GROWTH OF TRANSCENDENTAL SOLUTIONS TO HIGHER-ORDER LINEAR DIFFERENTIAL EQUATIONS WITH ENTIRE COEFFICIENTS

KARIMA HAMANI

Abstract

In this article, we study the growth of transcendental solutions of certain higher order linear differential equations with entire coefficients. Under some conditions, we prove that every transcendental solution is of infinite order. We also give an estimate of its hyper-order. We improve previous results by Peng and Chen [14].

1. Introduction and statement of results

In this article, we use fundamental results and the standard notation of the Nevanlinna's value distribution theory of meromorphic functions (see [8, 16). In addition, we use the notation $\sigma(f)$ to denote the order of growth of a meromorphic function f and $\sigma_{2}(f)$ to denote the hyper-order of f which is defined in [16] by

$$
\sigma_{2}(f)=\limsup _{r \rightarrow+\infty} \frac{\log \log T(r, f)}{\log r}
$$

where $T(r, f)$ is the Nevanlinna characteristic function of f.
For the second order linear differential equation

$$
\begin{equation*}
f^{\prime \prime}+e^{-z} f^{\prime}+B(z) f=0 \tag{1.1}
\end{equation*}
$$

where $B(z)$ is an entire function of finite order, it is well known that every solution of (1.1) is an entire function and most solutions of (1.1) have an infinite order. Thus, a natural question is: what conditions on $B(z)$ will guarantee that every solution $f(\not \equiv 0)$ of 1.1$)$ has an infinite order? Ozawa [13], Gundersen [6, Langley [11]. Amemiya and Ozawa 1 have studied the problem, where $B(z)$ is a nonconstant polynomial or a transcendental entire function with order $\sigma(B) \neq 1$. In 2002, Chen [3] investigated the growth of solutions of equation (1.1) in the case where $\sigma(B)=1$.

In 1988, Gundersen [7] studied finite order solutions of second order linear differential equations, where coefficients satisfy certain conditions in some angle. This result was generalised to higher order linear differential equations by Laine and Yang [10]. Recently, the authors [9] have studied completely regular growth solutions of second order linear differential equations and discussed cases where coefficients and or solutions of these equations are exponential polynomials.

[^0]Recently, Peng and Chen [14] have studied the order and the hyper-order of solutions of equation (1.1) and have proved the following result:

Theorem $1.1\left([14)\right.$. Let $A_{j}(z)(\not \equiv 0)(j=1,2)$ be entire functions with $\sigma\left(A_{j}\right)<1$, a_{1}, a_{2} be complex numbers such that $a_{1} a_{2} \neq 0$ and $a_{1} \neq a_{2}$ (suppose that $\left|a_{1}\right| \leq$ $\left.\left|a_{2}\right|\right)$. If $\arg a_{1} \neq \pi$ or $a_{1}<-1$, then every solution $f(\not \equiv 0)$ of the equation

$$
\begin{equation*}
f^{\prime \prime}+e^{-z} f^{\prime}+\left(A_{1}(z) e^{a_{1} z}+A_{2}(z) e^{a_{2} z}\right) f=0 \tag{1.2}
\end{equation*}
$$

is of infinite order and $\sigma_{2}(f)=1$.
In this article, we continue the research in this type of problem. We consider the higher order linear differential equation

$$
\begin{equation*}
f^{(k)}+h_{k-1}(z) f^{(k-1)}+\cdots+h_{1}(z) f^{\prime}+h_{0}(z) f=0 \tag{1.3}
\end{equation*}
$$

where $k>2$ is an integer and $h_{j}(z)(j=0, \ldots, k-1)$ are entire functions. We suppose that there exists only one coefficient of the form $h_{s}(z)=A_{1}(z) e^{P_{1}(z)}+$ $A_{2}(z) e^{P_{2}(z)}$, where $P_{l}(z)=\sum_{i=0}^{n} a_{i, l} z^{i}(l=1,2)$ are polynomials with degree $n \geq$ 1 and $A_{l}(z)(\not \equiv 0)(l=1,2)$ are entire functions with $\sigma\left(A_{l}\right)<n$. The other coefficients have the form $h_{j}(z)=B_{j}(z) e^{Q_{j}(z)}(j \neq s)$, where $Q_{j}(z)=\sum_{i=0}^{n} b_{i, j} z^{i}$ are polynomials with degree $n \geq 1$ and $B_{j}(z)(\not \equiv 0)$ are entire functions with $\sigma\left(B_{j}\right)<n$. Under some conditions on the complex numbers $a_{n, l}(l=1,2)$ and $b_{n, j}(j \neq s)$, we will prove that every transcendental solution of equation (1.3) is of infinite order. We also give an estimation of its hyper-order. We will prove the following results:

Theorem 1.2. Let $P_{l}(z)=\sum_{i=0}^{n} a_{i, l} z^{i}(l=1,2)$ be polynomials with degree $n \geq 1$, where $a_{0, l}, \ldots, a_{n, l}(l=1,2)$ are complex numbers such that $a_{n, 1} \neq a_{n, 2}, A_{l}(z)$ $(\not \equiv 0)(l=1,2)$ be entire functions with $\sigma\left(A_{l}\right)<n$ and $h_{j}(z)(j=0, \ldots, k-1)$ be entire functions. Suppose that there exists $s \in\{1, \ldots, k-1\}$ such that $h_{s}(z)=$ $A_{1}(z) e^{P_{1}(z)}+A_{2}(z) e^{P_{2}(z)}$ and for $j \neq s, h_{j}(z)=B_{j}(z) e^{Q_{j}(z)}$, where $B_{j}(z)(\not \equiv 0)$ are entire functions with $\sigma\left(B_{j}\right)<n, Q_{j}(z)=\sum_{i=0}^{n} b_{i, j} z^{i}$ are polynomials with degree $n \geq 1$ and $b_{0, j}, \ldots, b_{n, j}(j \neq s)$ are complex numbers. Let I and J be two sets satisfying $I \neq \emptyset, J \neq \emptyset, I \cap J=\emptyset$ and $I \cup J=\{0, \ldots, s-1, s+1, \ldots, k-1\}$ such that for $j \in I, b_{n, j}=\alpha_{j} a_{n, 1}\left(0<\alpha_{j}<1\right)$ and for $j \in J, b_{n, j}=\beta_{j} a_{n, 2}$ $\left(0<\beta_{j}<1\right)$. Set $a_{n, l}=\left|a_{n, l}\right| e^{i \theta_{l}}, \theta_{l} \in[0,2 \pi)(l=1,2), \alpha=\max \left\{\alpha_{j}: j \in I\right\}$ and $\beta=\max \left\{\beta_{j}: j \in J\right\}$.

If $\theta_{1} \neq \theta_{2}$ or $\theta_{1}=\theta_{2}$ and (i) $\left|a_{n, 1}\right|<(1-\beta)\left|a_{n, 2}\right|$ or (ii) $\left|a_{n, 2}\right|<(1-\alpha)\left|a_{n, 1}\right|$, then every transcendental solution f of equation 1.3 is of infinite order and satisfies $\sigma_{2}(f)=n$.

Theorem 1.3. Let $P_{l}(z)=\sum_{i=0}^{n} a_{i, l} z^{i}(l=1,2)$ be polynomials with degree $n \geq 1$, where $a_{0, l}, \ldots, a_{n, l}(l=1,2)$ are complex numbers such that $a_{n, 1} \neq a_{n, 2}$ (suppose that $\left.\left|a_{n, 1}\right| \leq\left|a_{n, 2}\right|\right), A_{l}(z)(\not \equiv 0)(l=1,2)$ be entire functions with $\sigma\left(A_{l}\right)<n$ and $h_{j}(z)(j=0, \ldots, k-1)$ be entire functions. Suppose that there exists $s \in\{1, \ldots, k-$ $1\}$ such that $h_{s}(z)=A_{1}(z) e^{P_{1}(z)}+A_{2}(z) e^{P_{2}(z)}$ and for $j \neq s, h_{j}(z)=B_{j}(z) e^{Q_{j}(z)}$, where $B_{j}(z)(\not \equiv 0)$ are entire functions with $\sigma\left(B_{j}\right)<n, Q_{j}(z)=\sum_{i=0}^{n} b_{i, j} z^{i}$ are polynomials with degree $n \geq 1$ and $b_{0, j}, \ldots, b_{n, j}(j \neq s)$ are complex numbers. Let I and J be two sets satisfying $I \neq \emptyset, J \neq \emptyset, I \cap J=\emptyset$ and $I \cup J=\{0, \ldots, s-1, s+$ $1, \ldots, k-1\}$ such that for $j \in I, b_{n, j}=\alpha_{j} a_{n, 1}\left(0<\alpha_{j}<1\right)$ and for $j \in J, b_{n, j}$ are real numbers satisfying $b_{n, j}<0$.

