Electronic Journal of Differential Equations, Vol. 2016 (2016), No. 180, pp. 1–7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

MULTIPLE POSITIVE SOLUTIONS FOR DIRICHLET PROBLEM OF PRESCRIBED MEAN CURVATURE EQUATIONS IN MINKOWSKI SPACES

RUYUN MA, TIANLAN CHEN

ABSTRACT. In this article, we consider the Dirichlet problem for the prescribed mean curvature equation in the Minkowski space,

$$-\operatorname{div}\left(\frac{\nabla u}{\sqrt{1-|\nabla u|^2}}\right) = \lambda f(u) \quad \text{in } B_R$$
$$u = 0 \quad \text{on } \partial B_R,$$

where $B_R := \{x \in \mathbb{R}^N : |x| < R\}, \lambda > 0$ is a parameter and $f : [0, \infty) \to \mathbb{R}$ is continuous. We apply some standard variational techniques to show how changes in the sign of f lead to multiple positive solutions of the above problem for sufficiently large λ .

1. INTRODUCTION

In this article we show the existence of multiple positive solutions of Dirichlet problem in a ball, associated to the mean curvature operator in the flat Minkowski space \mathbb{L}^{N+1} with (x_1, \ldots, x_N, t) and metric $\sum_{i=1}^{N} (dx_i)^2 - (dt)^2$. These problems are of interest in differential geometry and in general relativity. It is known [1, 11] that the study of spacelike submanifolds of codimension one in \mathbb{L}^{N+1} with prescribed mean extrinsic curvature leads to Dirichlet problems of the form

$$-\operatorname{div}\left(\frac{\nabla u}{\sqrt{1-|\nabla u|^2}}\right) = f(x,u) \quad \text{in } \Omega, u = 0 \quad \text{on } \partial\Omega, \tag{1.1}$$

where Ω is a bounded domain in \mathbb{R}^N and $f: \Omega \times \mathbb{R} \to \mathbb{R}$ is continuous.

This topic has been largely discussed in the literature for (1.1) in the special cases that N = 1 or Ω is a ball (or an annulus) in \mathbb{R}^N , see [2, 3, 4, 5, 7, 8, 14, 15] and the references contained therein. Note that Coelho, Corsato, Obersnel and Omari [7] proved the existence of one or multiple positive solutions of (1.1) with N = 1 provided that f is L^p -Caratheodory function, but the positivity of f is not required. Moreover, Bereanu, Jebelean and Torres [3] applied Leray-Schauder degree arguments and critical point theory to show existence of positive radial solutions for (1.1) when $\Omega = B_R := \{x \in \mathbb{R}^N : |x| < R\}$ and f is positive on $[0, R] \times [0, \alpha)$ with $\alpha \geq R$. Of course, the natural question is what would happen if $f(|x|, s) \equiv f(s)$ and f changes its sign in $[0, \alpha)$.

variational methods.

²⁰¹⁰ Mathematics Subject Classification. 35B15, 34K28, 34L30, 35J60, 35J65.

Key words and phrases. Dirichlet problem; Minkowski-curvature; positive solutions;

^{©2016} Texas State University.

Submitted June 3, 2016. Published July 7, 2016.

Recently, Ma and Lu [15] used the quadrature arguments to study the existence and multiplicity of positive solutions of the nonlinear eigenvalue problem

$$\left(\frac{u'}{\sqrt{1-\kappa u'^2}}\right)' + \lambda f(u) = 0 \text{ in } (0,1), \quad u(0) = u(1) = 0, \tag{1.2}$$

where $\kappa > 0$ is a constant and f satisfies

- (A1) $f \in C^1([0, \frac{1}{2\sqrt{\kappa}}));$ (A2) Either f(0) > 0 or

$$f(0) = 0, \quad f_0 = \lim_{s \to 0+} \frac{f(s)}{\psi(s)} > 0, \quad \psi(s) = \frac{s}{\sqrt{1 - \kappa s^2}};$$

(A3) There exist $0 < a_1 < b_1 < a_2 < b_2 < \dots < b_{m-1} < a_m < \frac{1}{2\sqrt{\kappa}}$ such that $f(a_i) \le 0, \ f(b_i) > 0$ and $F(b_i) > F(u)$ for all $0 \le u \le b_i, \ i = 1, 2, \dots, m-1$.

