
Electronic Journal of Differential Equations, Vol. 2016 (2016), No. 179, pp. 1–20.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ANALYTICITY OF THE GLOBAL ATTRACTOR FOR THE 3D
REGULARIZED MHD EQUATIONS

CAIDI ZHAO, BEI LI

Abstract. We study the three-dimensional (3D) regularized magnetohydro-

dynamics (MHD) equations. Using the method of splitting of the asymptotic
approximate solutions into higher and lower Fourier components, we prove

that the global attractor of the 3D regularized MHD equations consists of real

analytic functions, whenever the forcing terms are analytic.

1. Introduction

In this article, we investigate the regularized magnetohydrodynamics (MHD)
equations

∂t(u− α2∆u)− ν∆u+ (u · ∇)u− (b · ∇)b+∇p = f, (x, t) ∈ Ω× R+, (1.1)

∂t(b− β2∆b)− µ∆b+ (u · ∇)b− (b · ∇)u = g, (x, t) ∈ Ω× R+, (1.2)

∇ · u = ∇ · b = 0, (x, t) ∈ Ω× R+, (1.3)

u(x, 0) = uin, b(x, 0) = bin, x ∈ Ω, (1.4)

which are regularizations in both the velocity and the magnetic field of the following
large eddy simulation model for the turbulent flow of a magnetofluid (see [9]):

∂tu− ν∆u+ (u · ∇)u− (b · ∇)b+∇p = f, (x, t) ∈ Ω× R+, (1.5)

∂tb− µ∆b+ (u · ∇)b− (b · ∇)u = g, (x, t) ∈ Ω× R+, (1.6)

∇ · u = ∇ · b = 0, (x, t) ∈ Ω× R+, (1.7)

u(x, 0) = uin, b(x, 0) = bin, x ∈ Ω, (1.8)

where the velocity field u = (u1, u2, u3), the magnetic field b = (b1, b2, b3) and
the total pressure p(x, t) are the unknown terms, ν is the kinematic viscosity and
µ is the constant magnetic resistivity, f represents volume force applied to the
fluid, g is usually zero when Maxwell’s displacement currents are ignored. We
will assume the constants ν, µ, α and β are all positive. We consider the case
Ω = [0, L]3 ⊂ R3 (L > 0) and assume space-periodic conditions on the initial data
so that the corresponding solutions are space-periodic.

Compared to equations (1.5) and (1.6), equations (1.1) and (1.2) contain the
extra regularizing terms (−α2∂t∆u) and (−β2∂t∆b), respectively. These two terms
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have two main effects. On the one hand, they regularize the equations in a way
that the 3D equations (1.1)-(1.4) become now globally wellposed (see Lemma 2.2
in Section 2 or [9]). On the other hand, they change the parabolic character of the
MHD equations to the regularized one. For this reason, we call equations (1.1)-(1.2)
as regularized MHD equations.

We can view equations (1.1)-(1.4), also called MHD-Voight equations, as the
approximate equations for the MHD equations (1.5)-(1.8) as α, β → 0. Equa-
tions (1.1)-(1.4) are the exact equations for a class of visco-elastic fluid known as
Kelvin-Voight fluids (the corresponding equations for nonmagnetic fluids were first
introduced by Oskolkov in [30]). Equations (1.5)-(1.8) (or the relevant equations)
have been widely studied, see e.g. [10, 36] for the existence and uniqueness of the
solutions and [7, 41, 47, 48] for the regularity criteria. Also, equations (1.1)-(1.4)
have been deeply studied, see e.g., Catania and Secchi [8, 10], Catania [9], Larios
and Titi [21, 22], Levant, Ramos and Titi [23]. Particularly, Catania [9] studied the
global attractor and determining modes for the solutions of equations (1.1)-(1.4) in
[0, 2πL]3 (L > 0) with space-periodic conditions.

Attractor is an important concept in the study of infinite-dimensional dynamical
systems. There are some monographs concerning this subject, see, e.g., [12, 34, 35,
39]. At the same time, the theory and method within these monographs have
been extensively applied to many concrete partial differential equations arising in
mathematical physics. For instance, we can refer to [44, 45, 46]. We note that
Foias, Manley, Rosa and Temam in the monograph [16] researched the determining
modes and nodes, as well as the Gevrey regularity of the global attractor for the
Navier-Stokes equations. The Gevrey class regularity of the attractor reveals that
the solutions lying in the attractor are analytic with values in a Gevrey class of
analytic functions in space.

Nowadays, there are some papers investigating the Gevrey class regularity of
the solutions. For example, we can refer to [2, 3, 6, 15, 25] for the Navier-Stokes
equations; to [42, 43] for the Navier-Stokes-α equations; to [31, 32] for the second-
grade fluid equations; to [4] for a class of dissipative equations; to [5] for a class of
hypoelliptic equations; to [11] for the time-dependent Ginzburg-Landau equations;
to [14] for nonlinear analytic parabolic equations; to [18] for a class of water-wave
models; to [20, 24] for the Euler equations; to [26, 29] for the Bénard equation;
to [27] for the laser equations; to [28] for the weakly damped driven nonlinear
Schrödinger equation; to [33] for the Kuramoto-Sivashinsky equation; to [37] for
the micropolar fluid equations, so on and so forth.

Recently, Levant and Titi proved in [19] the Gevrey regularity for the attractor
of the 3D Navier-Stokes-Voight equations. The method of the proof in [19] is the
splitting of the velocity into higher and lower Fourier components. The method of
splitting of the unknown functions into higher and lower Fourier components has
been used before in the context of the weakly damped driven nonlinear Schrödinger
equation in Oliver and Titi [28] and a model of Béard convection in a porous medium
in Oliver and Titi [29] (see also Goubet [17]). Recently, the authors of Chueshov
et al. [13] followed the same methods to prove the Gevrey regularity of the global
attractor of the generalized Benjamin-Bona-Mahony equation.

The purpose of this paper is to establish the Gevrey regularity of the global
attractor for the 3D MHD equations (1.1)-(1.4). Our result reveals that all solutions
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within the global attractor are real analytic functions, whenever the forcing terms
are analytic.

We want to point that the idea of this paper originates from article [19]. Different
to the Navier-Stokes-Voight equations studied in [19], equations (1.1)-(1.4) contain
the coupled Maxwell’s equations which rule the magnetic field. Observing the
coupled structure of the addressed equations, we expect to extend the method of
the proof in [19]–splitting both the velocity field u(x, t) and the magnetic field
b(x, t) into higher and lower Fourier components. In terms of these splitting, we
then construct the asymptotic approximations of the solutions in the Sobolev space
Vm and the Gevrey space G1

τ (see Section 2 for notations). When doing so, however,
we need give proper decomposition of the equations. At the same time, we find
that the coupled structure of the regularized MHD equations plays an important
role when we estimate the relevant nonlinear terms in the asymptotic approximate
solutions.

This article is organized as follows. In the next section, we introduce some
notations and operators, as well as some lemmas that will be used frequently in our
proof. In Section 3, we construct the asymptotic approximation of the solution of
the regularized MHD equations in the Sobolev space Vm for m > 2. In Section 4,
we construct the asymptotic approximation of the solution in the Gevrey space G2

τ

for some τ > 0.