If $a_{n, 1}$ is a real number such that $(1-\alpha) a_{n, 1}<b$, where $\alpha=\max \left\{\alpha_{j}: j \in I\right\}$ and $b=\min \left\{b_{n, j}: j \in J\right\}$, then every transcendental solution f of equation 1.3) is of infinite order and satisfies $\sigma_{2}(f)=n$.
Theorem 1.4. Let $P_{l}(z)=\sum_{i=0}^{n} a_{i, l} z^{i}(l=1,2)$ be polynomials with degree $n \geq 1$, where $a_{0, l}, \ldots, a_{n, l}(l=1,2)$ are complex numbers such that $a_{n, 1} \neq a_{n, 2}$ (suppose that $\left.\left|a_{n, 1}\right| \leq\left|a_{n, 2}\right|\right), A_{l}(z)(\not \equiv 0)(l=1,2)$ be entire functions with $\sigma\left(A_{l}\right)<n$ and $h_{j}(z)(j=0, \ldots, k-1)$ be entire functions. Suppose that there exists $s \in\{1, \ldots, k-$ $1\}$ such that $h_{s}(z)=A_{1}(z) e^{P_{1}(z)}+A_{2}(z) e^{P_{2}(z)}$ and for $j \neq s, h_{j}(z)=B_{j}(z) e^{Q_{j}(z)}$, where $B_{j}(z)(\not \equiv 0)$ are entire functions with $\sigma\left(B_{j}\right)<n, Q_{j}(z)=\sum_{i=0}^{n} b_{i, j} z^{i}$ are polynomials with degree $n \geq 1$ and $b_{0, j}, \ldots, b_{n, j}(j \neq s)$ are complex numbers. Let I and J be two sets satisfying $I \neq \emptyset, J \neq \emptyset, I \cap J=\emptyset$ and $I \cup J=\{1, \ldots, s-1, s+$ $1, \ldots, k-1\}$ such that for $j \in I, b_{n, j}=\alpha_{j} a_{n, 1}+\beta_{j} a_{n, 2}\left(0<\alpha_{j}<1\right),\left(0<\beta_{j}<1\right)$ and for $j \in J, b_{n, j}$ are real numbers satisfying $b_{n, j}<0$. Set $\alpha=\max \left\{\alpha_{j}: j \in I\right\}$, $\beta=\max \left\{\beta_{j}: j \in I\right\}$ and $b=\min \left\{b_{n, j}: j \in J\right\}$.

If $a_{n, 1}$ and $a_{n, 2}$ are real numbers such that (i) $(1-\beta) a_{n, 2}-b<a_{n, 1}<0$ or (ii) $(1-\alpha) a_{n, 1}-b<a_{n, 2}<0$, then every transcendental solution f of equation 1.3) is of infinite order and satisfies $\sigma_{2}(f)=n$.

Remark 1.5. In Theorem 1.1, the authors have considered conditions only on one complex number a_{1}. But in Theorem 1.2 and Theorem 1.4 , conditions are imposed to the two numbers $a_{n, l}(l=1,2)$.

2. Preliminary Lemmas

Lemma 2.1 ([5]). Let $f(z)$ be a transcendental meromorphic function of finite order σ. Let $\Gamma=\left\{\left(k_{1}, j_{1}\right),\left(k_{2}, j_{2}\right), \ldots,\left(k_{m}, j_{m}\right)\right\}$ denotes a set of distinct pairs of integers satisfying $k_{i}>j_{i} \geqslant 0(i=1,2, \ldots, m)$, and let $\varepsilon>0$ be a given constant. Then there exists a set $E_{1} \subset[0,2 \pi)$ that has linear measure zero such that if $\theta \in[0,2 \pi) \backslash E_{1}$, then there is a constant $R_{1}=R_{1}(\theta)>1$ such that for all z satisfying $\arg z=\theta$ and $|z| \geqslant R_{1}$, and for all $(k, j) \in \Gamma$, we have

$$
\begin{equation*}
\left|\frac{f^{(k)}(z)}{f^{(j)}(z)}\right| \leqslant|z|^{(k-j)(\sigma-1+\varepsilon)} \tag{2.1}
\end{equation*}
$$

Lemma $2.2\left([2,[12]) . \operatorname{Let} P(z)=(\alpha+i \beta) z^{n}+\ldots(\alpha, \beta\right.$ are real numbers, $|\alpha|+|\beta| \neq$ 0) be a polynomial with degree $n \geq 1$, and $A(z)$ be an entire function with $\sigma(A)<n$. Set $f(z)=A(z) e^{P(z)}, z=r e^{i \theta}, \bar{\delta}(P, \theta)=\alpha \cos (n \theta)-\beta \sin (n \theta)$. Then for any given $\varepsilon>0$, there exists a set $E_{2} \subset[0,2 \pi)$ that has linear measure zero such that for any $\theta \in[0,2 \pi) \backslash E_{2} \cup H$, where $H=\{\theta \in[0,2 \pi): \delta(P, \theta)=0\}$ is a finite set, there is a constant $R_{2}>1$ such that for $|z|=r \geqslant R_{2}$, we have
(i) if $\delta(P, \theta)>0$, then

$$
\begin{equation*}
\exp \left\{(1-\varepsilon) \delta(P, \theta) r^{n}\right\} \leq\left|f\left(r e^{i \theta}\right)\right| \leq \exp \left\{(1+\varepsilon) \delta(P, \theta) r^{n}\right\} \tag{2.2}
\end{equation*}
$$

(ii) if $\delta(P, \theta)<0$, then

$$
\begin{equation*}
\exp \left\{(1+\varepsilon) \delta(P, \theta) r^{n}\right\} \leq\left|f\left(r e^{i \theta}\right)\right| \leq \exp \left\{(1-\varepsilon) \delta(P, \theta) r^{n}\right\} \tag{2.3}
\end{equation*}
$$

Lemma 2.3 ($7, ~ 9]$). Let $d \geq 1$ be an integer, $f(z)$ be an entire function and suppose that $\left|f^{(d)}(z)\right|$ is unbounded on some ray $\arg z=\theta$. Then there exists an
infinite sequence of points $z_{m}=r_{m} e^{i \theta}(m=1,2, \ldots)$, where $r_{m} \rightarrow+\infty$, such that $f^{(d)}\left(z_{m}\right) \rightarrow \infty$ and

$$
\begin{equation*}
\left|\frac{f^{(j)}\left(z_{m}\right)}{f^{(d)}\left(z_{m}\right)}\right| \leqslant \frac{1}{(d-j)!}(1+o(1))\left|z_{m}\right|^{d-j} \quad(j=0, \ldots, d-1) \tag{2.4}
\end{equation*}
$$

The following Lemma is a trivial consequence of theorems by Phragmèn-Lindelöf and Liouville (see [13, p. 214]):

Lemma 2.4 ([4). Let $f(z)$ be an entire function of finite order ρ. Suppose that there exists a set $E_{3} \subset[0,2 \pi)$ that has linear measure zero such that for any ray $\arg z=\theta \in[0,2 \pi) \backslash E_{3},\left|f\left(r e^{i \theta}\right)\right| \leq M r^{k}$, where $M=M(\theta)>0$ is a constant and k (>0) is a constant independent of θ. Then $f(z)$ is a polynomial with $\operatorname{deg} f \leq k$.

Lemma 2.5 (5). Let $f(z)$ be a transcendental meromorphic function. Let $\alpha>1$ and $\varepsilon>0$ be given constants. Then there exist a set $F_{1} \subset(1,+\infty)$ having finite logarithmic measure and a constant $B>0$ that depends only on α and $(i, j)(i, j$ are positive integers with $i>j$), such that for all z satisfying $|z|=r \notin[0,1] \cup F_{1}$, we have

$$
\begin{equation*}
\left|\frac{f^{(i)}(z)}{f^{(j)}(z)}\right| \leq B\left[\frac{T(\alpha r, f)}{r}\left(\log ^{\alpha} r\right) \log T(\alpha r, f)\right]^{i-j} \tag{2.5}
\end{equation*}
$$

Lemma 2.6 (15$])$. Let $f(z)$ be a transcendental entire function. For each sufficiently large $|z|=r$, let $z_{r}=r e^{i \theta_{r}}$ be a point satisfying $\left|f\left(z_{r}\right)\right|=M(r, f)$. Then there exist a constant $\delta_{r}(>0)$ and a set F_{2} of finite logarithmic measure, such that for all z satisfying $|z|=r \notin F_{2}$ and $\arg z=\theta \in\left[\theta_{r}-\delta_{r}, \theta_{r}+\delta_{r}\right]$, we have

$$
\begin{equation*}
\left|\frac{f(z)}{f^{(d)}(z)}\right| \leq r^{2 d} \quad(d \geq 1 \text { is an integer }) \tag{2.6}
\end{equation*}
$$

Lemma $2.7([7)$. Let $\varphi:[0,+\infty) \rightarrow \mathbb{R}$ and $\psi:[0,+\infty) \rightarrow \mathbb{R}$ be monotone nondecreasing functions such that $\varphi(r) \leqslant \psi(r)$ for all $r \notin F_{3} \cup[0,1]$, where $F_{3} \subset(1,+\infty)$ is a set of finite logarithmic measure. Let $\alpha>1$ be a given constant. Then there exists an $r_{0}=r_{0}(\alpha)>0$ such that $\varphi(r) \leqslant \psi(\alpha r)$ for all $r>r_{0}$.

