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LINEAR AND LOGISTIC MODELS WITH TIME DEPENDENT
COEFFICIENTS

YOUNESS MIR, FRANÇOIS DUBEAU

Abstract. We sutdy the effects of some properties of the carrying capacity on
the solution of the linear and logistic differential equations. We present results

concerning the behaviour and the asymptotic behaviour of their solutions.

Special attention is paid when the carrying capacity is an increasing or a
decreasing positive function. For more general carrying capacity, we obtain

bounds for the corresponding solution by constructing appropriate subsolution
and supersolution. We also present a decomposition of the solution of the

linear, and logistic, differential equation as a product of the carrying capacity

and the solution to the corresponding differential equation with a constant
carrying capacity.

1. Introduction

In this article we shall study the solutions of the linear and logistic differential
equations defined respectively by

ẋ(t) = α(t)− β(t)x(t), t ≥ t0, (1.1)

and
ẋ(t) = β(t)x(t)− α(t)x2(t), t ≥ t0, (1.2)

where α(t) and β(t) are strictly positive and continuous functions on [t0,+∞),
with t0 ∈ R. More precisely, we will consider the effect of α(t), β(t), and the ratio
k(t) = α(t)/β(t) on the behavior of the solutions of these models for any positive
initial value x(t0) > 0.

Considering that the mapping y : x 7→ y = x−1 transforms (1.2) into the linear
differential equation

ẏ(t) = α(t)− β(t)y(t), t ≥ t0,
we will focus our study on (1.1). Indeed, all results obtained for (1.1) could then
be directly applied to (1.2).

Considering the preceding mapping used to rely solutions of (1.2) to solutions
of (1.1), we will call the ratio k(t) = α(t)/β(t) the carrying capacity for the linear
model (1.1) despite the fact that this expression, for the logistic equation (1.2),
refer to β(t)/α(t) = 1/k(t).
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With a constant carrying capacity k(t) = k, these models, and many extensions
of them, have extensively been used to describe and improve the possible rela-
tionship between independent and dependent variables in terms of mathematical
equations. It happended in many fields of applied sciences, like ecology, sociology,
medicine, and other domains [7, 8, 10, 14, 16, 17, 23]. However, according to Cole-
man [2, 3, 4], and later to Meyer [11, 12], changes in the environment affect the
carrying capacity. Hence, modeling phenomena with unchanging carrying capacity
is often unrealistic. Several authors have reformulated these standards models with
constant carrying capacity to accommodate phenomena with varying [19, 20, 21],
logistically varying [11, 12], increasing [5, 6, 13] or sinusoidally varying [4, 3, 18]
carrying capacity. In [1], the author has given some examples on real situations
in which the carrying capacity k changes with time continuously. Many other
researchers have been interested in the problem of the existence and uniqueness
solution of the solution of (1.2) with bounded time dependent carrying capacity
[9, 15]. In [22], the author argued that it is difficult to make precise statement
about the asymptotic behaviour of the solution to a non-autonomous differential
equation when the coefficients α and β are time dependent functions. In [9] the
authors have proved that a monotone bounded carrying capacity is an attractor
forward in time of all positive solution of (1.2) in the sense that the limit at infinity
of the difference between any solution to the differential equation and the carrying
capacity vanishes.

Despite the intensive examples of real situations involving growth phenomena
with unbounded time dependent carrying capacity (see [1] for example), these sit-
uations has surprisingly received little attention in the literature compared to the
massive literature devoted to the problems with bounded coefficients.

The main purpose of this paper is to address this knowledge gap through a
qualitative study. We study in a thorough way the effect of an unbounded car-
rying capacity on the behaviour and the asymptotic behaviour of the solution of
the linear and logistic differential equations. We shall pay particular attention to
the cases when the carrying capacity k(t) is an increasing or decreasing positive
function. Moreover, the asymptotic behaviour of the solutions to these differential
equations is not well described when the carrying capacity k(t) is time depen-
dent and unbounded. On this basis comes the second aim of this paper which
consists of reformulating the solutions x(t) of (1.1) and (1.2) as a product of a
simple function z̃(t) and a carrying capacity k̃(t) such that limt→+∞ z̃(t) = 1, and
limt→+∞(x(t)− k̃(t)) = 0.

The present paper is organized as follows. In Section 2, we start by giving some
properties about the solution of the linear differential equation. Then, we present
some results on the behaviour and the asymptotic behaviour of its solution when
the time dependent coefficients are not necessary bounded. We also show that
when the carrying capacity is an increasing and unbounded function, the limit at
infinity of the difference between the solution of the linear differential equation
and the carrying capacity is not always equal to zero. In Section 3, we provide
monotonic bounds for the solution of (1.1) when k(t) is neither an increasing nor a
decreasing function. Section 4 addresses the problem of decomposing the solution
into a product of a carrying capacity and a simple analytic function. Finally, we
present a conclusion.
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2. The linear differential equation

Let I = [t0,+∞) be an interval such that t0 ∈ R and consider the linear differ-
ential equation

