a(x)A1(|∇Lu|)∇Lu · ∇Lϕdx ≥
∫

Ω

g1(x, u)ϕ dx (2.3)

(resp.

−
∫

Ω

a(x)A2(|∇Lu|)∇Lu · ∇Lϕdx ≤
∫

Ω

g2(x, u)ϕdx
)

(2.4)

holds.

Lemma 2.2 (Comparison principle). Let Ω be a bounded open set. Let u and v be
respectively solutions of (2.1) and (2.2) of class W 1,p

L,loc(Ω). Assume that a(x) ≥M
and

(i) for any x ∈ Ω, t ≥ s there holds g1(x, t) ≥ g2(x, s), g1(x, ·) is not decreasing.
(ii) (1) A1(t) ≥ A2(t) for t > 0 and the function tA2(t) is strictly increasing

for t > 0; or (2) A1(t) ≤ A2(t) for t > 0 and the function tA1(t) is strictly
increasing for t > 0;

(iii) u ≤ v on ∂Ω.

Then u ≤ v in Ω.

Remark 2.3. If a(x) ≡ 1, M = 1 and A1 = A2 in (2.1) and (2.2), similar results
to Lemma 2.2 have been proved under different conditions. [4, 6, 8, 21, 22, 27]. In
Lemma 2.2, we extend some results of [6, 8], which hold for C1 solutions, to the
large class of W 1,p

L,loc solutions.

Proof of Lemma 2.2. Let ε > 0 be fixed and set vε = v + ε. It is a simple to check
that the function vε satisfies the inequality

divL(MA2(|∇Lv|)∇Lv) ≤ g2(x, vε) in Ω,

Therefore, for any nonnegative test function ϕ ∈ C1
0 (Ω) we have

−
∫

Ω

MA2(|∇Lv|)∇Lv · ∇Lϕdx ≤
∫

Ω

g2(x, vε)ϕdx

By subtraction we obtain

−
∫

Ω

(a(x)A1(|∇Lu|)∇Lu)−MA2(|∇Lv|)∇Lv) · ∇Lϕdx

≥
∫

Ω

(g1(x, u)− g2(x, vε))ϕdx
(2.5)

We choose the nonnegative ϕ = ((u − vε)+)2 as test function in (2.5). Obviously,
ϕ ∈W 1,p

L (Ω) and ϕ has compact support since u− vε < 0 on ∂Ω. Then, we obtain

− 2
∫

Ω

(a(x)A1(|∇Lu|)∇Lu)−MA2(|∇Lv|)∇Lv) · (∇Lu−∇Lv)(u− vε)+ dx

≥
∫

Ω

(g1(x, u)− g2(x, vε))((u− vε)+)2 dx

(2.6)
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Since a(x) ≥M > 0, we have

(a(x)A1 (|∇Lu|))∇Lu)−MA2(|∇Lv|)∇Lv) · (∇Lu−∇Lv)

= a(x)A1(|∇Lu|)|∇Lu|2 +MA2(|∇Lv|)|∇Lv|2

− (a(x)A1(|∇Lu|) +MA2(|∇Lv|))(∇Lu · ∇Lv)

= (a(x)A1(|∇Lu|)|∇Lu| −MA2(|∇Lv|)|∇Lv|)(|∇Lu| − |∇Lv|)
+ (a(x)A1(|∇Lu|) +MA2(|∇Lv|))(|∇Lu||∇Lv| − ∇Lu · ∇Lv)

≥M((A1(|∇Lu|)|∇Lu| −A2(|∇Lv|)|∇Lv|)(|∇Lu| − |∇Lv|)
+ (A1(|∇Lu|) +A2(|∇Lv|))(|∇Lu||∇Lv| − ∇Lu · ∇Lv))

=: M(I1 + I2).

(2.7)

Since Ai(t) > 0 for t > 0, where i = 1, 2, we have I2 ≥ 0.
First we consider the case (ii) (1). From A1(t) ≥ A2(t) for t > 0 and the function

tA2(t) is increasing for t > 0, we obtain

I1 = (A1(|∇Lu|)|∇Lu| −A2(|∇Lv|)|∇Lv|)(|∇Lu| − |∇Lv|)
≥ (A2(|∇Lu|)|∇Lu| −A2(|∇Lv|)|∇Lv|)(|∇Lu| − |∇Lv|) ≥ 0.