They showed the existence of at least 2m-1 positive solutions provided λ is large enough. Their result is an analogous of the well-known result due to Brown and Budin [6], who established the result of (1.2) with $\kappa = 0$ by using a generalization of a quadrature technique of Laetsch [12].

Motivated by above papers, this article is devoted to studying how changes in the sign of f lead to multiple positive solutions for the Dirichlet problem

$$-\operatorname{div}\left(\frac{\nabla u}{\sqrt{1-|\nabla u|^2}}\right) = \lambda f(u) \quad \text{in } B_R,$$

$$u = 0 \quad \text{on } \partial B_R$$
(1.3)

for $\lambda > 0$ sufficiently large. Assume throughout that $f: [0, \infty) \to \mathbb{R}$ is continuous and satisfies:

- (A4) $f(0) \ge 0$ and there exist $0 < a_1 < b_1 < a_2 < b_2 < \cdots < b_{m-1} < a_m < R$ such that $f(s) \leq 0$ if $s \in (a_k, b_k)$ and $f(s) \geq 0$ if $s \in (b_k, a_{k+1})$ for all (A5) $k = 1, \dots, m-1;$ (A5) $\int_{a_k}^{a_{k+1}} f(s) ds > 0$ for all $k \in \{1, \dots, m-1\}.$

Our main result is the following theorem.

Theorem 1.1. Assume (A4), (A5). Then there exists a number $\overline{\lambda} > 0$ such that for all $\lambda > \overline{\lambda}$, problem (1.3) has at least m-1 positive solutions $u_1, u_2, \ldots, u_{m-1} \in$ $H_0^1(B_R) \cap L^{\infty}(B_R)$ and $||u_k||_{\infty} \in (a_k, a_{k+1}]$ for all $k = 1, \ldots, m-1$.

Remark 1.2. It would be interesting to investigate a similar version of Theorem 1.1 for Dirichlet problem (1.1) with $\Omega \subset \mathbb{R}^N$ bounded, sufficiently smooth.

The proof of our main result will be given in the next section and follows ideas used in [7, 8, 13], suitably modified and expanded for the case being considered. For the earlier results on the semilinear problem, see [9, 10].

Now we list a few notation that will be used in this paper. Let $E = H_0^1(B_R)$ with the usual norm $||u|| = \left(\int_{B_R} |\nabla u|^2 dx\right)^{1/2}$. The norm $||\cdot||_{\infty}$ is considered on $L^{\infty}(B_R)$. We also define $\phi : (-1,1) \to \mathbb{R}$ by $\phi(s) = \frac{s}{\sqrt{1-s^2}}$ and $\phi_N(y) = \frac{y}{\sqrt{1-|y|^2}}, y \in \mathbb{R}^N$ with $|\cdot|$ stands for the Euclidean norm in \mathbb{R}^N .

EJDE-2016/180

2. Proof of the main result

The following Lemma is a consequence of the weak maximum principle for the ϕ -Laplace operator.

Lemma 2.1. Let $g : \mathbb{R} \to \mathbb{R}$ be a continuous function and there exists $a_0 \in (0, R)$ such that $g(s) \ge 0$ if $s \in (-\infty, 0)$ and $g(s) \le 0$ if $s \ge a_0$. If u is a non-trivial solution of

$$-\operatorname{div}\left(\frac{\nabla u}{\sqrt{1-|\nabla u|^2}}\right) = g(u) \text{ in } B_R, \quad u = 0 \text{ on } \partial B_R, \tag{2.1}$$

then u is positive a.e. and belongs to $L^{\infty}(B_R)$. Moreover, $||u||_{\infty} \leq a_0$.

Proof. Let $v = u^- = \max\{-u, 0\} \in E$, then

$$\nabla v = \begin{cases} -\nabla u, & u < 0, \\ 0, & u \ge 0. \end{cases}$$
(2.2)

Multiplying the equation in (2.1) by v and integrating by parts, we have

$$0 \ge -\int_{B_R} \frac{|\nabla v|^2}{\sqrt{1-|\nabla v|^2}} dx = \int_{B_R} \frac{\nabla u \cdot \nabla v}{\sqrt{1-|\nabla u|^2}} dx = \int_{B_R} g(u)v dx \ge 0.$$

Hence $\nabla v = 0$ a.e. in B_R and we conclude that $u \ge 0$ in B_R .