ẋ(t) = α(t)− β(t)x(t) = β(t)(k(t)− x(t)) t ≥ t0, (2.1)

where α(t), β(t) : I → (0,+∞) are two continuous functions, and k(t) = α(t)/β(t).
Subject to the initial condition x(t0) = x0, (2.1) has the unique solution given by

x(t) = e
−

R t
t0
β(u)du

(
x0 +

∫ t

t0

α(τ)e
R τ
t0
β(u)du

dτ
)
. (2.2)

Under the assumptions k(t0) = k0, and

k ∈ AC1
loc(I) =

{
k ∈ C(I) : k̇ ∈ L1

loc(I), k(t2) = k(t1) +
∫ t2

t1

k̇(τ)dτ,

for all t1, t2 ∈ I
}
,

(2.3)

Equation (2.2) takes the form

x(t) = k(t) +
(

(x0 − k0)e−
R t
t0
β(u)du − e−

R t
t0
β(u)du

∫ t

t0

k̇(u)e
R u
t0
β(τ)dτ

du
)
. (2.4)

In the case where α(t)/β(t) = k does not depend on time, (2.4) reduces to

x(t) = k + (x0 − k)e−
R t
t0
β(u)du

. (2.5)

Regarding x0 and k we have the following situations:

• if x0 = k, from (2.5) we have x(t) = k for all t ∈ I;
• if x0 6= k, we have

lim
t→+∞

x(t) = k + (x0 − k)e−
R +∞
t0

β(u)du = x∞,

and
* if x0 < k, then x(t) < x∞ for all t ∈ I, and the solution x(t) grows up

to x∞,
* if x0 > k, then x(t) > x∞ for all t ∈ I, and the solution x(t) decreases

to x∞.

When α(t)/β(t) = k(t) depends on time, (2.1) has no constant solution and the
solution (2.2) may crosses k(t). It happens when ẋ(t) = 0. For t∗ ∈ I, let us
consider the closed interval

Jt∗ = {t ∈ I : t ≥ t∗, and x(τ) = x(t∗) for all t∗ ≤ τ ≤ t} = [t∗, t∗∗],

where t∗∗ = supτ∈I Jt∗ . Moreover, if t∗ < t∗∗, then ẋ(t) = 0 for all t ∈ Jt∗ and
consequently, from (2.1) and (2.4) we have

x(t) = k(t), and k̇(t) = 0 for all t ∈ Jt∗ . (2.6)
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2.1. Increasing case. In this section, we suppose that k(t) is a non-decreasing
function

k(t1) ≤ k(t2) for all t1, t2 ∈ I such that t1 < t2. (2.7)

We have the following result.

Lemma 2.1. Let k(t) = α(t)/β(t) : I → R be defined such that β(t) > 0 for all t.
Suppose that k satisfies the assumptions (2.3) and (2.7), and let x(t) be the solution
of (2.1) passing through the point (t0, x0). If for some s ∈ I we have x(s) = k(s),
then x(t) ≤ k(t) for all t ≥ s. More precisely,

• x(t) = k(t), and ẋ(t) = 0, for all t ∈ Js, and
• x(t) < k(t), and ẋ(t) > 0, for all t > ts = sup Js.

Proof. Let x(t) be the solution of (2.1) passing through the point (t0, x0), and let
s ∈ I such that x(s) = k(s). From (2.6), we have x(t) = k(t) for all t ∈ Js. Let
ts = sup Js ∈ Js, it follows that x(ts) = k(ts) = k(s) and k(t) > k(ts) for all t > ts.
Thus, by considering the solution passing through the point (ts, x(ts)), we have

x(t) = k(t) +
(

(x(ts)− k(ts))e
−

R t
ts
β(u)du − e−

R t
ts
β(u)du

∫ t

ts

k̇(u)e
R u
ts
β(τ)dτdu

)
= k(t)−

∫ t

ts

k̇(u)e
R u
t
β(τ)dτdu.

As k(t) > k(ts) for all t > ts, it follows that k(ts) < x(t) < k(t) for all t > ts. �

The following result characterizes the behaviour of any solution of (2.1) in the
case where k(t) is non decreasing.

Theorem 2.2. Let k(t) and x(t) be defined as in Lemma 2.1. Also let k∞ =
limt→+∞ k(t). Then

(a) if x0 < k0, then x(t) < k(t), and ẋ(t) > 0, for all t ∈ I;
(b) if x0 = k0, then x(t) ≤ k(t), and ẋ(t) ≥ 0, for all t ∈ I;
(c) if x0 > k0, we have two cases to consider

(i) if x0 ≤ k∞, then it will exists some s > t0 where s = argminx(t) such
that x(s) = k(s), and in this case x(t) decreases if t < s and increases
if t > s;

(ii) if x0 > k∞, then either x(t) has the same behaviour as in (i), or
x(t) > k(t), and ẋ(t) < 0, for all t ∈ I.

Proof. The proofs of assertions (a) and (b) follow immediately from (2.4) and
Lemma 2.1. Let us prove (c).