Lemma 2.8 (4). Let $k \geq 2$ be an integer and $A_{j}(z)(j=0,1, \ldots, k-1)$ be entire functions of finite order. Set $\rho=\max \left\{\sigma\left(A_{j}\right): j=0,1, \ldots, k-1\right\}$. If f is a solution of equation

$$
\begin{equation*}
f^{(k)}+A_{k-1}(z) f^{(k-1)}+\cdots+A_{1}(z) f^{\prime}+A_{0}(z) f=0 \tag{2.7}
\end{equation*}
$$

then $\sigma_{2}(f) \leq \rho$.

3. Proof of Theorem 1.2

Assume f is a transcendental solution of 1.3 .
First step. We prove that $\sigma(f)=+\infty$. Suppose that $\sigma(f)=\rho<+\infty$. By Lemma 2.1, there exists a set $E_{1} \subset[0,2 \pi)$ that has linear measure zero such that if $\theta \in[0,2 \pi)-E_{1}$, then there is a constant $R_{1}=R_{1}(\theta)>1$ such that for all z satisfying $\arg z=\theta$ and $|z| \geqslant R_{1}$, we have

$$
\begin{equation*}
\left|\frac{f^{(j)}(z)}{f^{(i)}(z)}\right| \leq|z|^{k \rho}(0 \leq i<j \leq k) \tag{3.1}
\end{equation*}
$$

By Lemma 2.2, for any given $\varepsilon>0$, there exists a set $E_{2} \subset[0,2 \pi)$ that has linear measure zero such that if $z=r e^{i \theta}, \theta \in[0,2 \pi) / E_{2} \cup H_{1}$ and r is sufficiently large,
then $A_{l}(z) e^{P_{l}(z)}(l=1,2)$ and $B_{j}(z) e^{Q_{j}(z)}(j \neq s)$ satisfy 2.2) or 2.3), where $H_{1}=\left\{\theta \in[0,2 \pi): \delta\left(P_{1}, \theta\right)\right.$ or $\left.\delta\left(P_{2}, \theta\right)=0\right\}$.
Case 1. Suppose that $\theta_{1} \neq \theta_{2}$. Set $H_{2}=\left\{\theta \in[0,2 \pi): \delta\left(P_{1}, \theta\right)=\delta\left(P_{2}, \theta\right)\right\}$. Since $\theta_{1} \neq \theta_{2}$, it follows that H_{2} has linear measure zero. For any given $\theta \in$ $[0,2 \pi) \backslash E_{1} \cup E_{2} \cup H_{1} \cup H_{2}$, we have

$$
\begin{align*}
\delta\left(P_{1}, \theta\right) \neq 0, & \delta\left(P_{2}, \theta\right) \neq 0 \quad \text { and } \\
\delta\left(P_{1}, \theta\right)>\delta\left(P_{2}, \theta\right) & \text { or } \quad \delta\left(P_{1}, \theta\right)<\delta\left(P_{2}, \theta\right) \tag{3.2}
\end{align*}
$$

Set $\delta_{1}=\delta\left(P_{1}, \theta\right)$ and $\delta_{2}=\delta\left(P_{2}, \theta\right)$.
Subcase 1.1: $\delta_{1}>\delta_{2}$. Here we also divide our proof in three subcases:
(a): $\delta_{1}>\delta_{2}>0$. Set $\delta_{3}=\max \left\{\delta_{2}, \delta\left(Q_{j}, \theta\right): j \in I\right\}$. Then $0<\delta_{3}<\delta_{1}$. Thus for any given $\varepsilon\left(0<\varepsilon<\frac{\delta_{1}-\delta_{3}}{2\left(\delta_{1}+\delta_{3}\right)}\right)$ and all z satisfying $\arg z=\theta$ and $|z|=r$ sufficiently large, we have

$$
\begin{gather*}
\left|A_{1}(z) e^{P_{1}(z)}\right| \geq \exp \left\{(1-\varepsilon) \delta_{1} r^{n}\right\} \tag{3.3}\\
\left|A_{2}(z) e^{P_{2}(z)}\right| \leq \exp \left\{(1+\varepsilon) \delta_{3} r^{n}\right\} \tag{3.4}\\
\left|B_{j}(z) e^{Q_{j}(z)}\right| \leq \exp \left\{(1+\varepsilon) \delta_{3} r^{n}\right\}(j \neq s) \tag{3.5}
\end{gather*}
$$

Now we prove that $\left|f^{(s)}(z)\right|$ is bounded on the ray $\arg z=\theta$. If $\left|f^{(s)}(z)\right|$ is unbounded on the ray $\arg z=\theta$, then by Lemma 2.3 , there exists an infinite sequence of points $z_{m}=r_{m} e^{i \theta}(m=1,2, \ldots)$, where $r_{m} \rightarrow+\infty$ such that $f^{(s)}\left(z_{m}\right) \rightarrow \infty$ and

$$
\begin{equation*}
\left|\frac{f^{(j)}\left(z_{m}\right)}{f^{(s)}\left(z_{m}\right)}\right| \leqslant \frac{1}{(s-j)!}(1+o(1))\left|z_{m}\right|^{s-j} \quad(j=0, \ldots, s-1) \tag{3.6}
\end{equation*}
$$

By (1.3), 3.1) and (3.3-(3.6), for the above z_{m}, we obtain

$$
\begin{equation*}
\exp \left\{(1-\varepsilon) \delta_{1} r_{m}^{n}\right\} \leq M_{1} r_{m}^{d_{1}} \exp \left\{(1+\varepsilon) \delta_{3} r_{m}^{n}\right\} \tag{3.7}
\end{equation*}
$$

where $M_{1}, d_{1}(>0)$ are constants. This is a contradiction. Hence $\left|f^{(s)}(z)\right| \leq M$ on $\arg z=\theta$, where $M(>0)$ is a constant. We can easily obtain

$$
\begin{equation*}
|f(z)| \leq M|z|^{s} \tag{3.8}
\end{equation*}
$$

on $\arg z=\theta$. By Lemma 2.4, (3.8) and the fact that $E_{1} \cup E_{2} \cup H_{1} \cup H_{2}$ has linear measure zero, we obtain that $f(z)$ is a polynomial with $\operatorname{deg} f \leq s$, which contradicts our assumption. Therefore $\sigma(f)=+\infty$.
(b): $\delta_{1}>0>\delta_{2}$. Thus for any given $\varepsilon\left(0<\varepsilon<\frac{1-\alpha}{2(1+\alpha)}\right)$ and all z satisfying $\arg z=\theta$ and $|z|=r$ sufficiently large, we have (3.3),

$$
\begin{gather*}
\left|A_{2}(z) e^{P_{2}(z)}\right| \leq \exp \left\{(1-\varepsilon) \delta_{2} r^{n}\right\}<1 \tag{3.9}\\
\left|B_{j}(z) e^{Q_{j}(z)}\right| \leq \exp \left\{(1+\varepsilon) \alpha \delta_{1} r^{n}\right\}(j \in I) \tag{3.10}\\
\left|B_{j}(z) e^{Q_{j}(z)}\right| \leq \exp \left\{(1-\varepsilon) \delta\left(Q_{j}, \theta\right) r^{n}\right\}<1(j \in J) \tag{3.11}
\end{gather*}
$$

Now we prove that $\left|f^{(s)}(z)\right|$ is bounded on the ray $\arg z=\theta$. If $\left|f^{(s)}(z)\right|$ is unbounded on the ray $\arg z=\theta$, then by Lemma 2.3, there exists an infinite sequence of points $z_{m}=r_{m} e^{i \theta}(m=1,2, \ldots)$, where $r_{m} \rightarrow+\infty$ such that $f^{(s)}\left(z_{m}\right) \rightarrow \infty$ and (3.6) holds.