2. Preliminaries

Throughout this article, we denoted by Lp(Ω) = Lp(Ω) × Lp(Ω) × Lp(Ω), for
1 6 p 6 ∞, and Hm(Ω) = Hm(Ω) × Hm(Ω) × Hm(Ω) the 3D vector Lebesgue
and Sobolev spaces (see [1]) of the periodic functions on Ω, respectively. Let z be
the set of all 3D vector trigonometric polynomials on the periodic domain Ω, and
denote

V =
{
φ ∈ z : ∇ · φ = 0 and

∫
Ω

φ(x)dx = 0
}
,

H = closure of V in the L2(Ω) topology,

V = closure of V in the H1(Ω) topology.

Also, we let Pσ : L2(Ω) → H be the Helmholtz-Leray projection operator and
A = −Pσ∆ be the stokes operator subject to the periodic boundary conditions
with domain D(A) = H2(Ω) ∩ V . Notice that in the space-periodic case

Au = −Pσ∆u = −∆u, ∀u ∈ D(A).

We know that the operator A−1 is a positive definite, self-adjoint, compact operator
from H into H. Thus, for any s ∈ R, we can define the Hilbert space Vs = D(As/2)
endowed with the inner product and norm as

(u, v)s =
∑
j∈Z3

(uj · vj |j|2s), |u|2s = (u, u)s,

for any u, v ∈ Vs, where uj , vj are the corresponding Fourier coefficients of u and
v, respectively. Obviously, we have V = V1 and V0 = H. We will denote the inner
product and norm in V0 = H as

(u, v) =
∑
j∈Z3

(uj · vj), ‖u‖2 = (u, u), ∀u, v ∈ V0.
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To deal with the convective terms in equations (1.1) and (1.2), we introduce the
bilinear form

B(u, v) = Pσ((u · ∇)v), ∀u, v ∈ V.
We see (e.g., [19, 40]) that B can be extended to a continuous map B : V ×V 7−→ V ′,
where V ′ = V−1 is the dual space of V , moreover,

|〈B(u, v), w〉V ′,V | 6 c(Ω)λ−3/4
1 ‖u‖1/2|u|1/21 |v|1|w|1, ∀u, v, w ∈ V, (2.1)

where λ1 is the first eigenvalue of A, 〈·, ·〉V ′,V is the dual product between V ′ and
V , and hereafter c(·) or c(·, ·, · · · , ·) > 0 denotes the generic constant depending
only the quantities appearing in the bracket, which may take different values from
one line to the next. Furthermore, we have

Lemma 2.1. The bilinear form B(·, ·) satisfies
(I) If u, b ∈ V , then all B(u, u), B(b, b), B(u, b), B(b, u) belong to V−1/2, and

|B(u, u)|−1/2 6 c(Ω)λ−3/4
1 |u|21,

|B(b, b)|−1/2 6 c(Ω)λ−3/4
1 |b|21,

|B(u, b)|−1/2 6 c(Ω)λ−3/4
1 |u|1|b|1,

|B(b, u)|−1/2 6 c(Ω)λ−3/4
1 |u|1|b|1.

(II) If u, b ∈ V3/2, then all B(u, u), B(b, b), B(u, b), B(b, u) belong to H, and

‖B(u, u)‖ 6 c(Ω)λ−3/4
1 |u|1|u|3/2,

‖B(b, b)‖ 6 c(Ω)λ−3/4
1 |b|1|b|3/2,

‖B(u, b)‖ 6 c(Ω)λ−3/4
1 |u|1|b|3/2,

‖B(b, u)‖ 6 c(Ω)λ−3/4
1 |u|3/2|b|1.

(III) For any m > 1, if u, b ∈ Vm+1, then all B(u, u), B(b, b), B(u, b), B(b, u)
belong to Vm, and

|B(u, u)|m 6 c(m,Ω)λ−7/8
1 |u|1/41 |u|

3/4
2 |u|m+1,

|B(b, b)|m 6 c(m,Ω)λ−7/8
1 |b|1/41 |b|

3/4
2 |b|m+1,

|B(u, b)|m 6 c(m,Ω)λ−7/8
1 |u|1/41 |u|

3/4
2 |b|m+1,

|B(b, u)|m 6 c(m,Ω)λ−7/8
1 |b|1/41 |b|

3/4
2 |u|m+1.

Proof. The conclusions of this lemma can be obtained by the standard interpolation
estimates and the Gagliardo-Nirenberg inequity (see e.g., [40, 38]). Here we omit
the details. �

With the above notation and definitions, we can write equations (1.1)-(1.4) in
the equivalent functional form

ut + νAu+ α2Aut +B(u, u)−B(b, b) = f, (2.2)

bt + µAb+ β2Abt +B(u, b)−B(b, u) = g, (2.3)

u(x, 0) = uin, b(x, 0) = bin. (2.4)

For the global well-posedness of the solutions and existence of the global attractor
for equations (2.2)-(2.4), we have
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Lemma 2.2 ([9]). Assume that the initial data and the forcing terms f and g are
space-periodic with zero-spatial-mean vector fields that satisfy f, g ∈ L∞(R+;H),
(uin, bin) ∈ V × V , and ∇ · uin = ∇ · bin = 0. Then equations (2.2)-(2.4) have a
unique global solution (u, b) such that, for each T > 0, one has

u, b ∈ L∞([0, T ];V ) ∩ L2([0, T ]; H2(Ω)).

If furthermore f and g are independent of time t, then the semigroup {S(t)}t>0

generated by the solution operators possesses a unique global attractor A ⊂ V × V .

The motivation of this paper is to investigate the analyticity of the solutions
within the global attractor A. We will employ the concept of the Gevrey class
regularity. For some given τ > 0 and r > 0, we define the Gevrey space as

Grτ = D(Ar/2eτA
1/2

) =
{
u ∈ H

∣∣ ‖Ar/2eτA1/2
u‖2 =

∑
j∈Z3

|uj |2|j|2re2τ |j| <∞
}
,

which is endowed with the inner product and norm as follows

(u, v)r,τ =
(
Ar/2eτA

1/2
u,Ar/2eτA

1/2
v
)

=
∑
j∈Z3

uj · vj |j|2re2τ |j|,

|u|r,τ = ‖Ar/2eτA
1/2
u‖, u, v ∈ Grτ ,

where uj and vj are the corresponding Fourier coefficients of u and v, respectively.
Note that Levermore and Oliver [24] proved that the space of real analyticity func-
tions Cω(Ω) has the following characterization

Cω(Ω) = ∪τ>0G
r
τ .

We end this section with some technique lemmas that will be used in the proof
of our main results. First, let λ > 0 and denote by Pλ the H-orthogonal projection
onto the span of eigenfunctions of A corresponding to eigenvalues of the magnitude
less than or equal to λ. Set Qλ = I − Pλ. The following Poincaré-type inequality
holds.