(i) If k0 < x0 < k∞, from (2.1), it follows that ẋ(t0) < 0. By continuity, we
also have ẋ(t) < 0 for all t provided that x(t) > k(t) which is satisfied at least
locally near t0. We will prove that, there exists some s > t0 such that x(s) = k(s)
and x(t) increases for t > s with x(t) < k(t). Indeed, suppose that x(t) > k(t)
for all t > t0. Thus, from (2.1), we have that ẋ(t) < 0 for all t ≥ t0 and hence,
k(t) < x(t) < x(t0) = x0. By taking the limit at infinity we obtain k∞ ≤ x0 which
contradicts our assumption on x0. If x0 = k∞ < ∞, by arguing as in the proof
above and by taking the limit at infinity we obtain x∞ = x0 which contradict the
fact that x(t) > k(t), i.e. ẋ(t) < 0, for all t > t0.
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(ii) if x0 > k∞ > k0, i.e. k∞ < ∞, we must have x∞ = limt→+∞ x(t) < ∞. In
addition, if we set limt→+∞

∫ t
t0
β(u)du = l, from (2.4), we have

(x0 − k0)e−l − (k∞ − k0) ≤ x∞ − k∞ ≤ (x0 − k∞)e−l. (2.8)

If l = +∞, from (2.8), it follows that x∞ ≤ k∞ and hence, x(t) has the same
asymptotic behaviour as in (i). If l < +∞, from (2.8), it follows that x∞ ≥ k∞
if x0 ≥ k0 + (k∞ − k0)el, and the solution x(t) is always decreasing. If x0 ≤
k0 + (k∞ − k0)el, the solution decreases or has the same asymptotic behaviour as
in (i). �

The following result gives us some information about the asymptotic behaviour
of the solution to the linear problem (2.1) when the time dependent coefficients
α(t) and β(t) are not necessary bounded.

Theorem 2.3. Let k(t) and x(t) be defined as in Lemma 2.1 and set

k∞ = lim
t→+∞

k(t), x∞ = lim
t→+∞

x(t).

Then
(a) If limt→+∞

∫ t
t0
α(u)du < +∞, then x∞ < +∞.

(b) If limt→+∞
∫ t
t0
α(u)du = +∞, then

(I) if limt→+∞
∫ t
t0
β(u)du = l < +∞, then x∞ = +∞;

(II) if limt→+∞
∫ t
t0
β(u)du = +∞, then x∞ = k∞, and

(i) if k∞ < +∞, then limt→+∞(x(t)− k(t)) = 0;
(ii) if k∞ = +∞, then limt→+∞(x(t) − k(t)) = − limt→+∞

k̇(t)
β(t) if

this limit exists.

Proof. (a) If limt→+∞
∫ t
t0
α(u)du < +∞, then from the fact that α(t) = k(t)β(t),

and k(t) > k0 > 0 for all t ∈ I, it follows that limt→+∞
∫ t
t0
β(u)du < +∞. Hence,

lim
t→+∞

∫ t

t0

α(u)e
R u
t0
β(τ)dτ

du ≤ lim
t→+∞

e
R t
t0
β(u)du

∫ t

t0

α(u)du < +∞.

Thus, from (2.2) it follows that x∞ < +∞.
(b) Let us suppose that limt→+∞

∫ t
t0
α(u)du = +∞. As∫ t

t0

α(u)du ≤
∫ t

t0

α(u)e
R u
t0
β(τ)dτ

du,

it follows that

lim
t→+∞

∫ t

t0

α(u)e
R u
t0
β(τ)dτ

du = +∞. (2.9)

(I) If limt→+∞
∫ t
t0
β(u)du = l < +∞, then from (2.2), and (2.9), it follows that

limt→+∞ x(t) =∞.
(II) If limt→+∞

∫ t
t0
β(u)du = +∞, then from (2.2) and (2.9), and by using the

L’Hôpital’s rule we obtain

x∞ = lim
t→+∞

x(t) = lim
t→+∞

∫ t
t0
α(τ)e

R τ
t0
β(u)du

dτ

e
R t
t0
β(u)du
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= lim
t→+∞

α(t)e
R t
t0
β(u)du

β(t)e
R t
t0
β(u)du

= lim
t→+∞

α(t)
β(t)

= lim
t→+∞

k(t) = k∞.

(i) If k∞ <∞, we have that limt→+∞(x(t)− k(t)) = x∞ − k∞ = 0.
(ii) If limt→+∞ k(t) =∞, as limt→+∞

∫ t
t0
β(u)du = +∞ it follows that

lim
t→+∞

(x(t)− k(t))

= lim
t→+∞

(
(x0 −

α0

β0
)e−

R t
t0
β(u)du − e−

R t
t0
β(u)du

∫ t

t0

k̇(u)e
R u
t0
β(τ)dτ

)
= − lim

t→+∞

∫ t
t0
k̇(u)e

R u
t0
β(τ)dτ

e
R t
t0
β(u)du

.