By (1.3), (3.1), (3.3), (3.6) and (3.9)-(3.11), for the above z_{m}, we obtain

$$
\begin{equation*}
\exp \left\{(1-\varepsilon) \delta_{1} r_{m}^{n}\right\} \leq M_{2} r_{m}^{d_{2}} \exp \left\{(1+\varepsilon) \alpha \delta_{1} r_{m}^{n}\right\} \tag{3.12}
\end{equation*}
$$

where $M_{2}, d_{2}(>0)$ are constants. This is a contradiction. Hence $\left|f^{(s)}(z)\right| \leq M$ on $\arg z=\theta$, where $M(>0)$ is a constant. We can easily obtain 3.8 on $\arg z=\theta$. Using similar arguments as above, we deduce that $\sigma(f)=+\infty$.
(c): $0>\delta_{1}>\delta_{2}$. Thus for any given $\varepsilon(0<2 \varepsilon<1)$ and all z satisfying $\arg z=\theta$ and $|z|=r$ sufficiently large, we have

$$
\begin{align*}
\left|A_{l}(z) e^{P_{l}(z)}\right| & \leq \exp \left\{(1-\varepsilon) \delta\left(P_{l}, \theta\right) r^{n}\right\} \quad(l=1,2) \tag{3.13}\\
\mid B_{j}(z) e^{Q_{j}(z)} & \leq \exp \left\{(1-\varepsilon) \delta\left(Q_{j}, \theta\right) r^{n}\right\}(j \neq s) \tag{3.14}
\end{align*}
$$

By (1.3), we obtain

$$
\begin{equation*}
-1=h_{k-1}(z) \frac{f^{(k-1)}(z)}{f^{(k)}(z)}+\cdots+h_{s}(z) \frac{f^{(s)}(z)}{f^{(k)}(z)}+\cdots+h_{0}(z) \frac{f(z)}{f^{(k)}(z)} . \tag{3.15}
\end{equation*}
$$

Now we prove that $\left|f^{(k)}(z)\right|$ is bounded on the ray $\arg z=\theta$. If $\left|f^{(k)}(z)\right|$ is unbounded on the ray $\arg z=\theta$, then by Lemma 2.3, there exists an infinite sequence of points $z_{m}=r_{m} e^{i \theta}(m=1,2, \ldots)$, where $r_{m} \rightarrow+\infty$ such that $f^{(k)}\left(z_{m}\right) \rightarrow \infty$ and

$$
\begin{equation*}
\left|\frac{f^{(j)}\left(z_{m}\right)}{f^{(k)}\left(z_{m}\right)}\right| \leqslant \frac{1}{(k-j)!}(1+o(1))\left|z_{m}\right|^{k-j} \quad(j=0, \ldots, k-1) \tag{3.16}
\end{equation*}
$$

Substituting (3.1), (3.13), (3.14) and (3.16) into (3.15), as $r_{m} \rightarrow+\infty$, we obtain $1 \leq 0$. This contradiction implies $\left|f^{(k)}(z)\right| \leq M^{\prime}$ on $\arg z=\theta$, where $M^{\prime}(>0)$ is a constant. We can easily obtain that $|f(z)| \leq M^{\prime}|z|^{k}$ on $\arg z=\theta$. From this and the fact $E_{1} \cup E_{2} \cup H_{1} \cup H_{2}$ has linear measure zero, we obtain by Lemma 2.4 that $f(z)$ is a polynomial with $\operatorname{deg} f \leq k$, which contradicts our assumption. Therefore $\sigma(f)=+\infty$.
Subcase 1.2: $\delta_{1}<\delta_{2}$. Using the same reasoning as in subcase 1.1, we can also obtain that $f(z)$ is a polynomial, which contradicts our assumption. Therefore $\sigma(f)=+\infty$.
Case 2. Suppose that $\theta_{1}=\theta_{2}$. For any given $\theta \in[0,2 \pi) / E_{1} \cup E_{2} \cup H_{1}$, where E_{1}, E_{2} and H_{1} are defined above, we have

$$
\begin{equation*}
\delta\left(P_{1}, \theta\right)>0 \quad \text { or } \quad \delta\left(P_{1}, \theta\right)<0 . \tag{3.17}
\end{equation*}
$$

Subcase 2.1: $\delta\left(P_{1}, \theta\right)>0$.
(i) If $\left|a_{n, 1}\right|<(1-\beta)\left|a_{n, 2}\right|$, for any given $\varepsilon\left(0<\varepsilon<\frac{(1-\beta)\left|a_{n, 2}\right|-\left|a_{n, 1}\right|}{2\left[(1+\beta)\left|a_{n, 2}\right|+\left|a_{n, 1}\right|\right]}\right)$ and all z satisfying $\arg z=\theta$ and $|z|=r$ sufficiently large, we have

$$
\begin{gather*}
\left|A_{1}(z) e^{P_{1}(z)}\right| \leq \exp \left\{(1+\varepsilon) \delta\left(P_{1}, \theta\right) r^{n}\right\}, \tag{3.18}\\
\left|A_{2}(z) e^{P_{2}(z)}\right| \geq \exp \left\{(1-\varepsilon) \delta\left(P_{2}, \theta\right) r^{n}\right\}, \tag{3.19}\\
\left|B_{j}(z) e^{Q_{j}(z)}\right| \leq \exp \left\{(1+\varepsilon) \alpha \delta\left(P_{1}, \theta\right) r^{n}\right\}(j \in I), \tag{3.20}\\
\left|B_{j}(z) e^{Q_{j}(z)}\right| \leq \exp \left\{(1+\varepsilon) \beta \delta\left(P_{2}, \theta\right) r^{n}\right\}(j \in J) . \tag{3.21}
\end{gather*}
$$

Now we prove that $\left|f^{(s)}(z)\right|$ is bounded on the ray $\arg z=\theta$. If $\left|f^{(s)}(z)\right|$ is unbounded on the ray $\arg z=\theta$, then by Lemma 2.3 , there exists an infinite sequence of points $z_{m}=r_{m} e^{i \theta}(m=1,2, \ldots)$, where $r_{m} \rightarrow+\infty$ such that $f^{(s)}\left(z_{m}\right) \rightarrow \infty$ and 3.6 holds.

By (1.3), (3.1), (3.6) and (3.18-3.21, for the above z_{m}, we obtain

$$
\begin{align*}
& \exp \left\{(1-\varepsilon) \delta\left(P_{2}, \theta\right) r_{m}^{n}\right\} \\
& \leq M_{3} r_{m}^{d_{3}} \exp \left\{(1+\varepsilon) \delta\left(P_{1}, \theta\right) r_{m}^{n}\right\} \exp \left\{(1+\varepsilon) \beta \delta\left(P_{2}, \theta\right) r_{m}^{n}\right\} \tag{3.22}
\end{align*}
$$

where $M_{3}, d_{3}(>0)$ are constants. By 3.22 , we have

$$
\begin{equation*}
\exp \left\{\gamma_{1} r_{m}^{n}\right\} \leq M_{3} r_{m}^{d_{3}} \tag{3.23}
\end{equation*}
$$

where

$$
\gamma_{1}=(1-\varepsilon) \delta\left(P_{2}, \theta\right)-(1+\varepsilon) \delta\left(P_{1}, \theta\right)-(1+\varepsilon) \beta \delta\left(P_{2}, \theta\right)
$$

Since

$$
0<\varepsilon<\frac{(1-\beta)\left|a_{n, 2}\right|-\left|a_{n, 1}\right|}{2\left[(1+\beta)\left|a_{n, 2}\right|+\left|a_{n, 1}\right|\right]}
$$

$\theta_{1}=\theta_{2}$ and $\cos \left(\theta_{1}+n \theta\right)>0$, we have

$$
\begin{aligned}
\gamma_{1} & =\left\{(1-\beta)\left|a_{n, 2}\right|-\left|a_{n, 1}\right|-\varepsilon\left[(1+\beta)\left|a_{n, 2}\right|+\left|a_{n, 1}\right|\right]\right\} \cos \left(\theta_{1}+n \theta\right) \\
& >\frac{(1-\beta)\left|a_{n, 2}\right|-\left|a_{n, 1}\right|}{2} \cos \left(\theta_{1}+n \theta\right)>0 .
\end{aligned}
$$

Hence 3.23 is a contradiction. Hence $\left|f^{(s)}(z)\right| \leq M$ on $\arg z=\theta$, where $M(>0)$ is a constant. We can easily obtain (3.8) on $\arg z=\theta$. By Lemma 2.4, (3.8) and the fact that $E_{1} \cup E_{2} \cup H_{1}$ has linear measure zero, we obtain that $f(z)$ is a polynomial with $\operatorname{deg} f \leq s$, which contradicts our assumption. Therefore $\sigma(f)=+\infty$.
(ii) If $\left|a_{n, 2}\right|<(1-\alpha)\left|a_{n, 1}\right|$, for any given $\varepsilon\left(0<\varepsilon<\frac{(1-\alpha)\left|a_{n, 1}\right|-\left|a_{n, 2}\right|}{2\left[(1+\alpha)\left|a_{n, 1}\right|+\left|a_{n, 2}\right|\right]}\right)$ and all z satisfying $\arg z=\theta$ and $|z|=r$ sufficiently large, we have

$$
\begin{align*}
\left|A_{1}(z) e^{P_{1}(z)}\right| & \geq \exp \left\{(1-\varepsilon) \delta\left(P_{1}, \theta\right) r^{n}\right\} \tag{3.24}\\
\left|A_{2}(z) e^{P_{2}(z)}\right| & \leq \exp \left\{(1+\varepsilon) \delta\left(P_{2}, \theta\right) r^{n}\right\} \tag{3.25}
\end{align*}
$$

Now we prove that $\left|f^{(s)}(z)\right|$ is bounded on the ray $\arg z=\theta$. If $\left|f^{(s)}(z)\right|$ is unbounded on the ray $\arg z=\theta$, then by Lemma 2.3 , there exists an infinite sequence of points $z_{m}=r_{m} e^{i \theta}(m=1,2, \ldots)$, where $r_{m} \rightarrow+\infty$ such that $f^{(s)}\left(z_{m}\right) \rightarrow \infty$ and 3.6 holds.