(2.8)

Therefore,
∫

Ω
M(I1 + I2)(u− vε)+dx ≥ 0. Since g1(x, ·) is not decreasing,∫

Ω

(g1(x, u)− g2(x, v))((u− vε)+)2 dx

≥ (g1(x, u)− g1(x, vε))((u− vε)+)2 dx ≥ 0,
(2.9)

and then combining (2.6) with (2.7), we obtain

0 ≥
∫

Ω

M(I1 + I2)(u− vε)+dx

≥
∫

Ω

(a(x)A1(|∇Lu|)∇Lu)−MA2(|∇Lv|)∇Lv) · (∇Lu−∇Lv)(u− vε)+ dx

≥
∫

Ω

(g1(x, u)− g2(x, vε))((u− vε)+)2 dx ≥ 0;

(2.10)

that is, ∫
Ω

(I1 + I2)(u− vε)+dx = 0. (2.11)

The following proof is by contradiction. Assume that ϕ = u − v − ε > 0 for
x ∈ Ω, then we have I1 = I2 = 0 by (2.11). We claim that ∇Lu = ∇Lv. Indeed, If
∇Lu 6= ∇Lv, by I2 = 0, we obtain

|∇Lu||∇Lv| = ∇Lu · ∇Lv (2.12)

and

(|∇Lu| − |∇Lv|)2 = |∇Lu|2 − 2|∇Lu||∇Lv|+ |∇Lv|2

= |∇Lu|2 − 2∇Lu · ∇Lv + |∇Lv|2

= (∇Lu−∇Lv)2,

(2.13)



EJDE-2016/175 QUASILINEAR INEQUALITIES 7

which implies |∇Lu| 6= |∇Lv|. Moreover from I1 = 0 and the monotonicity of tA2,
we obtain

0 = (A1(|∇Lu|)|∇Lu| −A2(|∇Lv|)|∇Lv|)(|∇Lu| − |∇Lv|)
≥ (A2(|∇Lu|)|∇Lu| −A2(|∇Lv|)|∇Lv)(|∇Lu| − |∇Lv|)| > 0,

(2.14)

which is a contradiction. Thus, we have∇Lu = ∇Lv, which implies∇Lϕ = ∇L((u−
vε)+)2 = 0; that is, ϕ = ((u − vε)+)2 ≡ constant in Ω. Since ϕ ∈ W 1,p

L,loc(Ω), we
have ϕ = ((u− vε)+)2 ≡ 0 in Ω, that is u− vε ≤ 0, which is a contradiction of our
assumption. Thus, u ≤ v + ε in Ω. Letting ε→ 0 completes the proof.

Now, we consider the case (ii)(2), which proof is the same as that of (ii)(1).
By virtue of (2.8) and (2.10), we only to replace (2.8) and (2.10) by the following
inequalities

I1 = (A1(|∇Lu|)|∇Lu| −A2(|∇Lv|)|∇Lv|)(|∇Lu| − |∇Lv|)
≥ (A1(|∇Lu|)|∇Lu| −A1(|∇Lv|)|∇Lv|)(|∇Lu| − |∇Lv|) ≥ 0

(2.15)

and
0 = (A1(|∇Lu|)|∇Lu| −A2(|∇Lv|)|∇Lv|)(|∇Lu| − |∇Lv|)
≥ (A1(|∇Lu|)|∇Lu| −A1(|∇Lv|)|∇Lv)(|∇Lu| − |∇Lv|)| > 0

(2.16)

respectively in the proof of (1). The proof is complete. �

Lemma 2.4 ([4, Lemma2.18]). Let p > 1, α ∈ RN , α 6= 0. dα ∈ C2(Ω) be a
positive Lp-harmonic function; that is, Lpdα = 0 in the weak sense of (1.9). Let
u(x) := φ(d(x)), we have

Lpu = (p− 1)
∣∣∇Ld∣∣p∣∣∇Lφ′(d)

∣∣p−2(
φ′(d) +

1− α
d

φ′(d)
)

=
∣∣∇Ld∣∣pd(p−1)(α−1)

(
d(p−1)(1−α)

