# MULTIPLE POSITIVE SOLUTIONS FOR DIRICHLET PROBLEM OF PRESCRIBED MEAN CURVATURE EQUATIONS IN MINKOWSKI SPACES 

RUYUN MA, TIANLAN CHEN


#### Abstract

In this article, we consider the Dirichlet problem for the prescribed mean curvature equation in the Minkowski space, $$
\begin{gathered} -\operatorname{div}\left(\frac{\nabla u}{\sqrt{1-|\nabla u|^{2}}}\right)=\lambda f(u) \quad \text { in } B_{R}, \\ u=0 \quad \text { on } \partial B_{R}, \end{gathered}
$$ where $B_{R}:=\left\{x \in \mathbb{R}^{N}:|x|<R\right\}, \lambda>0$ is a parameter and $f:[0, \infty) \rightarrow \mathbb{R}$ is continuous. We apply some standard variational techniques to show how changes in the sign of $f$ lead to multiple positive solutions of the above problem for sufficiently large $\lambda$.


## 1. Introduction

In this article we show the existence of multiple positive solutions of Dirichlet problem in a ball, associated to the mean curvature operator in the flat Minkowski space $\mathbb{L}^{N+1}$ with $\left(x_{1}, \ldots, x_{N}, t\right)$ and metric $\sum_{i=1}^{N}\left(d x_{i}\right)^{2}-(d t)^{2}$. These problems are of interest in differential geometry and in general relativity. It is known [1, 11 that the study of spacelike submanifolds of codimension one in $\mathbb{L}^{N+1}$ with prescribed mean extrinsic curvature leads to Dirichlet problems of the form

$$
\begin{equation*}
-\operatorname{div}\left(\frac{\nabla u}{\sqrt{1-|\nabla u|^{2}}}\right)=f(x, u) \quad \text { in } \Omega, u=0 \quad \text { on } \partial \Omega, \tag{1.1}
\end{equation*}
$$

where $\Omega$ is a bounded domain in $\mathbb{R}^{N}$ and $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous.
This topic has been largely discussed in the literature for 1.1 in the special cases that $N=1$ or $\Omega$ is a ball (or an annulus) in $\mathbb{R}^{N}$, see [2, 3, 4, 5, 7, 8, 14, 15, and the references contained therein. Note that Coelho, Corsato, Obersnel and Omari [7] proved the existence of one or multiple positive solutions of (1.1] with $N=1$ provided that $f$ is $L^{p}$-Caratheodory function, but the positivity of $f$ is not required. Moreover, Bereanu, Jebelean and Torres [3] applied Leray-Schauder degree arguments and critical point theory to show existence of positive radial solutions for (1.1) when $\Omega=B_{R}:=\left\{x \in \mathbb{R}^{N}:|x|<R\right\}$ and $f$ is positive on $[0, R] \times[0, \alpha)$ with $\alpha \geq R$. Of course, the natural question is what would happen if $f(|x|, s) \equiv f(s)$ and $f$ changes its sign in $[0, \alpha)$.

[^0]Recently, Ma and Lu [15] used the quadrature arguments to study the existence and multiplicity of positive solutions of the nonlinear eigenvalue problem

$$
\begin{equation*}
\left(\frac{u^{\prime}}{\sqrt{1-\kappa u^{2}}}\right)^{\prime}+\lambda f(u)=0 \text { in }(0,1), \quad u(0)=u(1)=0 \tag{1.2}
\end{equation*}
$$

where $\kappa>0$ is a constant and $f$ satisfies
(A1) $f \in C^{1}\left(\left[0, \frac{1}{2 \sqrt{\kappa}}\right)\right)$;
(A2) Either $f(0)>0$ or

$$
f(0)=0, \quad f_{0}=\lim _{s \rightarrow 0+} \frac{f(s)}{\psi(s)}>0, \quad \psi(s)=\frac{s}{\sqrt{1-\kappa s^{2}}}
$$