By (1.3), (3.1), (3.6), (3.20), (3.21), (3.24) and (3.25), for the above z_{m}, we obtain

$$
\begin{align*}
& \exp \left\{(1-\varepsilon) \delta\left(P_{1}, \theta\right) r_{m}^{n}\right\} \\
& \leq M_{4} r_{m}^{d_{4}} \exp \left\{(1+\varepsilon) \alpha \delta\left(P_{1}, \theta\right) r_{m}^{n}\right\} \exp \left\{(1+\varepsilon) \delta\left(P_{2}, \theta\right) r_{m}^{n}\right\} \tag{3.26}
\end{align*}
$$

where $M_{4}, d_{4}(>0)$ are constants. By (3.26), we have

$$
\begin{equation*}
\exp \left\{\gamma_{2} r_{m}^{n}\right\} \leq M_{4} r_{m}^{d_{4}} \tag{3.27}
\end{equation*}
$$

where

$$
\gamma_{2}=(1-\varepsilon) \delta\left(P_{1}, \theta\right)-(1+\varepsilon) \delta\left(P_{2}, \theta\right)-(1+\varepsilon) \alpha \delta\left(P_{1}, \theta\right)>0
$$

Since (3.27) is a contradiction, $\left|f^{(s)}(z)\right| \leq M$ on $\arg z=\theta$, where $M(>0)$ is a constant. We can easily obtain (3.8) on $\arg z=\theta$. Using similar arguments as above, we conclude that $\sigma(f)=+\infty$.
Subcase 2.2: $\delta\left(P_{1}, \theta\right)<0$. Using the same reasoning as in subcase $1.1(\mathrm{c})$, we can also conclude that $\sigma(f)=+\infty$.

Second step. Now we prove that $\sigma_{2}(f)=n$. By Lemma 2.5, there exists a constant $B>0$ and a set $F_{1} \subset(1,+\infty)$ having finite logarithmic measure, such that for all z satisfying $|z|=r \notin[0,1] \cup F_{1}$, we have

$$
\begin{equation*}
\left|\frac{f^{(j)}(z)}{f^{(i)}(z)}\right| \leq \operatorname{Br}[T(2 r, f)]^{j+1}(0 \leq i<j \leq k) \tag{3.28}
\end{equation*}
$$

For each sufficiently large $|z|=r$, we take a point $z_{r}=r e^{i \theta_{r}}$ satisfying $\left|f\left(z_{r}\right)\right|=$ $M(r, f)$. By Lemma 2.6, there exists a constant $\delta_{r}(>0)$ and a set F_{2} of finite $\operatorname{logarithmic}$ measure such that for all all z satisfying $|z|=r \notin F_{2}$ and $\arg z=\theta \in$ $\left[\theta_{r}-\delta_{r}, \theta_{r}+\delta_{r}\right]$, we have

$$
\begin{equation*}
\left|\frac{f(z)}{f^{(d)}(z)}\right| \leq r^{2 d} \quad(d=s, k) \tag{3.29}
\end{equation*}
$$

Case 1. Suppose that $\theta_{1} \neq \theta_{2}$. For any given $\theta \in\left[\theta_{r}-\delta_{r}, \theta_{r}+\delta_{r}\right] \backslash E_{2} \cup H_{1} \cup H_{2}$, we have (3.2), where E_{2}, H_{1} and H_{2} are defined above. Set $\delta_{1}=\delta\left(P_{1}, \theta\right)$ and $\delta_{2}=\delta\left(P_{2}, \theta\right)$.
Subcase 1.1: $\delta_{1}>\delta_{2}$. Here we also divide our proof in three subcases:
(a): $\delta_{1}>\delta_{2}>0$. Thus for any given $\varepsilon\left(0<\varepsilon<\frac{\delta_{1}-\delta_{3}}{2\left(\delta_{1}+\delta_{3}\right)}\right)$ and all z satisfying $\arg z=\theta$ and $|z|=r$ sufficiently large, we have (3.3)-(3.5), where δ_{3} is defined above. By (1.3), (3.3)-3.5), 3.28) and (3.29, for all z satisfying $|z|=r \notin[0,1] \cup$ $F_{1} \cup F_{2}$ and $\arg z \in\left[\theta_{r}-\delta_{r}, \theta_{r}+\delta_{r}\right] \backslash E_{2} \cup H_{1} \cup H_{2}$, we obtain

$$
\begin{equation*}
\exp \left\{(1-\varepsilon) \delta_{1} r^{n}\right\} \leq M_{5} r^{2 s+1} \exp \left\{(1+\varepsilon) \delta_{3} r^{n}\right\}[T(2 r, f)]^{k+1} \tag{3.30}
\end{equation*}
$$

where $M_{5}(>0)$ is a constant. Hence by using Lemma 2.7 and (3.30), we obtain $\sigma_{2}(f) \geq n$. From this and Lemma 2.8 , we have $\sigma_{2}(f)=n$.
(b): $\delta_{1}>0>\delta_{2}$. Thus for any given $\varepsilon\left(0<\varepsilon<\frac{1-\alpha}{2(1+\alpha)}\right)$ and all z satisfying $\arg z=\theta$ and $|z|=r$ sufficiently large, we have (3.3) and (3.9)-(3.11). By (1.3), (3.3), 3.9-3.11, 3.28) and 3.29, for all z satisfying $|z|=r \notin[0,1] \cup F_{1} \cup F_{2}$ and $\arg z \in\left[\theta_{r}-\delta_{r}, \theta_{r}+\delta_{r}\right] \backslash E_{2} \cup H_{1} \cup H_{2}$, we obtain

$$
\begin{equation*}
\exp \left\{(1-\varepsilon) \delta_{1} r^{n}\right\} \leq M_{6} r^{2 s+1} \exp \left\{(1+\varepsilon) \alpha \delta_{1} r^{n}\right\}[T(2 r, f)]^{k+1} \tag{3.31}
\end{equation*}
$$

where $M_{6}(>0)$ is a constant. Hence by using Lemma 2.7 and (3.31), we obtain $\sigma_{2}(f) \geq n$. From this and Lemma 2.8, we have $\sigma_{2}(f)=n$.
(c): $0>\delta_{1}>\delta_{2}$. Set $\gamma=\min \left\{\alpha_{j}, \beta_{j}: j \neq s\right\}$. Thus for any given $\varepsilon(0<2 \varepsilon<1)$ and all z satisfying $\arg z=\theta$ and $|z|=r$ sufficiently large, we have

$$
\begin{align*}
\left|A_{l}(z) e^{P_{l}(z)}\right| & \leq \exp \left\{(1-\varepsilon) \gamma \delta_{1} r^{n}\right\} \quad(l=1,2) \tag{3.32}\\
\left|B_{j}(z) e^{Q_{j}(z)}\right| & \leq \exp \left\{(1-\varepsilon) \gamma \delta_{1} r^{n}\right\} \quad(j \neq s) \tag{3.33}
\end{align*}
$$

By (1.3), 3.28, (3.29), (3.32) and (3.33), for all z satisfying $|z|=r \notin[0,1] \cup F_{1} \cup F_{2}$ and $\arg z \in\left[\theta_{r}-\delta_{r}, \theta_{r}+\delta_{r}\right] \backslash E_{2} \cup H_{1} \cup H_{2}$, we obtain

$$
\begin{equation*}
1 \leq M_{7} r^{2 k+1} \exp \left\{(1-\varepsilon) \gamma \delta_{1} r^{n}\right\}[T(2 r, f)]^{k+1} \tag{3.34}
\end{equation*}
$$

where $M_{7}(>0)$ is a constant. Hence by using Lemma 2.7 and (3.34), we obtain $\sigma_{2}(f) \geq n$. From this and Lemma 2.8 , we have $\sigma_{2}(f)=n$.
Subcase 1.2: $\delta_{1}<\delta_{2}$. Using the same reasoning as in subcase 1.1 of the second step, we can also obtain that $\sigma_{2}(f)=n$.