In addition, as k(t) is an non decreasing function, we have for all t > t0,

k̇(u) ≤ k̇(u)e
R u
t0
β(τ)dτ

du ≤ k̇(u)e
R t
t0
β(τ)dτ

,

thus

k(t)− k(t0) ≤
∫ t

t0

k̇(u)e
R u
t0
β(τ)dτ

du ≤ (k(t)− k(t0))e
R t
t0
β(τ)dτ

,

and limt→+∞
∫ t
t0
k̇(u)e

R u
t0
β(τ)dτ

du = +∞. Thus

lim
t→+∞

x(t)− k(t) = − lim
t→+∞

∫ t
t0
k̇(u)e

R u
t0
β(τ)dτ

e
R t
t0
β(u)du

= − lim
t→+∞

k̇(t)
β(t)

,

if this limit exists. �

Example 2.4 ([1], Linear asymptote). Let β(t) = a, and k(t) = pt + q, where
a > 0, p > 0, and q ≥ 0. From (2.4) we have

x(t) = e−a(t−t0)
(
x0 +

∫ t

t0

aea(x−t0)(px+ q)dx
)
,

= k(t)− p/a+ (x0 − (k0 − p/a))e−a(t−t0),

where x0 = x(t0) and k0 = k(t0). From Lemma 2.2 we have
(1) If x0 < k0, then x(t) is increasing and x(t) < k(t) for all t. In this case x(t)

is convex if x0 > k0 − p/a and concave if not.
(2) If x0 ≥ k0, then x(t) is convex and intersects k(t) at t∗ = t0 +ln(1+ a

p (x0−
k0))/a, with t∗ = argminx(t). In this case, x(t) increases if t > t∗ and
decreases if not.

Moreover we have

lim
t→+∞

(x(t)− k(t)) = − lim
t→+∞

k̇(t)
β(t)

= − b
a
.

In the next example, we give some hypothesis on β(t) which ensure that the limit
at infinity between the solution to the differential equation (2.1) and a curvilinear
carrying capacity k(t) vanishes.
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Example 2.5 (Curvilinear asymptote). Let α(t), and β(t) be two continuous func-
tions such that

k(t) =
α(t)
β(t)

= ptλ + q,

with t > 0, p > 0, q ≥ 0, and suppose that
β(t)
tγ
≥ c > 0, for all t > 0,

with 0 < λ < γ + 1. The unique solution to the initial value problem

ẋ(t) = α(t)− β(t)x(t), t ≥ t0,
x(t0) = x0,

has the following asymptotic property,

lim
t→+∞

(x(t)− k(t)) = 0.

Indeed, as β(t) ≥ ctγ , and k(t)β(t) = α(t) it follows that∫ +∞

t0

β(τ)dτ =
∫ +∞

t0

α(τ)dτ = +∞.

From Theorem 2.3, and limt→+∞ k(t) = +∞, it follows that limt→+∞(x(t)−k(t)) =
− limt→+∞

k̇(t)
β(t) . In addition, we have

0 ≤ k̇(t)
β(t)

≤ k̇(t)
ctγ

=
λp

c
tλ−(γ+1).

As 0 < λ < γ + 1, it follows that limt→+∞
k̇(t)
β(t) = 0. Thus,

lim
t→+∞

(x(t)− k(t)) = − lim
t→+∞

k̇(t)
β(t)

= 0.

2.2. Decreasing case. In this section, we suppose that k(t) is a non increasing
function

k(t1) ≥ k(t2) for all t1, t2 ∈ I such that t1 < t2. (2.10)
We have the following result.

Lemma 2.6. Let k(t) = α(t)/β(t) : I → R+ be defined such that α(t) > 0, and
β(t) > 0 for all t. Suppose that k(t) satisfies the assumptions (2.3) and (2.10), and
let x(t) be the solution of (2.1) passing through the point (t0, x0). If for some s ∈ I
we have x(s) = k(s), then x(t) ≥ k(t) for all t ≥ s. More precisely,

• x(t) = k(t), and ẋ(t) = 0, for all t ∈ Js, and
• x(t) > k(t), and ẋ(t) < 0, for all t > ts = sup Js.

Proof. Let x(t) be the solution of (2.1) passing through the point (t0, x0), and let
s ∈ I such that x(s) = k(s). From (2.6), we have x(t) = k(t) for all t ∈ Js. Let
ts = sup Js ∈ Js, it follows that x(ts) = k(ts) = k(s) and k(t) < k(ts) for all t > ts.
Thus, by considering the solution passing through the point (ts, x(ts)), we have

x(t) = k(t) +
(

(x(ts)− k(ts))e
−

R t
ts
β(u)du − e−

R t
ts
β(u)du

∫ t

ts

k̇(u)e
R u
ts
β(τ)dτdu

)
,

= k(t)−
∫ t

ts

k̇(u)e
R u
t
β(τ)dτdu > k(t).
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�

The following result characterizes the behaviour of any solution of (2.1) in the
case where k(t) is decreasing.