(A3) There exist $0<a_{1}<b_{1}<a_{2}<b_{2}<\cdots<b_{m-1}<a_{m}<\frac{1}{2 \sqrt{\kappa}}$ such that $f\left(a_{i}\right) \leq 0, f\left(b_{i}\right)>0$ and $F\left(b_{i}\right)>F(u)$ for all $0 \leq u \leq b_{i}, i=1,2, \ldots, m-1$.
They showed the existence of at least $2 m-1$ positive solutions provided $\lambda$ is large enough. Their result is an analogous of the well-known result due to Brown and Budin [6], who established the result of 1.2 with $\kappa=0$ by using a generalization of a quadrature technique of Laetsch [12].

Motivated by above papers, this article is devoted to studying how changes in the sign of $f$ lead to multiple positive solutions for the Dirichlet problem

$$
\begin{gather*}
-\operatorname{div}\left(\frac{\nabla u}{\sqrt{1-|\nabla u|^{2}}}\right)=\lambda f(u) \quad \text { in } B_{R}  \tag{1.3}\\
u=0 \quad \text { on } \partial B_{R}
\end{gather*}
$$

for $\lambda>0$ sufficiently large. Assume throughout that $f:[0, \infty) \rightarrow \mathbb{R}$ is continuous and satisfies:
(A4) $f(0) \geq 0$ and there exist $0<a_{1}<b_{1}<a_{2}<b_{2}<\cdots<b_{m-1}<a_{m}<R$ such that $f(s) \leq 0$ if $s \in\left(a_{k}, b_{k}\right)$ and $f(s) \geq 0$ if $s \in\left(b_{k}, a_{k+1}\right)$ for all $k=1, \ldots, m-1$;
(A5) $\int_{a_{k}}^{a_{k+1}} f(s) d s>0$ for all $k \in\{1, \ldots, m-1\}$.
Our main result is the following theorem.
Theorem 1.1. Assume (A4), (A5). Then there exists a number $\bar{\lambda}>0$ such that for all $\lambda>\bar{\lambda}$, problem (1.3) has at least $m-1$ positive solutions $u_{1}, u_{2}, \ldots, u_{m-1} \in$ $H_{0}^{1}\left(B_{R}\right) \cap L^{\infty}\left(B_{R}\right)$ and $\left\|u_{k}\right\|_{\infty} \in\left(a_{k}, a_{k+1}\right]$ for all $k=1, \ldots, m-1$.

Remark 1.2. It would be interesting to investigate a similar version of Theorem 1.1 for Dirichlet problem (1.1) with $\Omega \subset \mathbb{R}^{N}$ bounded, sufficiently smooth.

The proof of our main result will be given in the next section and follows ideas used in [7, 8, 13, suitably modified and expanded for the case being considered. For the earlier results on the semilinear problem, see [9, 10].

Now we list a few notation that will be used in this paper. Let $E=H_{0}^{1}\left(B_{R}\right)$ with the usual norm $\|u\|=\left(\int_{B_{R}}|\nabla u|^{2} d x\right)^{1 / 2}$. The norm $\|\cdot\|_{\infty}$ is considered on $L^{\infty}\left(B_{R}\right)$. We also define $\phi:(-1,1) \rightarrow \mathbb{R}$ by $\phi(s)=\frac{s}{\sqrt{1-s^{2}}}$ and $\phi_{N}(y)=\frac{y}{\sqrt{1-|y|^{2}}}, y \in \mathbb{R}^{N}$ with $|\cdot|$ stands for the Euclidean norm in $\mathbb{R}^{N}$.