Lemma 2.3 ([19]). Let ū ∈ PλGr+1
τ and ǔ ∈ QλGr+1

τ . Then

|u|r+1,τ 6 e
τλ1/2

|u|r+1 and |ǔ|r,τ 6 λ−1/2|ǔ|r+1,τ .

Lemma 2.4 ([19]). For any τ > 0, u,w ∈ G2
τ , and v ∈ G1

τ , the following inequality
holds ∣∣(B(u, v), w

)
1,τ

∣∣ 6 c(Ω)λ−3/4
1 |u|1/21,τ |u|

1/2
2,τ |v|1,τ |w|2,τ .

Lemma 2.5 ([19]). Let s ∈ R. Assume that h(t) ∈ L∞([0, T ];Vs−2) for some
T ∈ (0,∞). Then the linear problem

zt + νAz + α2Azt = h(t), z(0) = 0,

has a unique solution z(t) ∈ C([0, T ];Vs). In addition, the following estimate holds

|z(t)|s 6
‖h(t)‖L∞([0,T ];Vs−2)

αν
√

(1/λ1 + α2)−1
, (2.5)

for all t ∈ [0, T ].
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Lemma 2.6 ([19]). Consider a nonnegative function ψ(t) satisfying for all t > t0,
for some t0, the following inequality

dψ
dt
6 −aψ + dψ3/2 + C, ψ(t0) = 0,

where the positive real coefficient a, d, C obey

dC1/2 < (a/2)3/2. (2.6)

Then for all t > t0, there holds ψ(t) 6 2C/a.

Finally, we will use the following lemma from Foias et al. [16].

Lemma 2.7 ([16]). Let ψ(t) and φ(t) be locally integrable functions on (0,+∞)
which satisfy some T > 0 the conditions

lim inf
t→+∞

1
T

∫ t+T

t

ψ(τ)dτ > 0,

lim sup
t→+∞

1
T

∫ t+T

t

ψ−(τ)dτ <∞,

lim sup
t→+∞

1
T

∫ t+T

t

φ+(τ)dτ = 0,

where ψ− = max{−ψ, 0} and φ+ = max{φ, 0}. Suppose that ϕ(t) is a nonnegative,
absolutely continuous function on [0,+∞) that satisfies the following inequality a.e.
on [0,+∞),

ϕ′(t) + ψ(t)ϕ(t) 6 φ(t).
Then ϕ(t) −→ 0 as t→ +∞.

3. Asymptotic approximation in Vm

The aim of this section is to construct an asymptotic approximation of the so-
lution of equations (2.2)-(2.4) in the space Vm, for every m > 2. Note that

∩∞m=1Vm ⊂ C∞(Ω).

Theorem 3.1. Let m > 2 be an integer, and let (u(x, t), b(x, t)) be a solution of
equations (2.2)-(2.4) corresponding to the initial condition (uin, bin) ∈ V × V with
the forcing terms (f, g) ∈ Vm−2 × Vm−2. Then there exist two functions

v(m)(x, t) ∈ L∞([0,+∞);Vm) and ξ(m)(x, t) ∈ L∞([0,+∞);Vm)

satisfying
lim

t→+∞
|u(t)− v(m)(t)|1 = lim

t→+∞
|b(t)− ξ(m)(t)|1 = 0.

Proof. Let us fixed m > 2, and let (uin, bin) ∈ V × V . Firstly, we can write the
solution as

u(t) = v(t) + w(t)

b(t) = ξ(t) + η(t),
(3.1)

where (v(t), w(t)) and (ξ(t), η(t)) satisfy the coupled equations

vt + νAv + α2Avt = f −B(u, u) +B(b, b), v(0) = 0, (3.2)

wt + νAw + α2Awt = 0, w(0) = uin, (3.3)
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and

ξt + µAξ + β2Aξt = g −B(u, b) +B(b, u), ξ(0) = 0, (3.4)

ηt + µAη + β2Aηt = 0, η(0) = bin, (3.5)

respectively. By using that both u(x, t) and b(x, t) belong to L∞([0,+∞);V ), and
applying Lemma 2.1(I) and Lemma 2.5, we see that

v(t) ∈ L∞([0,+∞);V3/2)

ξ(t) ∈ L∞([0,+∞);V3/2).
(3.6)

Now, by (3.3) and (3.5), we conclude that

‖w(t)‖2 + α2|w|21 6 e−δ1t(‖uin‖2 + α2|uin|21),

‖η(t)‖2 + β2|η|21 6 e−δ2t(‖bin‖2 + β2|bin|21),

where[ δ1 := (1/λ1 + α2)−1, δ2 := (1/λ1 + β2)−1. Therefore,

lim
t→+∞

|u(t)− v(t)|1 = lim
t→+∞

|w(t)|1 = 0, (3.7)

lim
t→+∞

|b(t)− ξ(t)|1 = lim
t→+∞

|η(t)|1 = 0. (3.8)

At the next step, we consider v(2)(x, t), the solution of the equations

v
(2)
t + νAv(2) + α2Av

(2)
t = f −B(v, v) +B(ξ, ξ), (3.9)

v(2)(0) = 0. (3.10)

By Lemma 2.1 (II) and (3.6), we see that the right-hand side of equality (3.9) lies
in L∞([0,+∞);H). Hence, applying Lemma 2.5, we find that the unique solution
of (3.9)-(3.10) satisfies

v(2)(t) ∈ L∞([0,+∞);V2). (3.11)

Similarly, we consider ξ(2)(x, t), the solution of the equations

ξ
(2)
t + µAξ(2) + β2Aξ

(2)
t = g −B(v, ξ) +B(ξ, v), (3.12)

ξ(2)(0) = 0. (3.13)

We also can conclude that the unique solution of (3.12)-(3.13) satisfies

ξ(2)(t) ∈ L∞([0,+∞);V2). (3.14)

Now, we set z(2)(x, t) = v(2)(x, t)− v(x, t), which satisfies

z
(2)
t + νAz(2) + α2Az

(2)
t

= B(u, u− v) +B(u− v, v)−B(b, b− ξ)−B(b− ξ, ξ),
(3.15)

z(2)(0) = 0. (3.16)

At the same time, we set η(2)(x, t) = ξ(2)(x, t)− ξ(x, t), which satisfies

η
(2)
t + µAη(2) + β2Aη

(2)
t

= B(u− v, ξ) +B(u, b− ξ)−B(b− ξ, v)−B(b, u− v),
(3.17)

η(2)(0) = 0. (3.18)

Since u, b ∈ L∞([0,+∞);V ), and v and ξ satisfy (3.6), we conclude from Lemma
2.5 that equations (3.15)-(3.16) have a unique solution z(2) ∈ L∞([0,+∞);V3/2).
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Similarly, equations (3.17)-(3.18) have a unique solution η(2) ∈ L∞([0,+∞);V3/2).
Then taking an inner product of (3.15) with z(2) and using (2.1), we obtain

1
2

d
dt

(‖z(2)‖2 + α2|z(2)|21) + ν|z(2)|21

= B(u, u− v, z(2)) +B(u− v, v, z(2))−B(b, b− ξ, z(2))−B(b− ξ, ξ, z(2))

6 c(Ω)|u|1 |u− v|1 |z(2)|1 + c(Ω)|u− v|1 |v|1 |z(2)|1
+ c(Ω)|b|1 |b− ξ|1 |z(2)|1 + c(Ω)|b− ξ|1 |ξ|1 |z(2)|1

6 c(Ω, ν)
(
|u− v|21(|u|21 + |v|21) + |b− ξ|21(|ξ|21 + |b|21)

)
+
ν

2
|z(2)|21,

which gives

d
dt

(‖z(2)‖2 + α2|z(2)|21) +
νδ1
2

(‖z(2)‖2 + α2|z(2)|21)

6 c(Ω, ν)
(
|u− v|21(|u|21 + |v|21) + |b− ξ|21(|ξ|21 + |b|21)

)
.