Theorem 2.7. Let k(t) and x(t) be defined as in Lemma 2.6. Also let k∞ =
limt→+∞ k(t) and x∞ = limt→+∞ x(t). Then

(a) if x0 > k0, then x(t) > k(t), and ẋ(t) < 0, for all t ∈ I;
(b) if x0 = k0, then x(t) ≥ k(t), and ẋ(t) ≤ 0, for all t ∈ I;
(c) if 0 ≤ x0 < k0, we have two cases to consider

(i) if x0 ≥ k∞, then it will exists some s > t0 where s = argmaxx(t) such
that x(s) = k(s), and in this case x(t) increases if t < s and decreases
if t > s;

(ii) if x0 < k∞, then either x(t) has the same behaviour as in (i), or
x(t) < k(t), and ẋ(t) > 0, for all t ∈ I.

Proof. The proofs of the assertions (a) and (b) follow immediately from (2.4) and
Lemma 2.6. Let us prove (c).

(i) If k0 > x0 > k∞, from (2.1), it follows that ẋ(t0) > 0. By continuity, we also
have ẋ(t) > 0 for all t provided that x(t) < k(t). We will prove that, there exists
some s > t0 such that x(s) = k(s) and x(t) decreases for t > s with x(t) > k(t).
Indeed, suppose that x(t) < k(t) for all t > t0. Thus, from (2.1), we have that
ẋ(t) > 0 for all t ≥ t0 and hence, k(t) > x(t) > x(t0) = x0. By taking the limit at
infinity we obtain k∞ ≥ x0 which contradicts our assumption on x0.

If x0 = k∞, by arguing as in the proof above and by taking the limit at infinity
we obtain x∞ = x0 which contradict the fact that x(t) < k(t), i.e. ẋ(t) > 0, for all
t > t0.

(ii) Suppose that 0 ≤ x0 < k∞ < k0. If we set limt→+∞
∫ t
t0
β(u)du = l, from

(2.4), we have

(x0 − k∞)e−l ≤ x∞ − k∞ ≤ (x0 − k0)e−l − (k∞ − k0). (2.11)

If l = +∞, from (2.11), it follows that x∞ ≥ k∞ and hence, x(t) has the same
asymptotic behaviour as in (i). If l < +∞, from (2.11), it follows that x∞ ≤ k∞
if x0 ≤ k0 + (k∞ − k0)el, and the solution x(t) is always increasing. If x0 ≥
k0 + (k∞ − k0)el, the solution increases or has the same asymptotic behaviour as
in (i). �

The following result gives us some information about the asymptotic behaviour
of the solution to the linear problem (2.1) when the time dependent coefficients
α(t) and β(t) are not necessary bounded.

Theorem 2.8. Let k(t) and x(t) be defined as in Lemma 2.6. Also let k∞ =
limt→+∞ k(t), and x∞ = limt→+∞ x(t). Then

(a) If limt→+∞
∫ t
t0
α(u)du = +∞, then x∞ = k∞ ≥ 0.

(b) If limt→+∞
∫ t
t0
α(u)du < +∞, then

(I) if limt→+∞
∫ t
t0
β(u)du = +∞, then x∞ = k∞ = 0;

(II) if limt→+∞
∫ t
t0
β(u)du = l < +∞, then

k∞ + (x0 − k∞)e−l ≤ x∞ ≤ k0 + (x0 − k0)e−l.
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Proof. (a) If limt→+∞
∫ t
t0
α(u)du = +∞, as α(t) = k(t)β(t), and k(t) ≤ k0 for

all t ∈ I, it follows that limt→+∞
∫ t
t0
β(u)du = +∞. In addition,

∫ t
t0
α(u)du ≤∫ t

t0
α(u)e

R u
t0
β(τ)dτ

du, hence

lim
t→+∞

∫ t

t0

α(u)e
R u
t0
β(τ)dτ

du = +∞.

Thus, by using L’Hôpital’s rule we have

x∞ = lim
t→+∞

x(t) = lim
t→+∞

∫ t
t0
α(τ)e

R τ
t0
β(u)du

dτ

e
R t
t0
β(u)du

= lim
t→+∞

α(t)e
R t
t0
β(u)du

β(t)e
R t
t0
β(u)du

= lim
t→+∞

α(t)
β(t)

= lim
t→+∞

k(t) = k∞ ≥ 0.

(b) Let us suppose that limt→+∞
∫ t
t0
α(u)du < +∞.

(I) If limt→+∞
∫ t
t0
β(u)du = +∞, then from (2.2) and the dominated convergence

Theorem, it follows that

lim
t→+∞

x(t) = lim
t→+∞

∫ t

t0

α(τ)e−
R t
τ
β(u)dudτ = 0.

As x∞ ≥ k∞ ≥ 0 it follows that k∞ = 0.
(II) If limt→+∞

∫ t
t0
β(u)du = l < +∞, then from (2.4) the result follows. �

Example 2.9 (Hyperbolic asymptote, first case). Let k(t) = 1/(pt+q), and α(t) =
1/(t + 1)γ where p > 0, q > 0, and x(t) be the solution of (2.1) passing through
the point (t0, x0) where t0 = 0. From Theorem 2.8 we have

If γ ≤ 1 then limt→+∞
∫ t
t0
α(u)du = +∞ and hence x∞ = k∞ = 0.