## 2. Proof of the main result

The following Lemma is a consequence of the weak maximum principle for the $\phi$-Laplace operator.
Lemma 2.1. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function and there exists $a_{0} \in(0, R)$ such that $g(s) \geq 0$ if $s \in(-\infty, 0)$ and $g(s) \leq 0$ if $s \geq a_{0}$. If $u$ is a non-trivial solution of

$$
\begin{equation*}
-\operatorname{div}\left(\frac{\nabla u}{\sqrt{1-|\nabla u|^{2}}}\right)=g(u) \text { in } B_{R}, \quad u=0 \text { on } \partial B_{R} \tag{2.1}
\end{equation*}
$$

then $u$ is positive a.e. and belongs to $L^{\infty}\left(B_{R}\right)$. Moreover, $\|u\|_{\infty} \leq a_{0}$.
Proof. Let $v=u^{-}=\max \{-u, 0\} \in E$, then

$$
\nabla v= \begin{cases}-\nabla u, & u<0  \tag{2.2}\\ 0, & u \geq 0\end{cases}
$$

Multiplying the equation in 2.1 by $v$ and integrating by parts, we have

$$
0 \geq-\int_{B_{R}} \frac{|\nabla v|^{2}}{\sqrt{1-|\nabla v|^{2}}} d x=\int_{B_{R}} \frac{\nabla u \cdot \nabla v}{\sqrt{1-|\nabla u|^{2}}} d x=\int_{B_{R}} g(u) v d x \geq 0
$$

Hence $\nabla v=0$ a.e. in $B_{R}$ and we conclude that $u \geq 0$ in $B_{R}$.
Next, choosing the test function $w=\left(u-a_{0}\right)^{+}=\max \left\{u-a_{0}, 0\right\} \in E$ in the equation

$$
\int_{B_{R}} \frac{\nabla u \cdot \nabla w}{\sqrt{1-|\nabla u|^{2}}} d x=\int_{B_{R}} g(u) w d x
$$

we have $\nabla w=0$ a.e. in $B_{R}$ and therefore $u \leq a_{0}$, i.e., $\|u\|_{\infty} \leq a_{0}$.
Observe that there exists a constant $M \in(0, \infty)$ such that

$$
\begin{equation*}
|f(s)| \leq M, \quad s \in[0, R] \tag{2.3}
\end{equation*}
$$

With the aim of finding positive solutions of 1.3, we introduce an equivalent formulation of the problem aforementioned. For $k=2, \ldots, m$, let us define $f_{k}$ : $\mathbb{R} \rightarrow \mathbb{R}$, by

$$
f_{k}(s)= \begin{cases}f(0), & s \leq 0  \tag{2.4}\\ f(s), & s \in\left(0, a_{k}\right) \\ 0, & s \geq a_{k}\end{cases}
$$

We notice that the function $f_{k}$ shares the assumed properties of $f$. Moreover, if $u$ is a non-trivial solution of

$$
\begin{equation*}
-\operatorname{div}\left(\frac{\nabla u}{\sqrt{1-|\nabla u|^{2}}}\right)=\lambda f_{k}(u) \text { in } B_{R}, \quad u=0 \text { on } \partial B_{R} \tag{2.5}
\end{equation*}
$$

by Lemma 2.1. $u$ is positive and $\|u\|_{\infty} \leq a_{k}$. Thus, $u$ is also a positive solution of (1.3) and belongs to $L^{\infty}\left(B_{R}\right)$ with $\|u\|_{\infty} \leq a_{k}$.

For every $\lambda>0$, set $\beta:=\phi^{\prime}\left(\phi^{-1}\left(\frac{\lambda M R}{N}\right)\right)$ and define $\chi_{\lambda}: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\chi_{\lambda}(s)= \begin{cases}\beta\left(s-\phi^{-1}\left(\frac{\lambda M R}{N}\right)\right)+\frac{\lambda M R}{N}, & \text { if } s>\phi^{-1}\left(\frac{\lambda M R}{N}\right)  \tag{2.6}\\ \phi(s), & \text { if }|s| \leq \phi^{-1}\left(\frac{\lambda M R}{N}\right) \\ \beta\left(s+\phi^{-1}\left(\frac{\lambda M R}{N}\right)\right)-\frac{\lambda M R}{N}, & \text { if } s<-\phi^{-1}\left(\frac{\lambda M R}{N}\right)\end{cases}
$$