(3.19)

Analogous to the derivation of (3.19), we can obtain

d
dt

(‖η(2)‖2 + β2|η(2)|21) +
µδ2
2

(‖η(2)‖2 + β2|η(2)|21)

6 c(Ω, ν)
(
|u− v|21(|b|21 + |ξ|21) + |b− ξ|21(|u|21 + |v|21)

)
.

(3.20)

By (3.7)-(3.8) and the fact that all u(t), v(t), b(t), ξ(t) are bounded uniformly in
time in the V norm, we conclude from (3.19)-(3.20) and Lemma 2.7 that

lim
t→+∞

|z(2)(t)|1 = lim
t→+∞

|v(t)− v(2)(t)|1 = 0,

lim
t→+∞

|η(2)(t)|1 = lim
t→+∞

|ξ(t)− ξ(2)|1 = 0.

We next continue by induction. Fix 2 6 n 6 m, and suppose that we have
constructed v(j)(t) ∈ L∞([0,+∞);Vj) and ξ(j)(t) ∈ L∞([0,+∞);Vj), for j =
1, 2, · · · , n− 1, such that for any j

lim
t→+∞

|v(j−1)(t)− v(j)(t)|1 = lim
t→+∞

|u(t)− v(j)(t)|1 = 0, (3.21)

lim
t→+∞

|ξ(j−1)(t)− ξ(j)(t)|1 = lim
t→+∞

|b(t)− ξ(j)(t)|1 = 0. (3.22)

Let us consider the equations

v
(n)
t + νAv(n) + α2Av

(n)
t = f −B(v(n−1), v(n−1)) +B(ξ(n−1), ξ(n−1)), (3.23)

v(n)(0) = 0, (3.24)

and

ξ
(n)
t + µAξ(n) + β2Aξ

(n)
t = g −B(v(n−1), ξ(n−1)) +B(ξ(n−1), v(n−1)), (3.25)

ξ(n)(0) = 0. (3.26)

By Lemma 2.5 and the estimates on the nonlinear terms of Lemma 2.1, the unique
solution v(n)(t) of (3.23)-(3.24), and ξ(n)(t) of (3.25)-(3.26), satisfy, respectively

v(n)(t) ∈ L∞([0,+∞);Vn),

ξ(n)(t) ∈ L∞([0,+∞);Vn).
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Furthermore, we denote z(n)(t) = v(n)(t)− v(n−1)(t), which satisfies

z
(n)
t + νAz(n) + α2Az

(n)
t

= B(v(n−2), v(n−2) − v(n−1)) +B(v(n−2) − v(n−1), v(n−1))

−B(ξ(n−2), ξ(n−2) − ξ(n−1))−B(ξ(n−2) − ξ(n−1), ξ(n−1)),

(3.27)

z(n)(0) = 0. (3.28)

We also set η(n)(x, t) = ξ(n)(x, t)− ξ(n−1)(x, t), which satisfies

η
(n)
t + µAη(n) + β2Aη

(n)
t

= B(v(n−2) − v(n−1), ξ(n−1)) +B(v(n−2), ξ(n−2) − ξ(n−1))

−B(ξ(n−2) − ξ(n−1), v(n−1))−B(ξ(n−2), v(n−2) − v(n−1)),

(3.29)

z(n)(0) = 0. (3.30)

Taking the inner product of equation (3.27) with z(n)(t) and using Lemma 2.1 and
(3.21)-(3.22), we get by Lemma 2.7 that

lim
t→+∞

|z(n)(t)|1 = lim
t→+∞

|v(n−2)(t)− v(n−1)(t)|1 = lim
t→+∞

|u(t)− v(n)(t)|1 = 0.

(3.31)
Similarly, taking the inner product of equation (3.29) with ξ(n)(t) and using Lemma
2.1 and (3.21)-(3.22), we get by Lemma 2.7 that

lim
t→+∞

|η(n)(t)|1 = lim
t→+∞

|ξ(n−2)(t)−ξ(n−1)(t)|1 = lim
t→+∞

|b(t)−ξ(n)(t)|1 = 0. (3.32)

The proof of Theorem 3.1 is complete. �

4. Asymptotic approximation in the Gevrey space

The result of Section 3 shows that the global attractor of equation (1.1)-(1.4)
lies in C∞ whenever the forcing terms f and g are C∞. The aim of this section
is to show that the global attractor is real analytic, whenever the forcing terms f
and g are analytic. To this end, we will borrow the idea of Oliver and Titi [28, 29]
and Kalantarov, Levant and Titi [19], to construct the asymptotic approximation
of the solution of equations (2.2)-(2.4) in the Gevrey space G2

τ , for some τ > 0.
Firstly, it can be proved (see Catania[9]) that the solution of the regularized

MHD equations satisfies for all t > 0,

‖u(t)‖2 + α2|u(t)|21 + ‖b(t)‖2 + β2|b(t)|21

6 e−δ5t(‖uin‖2 + α2|uin|21 + ‖bin‖2 + β2|bin|21 −
δ3
δ5

) +
δ3
δ5
,

where

δ3 :=
|f |2−1

ν
+
|g|2−1

µ
, δ4 := min{µ, ν}, δ5 :=

δ4
2

min{ 1
α2
,

1
β2
, λ1}.

Therefore, there exists some t∗ depending on ‖uin‖, |uin|1, ‖bin‖, |bin|1, |f |−1, |g|−1,
µ, ν, α, β and λ1, such that for all t > t∗

|u(t)|1 6M1/α, (4.1)

|b(t)|1 6M1/β, (4.2)
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where M1 :=
√

2δ3/δ5. Analogously, there exist two positive constants M (1) and
M (2), which depend only on ‖uin‖, |uin|1, ‖bin‖, |bin|1, |f |−1, |g|−1, µ, ν, α, β and
λ1, such that the solutions of (3.9)-(3.10) and (3.12)-(3.13) satisfy

|v(2)|1 6M (1)
1 , ∀ t > t∗,

|ξ(2)|1 6M (2)
2 , ∀ t > t∗.