Case 2. Suppose that $\theta_{1}=\theta_{2}$. For any given $\theta \in\left[\theta_{r}-\delta_{r}, \theta_{r}+\delta_{r}\right] \backslash E_{2} \cup H_{1}$, where E_{2} and H_{1} are defined above, we have 3.17.
Subcase 2.1: $\delta\left(P_{1}, \theta\right)>0$.
(i) If $\left|a_{n, 1}\right|<(1-\beta)\left|a_{n, 2}\right|$, for any given ε,

$$
0<\varepsilon<\frac{(1-\beta)\left|a_{n, 2}\right|-\left|a_{n, 1}\right|}{2\left[(1+\beta)\left|a_{n, 2}\right|+\left|a_{n, 1}\right|\right]}
$$

and all z satisfying $\arg z=\theta$ and $|z|=r$ sufficiently large, we have (3.18) - 3.21). By (1.3), 3.18-(3.21), 3.28) and (3.29), for all z satisfying $|z|=r \notin[0,1] \cup F_{1} \cup F_{2}$ and $\arg z \in\left[\theta_{r}-\delta_{r}, \theta_{r}+\delta_{r}\right] \backslash E_{2} \cup H_{1}$, we obtain

$$
\begin{equation*}
\exp \left\{\gamma_{1} r^{n}\right\} \leq M_{8} r^{2 s+1}[T(2 r, f)]^{k+1} \tag{3.35}
\end{equation*}
$$

where $M_{8}(>0)$ is a constant and γ_{1} is defined above. Hence by using Lemma 2.7 and 3.35, we obtain $\sigma_{2}(f) \geq n$. From this and Lemma 2.8, we have $\sigma_{2}(f)=n$.
(ii) If $\left|a_{n, 2}\right|<(1-\alpha)\left|a_{n, 1}\right|$, for any given $\varepsilon\left(0<\varepsilon<\frac{(1-\alpha)\left|a_{n, 1}\right|-\left|a_{n, 2}\right|}{2\left[(1+\alpha)\left|a_{n, 1}\right|+\left|a_{n, 2}\right|\right]}\right)$ and all z satisfying $\arg z=\theta$ and $|z|=r$ sufficiently large, we have (3.20), (3.21), (3.24) and (3.25). By (1.3), (3.20), (3.21), (3.24), (3.25), (3.28) and (3.29) for all z satisfying $|z|=r \notin[0,1] \cup F_{1} \cup F_{2}$ and $\arg z \in\left[\theta_{r}-\delta_{r}, \theta_{r}+\delta_{r}\right] \backslash E_{2} \cup H_{1}$, we obtain

$$
\begin{equation*}
\exp \left\{\gamma_{2} r^{n}\right\} \leq M_{9} r^{2 s+1}[T(2 r, f)]^{k+1} \tag{3.36}
\end{equation*}
$$

where $M_{9}(>0)$ is a constant and γ_{2} is defined above. Hence by using Lemma 2.7 and (3.36), we obtain $\sigma_{2}(f) \geq n$. From this and Lemma 2.8, we have $\sigma_{2}(f)=n$.
Subcase 2.2: $\delta\left(P_{1}, \theta\right)<0$. Using the same reasoning as in subcase 1.1(c) of the second step, we can also obtain that $\sigma_{2}(f)=n$.

4. Proof of Theorem 1.3

Assume f is a transcendental solution of 1.3 .
First step. We prove that $\sigma(f)=+\infty$. Suppose that $\sigma(f)=\rho<+\infty$. By Lemma 2.1 there exists a set $E_{1} \subset[0,2 \pi)$ that has linear measure zero such that if $\theta \in[0,2 \pi) \backslash E_{1}$, then there is a constant $R_{1}=R_{1}(\theta)>1$ such that for all z satisfying $\arg z=\theta$ and $|z| \geqslant R_{1}$, we have (3.1). Set $a_{n, l}=\left|a_{n, l}\right| e^{i \theta_{l}}, \theta_{l} \in[0,2 \pi)$ $(l=1,2)$.

Assume that $a_{n, 1}$ is a real number such that $(1-\alpha) a_{n, 1}<b$, which is $\theta_{1}=\pi$. By Lemmas 2.2, for any given $\varepsilon>0$, there exist a set $E_{2} \subset[0,2 \pi)$ that has linear measure zero, such that if $z=r e^{i \theta}, \theta \in[0,2 \pi) / E_{2} \cup H_{1}$ and r is sufficiently large, then $A_{l}(z) e^{P_{l}(z)}(l=1,2)$ and $B_{j}(z) e^{Q_{j}(z)}(j \neq s)$ satisfy 2.2) or 2.3, where H_{1} is defined as in the proof of Theorem 1.2
Case 1. Suppose that $\theta_{1} \neq \theta_{2}$. For any given $\theta \in[0,2 \pi] / E_{1} \cup E_{2} \cup H_{1} \cup H_{2}$, we have (3.2), where H_{2} is defined as in the proof of Theorem 1.2 . Since $(1-\alpha) a_{n, s}<b$, it follows that $\left|b_{n, j}\right|<\left|a_{n, 1}\right|(j \in J)$. Set $\delta_{1}=\delta\left(P_{1}, \theta\right)$ and $\delta_{2}=\delta\left(P_{2}, \theta\right)$.
Subcase 1.1: $\delta_{1}>\delta_{2}$. If (a): $\delta_{1}>\delta_{2}>0$ or (b): $\delta_{1}>0>\delta_{2}$, it follows that $0<\delta\left(Q_{j}, \theta\right)<\delta_{1}(j \in J)$. Hence by using the same reasoning as in subcase 1.1(a) of the first step in the proof of Theorem 1.2 , we can also obtain that $\sigma(f)=+\infty$. If (c): $0>\delta_{1}>\delta_{2}$, by using similar reasoning as in subcase 1.1(c) of the first step in the proof of Theorem 1.2, we can also obtain $\sigma(f)=+\infty$.
Subcase 1.2: $\delta_{2}>\delta_{1}$. Here we also divide our proof in three subcases:
(a): $\delta_{2}>\delta_{1}>0$. Thus for any given $\varepsilon\left(0<\varepsilon<\frac{\delta_{2}-\delta_{1}}{2\left(\delta_{2}+\delta_{1}\right)}\right)$ and all z satisfying $\arg z=\theta$ and $|z|=r$ sufficiently large, we have

$$
\begin{align*}
&\left|A_{2}(z) e^{P_{2}(z)}\right| \geq \exp \left\{(1-\varepsilon) \delta_{2} r^{n}\right\} \tag{4.1}\\
&\left|A_{1}(z) e^{P_{1}(z)}\right| \leq \exp \left\{(1+\varepsilon) \delta_{1} r^{n}\right\} \tag{4.2}\\
&\left|B_{j}(z) e^{Q_{j}(z)}\right| \leq \exp \left\{(1+\varepsilon) \delta_{1} r^{n}\right\}(j \neq s) \tag{4.3}
\end{align*}
$$

Now we prove that $\left|f^{(s)}(z)\right|$ is bounded on the ray $\arg z=\theta$. If $\left|f^{(s)}(z)\right|$ is unbounded on the ray $\arg z=\theta$, then by Lemma 2.3 , there exists an infinite sequence of points $z_{m}=r_{m} e^{i \theta}(m=1,2, \ldots)$, where $r_{m} \rightarrow+\infty$ such that $f^{(s)}\left(z_{m}\right) \rightarrow \infty$ and (3.6) holds.