Let $\Pi_{\lambda}: \mathbb{R} \rightarrow \mathbb{R}$ be given by

$$
\Pi_{\lambda}(y)=\int_{0}^{y} \chi_{\lambda}(\zeta) d \zeta
$$

Then

$$
\begin{equation*}
\frac{1}{2} y^{2} \leq \Pi_{\lambda}(y) \leq \frac{1}{2} \beta y^{2}, \quad y \in \mathbb{R} \tag{2.7}
\end{equation*}
$$

Let the functional $\mathcal{I}_{k}(\lambda, \cdot): E \rightarrow \mathbb{R}$ be defined by

$$
\mathcal{I}_{k}(\lambda, u)=\int_{B_{R}} \Pi_{\lambda}(|\nabla u|) d x-\lambda \int_{B_{R}} F_{k}(u) d x
$$

where $F_{k}(s)=\int_{0}^{s} f_{k}(\sigma) d \sigma$. We denote by $K_{k}(\lambda)$ the set of critical points of $\mathcal{I}_{k}$.
Lemma 2.2. If $u$ is in $K_{k}(\lambda)$, then $u$ is a weak solution of

$$
\begin{equation*}
-\operatorname{div}\left(\psi_{N}(\nabla u)\right)=\lambda f_{k}(u) \text { in } B_{R}, \quad u=0 \text { on } \partial B_{R} \tag{2.8}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi_{N}(\nabla u)=\frac{\chi_{\lambda}(|\nabla u|)}{|\nabla u|} \nabla u \tag{2.9}
\end{equation*}
$$

Proof. Let $u \in K_{k}(\lambda)$. For any $\varphi \in C_{0}^{\infty}\left(B_{R}\right)$ and $\epsilon \in \mathbb{R}$, then $u+\epsilon \varphi \in E$. Since

$$
\begin{aligned}
& \mathcal{I}_{k}(\lambda, u+\epsilon \varphi)-\mathcal{I}_{k}(\lambda, u) \\
&= \int_{B_{R}}\left[\Pi_{\lambda}(|\nabla u+\epsilon \nabla \varphi|)-\Pi_{\lambda}(|\nabla u|)\right] d x-\lambda \int_{B_{R}}\left[F_{k}(u+\epsilon \varphi)-F_{k}(u)\right] d x \\
&= \int_{B_{R}} \chi_{\lambda}\left[|\nabla u|+\theta_{1}(|\nabla u+\epsilon \nabla \varphi|-|\nabla u|)\right](|\nabla u+\epsilon \nabla \varphi|-|\nabla u|) d x \\
&-\lambda \epsilon \int_{B_{R}} f_{k}\left(u+\theta_{2} \epsilon \varphi\right) \varphi d x \\
&= \int_{B_{R}} \chi_{\lambda}\left[|\nabla u|+\theta_{1}(|\nabla u+\epsilon \nabla \varphi|-|\nabla u|)\right] \frac{2 \epsilon \nabla u \cdot \nabla \varphi+\epsilon^{2}|\nabla \varphi|^{2}}{|\nabla u+\epsilon \nabla \varphi|+|\nabla u|} d x \\
&-\lambda \epsilon \int_{B_{R}} f_{k}\left(u+\theta_{2} \epsilon \varphi\right) \varphi d x,
\end{aligned}
$$

for some constants $\theta_{1}, \theta_{2} \in(0,1)$, it follows that

$$
\begin{aligned}
0 & =\lim _{\epsilon \rightarrow 0} \frac{\mathcal{I}_{k}(\lambda, u+\epsilon \varphi)-\mathcal{I}_{k}(\lambda, u)}{\epsilon} \\
& =\int_{B_{R}} \chi_{\lambda}(|\nabla u|) \frac{\nabla u \cdot \nabla \varphi}{|\nabla u|} d x-\lambda \int_{B_{R}} f_{k}(u) \varphi d x \\
& =\int_{B_{R}} \psi_{N}(\nabla u) \cdot \nabla \varphi d x-\lambda \int_{B_{R}} f_{k}(u) \varphi d x \\
& =\int_{B_{R}}\left[-\operatorname{div}\left(\psi_{N}(\nabla u)\right)-\lambda f_{k}(u)\right] \varphi d x
\end{aligned}
$$