Lemma 4.1. Let f and g belong to Vm−2. Consider t∗ > 0, such that the solution
of the regularized MHD equations (2.2)-(2.4) satisfies the relations (4.1) and (4.2)
for all t > t∗. Then the following statements are true

(1) The functions v(x, t), ξ(x, t) ∈ L∞([0,+∞);V3/2), constructed in Theorem
3.1 satisfy for all t > t∗,

|v(t)|3/2 6M
(1)
3/2 :=

|f |−1/2 + c(Ω)λ−
3
4

1 M2
1 ( 1

α2 + 1
β2 )

αν
√

(λ−1
1 + α2)−1

,

|ξ(t)|3/2 6M
(2)
3/2 :=

|g|−1/2 + c(Ω)λ−
3
4

1 M2
1 ( 1

α2 + 1
β2 )

βµ
√

(λ−1
1 + β2)−1

.

(2) The functions v(2)(x, t), ξ(2)(x, t) ∈ L∞([0,+∞);V2), constructed in Theo-
rem 3.1 satisfy for all t > t∗,

|v(2)(t)|2 6M (1)
2 :=

|f |+ c(Ω)λ−
3
4

1 M1(
M

(1)
3/2

α +
M

(2)
3/2

β )

αν
√

(λ−1
1 + α2)−1

,

|ξ(2)(t)|2 6M (2)
2 :=

|g|+ c(Ω)λ−
3
4

1 M1(
M

(2)
3/2

α +
M

(1)
3/2

β )

βµ
√

(λ−1
1 + β2)−1

.

(3) Let m be an integer. The functions v(m)(x, t), ξ(m)(x, t) ∈ L∞([0,+∞);Vm),
constructed in Theorem 3.1 satisfy for all t > t∗,

|v(m)(t)|m 6M (1)
m , |ξ(m)(t)|m 6M (2)

m ,

where

M (1)
m :=

|f |m−2 + c(m,Ω)λ−
7
8

1

[
(M1
α )

1
4 (M (1)

2 )
3
4M

(1)
m−1 + (M1

β )
1
4 (M (2)

2 )
3
4M

(2)
m−1

]
αν
√

(λ−1
1 + α2)−1

,

M (2)
m :=

|f |m−2 + c(m,Ω)λ−
7
8

1

[
(M1
α )

1
4 (M (2)

2 )
3
4M

(1)
m−1 + (M1

β )
1
4 (M (2)

2 )
3
4M

(1)
m−1

]
βµ
√

(λ−1
1 + β2)−1

.

Proof. Recall that v(x, t) and ξ(x, t) satisfy (3.2) and (3.4), respectively. In gen-
eral, v(m)(x, t) and ξ(m)(x, t), for m > 2, satisfy (3.23) and (3.25), respectively.
Therefore, the proof of this lemma is an immediate application of Lemma 2.5, in
particular relation (2.5), and the inequalities of Lemma 2.1. �

Theorem 4.2. Let (u(x, t), b(x, t)) be a solution of the regularized MHD equations
(2.2)-(2.4), corresponding to the initial condition (uin, bin) ∈ V × V with forcing
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terms (f, g) ∈ G1
τ0 × G

1
τ0 , for some τ0 > 0. Let t∗ > 0 be as in Lemma 4.1, then

there exist two functions

vω(t) ∈ L∞([t∗,+∞);G2
τ ), (4.3)

ξω(t) ∈ L∞([t∗,+∞);G2
τ ), (4.4)

for some τ > 0, depending only on |f |1,τ0 , |g|1,τ0 , µ, ν, α, β and λ1, satisfying

lim
t→+∞

|u(t)− vω(t)|1 = 0, (4.5)

lim
t→+∞

|b(t)− ξω(t)|1 = 0. (4.6)

Proof. Let λ > 0 to be chosen later. First, consider (v(2)(x, t), ξ(2)(x, t)) the as-
ymptotic approximation of (u(x, t), b(x, t)), which is constructed in the proof of
Theorem 3.1. Denote

v(t) = Pλv
(2)(t), ξ(t) = Pλξ

(2)(t).

Consider v̌(t) and ξ̌(t) for all t > t∗ -the solution of the following equations

v̌t + νAv̌ + α2Av̌t +QλB(v + v̌, v + v̌)−QλB(ξ + ξ̌, ξ + ξ̌) = f̌ , (4.7)

v̌(t∗) = 0, (4.8)

and

ξ̌t + µAξ̌ + β2Aξ̌t +QλB(v + v̌, ξ + ξ̌)−QλB(ξ + ξ̌, v + v̌) = ǧ, (4.9)

ξ̌(t∗) = 0, (4.10)

respectively, where f̌ = Qλf and ǧ = Qλg. Let us put

vω(t) = v(t) + v̌(t), t > t∗, (4.11)

ξω(t) = ξ(t) + ξ̌(t), t > t∗. (4.12)

Our goal is to show first that there exists some τ > 0 such that

vω(t), ξω(t) ∈ G2
τ .

Since v(t) and ξ(t) are just trigonometric polynomials, and in particular, are ana-
lytic, we need to show that we can choose λ large enough, such that v̌(t) and ξ̌(t)
belong to G2

τ for some τ > 0. Finally, we will show that (vω(x, t), ξω(x, t)) is indeed
the asymptotic approximation of (u(x, t), b(x, t)).

We want to point out that in order to prove that the solutions of (4.7)-(4.8)
and (4.9)-(4.10) belong to a Gevrey class of real analytic functions, we consider the
Galerkin procedure to (4.7) and (4.9), respectively. However, we omit this standard
procedure, and obtain formal a priori estimates on the solutions in relevant Gevrey
space norm. Taking formally the inner product of (4.7) with v̌, and (4.9) with ξ̌ in
G1
τ , respectively, we obtain the following inequalities

1
2

(|v̌|21,τ + α2|v̌|22,τ ) + ν|v̌|22,τ

6 |(f̌ , v̌)1,τ |+ |(B(v, v), v̌)1,τ |+ |(B(v, v̌), v̌)1,τ |+ |(B(v̌, v), v̌)1,τ |
+ |(B(v̌, v̌), v̌)1,τ |+ |(B(ξ, ξ), v̌)1,τ |+ |(B(ξ, ξ̌), v̌)1,τ |
+ |(B(ξ̌, ξ), v̌)1,τ |+ |(B(ξ̌, ξ̌), v̌)1,τ |

(4.13)
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and
1
2

(|ξ̌|21,τ + β2|ξ̌|22,τ ) + µ|ξ̌|22,τ

6 |(ǧ, ξ̌)1,τ |+ |(B(v, ξ), ξ̌)1,τ |+ |(B(v, ξ̌), ξ̌)1,τ |+ |(B(v̌, ξ), ξ̌)1,τ |
+ |(B(v̌, ξ̌), ξ̌)1,τ |+ |(B(ξ, v), ξ̌)1,τ |+ |(B(ξ, v̌), ξ̌)1,τ |
+ |(B(ξ̌, v), ξ̌)1,τ |+ |(B(ξ̌, v̌), v̌)1,τ |

(4.14)

accordingly. We next estimate the terms on the right-hand side of above (4.13) and
(4.14).