By (1.3), (3.1), (3.6) and (4.1)-(4.3), for the above z_{m}, we obtain

$$
\begin{equation*}
\exp \left\{(1-\varepsilon) \delta_{2} r_{m}^{n}\right\} \leq M_{1} r_{m}^{d_{1}} \exp \left\{(1+\varepsilon) \delta_{1} r_{m}^{n}\right\} \tag{4.4}
\end{equation*}
$$

where $M_{1}, d_{1}(>0)$ are constants. This is a contradiction. Hence $\left|f^{(s)}(z)\right| \leq M$ on $\arg z=\theta$, where $M(>0)$ is a constant. We can easily obtain (3.8) on $\arg z=\theta$. By Lemma 2.4, (3.8) and the fact that $E_{1} \cup E_{2} \cup H_{1} \cup H_{2}$ has linear measure zero, we obtain that $f(z)$ is a polynomial with $\operatorname{deg} f \leq s$ which contradicts our assumption. Therefore $\sigma(f)=+\infty$.
(b): $\delta_{2}>0>\delta_{1}$. Thus for any given $\varepsilon(0<2 \varepsilon<1)$ and all z satisfying $\arg z=\theta$ and $|z|=r$ sufficiently large, we have 4.1),

$$
\begin{gather*}
\left|A_{1}(z) e^{P_{1}(z)}\right| \leq \exp \left\{(1-\varepsilon) \delta_{1} r^{n}\right\}<1 \tag{4.5}\\
\left|B_{j}(z) e^{Q_{j}(z)}\right| \leq \exp \left\{(1-\varepsilon) \delta\left(Q_{j}, \theta\right) r^{n}\right\}<1(j \neq s) \tag{4.6}
\end{gather*}
$$

Now we prove that $\left|f^{(s)}(z)\right|$ is bounded on the ray $\arg z=\theta$. If $\left|f^{(s)}(z)\right|$ is unbounded on the ray $\arg z=\theta$, then by Lemma 2.3 , there exists an infinite sequence of points $z_{m}=r_{m} e^{i \theta}(m=1,2, \ldots)$, where $r_{m} \rightarrow+\infty$ such that $f^{(s)}\left(z_{m}\right) \rightarrow \infty$ and (3.6) holds.

By (1.3), (3.1), (3.6), 4.1, 4.5 and 4.6, for the above z_{m}, we obtain

$$
\begin{equation*}
\exp \left\{(1-\varepsilon) \delta_{2} r_{m}^{n}\right\} \leq M_{2} r_{m}^{d_{2}} \tag{4.7}
\end{equation*}
$$

where $M_{2}, d_{2}(>0)$ are constants. This is a contradiction. Hence $\left|f^{(s)}(z)\right| \leq M$ on $\arg z=\theta$, where $M(>0)$ is a constant. We can easily obtain 3.8) on $\arg z=\theta$. Using similar arguments as above, we conclude that $\sigma(f)=+\infty$.
(c): $0>\delta_{2}>\delta_{1}$. Using similar reasoning as in subcase 1.1.(c) of the first step in the proof of Theorem 1.2 , we can also obtain that $\sigma(f)=+\infty$.
Case 2. Assume that $\theta_{1}=\theta_{2}$. Then $\theta_{1}=\theta_{2}=\pi$. For any given $\theta \in[0,2 \pi) / E_{1} \cup$ $E_{2} \cup H_{1}$, we have (3.17).
Subcase 2.1: $\delta\left(P_{1}, \theta\right)>0$. Since $\left|a_{n, 1}\right| \leq\left|a_{n, 2}\right|, a_{n, 1} \neq a_{n, 2}$ and $\theta_{1}=\theta_{2}$, it follows that $\left|a_{n, 1}\right|<\left|a_{n, 2}\right|$. Thus for any given $\varepsilon\left(0<\varepsilon<\frac{\left|a_{n, 2}\right|-\left|a_{n, 1}\right|}{2\left(\left|a_{n}\right| 2\left|+\left|a_{n, 1}\right|\right)\right.}\right)$ and all z satisfying $\arg z=\theta$ and $|z|=r$ sufficiently large, we have $3.18-(3.20$ and

$$
\begin{align*}
\left|B_{j}(z) e^{Q_{j}(z)}\right| & \leq \exp \left\{(1+\varepsilon) \delta\left(Q_{j}, \theta\right) r^{n}\right\} \\
& \leq \exp \left\{(1+\varepsilon) b r^{n} \cos (n \theta)\right\}(j \in J) \tag{4.8}
\end{align*}
$$

By 3.18 and 3.19, we obtain

$$
\begin{equation*}
\left|A_{1}(z) e^{P_{1}(z)}+A_{2}(z) e^{P_{2}(z)}\right| \geq \exp \left\{(1+\varepsilon) \delta\left(P_{1}, \theta\right) r^{n}\right\}\left[\exp \left\{\gamma_{1} r^{n}\right\}-1\right] \tag{4.9}
\end{equation*}
$$

where

$$
\gamma_{1}=(1-\varepsilon) \delta\left(P_{2}, \theta\right)-(1+\varepsilon) \delta\left(P_{1}, \theta\right)>0
$$

Hence from 4.9), we obtain

$$
\begin{equation*}
\left|A_{1}(z) e^{P_{1}(z)}+A_{2}(z) e^{P_{2}(z)}\right| \geq(1-o(1)) \exp \left\{(1+\varepsilon) \delta\left(P_{1}, \theta\right) r^{n}\right\} \exp \left\{\gamma_{1} r^{n}\right\} \tag{4.10}
\end{equation*}
$$

Now we prove that $\left|f^{(s)}(z)\right|$ is bounded on the ray $\arg z=\theta$. If $\left|f^{(s)}(z)\right|$ is unbounded on the ray $\arg z=\theta$, then by Lemma 2.3 , there exists an infinite sequence of points $z_{m}=r_{m} e^{i \theta}(m=1,2, \ldots)$, where $r_{m} \rightarrow+\infty$ such that $f^{(s)}\left(z_{m}\right) \rightarrow \infty$ and 3.6 holds.

By (1.3), (3.1), (3.6), (3.20), 4.8) and 4.10), we obtain

$$
\begin{align*}
& (1-o(1)) \exp \left\{(1+\varepsilon) \delta\left(P_{1}, \theta\right) r_{m}^{n}\right\} \exp \left\{\gamma_{1} r_{m}^{n}\right\} \\
& \leq M_{3} r_{m}^{d_{3}} \exp \left\{(1+\varepsilon) \alpha \delta\left(P_{1}, \theta\right) r_{m}^{n}\right\} \exp \left\{(1+\varepsilon) b r_{m}^{n} \cos (n \theta)\right\} \tag{4.11}
\end{align*}
$$

where $M_{3}, d_{3}(>0)$ are constants. Hence

$$
\begin{equation*}
(1-o(1)) \exp \left\{\gamma_{2} r_{m}^{n}\right\} \leq M_{3} r_{m}^{d_{3}} \tag{4.12}
\end{equation*}
$$

where

$$
\gamma_{2}=(1+\varepsilon)\left[(1-\alpha) \delta\left(P_{1}, \theta\right)-b \cos (n \theta)\right]+\gamma_{1}
$$

Since $\gamma_{1}>0, \cos (n \theta)<0, \delta\left(P_{1}, \theta\right)=-\left|a_{n, 1}\right| \cos (n \theta)$ and $(1-\alpha) a_{n, 1}<b<0$, we have

$$
\gamma_{2}=-(1+\varepsilon)\left[(1-\alpha)\left|a_{n, 1}\right|+b\right] \cos (n \theta)+\gamma_{1}>\gamma_{1}>0
$$

Hence 4.11) is a contradiction. Hence $\left|f^{(s)}(z)\right| \leq M$ on $\arg z=\theta$, where $M(>0)$ is a constant. We can easily obtain (3.8) on $\arg z=\theta$. By Lemma 2.4 , 3.8) and the fact that $E_{1} \cup E_{2} \cup H_{1}$ has linear measure zero, we obtain that $f(z)$ is a polynomial with $\operatorname{deg} f \leq s$ which contradicts our assumption. Therefore $\sigma(f)=+\infty$.
Subcase 2.2: $\delta\left(P_{1}, \theta\right)<0$. Using similar reasoning as in subcase 1.1(c) of the first step in the proof of Theorem 1.2, we can also obtain that $\sigma(f)=+\infty$.
Second step. Now we prove that $\sigma_{2}(f)=n$. By Lemma 2.5, there exist a constant $B>0$ and a set $F_{1} \subset(1,+\infty)$ having finite logarithmic measure such that for all z satisfying $|z|=r \notin[0,1] \cup F_{1}$, we have 3.28$)$. For each sufficiently large $|z|=r$, we take a point $z_{r}=r e^{i \theta_{r}}$ satisfying $\left|f\left(z_{r}\right)\right|=M(r, f)$. By Lemma 2.6, there exists a constant $\delta_{r}(>0)$ and a set F_{2} of finite logarithmic measure such that for all all z satisfying $|z|=r \notin F_{2}$ and $\arg z=\theta \in\left[\theta_{r}-\delta_{r}, \theta_{r}+\delta_{r}\right]$, we have 3.29.
Case 1 Suppose that $\theta_{1} \neq \theta_{2}$. For any given $\theta \in\left[\theta_{r}-\delta_{r}, \theta_{r}+\delta_{r}\right] \backslash E_{2} \cup H_{1} \cup H_{2}$, we have (3.2), where E_{2}, H_{1} and H_{2} are defined above. Set $\delta_{1}=\delta\left(P_{1}, \theta\right)$ and $\delta_{2}=\delta\left(P_{2}, \theta\right)$.
Subcase 1.1: $\delta_{1}>\delta_{2}$. Using the same reasoning as in subcase 1.1(a) of the second step in the proof of Theorem 1.2, we can also obtain that $\sigma_{2}(f)=n$.
Subcase 1.2: $\delta_{2}>\delta_{1}$. Here we also divide our proof in three subcases:
(a): $\delta_{2}>\delta_{1}>0$. Thus for any given $\varepsilon\left(0<\varepsilon<\frac{\delta_{2}-\delta_{1}}{2\left(\delta_{2}+\delta_{1}\right)}\right)$ and all z satisfying $\arg z=\theta$ and $|z|=r$ sufficiently large, we have (4.1)-4.3. By (1.3), (3.28), (3.29) and (4.1)-4.3), for all z satisfying $|z|=r \notin[0,1] \cup F_{1} \cup F_{2}$ and $\arg z \in$ $\left[\theta_{r}-\delta_{r}, \theta_{r}+\delta_{r}\right] \backslash E_{2} \cup H_{1} \cup H_{2}$, we obtain