Next, choosing the test function $w = (u - a_0)^+ = \max\{u - a_0, 0\} \in E$ in the equation

$$\int_{B_R} \frac{\nabla u \cdot \nabla w}{\sqrt{1 - |\nabla u|^2}} dx = \int_{B_R} g(u) w dx,$$

we have $\nabla w = 0$ a.e. in B_R and therefore $u \leq a_0$, i.e., $||u||_{\infty} \leq a_0$.

Observe that there exists a constant $M \in (0, \infty)$ such that

$$|f(s)| \le M, \quad s \in [0, R]. \tag{2.3}$$

With the aim of finding positive solutions of (1.3), we introduce an equivalent formulation of the problem aforementioned. For k = 2, ..., m, let us define $f_k : \mathbb{R} \to \mathbb{R}$, by

$$f_k(s) = \begin{cases} f(0), & s \le 0, \\ f(s), & s \in (0, a_k), \\ 0, & s \ge a_k. \end{cases}$$
(2.4)

We notice that the function f_k shares the assumed properties of f. Moreover, if u is a non-trivial solution of

$$-\operatorname{div}\left(\frac{\nabla u}{\sqrt{1-|\nabla u|^2}}\right) = \lambda f_k(u) \text{ in } B_R, \quad u = 0 \text{ on } \partial B_R, \tag{2.5}$$

by Lemma 2.1, u is positive and $||u||_{\infty} \leq a_k$. Thus, u is also a positive solution of (1.3) and belongs to $L^{\infty}(B_R)$ with $||u||_{\infty} \leq a_k$.

For every $\lambda > 0$, set $\beta := \phi'\left(\phi^{-1}\left(\frac{\lambda MR}{N}\right)\right)$ and define $\chi_{\lambda} : \mathbb{R} \to \mathbb{R}$ such that

$$\chi_{\lambda}(s) = \begin{cases} \beta \left(s - \phi^{-1} \left(\frac{\lambda MR}{N} \right) \right) + \frac{\lambda MR}{N}, & \text{if } s > \phi^{-1} \left(\frac{\lambda MR}{N} \right), \\ \phi(s), & \text{if } |s| \le \phi^{-1} \left(\frac{\lambda MR}{N} \right), \\ \beta \left(s + \phi^{-1} \left(\frac{\lambda MR}{N} \right) \right) - \frac{\lambda MR}{N}, & \text{if } s < -\phi^{-1} \left(\frac{\lambda MR}{N} \right). \end{cases}$$
(2.6)

Let $\Pi_{\lambda} : \mathbb{R} \to \mathbb{R}$ be given by

$$\Pi_{\lambda}(y) = \int_0^y \chi_{\lambda}(\zeta) d\zeta.$$

Then

$$\frac{1}{2}y^2 \le \Pi_{\lambda}(y) \le \frac{1}{2}\beta y^2, \quad y \in \mathbb{R}.$$
(2.7)

Let the functional $\mathcal{I}_k(\lambda, \cdot) : E \to \mathbb{R}$ be defined by

$$\mathcal{I}_k(\lambda, u) = \int_{B_R} \Pi_\lambda(|\nabla u|) dx - \lambda \int_{B_R} F_k(u) dx,$$

where $F_k(s) = \int_0^s f_k(\sigma) d\sigma$. We denote by $K_k(\lambda)$ the set of critical points of \mathcal{I}_k .

Lemma 2.2. If u is in $K_k(\lambda)$, then u is a weak solution of

$$-\operatorname{div}(\psi_N(\nabla u)) = \lambda f_k(u) \text{ in } B_R, \quad u = 0 \text{ on } \partial B_R, \quad (2.8)$$

where

$$\psi_N(\nabla u) = \frac{\chi_\lambda(|\nabla u|)}{|\nabla u|} \nabla u.$$
(2.9)