Firstly, using subsequently the Cauchy-Schwarz and Young inequalities, as well
as Lemma 2.3, we obtain assuming τ 6 τ0 that

|(f̌ , v̌)1,τ | 6 |f̌ |1,τ |v̌|1,τ 6
2
νλ
|f̌ |21,τ +

ν

8
|v̌|22,τ , (4.15)

|(ǧ, ξ̌)1,τ | 6 |ǧ|1,τ |ξ̌|1,τ 6
2
µλ
|ǧ|21,τ +

µ

8
|ξ̌|22,τ . (4.16)

Secondly, using Lemma 2.4, Young inequality and the Poincaré-type inequalities of
Lemma 2.3, we obtain the following series of estimates for all t > t∗:

|(B(v, v), v̌)1,τ | 6 c(Ω)λ−3/4
1 |v|3/21,τ |v|

1/2
2,τ |v̌|2,τ

6
c(Ω)e4τλ1/2

(M (1)
1 )3M

(1)
2

νλ
3/2
1

+
ν

8
|v̌|22,τ ,

(4.17)

|(B(v, v̌), v̌)1,τ | 6 c(Ω)λ−3/4
1 |v|1/21,τ |v|

1/2
2,τ |v̌|1,τ |v̌|2,τ

6
c(Ω)eτλ

1/2
(M (1)

1 M
(1)
2 )1/2

λ1/2λ
3/4
1

|v̌|22,τ ,
(4.18)

|(B(v̌, v), v̌)1,τ | 6 c(Ω)λ−3/4
1 |v̌|1/21,τ |v̌|

3/2
2,τ |v|1,τ 6

c(Ω)eτλ
1/2
M

(1)
1

λ1/4λ
3/4
1

|v̌|22,τ , (4.19)

|(B(v̌, v̌), v̌)1,τ | 6 c(Ω)λ−3/4
1 |v̌|3/21,τ |v̌|

3/2
2,τ 6 c(Ω)λ−3/4λ

−3/4
1 |v̌|32,τ

6
c(Ω)

λ3/4λ
3/4
1 α3

(|v̌|21,τ + α2|v̌|22,τ )3/2,
(4.20)

|(B(ξ, ξ), v̌)1,τ | 6 c(Ω)λ−3/4
1 |ξ|3/21,τ |ξ|

1/2
2,τ |v̌|2,τ

6
c(Ω)e4τλ1/2

(M (2)
1 )3M

(2)
2

νλ
3/2
1

+
ν

8
|v̌|22,τ ,

(4.21)

|(B(ξ, ξ̌), v̌)1,τ | 6 c(Ω)λ−4/3
1 |ξ|1/21,τ |ξ|

1/2
2,τ |ξ̌|1,τ |v̌|2,τ

6
c(Ω)eτλ

1/2
(M (2)

1 M
(2)
2 )1/2

λ1/2λ
3/4
1

(|v̌|22,τ + |ξ̌|22,τ ),
(4.22)

|(B(ξ̌, ξ), v̌)1,τ | 6 c(Ω)λ−3/4
1 |ξ̌|1/21,τ |ξ̌|

1/2
2,τ |ξ|1,τ |v̌|2,τ

6 c(Ω)λ−3/4
1 λ−1/4|ξ̌|2,τ |ξ|1,τ |v̌|2,τ

6
c(Ω)eτλ

1/2
M

(2)
1

λ
3/4
1 λ1/4

(|v̌|22,τ + |ξ̌|22,τ ),

(4.23)
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|(B(ξ̌, ξ̌), v̌)1,τ |

6 c(Ω)λ−3/4
1 |ξ̌|3/21,τ |ξ̌|

1/2
2,τ |v̌|2,τ 6 c(Ω)λ−3/4λ

−3/4
1 |ξ̌|22,τ |v̌|2,τ

6 c(Ω)λ−3/4λ
−3/4
1 α−3(|v̌|21,τ + α2|v̌|22,τ )3/2

+ c(Ω)λ−3/4λ
−3/4
1 β−3(|ξ̌|21,τ + β2|ξ̌|22,τ )3/2

6 c(Ω, α, β)λ−3/4λ
−3/4
1 (|v̌|21,τ + α2|v̌|22,τ + |ξ̌|21,τ + β2|ξ̌|22,τ )3/2,

(4.24)

|(B(v, ξ), ξ̌)1,τ | 6 c(Ω)λ−3/4
1 |v|1/21,τ |v|

1/2
2,τ |ξ|1,τ |ξ̌|2,τ

6
c(Ω)e4τλ1/2

M
(1)
1 M

(1)
2 (M (2)

1 )2

µλ
3/2
1

+
µ

8
|ξ̌|22,τ ,

(4.25)

|(B(v, ξ̌), ξ̌)1,τ | 6 c(Ω)λ−3/4
1 |v|1/21,τ |v|

1/2
2,τ |ξ̌|1,τ |ξ̌|2,τ

6
c(Ω)eτλ

1/2
(M (1)

1 M
(1)
2 )1/2

λ1/2λ
3/4
1

|ξ̌|22,τ ,
(4.26)

|(B(v̌, ξ), ξ̌)1,τ | 6 c(Ω)λ−3/4
1 |v̌|1/21,τ |v̌|

1/2
2,τ |ξ|1,τ |ξ̌|2,τ

6 c(Ω)λ−3/4
1 λ−1/4M

(2)
1 eτλ

1/2
(|v̌|22,τ + |ξ̌|22,τ ),

(4.27)

|(B(v̌, ξ̌), ξ̌)1,τ |

6 c(Ω)λ−3/4
1 |v̌|1/21,τ |v̌|

1/2
2,τ |ξ̌|1,τ |ξ̌|2,τ

6 c(Ω)λ−3/4λ
−3/4
1 |v̌|2,τ |ξ̌|22,τ

6 c(Ω, α, β)λ−3/4λ
−3/4
1 (|v̌|21,τ + α2|v̌|22,τ + |ξ̌|21,τ + β2|ξ̌|22,τ )3/2,

(4.28)

|(B(ξ, v), ξ̌)1,τ | 6 c(Ω)λ−3/4
1 |ξ|1/21,τ |ξ|

1/2
2,τ |v|1,τ |ξ̌|2,τ

6
c(Ω)e4τλ1/2

M
(2)
1 M

(2)
2 (M (1)

1 )2

µλ
3/2
1

+
µ

8
|ξ̌|22,τ ,

(4.29)

|(B(ξ, v̌), ξ̌)1,τ | 6 c(Ω)λ−3/4
1 |ξ|1/21,τ |ξ|

1/2
2,τ |v̌|1,τ |ξ̌|2,τ

6
ceτλ

1/2
(M (2)

1 M
(2)
2 )1/2

λ1/2λ
3/4
1

(|v̌|22,τ + |ξ̌|22,τ ),
(4.30)

|(B(ξ̌, v), ξ̌)1,τ | 6 c(Ω)λ−3/4
1 |ξ̌|1/21,τ |ξ̌|

1/2
2,τ |v|1,τ |ξ̌|2,τ

6
c(Ω)eτλ

1/2
M

(1)
1

λ1/4λ
3/4
1

|ξ̌|22,τ ,
(4.31)

|(B(ξ̌, v̌), ξ̌)1,τ |

6 c(Ω)λ−3/4
1 |ξ̌|1/21,τ |ξ̌|

1/2
2,τ |v̌|1,τ |ξ̌|2,τ

6 cλ−1/4λ
−3/4
1 |ξ̌|22,τ |v̌|2,τ

6 c(Ω, α, β)λ−3/4λ
−3/4
1 (|v̌|21,τ + α2|v̌|22,τ + |ξ̌|21,τ + β2|ξ̌|22,τ )3/2,

(4.32)
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Let us set τ := min{λ−1/2, τ0}. Then we select λ large enough satisfying

max
{c(Ω)[(M (1)

1 M
(1)
2 )1/2 +M

(2)
1 M

(2)
2 )1/2]

λ1/2λ
3/4
1

,
c(Ω)(M (1)

1 +M
(2)
1 )

λ1/4λ
3/4
1

}
6

min{ν, µ}
8

.