If γ > 1, then α(t) is decreasing with α(0) = 1 and limt→+∞
∫ t
t0
α(u)du = 1

γ−1 .
Moreover, β(t) = (pt+ q)/(t+ 1)γ , β(0) = q, and we have

lim
t→+∞

∫ t

t0

β(u)du =

{
l = p

γ−2 + q−p
γ−1 if γ > 2,

+∞ if 1 < γ ≤ 2.

Hence,

• If 1 < γ ≤ 2, then x∞ = k∞ = 0.
• If γ > 2, then

x0e
−l ≤ x∞ ≤ x0e

−l +
1
q

(1− e−l).

Example 2.10 (Hyperbolic asymptote, second case). Let k(t) = 1/(ptλ + q), and
α(t) = 1/tγ where λ > 0, p > 0, q > 0, and x(t) be the solution of (2.1) passing
through the point (t0, x0) where t0 = 1. From Theorem 2.8 we have

• If γ ≤ 1 then limt→+∞
∫ t
t0
α(u)du = +∞ and hence x∞ = k∞ = 0.
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• If γ > 1, then α(t) is decreasing with α(1) = 1 and limt→+∞
∫ t
t0
α(u)du =

1
γ−1 < +∞. Moreover, β(t) = (ptλ + q)/tγ , and we have

lim
t→+∞

∫ t

t0

β(u)du =

{
l = p

γ−λ−1 + q
γ−1 if γ > λ+ 1,

+∞ if 1 < γ ≤ λ+ 1.

Hence,
• If 1 < γ ≤ λ+ 1, then x∞ = k∞ = 0.
• If γ > λ+ 1, then

x0e
−l ≤ x∞ ≤ x0e

−l +
1
q

(1− e−l).

3. Subsolution and supersolution

The following theorem gives us some information on the boundedness of the
solution x(t) of (2.1) passing through a point (t0, x0) when the carrying capacity
k(t) = α(t)/β(t) is bounded above and below by given positive functions.

Theorem 3.1. Let k : I → (0,+∞) be defined such that α(t) > 0, and β(t) > 0
for all t, and let x(t) be the solution of (2.1) passing through the point (t0, x0).
Suppose that there exist two functions k, k : I → (0,+∞) such that

k(t) ≤ k(t) ≤ k(t), for all t ≥ t0. (3.1)

In addition, let x(t) and x(t) be respectively the solutions of the auxiliary problems

ẋ(t) = β(t)(k(t)− x(t)),

ẋ(t) = β(t)(k(t)− x(t)),
(3.2)

with x(t0) = x(t0) = x(t0). Then, we have

x(t) ≤ x(t) ≤ x(t), for all t ≥ t0. (3.3)

Proof. The solutions ε(t) = x(t)− x(t), and ε(t) = x(t)− x(t) of the auxiliary
problems

ε̇(t) = β(t)((k(t)− k(t))− (x(t)− x(t)))),

ε̇(t) = β(t)((k(t)− k(t))− (x(t)− x(t))),

with ε(t0) = ε(t0) = 0 are respectively

ε(t) = e
−

R t
t0
β(u)du

∫ t

t0

β(τ)(k(τ)− k(τ))e
R τ
t0
β(u)dudτ

,

ε(t) = e
−

R t
t0
β(u)du

∫ t

t0

β(τ)(k(τ)− k(τ))e
R τ
t0
β(u)dudτ

.

From (3.1) it follows that ε(t) ≥ 0, ε(t) ≥ 0, and hence the inequalities (3.3)
follow. �

The following corollary is an immediate consequence of Theorem 3.1.

Corollary 3.2 (Increasing case). Let k, k : I → (0,+∞) be defined by

k(t) = max{k(τ) : t0 ≤ τ ≤ t}, and k(t) = min{k(τ) : τ ≥ t},
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and let x(t) and x(t) be respectively the solutions of the auxiliary problems (3.2),
with x(t0) = x(t0) = x(t0). Then,

x(t) ≤ x(t) ≤ x(t), for all t ≥ t0. (3.4)

Proof. It will be noted that k(t) and k(t) are respectively the least upper and the
greatest lower bounds of the sets of all increasing function f(t), such that k(t) ≤
f(t), respectively k(t) ≥ f(t). Hence, k(t) and k(t) are positive and increasing
functions with k(t) ≤ k(t) ≤ k(t) for all t ≥ t0. From Theorem 3.1 the inequalities
(3.4) follow immediately. �

Example 3.3. Let k(t) = pt + q(1 + r sin(ωt)) and β(t) = a, where p ≥ 0, q ≥ 0,
0 < r ≤ 1, ω > 0, and a > 0. From (2.4), and Example 2.4 we have

x(t) = k(t)− p/a+ (x0 − (k0 − p/a))e−a(t−t0) − rqω

a2 + ω2
[φ(t)− φ(t0)e−a(t−t0)],

where x0 = x(t0), k0 = k(t0), and φ(t) = (ω sin(ωt) + a cos(ωt)). It will be noted
that, for a large values of t, we have

x(t)− k(t) ≈ −p/a− rqω

a2 + ω2
φ(t).

On the other hand, let k˜(t) and k̃(t) be defined by

k˜(t) = pt+ q(1− r), and k̃(t) = pt+ q(1 + r).