Proof. Let $u \in K_k(\lambda)$. For any $\varphi \in C_0^{\infty}(B_R)$ and $\epsilon \in \mathbb{R}$, then $u + \epsilon \varphi \in E$. Since $\mathcal{T}_{\epsilon}(\lambda, u + \epsilon \varphi) = \mathcal{T}_{\epsilon}(\lambda, u)$

$$\begin{split} \mathcal{L}_{k}(\lambda, u + \epsilon\varphi) &= \mathcal{L}_{k}(\lambda, u) \\ &= \int_{B_{R}} \left[\Pi_{\lambda}(|\nabla u + \epsilon\nabla\varphi|) - \Pi_{\lambda}(|\nabla u|) \right] dx - \lambda \int_{B_{R}} \left[F_{k}(u + \epsilon\varphi) - F_{k}(u) \right] dx \\ &= \int_{B_{R}} \chi_{\lambda} \Big[|\nabla u| + \theta_{1}(|\nabla u + \epsilon\nabla\varphi| - |\nabla u|) \Big] \left(|\nabla u + \epsilon\nabla\varphi| - |\nabla u| \right) dx \\ &- \lambda \epsilon \int_{B_{R}} f_{k}(u + \theta_{2}\epsilon\varphi)\varphi dx \\ &= \int_{B_{R}} \chi_{\lambda} \Big[|\nabla u| + \theta_{1}(|\nabla u + \epsilon\nabla\varphi| - |\nabla u|) \Big] \frac{2\epsilon\nabla u \cdot \nabla\varphi + \epsilon^{2}|\nabla\varphi|^{2}}{|\nabla u + \epsilon\nabla\varphi| + |\nabla u|} dx \\ &- \lambda \epsilon \int_{B_{R}} f_{k}(u + \theta_{2}\epsilon\varphi)\varphi dx, \end{split}$$

for some constants $\theta_1, \theta_2 \in (0, 1)$, it follows that

$$0 = \lim_{\epsilon \to 0} \frac{\mathcal{I}_k(\lambda, u + \epsilon\varphi) - \mathcal{I}_k(\lambda, u)}{\epsilon}$$
$$= \int_{B_R} \chi_\lambda(|\nabla u|) \frac{\nabla u \cdot \nabla \varphi}{|\nabla u|} dx - \lambda \int_{B_R} f_k(u)\varphi dx$$
$$= \int_{B_R} \psi_N(\nabla u) \cdot \nabla \varphi dx - \lambda \int_{B_R} f_k(u)\varphi dx$$
$$= \int_{B_R} \left[-\operatorname{div} \left(\psi_N(\nabla u) \right) - \lambda f_k(u) \right] \varphi dx.$$

Thus, for any $\varphi \in C_0^{\infty}(B_R)$, u is a weak solution of (2.8).

Consequently, from Lemma 2.2, if u is in $K_k(\lambda)$, then u is a weak solution of (2.8). By a similar argument of Lemma 2.1 with $\psi_N(\nabla u)$ instead of $\phi_N(\nabla u)$, we can deduce that u is nonnegative and belongs to $L^{\infty}(B_R)$ with $||u||_{\infty} \leq a_k$.

EJDE-2016/180

 $(a_k, \infty), \mathcal{I}_k(\lambda, \cdot)$ is coercive and bounded from below. Further, it is weakly lower semi-continuous. Therefore there exists $u_k(\lambda)$ such that

$$\mathcal{I}_k(\lambda, u_k(\lambda)) = \inf \{ \mathcal{I}_k(\lambda, v) : v \in E \}.$$

The following Lemma shows that for $k = 2, \ldots, m, a_{k-1} < ||u_k||_{\infty} \leq a_k$ and therefore, (2.8) has at least m-1 solutions when $\lambda > 0$ sufficiently large.

Lemma 2.3. For k = 2, ..., m, there exists $\lambda_k > 0$ such that for all $\lambda > \lambda_k$, $u_k \notin K_{k-1}(\lambda).$

Proof. We shall show that there exist $\lambda_k > 0$ and $\varphi \in E$, $\varphi \ge 0$ and $\|\varphi\|_{\infty} \le a_k$, such that

$$\mathcal{I}_k(\lambda,\varphi) < \mathcal{I}_{k-1}(\lambda,u), \quad \lambda > \lambda_k$$

for all $u \in E$ satisfying $0 \le u \le a_{k-1}$.