(4.33)

Taking (4.13)-(4.33) into account, we obtain
1
2

d
dt

(|v̌|21,τ + α2|v̌|22,τ + |ξ̌|21,τ + β2|ξ̌|22,τ ) +
ν

8
|v̌|22,τ +

µ

8
|ξ̌|22,τ

6
c(Ω, α, β)

λ3/4λ
3/4
1

(1 +
1
α3

)(|v̌|21,τ + α2|v̌|22,τ + |ξ̌|21,τ + β2|ξ̌|22,τ )3/2

+
2
νλ
|f̌ |21,τ +

2
µλ
|ǧ|21,τ +

c(Ω)(M (1)
1 )3M

(1)
2

νλ
3/2
1

+
c(Ω)(M (2)

1 )3M
(2)
2

νλ
3/2
1

+
c(Ω)M (1)

1 M
(1)
2 (M (2)

1 )2

µλ
3/2
1

+
c(Ω)M (2)

1 M
(2)
2 (M (1)

1 )2

µλ
3/2
1

.

(4.34)

Using Lemma 2.3 and setting

δ6 := min{δ1, δ2} = min{(1/λ1 + α2)−1, (1/λ1 + β2)−1},
we can write

ν

8
|v̌|22,τ >

νδ6
8

(λ−1|v̌|22,τ + α2|v̌|22,τ ) >
νδ6
8

(|v̌|21,τ + α2|v̌|22,τ ), (4.35)

µ

8
|ξ̌|22,τ >

µδ6
8

(λ−1|ξ̌|22,τ + β2|ξ̌|22,τ ) >
µδ6
8

(|ξ̌|21,τ + β2|ξ̌|22,τ ). (4.36)

Substituting (4.35)-(4.36) into (4.34) gives
1
2

d
dt

(|v̌|21,τ + α2|v̌|22,τ + |ξ̌|21,τ + β2|ξ̌|22,τ )

6 −δ4δ6
8

(|v̌|21,τ + α2|v̌|22,τ + |ξ̌|21,τ + β2|ξ̌|22,τ )

+
c(Ω, α, β)

λ3/4λ
3/4
1

(1 +
1
α3

)(|v̌|21,τ + α2|v̌|22,τ + |ξ̌|21,τ + β2|ξ̌|22,τ )3/2

+
2
νλ
|f̌ |21,τ +

2
µλ
|ǧ|21,τ +K,

(4.37)

where the constant

K :=
c(Ω)

λ
3/2
1

[ (M (1)
1 )3M

(1)
2 + (M (2)

1 )3M
(2)
2

ν

+
M

(1)
1 M

(1)
2 (M (2)

1 )2 +M
(2)
1 M

(2)
2 (M (1)

1 )2

µ

]
is independent of λ.

To apply Lemma 2.6 to the function (|v̌|21,τ +α2|v̌|22,τ + |ξ̌|21,τ +β2|ξ̌|22,τ ) satisfying
inequality (4.37), we need check the condition (2.6). In fact, we can choose λ large
enough, such that

c(Ω, α, β)(1 + 1
α3 )

λ3/4λ
3/4
1

(2(ν|f̌ |21,τ + µ|ǧ|21,τ )
λ

+K
)1/2

< (
δ4δ6
16

)3/2. (4.38)
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For such choice of λ, we conclude from Lemma 2.5 that (|v̌|21,τ + α2|v̌|22,τ + |ξ̌|21,τ +
β2|ξ̌|22,τ ) is bounded for all t > t∗, and hence

vω(t) ∈ L∞([t∗; +∞);G2
τ ) and ξω(t) ∈ L∞([t∗; +∞);G2

τ ),

that is (4.3) and (4.4) are proved.
We now are left to show that (vω(x, t), ξω(x, t)) is the asymptotic approximation

of the solution (u(x, t), b(x, t)) of the regularized MHD equations. Put

z = u− vω, z = Pλ(u− v(2)) = Pλu− v,

ζ = b− ξω, ζ = Pλ(b− ξ(2)) = Pλb− ξ,

and denote

ž = Qλu− v̌, (4.39)

ζ̌ = Qλb− ξ̌. (4.40)

Relations (4.11)-(4.12) and (4.39)-(4.40) give

z + ž = u− vω = z,

ζ + ζ̌ = b− ξω = ζ.
(4.41)

Obviously, by the construction and Theorem 3.1, we have

lim
t→+∞

|Pλu(t)− v(t)|1 = lim
t→+∞

|z|1 = 0, (4.42)

lim
t→+∞

|Pλb(t)− ξ(t)|1 = lim
t→+∞

|ζ|1 = 0. (4.43)

Therefore, to prove (4.5) and (4.6), we need to show

lim
t→+∞

|Qλu(t)− v̌(t)|1 = lim
t→+∞

|ž(t)|1 = 0, (4.44)

lim
t→+∞

|Qλb(t)− ξ̌(t)|1 = lim
t→+∞

|ζ̌(t)|1 = 0. (4.45)

By the property of the operator B(·, ·) and relation (4.41), we have

B(u, u)−B(vω, vω) = B(u− vω, u) +B(vω, u)−B(vω, vω)

= B(z, u) +B(vω, u− vω)

= B(z, u) +B(u− z, z)
= B(z, u) +B(u, z)−B(z, z).

(4.46)

Similarly,

B(b, b)−B(ξω, ξω) = B(b, ζ) +B(ζ, b)−B(ζ, ζ), (4.47)

B(u, b)−B(vω, ξω) = B(z, b) +B(u, ζ)−B(z, ζ), (4.48)

B(b, u)−B(ξω, vω) = B(ζ, u) +B(b, z)−B(ζ, z). (4.49)

From (2.2), (4.7) and (4.46)-(4.47), we find that ž(t) satisfies

žt + νAž + α2Ažt +Qλ(B(u, z) +B(z, u)−B(z, z))

−Qλ(B(b, ζ) +B(ζ, b)−B(ζ, ζ)) = 0, t > t∗,
(4.50)

ž(t∗) = Qλu(t∗). (4.51)
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Also, by (2.3), (4.9) and (4.48)-(4.49), we see that ζ̌(t) satisfies

ζ̌t + µAζ̌ + β2Aζ̌t +Qλ(B(u, ζ) +B(z, b)−B(z, ζ))

−Qλ(B(b, z) +B(ζ, u)−B(ζ, z)) = 0, t > t∗,
(4.52)

ζ̌(t∗) = Qλb(t∗). (4.53)

Taking the inner product of equation (4.50) with ž in H, we obtain

1
2

d
dt

(‖ž‖2 + α2‖ž‖21) + ν‖ž‖21
6 |(B(ž, u), ž)|+ |(Qλ(B(u, z) +B(z, u)−B(z, z)), ž)|

+ |(Qλ(B(b, ζ) +B(ζ, b)−B(ζ, ζ)−B(ζ̌, ζ)−B(ζ, ζ̌)), ž)|
− (QλB(b, ζ̌), ž) + |(B(ζ̌, b), ž)|+ (QλB(ζ̌, ζ̌), ž).