Thus, for any $\varphi \in C_{0}^{\infty}\left(B_{R}\right), u$ is a weak solution of 2.8.
Consequently, from Lemma 2.2 if $u$ is in $K_{k}(\lambda)$, then $u$ is a weak solution of (2.8). By a similar argument of Lemma 2.1 with $\psi_{N}(\nabla u)$ instead of $\phi_{N}(\nabla u)$, we can deduce that $u$ is nonnegative and belongs to $L^{\infty}\left(B_{R}\right)$ with $\|u\|_{\infty} \leq a_{k}$.

We next claim that $K_{k}(\lambda)$ is not empty. Since $f_{k}$ is bounded and vanishes on $\left(a_{k}, \infty\right), \mathcal{I}_{k}(\lambda, \cdot)$ is coercive and bounded from below. Further, it is weakly lower semi-continuous. Therefore there exists $u_{k}(\lambda)$ such that

$$
\mathcal{I}_{k}\left(\lambda, u_{k}(\lambda)\right)=\inf \left\{\mathcal{I}_{k}(\lambda, v): v \in E\right\}
$$

The following Lemma shows that for $k=2, \ldots, m, a_{k-1}<\left\|u_{k}\right\|_{\infty} \leq a_{k}$ and therefore, 2.8 has at least $m-1$ solutions when $\lambda>0$ sufficiently large.

Lemma 2.3. For $k=2, \ldots, m$, there exists $\lambda_{k}>0$ such that for all $\lambda>\lambda_{k}$, $u_{k} \notin K_{k-1}(\lambda)$.

Proof. We shall show that there exist $\lambda_{k}>0$ and $\varphi \in E, \varphi \geq 0$ and $\|\varphi\|_{\infty} \leq a_{k}$, such that

$$
\mathcal{I}_{k}(\lambda, \varphi)<\mathcal{I}_{k-1}(\lambda, u), \quad \lambda>\lambda_{k}
$$

for all $u \in E$ satisfying $0 \leq u \leq a_{k-1}$.
From (A5), $\alpha:=F\left(a_{k}\right)-\max \left\{F(s): 0 \leq s<a_{k-1}\right\}>0$. Then, for all $u \in E$ satisfying $0 \leq u \leq a_{k-1}$,

$$
\begin{equation*}
\int_{B_{R}} F(u) d x \leq \int_{B_{R}} F\left(a_{k}\right) d x-\alpha w_{N} R^{N} \tag{2.10}
\end{equation*}
$$

where $w_{N}$ is the measure of the unit ball in $\mathbb{R}^{N}$. For $\delta>0$, let $\Omega_{\delta}:=\left\{x \in B_{R}\right.$ : $\left.\operatorname{dist}\left(x, \partial B_{R}\right)<\delta\right\}$. By Lebesgue's Theorem, $\left|\Omega_{\delta}\right| \rightarrow 0$ as $\delta \rightarrow 0$. Moreover, for each $\delta>0$, there exists $\varphi_{\delta} \in C_{0}^{\infty}\left(B_{R}\right)$ with $0 \leq \varphi_{\delta} \leq a_{k}, \varphi_{\delta}(x)=a_{k}$, for all $x \in B_{R} \backslash \Omega_{\delta}$. Thus

$$
\begin{align*}
\int_{B_{R}} F\left(\varphi_{\delta}\right) d x & =\int_{B_{R} \backslash \Omega_{\delta}} F\left(a_{k}\right) d x+\int_{\Omega_{\delta}} F\left(\varphi_{\delta}\right) d x \\
& =\int_{B_{R}} F\left(a_{k}\right) d x-\int_{\Omega_{\delta}}\left(F\left(a_{k}\right)-F\left(\varphi_{\delta}\right)\right) d x  \tag{2.11}\\
& \geq \int_{B_{R}} F\left(a_{k}\right) d x-2 C\left|\Omega_{\delta}\right|
\end{align*}
$$