Obviously, k˜ and k̃ are non decreasing functions and satisfy the inequalities

k˜(t) ≤ k(t) ≤ k(t) ≤ k(t) ≤ k̃(t), for all t ≥ t0.

It follows from Corollary 3.2, that

x˜(t) ≤ x(t) ≤ x̃(t), for allt ≥ t0,

where

x˜(t) = k˜(t)− p/a+ (x˜0

− (k˜0

− p/a))e−a(t−t0),

x̃(t) = k̃(t)− p/a+ (x̃0 − (k̃0 − p/a))e−a(t−t0),

are respectively the solutions of (2.1) with carrying capacities k˜(t) and k̃(t) respec-

tively. Figures 1 and 2 illustrates respectively the cases p > 0 and p = 0.

The following corollary is an immediate consequence of Theorem 3.1.

Corollary 3.4 (Decreasing case). Let k, k : I → (0,+∞) be defined by

k(t) = max{k(τ) : τ ≥ t} and k(t) = min{k(τ) : t0 ≤ τ ≤ t},
and let x(t) and x(t) be respectively the solutions of the auxiliary problems (3.2),
with x(t0) = x(t0) = x(t0). Then

x(t) ≤ x(t) ≤ x(t), for all t ≥ t0.

The proof can be done in a similar way as done in the proof of Corollary 3.2.
Hence it is omitted.
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(a) x0 < k0 (b) x0 > k0

Figure 1. Representation of the solution x(t) (solid line) with its
lower and upper bound solutions x˜(t) and x̃(t) (long dashed line),

and the carrying capacity k(t) (black line) when p > 0.

(a) x0 < k0 (b) x0 > k0

Figure 2. Representation of the solution x(t) (solid line) with its
lower and upper bound solutions x˜(t) and x̃(t) (long dashed line),

and the carrying capacity k(t) (black line) when p = 0.

Example 3.5. Let k(t) = pe−σ(t−t0)(1 + r sin(ωt)) and β(t) = a, where p > 0,
σ ≥ 0, 0 < r ≤ 1, ω > 0, and a > 0. Two cases would be considered. If a 6= σ, the
solution of the problem (2.1) is

x(t) = e−a(t−t0)
[ ap

a− σ
(e(a−σ)(t−t0) − 1) +

rap

(a− σ)2 + ω2
(e(a−σ)(t−t0)ϕ(t)− ϕ(t0))

]
+ x0e

−a(t−t0),

where ϕ(t) = (a− σ) sin(ωt)− ω cos(ωt). Otherwise, the solution is

x(t) = e−a(t−t0)
[
ap(t− r

ω
cos(ωt))− ap(t0 −

r

ω
cos(ωt0)) + x0

]
.

In both cases, let k˜(t) and k̃(t) be defined by

k˜(t) = pe−σ(t−t0)(1− r), k̃(t) = pe−σ(t−t0)(1 + r).
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Obviously, k˜ and k̃ are non increasing functions and satisfy the inequalities

k˜(t) ≤ k(t) ≤ k(t) ≤ k(t) ≤ k̃(t), for all t ≥ t0.

It follows from Corollary 3.4, that

x˜(t) ≤ x(t) ≤ x̃(t), for all t ≥ t0,

where

x˜(t) =
(1− r)ap
a− σ

(
e−σ(t−t0) − e−a(t−t0)

)
+ x0e

−a(t−t0),

x̃(t) =
(1 + r)ap
a− σ

(
e−σ(t−t0) − e−a(t−t0)

)
+ x0e

−a(t−t0),

are respectively the solutions of (2.1) with carrying capacities k˜(t) and k̃(t) respec-

tively for the case a 6= σ. In the case a = σ, x˜(t) and x̃(t) are given by

x˜(t) = e−a(t−t0)(ap(1− r)(t− t0) + x0), x̃(t) = e−a(t−t0)(ap(1 + r)(t− t0) + x0).

An illustration is given in Figure 3.

(a) x0 < k0 (b) x0 > k0

Figure 3. Representation of the solution x(t) (solid line) with its
lower and upper bound solutions x˜(t) and x̃(t) (long dashed line),

and the carrying capacity k(t) (black line) when a 6= σ.

4. A product decomposition of the solution

In this section, we present a decomposition for the solution of (1.1) and (1.2) as
the product of the carrying capacity and the solution to a corresponding differential
equation with a constant carrying capacity. The next two theorems present these
results.

Theorem 4.1 (Linear equation). Let α, β ∈ C1(I; (0,+∞)), k(t) = α(t)/β(t) > 0
for all t ≥ t0, and k(t) ∈ AC1

loc(I). We have the following product decomposition
of the solution.
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(i) The unique solution to

˙̃x(t) = α(t)−
(
β(t)− k̇(t)

k(t)
)
x̃(t), t ≥ t0,

x̃(t0) = x̃0,

(4.1)

is
x̃(t) = k(t)ω(t), (4.2)

where ω(t) is the solution of

ω̇(t) = β(t)(1− ω(t)), t ≥ t0,
ω(t0) = x̃0/k0.