(4.54)

At the same time, taking the inner product of equation (4.52) with ζ̌ in H gives

1
2

d
dt

(‖ζ̌‖2 + β2‖ζ̌‖21) + µ‖ζ̌‖21

6 |(Qλ(B(u, ζ) +B(z, b)−B(z, ζ)), ž)|
+ |(Qλ(−B(b, z) +B(ζ, u)−B(ζ, z)), ζ̌)|+ |(B(ž, b), ζ̌)|
+ |(B(ž, ζ), ζ̌)| − (QλB(b, ž), ζ̌) + |(B(ζ̌, u), ž)|+ (QλB(ζ̌, ž), ζ̌).

(4.55)

By the Poincaré inequality, we have

ν|ž|21 >
ν

2
(λ1‖ž‖2 + |ž|21) >

ν

2(λ−1
1 + α2)

(‖ž‖2 + α2|ž|21), (4.56)

µ|ζ̌|21 >
µ

2
(λ1‖ζ̌‖2 + |ζ̌|21) >

µ

2(λ−1
1 + β2)

(‖ζ̌‖2 + β2|ζ̌|21). (4.57)

It then follows from (4.54)-(4.57) that

1
2

d
dt

(‖ž‖2 + α2‖ž‖21 + ‖ζ̌‖2 + β2‖ζ̌‖21)

+
δ4δ6

2
(‖ž‖2 + α2‖ž‖21 + ‖ζ̌‖2 + β2‖ζ̌‖21)

6 |(B(ž, u), ž)|+ |(B(ζ̌, b), ž)|+ |(B(ž, b), ζ̌)|+ |(B(ž, ζ), ζ̌)|
+ |(B(ζ̌, u), ž)|+ Ψ(t),

(4.58)

where

Ψ(t) = |(Qλ(B(u, z) +B(z, u)−B(z, z)), ž)|
+ |(Qλ(B(b, ζ) +B(ζ, b)−B(ζ, ζ)−B(ζ̌, ζ)−B(ζ, ζ̌)), ž)|
+ |(Qλ(B(u, ζ) +B(z, b)−B(z, ζ)), ž)|
+ |(Qλ(−B(b, z) +B(ζ, u)−B(ζ, z)), ζ̌)|.

(4.59)

Now the first five terms on the right-hand side of (4.58) can be estimated as follows.
Using (2.1), Lemma 2.3 and (4.1)-(4.2), we obtain for t > t∗,

|(B(ž(t), u(t)), ž(t))| 6 c(Ω)

λ
3/4
1

|u(t)|1‖ž(t)‖1/2|ž(t)|3/21 6
c(Ω)M1

αλ
3/4
1 λ1/4

|ž(t)|21, (4.60)
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|(B(ž(t), b(t)), ζ̌(t))| 6 c(Ω)

λ
3/4
1

|b(t)|1‖ž(t)‖1/2|ž(t)|1/21 |ζ̌(t)|1

6
c(Ω)M1

βλ
3/4
1 λ1/4

|ž(t)|1|ζ̌(t)|1

6
c(Ω)M1

βλ
3/4
1 λ1/4

(|ž(t)|21 + |ζ̌(t)|21),

(4.61)

|(B(ζ̌(t), b(t)), ž(t))| 6 c(Ω)M1

βλ
3/4
1 λ1/4

(|ž(t)|21 + |ζ̌(t)|21), (4.62)

|(B(ž, ζ), ζ̌)| 6 c(Ω)

λ
3/4
1

|ζ(t)|1‖ž(t)‖1/2|ž(t)|1/21 |ζ̌(t)|1

6
c(Ω)(M1/β +M

(2)
2 )

λ
3/4
1 λ1/4

|ž(t)|1|ζ̌(t)|1

6
c(Ω)(M1/β +M

(2)
2 )

λ
3/4
1 λ1/4

(|ž(t)|21 + |ζ̌(t)|21),

(4.63)

|(B(ζ̌(t), u(t)), ž(t))| 6 c

λ
3/4
1

|u(t)|1‖ζ̌(t)‖1/2|ζ̌(t)|1/21 |ž(t)|1

6
c(Ω)M1

αλ
3/4
1 λ1/4

|ž(t)|1|ζ̌(t)|1

6
c(Ω)M1

αλ
3/4
1 λ1/4

(|ž(t)|21 + |ζ̌(t)|21).

(4.64)

Inequalities (4.60)-(4.64) yield

|(B(ž, u), ž)|+ |(B(ζ̌, b), ž)|+ |(B(ž, b), ζ̌)|+ |(B(ž, ζ), ζ̌)|+ |(B(ζ̌, u), ž)|

6
c(Ω, α, β,M1,M

(2)
2 )

λ
3/4
1 λ1/4

(‖ž(t)‖2 + α2|ž(t)|21 + ‖ζ̌(t)‖2 + β2|ζ̌(t)|21).
(4.65)

Inserting (4.65) into (4.58) gives

1
2

d
dt
(
‖ž‖2 + α2‖ž‖21 + ‖ζ̌‖2 + β2‖ζ̌‖21

)
+
(δ4δ6

2
− c(Ω, α, β,M1,M

(2)
2 )

λ
3/4
1 λ1/4

)
(‖ž‖2 + α2|ž|21 + ‖ζ̌‖2 + β2|ζ̌|21)

6 Ψ(t).

(4.66)

Note that we can choose λ large enough such that

δ4δ6
2
− c(Ω, α, β,M1,M

(2)
2 )

λ
3/4
1 λ1/4

> 0. (4.67)

At the same time, employing the relations (4.42)-(4.43) and the fact that u and b
are bounded in the V norm, we can conclude from (4.59) that

lim
t→+∞

Ψ(t) = 0. (4.68)
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It then follows from (4.66)-(4.68) and the Gronwall inequality that

lim
t→+∞

(‖ž‖2 + α2|ž|21 + ‖ζ̌‖2 + β2|ζ̌|21) = 0,

for λ large enough, satisfying

λ > (
c(Ω, α, β,M1,M

(2)
2 )

δ4δ6
)4λ−3

1 . (4.69)

Therefore, (4.44) and (4.45) are proved for λ large enough, satisfying relations
(4.33), (4.38) and (4.69). The proof of Theorem 4.2 is complete. �
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