where $C=\max \left\{|F(s)|: 0 \leq s \leq a_{k}\right\}$.
By (2.10) and 2.11) we can choose and fix $\delta$ sufficiently small so that there exists $\eta:=\alpha|\Omega|-2 C\left|\Omega_{\delta}\right|>0$ such that $\varphi:=\varphi_{\delta}$ satisfies

$$
\int_{\Omega} F(\varphi) d x \geq \int_{\Omega} F(u)+\eta
$$

for all $u \in E$ with $0 \leq u \leq a_{k-1}$. Therefore for all such $u$,

$$
\begin{aligned}
\mathcal{I}_{k}(\lambda, \varphi)-\mathcal{I}_{k-1}(\lambda, u) & =\int_{B_{R}}\left[\Pi_{\lambda}(|\nabla \varphi|)-\Pi_{\lambda}(|\nabla u|)\right] d x-\lambda \int_{B_{R}}[F(\varphi)-F(u)] d x \\
& \leq \int_{B_{R}} \Pi_{\lambda}(|\nabla \varphi|) d x-\lambda \eta<0
\end{aligned}
$$

provided $\lambda>0$ is chosen sufficiently large. Hence for such $\lambda$ the global minimum of $\mathcal{I}_{k}$ cannot be obtained at any $u \in E$ such that $0 \leq u \leq a_{k-1}$, i.e. $u_{k} \notin K_{k-1}(\lambda)$.

Lemma 2.4. A function $u \in E$ is a positive solution of 2.5 if and only if it is a positive solution of 2.8 .

Proof. Suppose that $u$ is a positive solution of 2.5). Hence, for fixed $r \in(0, R]$, from

$$
\begin{align*}
\int_{B_{r}} \operatorname{div}\left(\frac{\nabla u}{\sqrt{1-|\nabla u|^{2}}}\right) d x & =\int_{B_{r}} \operatorname{div}\left(\frac{\phi(|\nabla u|)}{|\nabla u|} \nabla u\right) d x  \tag{2.12}\\
& =\int_{\partial B_{r}} \frac{\phi(|\nabla u|)}{|\nabla u|} \nabla u \cdot \mathbf{n} d S
\end{align*}
$$

it follows that

$$
\begin{equation*}
-\int_{\partial B_{r}} \frac{\phi(|\nabla u|)}{|\nabla u|} \nabla u \cdot \mathbf{n} d S=\lambda \int_{B_{r}} f_{k}(u) d x \tag{2.13}
\end{equation*}
$$

where $\mathbf{n}$ denotes the unit outward normal to $B_{R}$.
Since $\nabla u \cdot \mathbf{n}=|\nabla u|$ on $\partial B_{r}$, we have

$$
-\int_{\partial B_{r}} \phi(|\nabla u|) d S=\lambda \int_{B_{r}} f_{k}(u) d x
$$

By radial symmetry, this can be rewritten as

$$
\begin{equation*}
|\nabla u(r)| \leq \phi^{-1}\left(\frac{\lambda M r}{N}\right) \quad \text { for all } r \in(0, R] \tag{2.14}
\end{equation*}
$$

i.e. $\|\nabla u\|_{\infty} \leq \phi^{-1}\left(\frac{\lambda M R}{N}\right)$. Therefore, $\phi_{N}(\nabla u)=\psi_{N}(\nabla u)$ and we conclude that $u$ is a positive solution of 2.8 .

Suppose now that $u$ is a positive solution of $\sqrt{2.8}$. Arguing as above we see that

$$
\begin{equation*}
\|\nabla u\|_{\infty} \leq \chi^{-1}\left(\frac{\lambda M R}{N}\right) \tag{2.15}
\end{equation*}
$$

Therefore, $\psi_{N}(\nabla u)=\phi_{N}(\nabla u)$. In particular, $\|\nabla u\|_{\infty}<1$ and we conclude that $u$ is a positive solution of (2.5).