From (A5), $\alpha := F(a_k) - \max\{F(s) : 0 \le s < a_{k-1}\} > 0$. Then, for all $u \in E$ satisfying $0 \le u \le a_{k-1}$,

$$\int_{B_R} F(u)dx \le \int_{B_R} F(a_k)dx - \alpha w_N R^N, \qquad (2.10)$$

where w_N is the measure of the unit ball in \mathbb{R}^N . For $\delta > 0$, let $\Omega_{\delta} := \{x \in B_R :$ $\operatorname{dist}(x, \partial B_R) < \delta$. By Lebesgue's Theorem, $|\Omega_{\delta}| \to 0$ as $\delta \to 0$. Moreover, for each $\delta > 0$, there exists $\varphi_{\delta} \in C_0^{\infty}(B_R)$ with $0 \le \varphi_{\delta} \le a_k$, $\varphi_{\delta}(x) = a_k$, for all $x \in B_R \setminus \Omega_{\delta}$. Thus

$$\int_{B_R} F(\varphi_{\delta}) dx = \int_{B_R \setminus \Omega_{\delta}} F(a_k) dx + \int_{\Omega_{\delta}} F(\varphi_{\delta}) dx$$
$$= \int_{B_R} F(a_k) dx - \int_{\Omega_{\delta}} \left(F(a_k) - F(\varphi_{\delta}) \right) dx \qquad (2.11)$$
$$\ge \int_{B_R} F(a_k) dx - 2C |\Omega_{\delta}|,$$

where $C = \max\{|F(s)| : 0 \le s \le a_k\}.$

By (2.10) and (2.11) we can choose and fix δ sufficiently small so that there exists $\eta := \alpha |\Omega| - 2C |\Omega_{\delta}| > 0$ such that $\varphi := \varphi_{\delta}$ satisfies

$$\int_{\Omega} F(\varphi) dx \geq \int_{\Omega} F(u) + \eta$$

for all $u \in E$ with $0 \le u \le a_{k-1}$. Therefore for all such u,

$$\begin{split} \mathcal{I}_{k}(\lambda,\varphi) - \mathcal{I}_{k-1}(\lambda,u) &= \int_{B_{R}} \left[\Pi_{\lambda}(|\nabla\varphi|) - \Pi_{\lambda}(|\nabla u|) \right] dx - \lambda \int_{B_{R}} \left[F(\varphi) - F(u) \right] dx \\ &\leq \int_{B_{R}} \Pi_{\lambda}(|\nabla\varphi|) dx - \lambda\eta < 0, \end{split}$$

provided $\lambda > 0$ is chosen sufficiently large. Hence for such λ the global minimum of \mathcal{I}_k cannot be obtained at any $u \in E$ such that $0 \leq u \leq a_{k-1}$, i.e. $u_k \notin K_{k-1}(\lambda)$. \Box

Lemma 2.4. A function $u \in E$ is a positive solution of (2.5) if and only if it is a positive solution of (2.8).

Proof. Suppose that u is a positive solution of (2.5). Hence, for fixed $r \in (0, R]$, from

$$\int_{B_r} \operatorname{div} \left(\frac{\nabla u}{\sqrt{1 - |\nabla u|^2}} \right) dx = \int_{B_r} \operatorname{div} \left(\frac{\phi(|\nabla u|)}{|\nabla u|} \nabla u \right) dx$$
$$= \int_{\partial B_r} \frac{\phi(|\nabla u|)}{|\nabla u|} \nabla u \cdot \mathbf{n} dS$$
(2.12)

it follows that

$$-\int_{\partial B_r} \frac{\phi(|\nabla u|)}{|\nabla u|} \nabla u \cdot \mathbf{n} dS = \lambda \int_{B_r} f_k(u) dx, \qquad (2.13)$$

where **n** denotes the unit outward normal to B_R .

Since $\nabla u \cdot \mathbf{n} = |\nabla u|$ on ∂B_r , we have

$$-\int_{\partial B_r}\phi(|\nabla u|)dS = \lambda \int_{B_r} f_k(u)dx.$$

By radial symmetry, this can be rewritten as

$$|\nabla u(r)| \le \phi^{-1} \left(\frac{\lambda M r}{N}\right) \quad \text{for all } r \in (0, R],$$
(2.14)

i.e. $\|\nabla u\|_{\infty} \leq \phi^{-1}\left(\frac{\lambda MR}{N}\right)$. Therefore, $\phi_N(\nabla u) = \psi_N(\nabla u)$ and we conclude that u is a positive solution of (2.8).