∣∣φ′(d)
∣∣p−2

φ′(d)
)′ (2.17)

Remark 2.5. Some special cases of Lemma 2.4 are the following. In the Euclidean
case, we set d(x) = |x| := r, then (2.17) reduces to

Lpu = (p− 1)|φ′(r)|p−2
(
φ′′(r) +

N − 1
p− 1

φ′(r)
r

)
,

which is discussed in [18, 21, 22] for p 6= 2 and [23] for p = 2. In the Heisenberg
setting studied in [6], we set

d(x) = |x|H =
( n∑
i=1

(ξ2
i + η2

i )2 + τ2
)1/4

:= r,

then (2.17) reduces to

Lpu = (p− 1)ψp|φ′(r)|p−2
(
φ′′(r) +

Q− 1
r

φ′(r)
)
, (2.18)

where ψ =
∣∣∇L|x|H ∣∣. In the Carnot group considered in [6, 8, 9], setting

d(x) := Np =

{
Γ(x)

p−1
p−Q , p > 1, p 6= Q,

exp(−Γ(x)), p = Q,
(2.19)

where Γ is the fundamental solution of the quasilinear operator

Lpu = divL(|∇Lu|p−1∇Lu)

at the origin, we obtain (2.18) with r = Np and ψ = |∇LNp|.
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Lemma 2.6. Let p > 1 and let g be a continuous and non-decreasing function on
[0,+∞) satisfying g(t) > 0 for t > 0. If∫ +∞

1

(∫ t

1

g(s)ds
)−1/p

dt =∞, (2.20)

then for any c > 0 and σ > 0, there exists R > 0 and a function φ satisfying(
rσ|φ′(r)|p−2φ′(r)

)′
= rσg(φ(r)), φ(0) = c, φ′(0) = 0, (2.21)

where φ is increasing on [0, R] and φ→∞ as r → R.

Remark 2.7. For the proof of Lemma 2.6, we can see [18, 21, 23]. Osserman [23]
proved the result in the case p = 2. On the other hand, Naito and Usami [21]
obtained the result when σ = N − 1, and then Ghergu and Rǎdulescu [18] given a
generalization proof of Lemma 2.6.

Proof of Theorem 1.7. Let σ = (p− 1)(1−α) > 0, and let φ be a solution of (2.21)
such that φ(r) → +∞ as r → R. We set v(x) := φ(d(x)), where d(x) satisfy the
condition of Lemma 2.4. By Lemma 2.6 then v satisfies

divL(M |∇Lv|p−1∇Lv)

= M
∣∣∇Ld∣∣pd(p−1)(α−1)

(
d(p−1)(1−α)

∣∣φ′(d)
∣∣p−2

φ′(d)
)′

= M
∣∣∇Ld∣∣pg(v) := g2(x, v),

(2.22)

φ(d(x))→ +∞ as d(x)→ R, and v(0) = c in ΩR = {x : d(x) < R}.
On the other hand, let g(t) := f(−t) and u = −U in (1.1). Then the function g

satisfies the assumptions of Theorem 1.7; therefore we obtain

divL(a(x)A(|∇LU |)∇LU) ≥ h(x)f(−u) = h(x)g(U)

≥M
∣∣∇Ld∣∣pg(U) := g1(x, U) in RN .

(2.23)

Since U(x) ≤ v(x) for d(x) close to R, combining (2.22) and (2.23), we can apply the
comparison Lemma 2.2. Thus U(x) ≤ v(x) in ΩR. In particular in the neighborhood
of origin we have U(x) ≤ c, i.e., U(0) ≤ c. Letting c→ 0, it follows that U(0) ≤ 0.
Hence u(0) ≥ 0. Since the inequality (1.1) is invariant under translations in the
weak sense (1.8) in RN , we obtain u(x) ≥ 0 in RN . �

Proof of Theorem 1.10. By contradiction, assume that u is a solution of (1.1). Fix
β ∈ R and set v = u − β, then v solves the inequality −∆v ≥ f(u) = f(v + β).
Since the function f(·+ β) satisfies the hypothesis of Theorem 1.7, we have v ≥ 0,
that is u ≥ β. Since the inequality u ≥ β holds for any β, we obtain u = +∞,
which is impossible. Hence, we obtain the conclusion. �
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