Note that by Lemmas 2.3 and 2.4, for all $\lambda$ large enough, there are $m-1$ positive solutions $u_{2}(\lambda), \ldots, u_{m}(\lambda)$ as asserted by Theorem 1.1.

Acknowledgments. Ruyun Ma was supported by the NSFC (No. 11361054), and SRFDP (No. 20126203110004).

## References

[1] R. Bartnik, L. Simon; Spacelike hypersurfaces with prescribed boundary values and mean curvature, Comm. Math. Phys. 87 (1982), 131-152.
[2] C. Bereanu, P. Jebelean, J. Mawhin; Radial solutions for some nonlinear problems involving mean curvature operators in Euclidean and Minkowski spaces, Proc. Amer. Math. Soc. 137 (2009), 171-178.
[3] C. Bereanu, P. Jebelean, P. Torres; Positive radial solutions for Dirichlet problems with mean curvature operators in Minkowski space, J. Funct. Anal. 264 (2013), 270-287.
[4] C. Bereanu, P. Jebelean, P. Torres; Multiple positive radial solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space, J. Funct. Anal. 265 (2013), 644659.
[5] C. Bereanu, J. Mawhin; Existence and multiplicity results for some nonlinear problems with singular $\phi$-Laplacian, J. Differential Equations 243 (2007), 536-557.
[6] K. J. Brown, H. Budin; On the existence of positive solutions for a class of semilinear elliptic boundary value problems, SIAM J. Math. Anal. 10 (1979), 875-883.
[7] I. Coelho, C. Corsato, F. Obersnel, P. Omari; Positive solutions of the Dirichlet problem for the one-dimensional Minkowski-curvature equation, Adv. Nonlinear Stud. 12 (2012), 621-638.
[8] I. Coelho, C. Corsato, S. Rivetti; Positive radial solutions of the Dirichlet problem for the Minkowski-curvature equation in a ball, Topol. Methods Nonlinear Anal. 44 (2014), 23-39.
[9] F. N. Dancer, K. Schmitt; On positive solutions of semilinear elliptic equations, Proc. Am. Math. Soc. 101 (1987), 445-452.
[10] D. G. de Figueiredo; On the existence of multiple ordered solutions of nonlinear eigenvalue problems, Nonlinear Anal. 11 (1987), 481-492.
[11] C. Gerhardt; H-surfaces in Lorentzian manifolds, Comm. Math. Phys. 89 (1983), 523-553.
[12] T. W. Laetsch; The number of solutions of a nonlinear two point boundary value problem, Indiana Univ. Math. J. 20 (1970), 1-13.
[13] N. H. Loc, K. Schmitt; On positive solutions of quasilinear elliptic equations, Differential Integral Equations 22(9-10) (2009), 829-842.
[14] R. Ma, H. Gao, Y. Lu; Global structure of radial positive solutions for a prescribed mean curvature problem in a ball, J. Funct. Anal. 270(7) (2016), 2430-2455.
[15] R. Ma, Y. Lu; Multiplicity of positive solutions for second order nonlinear Dirichlet problem with one-dimension Minkowski-curvature operator, Adv. Nonlinear Stud. 15 (2015), 789-803.

Ruyun Ma
Department of Mathematics, Northwest Normal University, Lanzhou 730070, China
E-mail address: mary@nwnu.edu.cn
Tianlan Chen
Northwest Normal University, Lanzhou 730070, China
E-mail address: chentianlan511@126.com


[^0]:    2010 Mathematics Subject Classification. 35B15, 34K28, 34L30, 35J60, 35J65.
    Key words and phrases. Dirichlet problem; Minkowski-curvature; positive solutions; variational methods.
    (C) 2016 Texas State University.

    Submitted June 3, 2016. Published July 7, 2016.