Suppose now that u is a positive solution of (2.8). Arguing as above we see that

$$\|\nabla u\|_{\infty} \le \chi^{-1} \left(\frac{\lambda MR}{N}\right). \tag{2.15}$$

Therefore, $\psi_N(\nabla u) = \phi_N(\nabla u)$. In particular, $\|\nabla u\|_{\infty} < 1$ and we conclude that u is a positive solution of (2.5).

Note that by Lemmas 2.3 and 2.4, for all λ large enough, there are m-1 positive solutions $u_2(\lambda), \ldots, u_m(\lambda)$ as asserted by Theorem 1.1.

Acknowledgments. Ruyun Ma was supported by the NSFC (No. 11361054), and SRFDP (No. 20126203110004).

References

- R. Bartnik, L. Simon; Spacelike hypersurfaces with prescribed boundary values and mean curvature, Comm. Math. Phys. 87 (1982), 131-152.
- [2] C. Bereanu, P. Jebelean, J. Mawhin; Radial solutions for some nonlinear problems involving mean curvature operators in Euclidean and Minkowski spaces, Proc. Amer. Math. Soc. 137 (2009), 171-178.
- [3] C. Bereanu, P. Jebelean, P. Torres; Positive radial solutions for Dirichlet problems with mean curvature operators in Minkowski space, J. Funct. Anal. 264 (2013), 270-287.
- [4] C. Bereanu, P. Jebelean, P. Torres; Multiple positive radial solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space, J. Funct. Anal. 265 (2013), 644-659.
- [5] C. Bereanu, J. Mawhin; Existence and multiplicity results for some nonlinear problems with singular φ-Laplacian, J. Differential Equations 243 (2007), 536-557.
- [6] K. J. Brown, H. Budin; On the existence of positive solutions for a class of semilinear elliptic boundary value problems, SIAM J. Math. Anal. 10 (1979), 875-883.
- [7] I. Coelho, C. Corsato, F. Obersnel, P. Omari; Positive solutions of the Dirichlet problem for the one-dimensional Minkowski-curvature equation, Adv. Nonlinear Stud. 12 (2012), 621-638.
- [8] I. Coelho, C. Corsato, S. Rivetti; Positive radial solutions of the Dirichlet problem for the Minkowski-curvature equation in a ball, Topol. Methods Nonlinear Anal. 44 (2014), 23-39.

EJDE-2016/180

- [9] F. N. Dancer, K. Schmitt; On positive solutions of semilinear elliptic equations, Proc. Am. Math. Soc. 101 (1987), 445-452.
- [10] D. G. de Figueiredo; On the existence of multiple ordered solutions of nonlinear eigenvalue problems, Nonlinear Anal. 11 (1987), 481-492.
- [11] C. Gerhardt; H-surfaces in Lorentzian manifolds, Comm. Math. Phys. 89 (1983), 523-553.
- [12] T. W. Laetsch; The number of solutions of a nonlinear two point boundary value problem, Indiana Univ. Math. J. 20 (1970), 1-13.
- [13] N. H. Loc, K. Schmitt; On positive solutions of quasilinear elliptic equations, Differential Integral Equations 22(9-10) (2009), 829-842.
- [14] R. Ma, H. Gao, Y. Lu; Global structure of radial positive solutions for a prescribed mean curvature problem in a ball, J. Funct. Anal. 270(7) (2016), 2430-2455.
- [15] R. Ma, Y. Lu; Multiplicity of positive solutions for second order nonlinear Dirichlet problem with one-dimension Minkowski-curvature operator, Adv. Nonlinear Stud. 15 (2015), 789-803.

Ruyun Ma

DEPARTMENT OF MATHEMATICS, NORTHWEST NORMAL UNIVERSITY, LANZHOU 730070, CHINA *E-mail address:* mary@nwnu.edu.cn

TIANLAN CHEN

Northwest Normal University, Lanzhou 730070, China *E-mail address:* chentianlan511@126.com