(4.3)

(ii) Let β̃(t) be the solution of

˙̃
β(t) = 1−

( α̇(t)
α(t)

+ β(t)
)
β̃(t), t ≥ t0,

β̃(t0) > 0.
(4.4)

Let us set
k̃(t) = α(t)β̃(t), (4.5)

and let ω̃(t) be the solution of

˙̃ω(t) =
1
β̃(t)

(1− ω̃(t)), t ≥ t0,

ω̃(t0) = ω̃0 = x0/k̃0.

(4.6)

Then the solution of (2.1) passing through the point (t0, x0) is

x(t) = k̃(t)ω̃(t), (4.7)

where k̃(t) is a solution of (2.1) passing through the point (t0, k̃0). Moreover,

lim
t→+∞

(x(t)− k̃(t)) =

{
0 if limt→+∞

∫ t
t0
β(u)du = +∞,

(x0 − k̃0)e−l if limt→+∞
∫ t
t0
β(u)du = l.

(4.8)

Proof. (i) From (2.2), the unique solution of (4.1) is

x̃(t) = e
−

R t
t0

(β(u)− k̇(u)
k(u) )du

(
x̃0 +

∫ t

t0

α(τ)e
R τ
t0

(β(u)− k̇(u)
k(u) )dudτ

)
= e
−

R t
t0
β(u)du

eln
k(t)
k0

(
x̃0 +

∫ t

t0

α(τ)e
R τ
t0
β(u)du

e− ln
k(τ)
k0 dτ

)
=
k(t)
k0

e
−

R t
t0
β(u)du

(
x̃0 + k0

∫ t

t0

α(τ)
k(τ)

e
R τ
t0
β(u)du

dτ
)

=
k(t)
k0

e
−

R t
t0
β(u)du

(
x̃0 + k0(e

R t
t0
β(u)du − 1)

)
= k(t)

(
1 +

( x̃0

k0
− 1
)
e
−

R t
t0
β(u)du

)
= k(t)ω(t),

(4.9)

where ω(t) is the solution of the initial value problem (4.3).
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(ii) From (4.5) and (4.4), we show that k̃(t) is the solution of (2.1) because
˙̃
k(t) = α̇(t)β̃(t) + α(t) ˙̃

β(t) = α(t)− β(t)k̃(t). (4.10)

Then using (4.7), (4.10) and (4.6), we have

ẋ(t) = ˙̃
k(t)ω̃(t) + k̃(t) ˙̃ω(t)

=
(
α(t)− β(t)k̃(t)

)
ω̃(t) +

k̃(t)
β̃(t)

(1− ω̃(t))

= α(t)ω̃(t)− β(t)k̃(t)ω̃(t) + α(t)− α(t)ω̃(t)

= α(t)− β(t)k̃(t)ω̃(t)

= α(t)− β(t)x(t).

Thus, x(t) is the solution of (2.1) passing through the point (t0, x0).
In addition, since both x(t) and k̃(t) are solution of (2.1), from (2.2) we have

x(t)− k̃(t) = (x0 − k̃0)e−
R t
t0
β(u)du

and (4.8) follows directly. �

The results presented in Theorem 4.1 can then be applied to the logistic equation
(1.2) and we have the following theorem.

Theorem 4.2 (Logistic equation). Let α, β ∈ C1(I; (0,+∞)), k(t) = α(t)/β(t) >
0 for all t ≥ t0, and suppose k(t) ∈ AC1

loc(I). We have the following product
decomposition of the solution.

(i) The unique solution to

˙̃x(t) =
(
β(t)− k̇(t)

k(t)
)
x̃(t)− α(t)x̃2(t), t ≥ t0,

x̃(t0) = x̃0,

(4.11)

is

x̃(t) =
w(t)
k(t)

, (4.12)

where w(t) is the solution of

ẇ(t) = β(t)w(t)(1− w(t)), t ≥ t0,
w(t0) = k0x̃0.

(4.13)

(ii) Let β̃(t) be the solution of

˙̃
β(t) = (

α̇(t)
α(t)

+ β(t))β̃(t)− β̃2(t), t ≥ t0,

β̃(t0) > 0.
(4.14)

Let us set

k̃(t) =
β̃(t)
α(t)

,

and let w̃(t) be the solution of the initial value problem

˙̃w(t) = β̃(t)w̃(t)(1− w̃(t)), t ≥ t0,

w̃(t0) = k̃0x̃0.
(4.15)
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Then the solution of (1.2) passing through the point (t0, x0) is

x(t) = k̃(t)w̃(t), (4.16)

where k̃(t) is the solution of (1.2) passing through the point (t0, k̃0).

Proof. (i) and (ii) are directly obtained from Theorem 4.1 using the application
x 7→ y = x−1. �

Conclusion. The goal of this study has been to make a qualitative study of the
solutions of the linear and logistic differential equations. We have obtained new
results on the behaviour and the asymptotic behaviour of any solution to these
differential equations in the case where the coefficients are time dependent. We
have studied the monotone case and also the non monotone case when it is possible
to construct subsolution and supersolution. Finally we obtain a product decompo-
sition of the solution for some special form of these models.
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