$$
\begin{equation*}
\exp \left\{(1-\varepsilon) \delta_{2} r^{n}\right\} \leq M_{4} r^{2 s+1} \exp \left\{(1+\varepsilon) \delta_{1} r^{n}\right\}[T(2 r, f)]^{k+1} \tag{4.13}
\end{equation*}
$$

where $M_{4}(>0)$ is a constant. Hence by using Lemma 2.7 and 4.13), we obtain $\sigma_{2}(f) \geq n$. From this and Lemma 2.8 , we have $\sigma_{2}(f)=n$.
(b): $\delta_{2}>0>\delta_{1}$. Thus for any given $\varepsilon(0<2 \varepsilon<1)$ and all z satisfying $\arg z=\theta$ and $|z|=r$ sufficiently large, we have 4.1, 4.5 and 4.6. By (1.3), (3.28), (3.29), 4.1, 4.5 and 4.6), for all z satisfying $|z|=r \notin[0,1] \cup \overline{F_{1}} \cup F_{2}$ and $\arg z \in\left[\overline{\theta_{r}}-\delta_{r}, \theta_{r}+\delta_{r}\right] \backslash E_{2} \cup H_{1} \cup H_{2}$, we obtain

$$
\begin{equation*}
\exp \left\{(1-\varepsilon) \delta_{2} r^{n}\right\} \leq M_{5} r^{2 s+1}[T(2 r, f)]^{k+1} \tag{4.14}
\end{equation*}
$$

where $M_{5}(>0)$ is a constant. Hence by using Lemma 2.7 and 4.14), we obtain $\sigma_{2}(f) \geq n$. From this and Lemma 2.8, we have $\sigma_{2}(f)=n$.
(c): $0>\delta_{2}>\delta_{1}$. Using similar reasoning as in subcase 1.1(c) of the second step in the proof of Theorem 1.2, we can also obtain that $\sigma_{2}(f)=n$.
Case 2. Assume that $\theta_{1}=\theta_{2}$. For any given $\theta \in\left[\theta_{r}-\delta_{r}, \theta_{r}+\delta_{r}\right] \backslash E_{2} \cup H_{1}$, where E_{2} and H_{1} are defined above, we have (3.17).
Subcase 2.1: $\delta\left(P_{1}, \theta\right)>0$. For any given ε,

$$
0<\varepsilon<\frac{\left|a_{n, 2}\right|-\left|a_{n, 1}\right|}{2\left(\left|a_{n, 2}\right|+\left|a_{n, 1}\right|\right)},
$$

and all z satisfying $\arg z=\theta$ and $|z|=r$ sufficiently large, we have 3.20 , 4.8 and 4.10. By (1.3), 3.20, (3.28, (3.29, (4.8) and 4.10, for all z satisfying $|z|=r \notin[0,1] \cup F_{1} \cup F_{2}$ and $\arg z \in\left[\theta_{r}-\delta_{r}, \theta_{r}+\delta_{r}\right] \backslash E_{2} \cup H_{1}$, we obtain

$$
\begin{equation*}
(1-o(1)) \exp \left\{\gamma_{2} r^{n}\right\} \leq M_{6} r^{2 s+1}[T(2 r, f)]^{k+1} \tag{4.15}
\end{equation*}
$$

where $M_{6}(>0)$ is a constant. Hence by using Lemma 2.7 and 4.15, we obtain $\sigma_{2}(f) \geq n$. From this and Lemma 2.8, we have $\sigma_{2}(f)=n$.
Subcase 2.2: $\delta\left(P_{1}, \theta\right)<0$. Using similar reasoning as in subcase 1.1(c) of the second step in the proof of Theorem 1.2 , we can also obtain that $\sigma_{2}(f)=n$.

5. Proof of Theorem 1.4

Assume f is a transcendental solution of equation 1.3 .
First step. We prove that $\sigma(f)=+\infty$. Suppose that $\sigma(f)=\rho<+\infty$. By Lemma 2.1, there exists a set $E_{1} \subset[0,2 \pi)$ that has linear measure zero such that if $\theta \in[0,2 \pi)-E_{1}$, then there is a constant $R_{1}=R_{1}(\theta)>1$ such that for all z satisfying $\arg z=\theta$ and $|z| \geqslant R_{1}$, we have (3.1). Set $a_{n, l}=\left|a_{n, l}\right| e^{i \theta_{l}}, \theta_{l} \in[0,2 \pi)$ ($l=1,2$).

Assume that $a_{n, 1}$ and $a_{n, 2}$ are real numbers such that $(1-\beta) a_{n, 2}-b<a_{n, 1}<0$ or $(1-\alpha) a_{n, 1}-b<a_{n, 2}<0$, which is $\theta_{1}=\theta_{2}=\pi$. By Lemma 2.2. for any given $\varepsilon>0$, there exists a set $E_{2} \subset[0,2 \pi)$ that has linear measure zero, such that if $z=r e^{i \theta}$, $\theta \in[0,2 \pi) / E_{2} \cup H_{3}$ and r is sufficiently large, then $A_{l}(z) e^{P_{l}(z)}(l=1,2)$ and $B_{j}(z) e^{Q_{j}(z)}(j \neq s)$ satisfy (2.2) or (2.3), where $H_{3}=\{\theta \in[0,2 \pi): \cos (n \theta)=0\}$.

For any given $\theta \in[0,2 \pi) \backslash E_{1} \cup E_{2} \cup H_{3}$, we have 3.17).
Case 1: $\delta\left(P_{1}, \theta\right)>0$.
(i) If $(1-\beta) a_{n, 2}-b<a_{n, 1}<0$, for any given $\varepsilon\left(0<\varepsilon<\frac{(1-\beta)\left|a_{n, 2}\right|-\left|a_{n, 1}\right|+b}{2\left[(1+\beta)\left|a_{n, 2}\right|+\left|a_{n, 1}\right|-b\right]}\right)$ and all z satisfying $\arg z=\theta$ and $|z|=r$ sufficiently large, we have (3.18), (3.19), (4.8), and

$$
\begin{equation*}
\left|B_{j}(z) e^{Q_{j}(z)}\right| \leq \exp \left\{(1+\varepsilon) \alpha \delta\left(P_{1}, \theta\right) r^{n}\right\} \exp \left\{(1+\varepsilon) \beta \delta\left(P_{2}, \theta\right) r^{n}\right\} \quad(j \in I) \tag{5.1}
\end{equation*}
$$

Now we prove that $\left|f^{(s)}(z)\right|$ is bounded on the ray $\arg z=\theta$. If $\left|f^{(s)}(z)\right|$ is unbounded on the ray $\arg z=\theta$, then by Lemma 2.3 , there exists an infinite sequence of points $z_{m}=r_{m} e^{i \theta}(m=1,2, \ldots)$, where $r_{m} \rightarrow+\infty$ such that $f^{(s)}\left(z_{m}\right) \rightarrow \infty$
and (3.6 holds. By (1.3), 3.1), (3.6, (3.18), (3.19, (4.8) and (5.1), for the above z_{m}, we obtain

$$
\begin{align*}
& \exp \left\{(1-\varepsilon) \delta\left(P_{2}, \theta\right) r_{m}^{n}\right\} \\
& \leq M_{1} r_{m}^{d_{1}} \exp \left\{(1+\varepsilon)\left[\delta\left(P_{1}, \theta\right)+\beta \delta\left(P_{2}, \theta\right)+b \cos (n \theta)\right] r_{m}^{n}\right\} \tag{5.2}
\end{align*}
$$

where $M_{1}, d_{1}(>0)$ are constants. By (5.2), we have

$$
\begin{equation*}
\exp \left\{\gamma_{1} r_{m}^{n}\right\} \leq M_{1} r_{m}^{d_{1}} \tag{5.3}
\end{equation*}
$$

where

$$
\gamma_{1}=(1-\varepsilon) \delta\left(P_{2}, \theta\right)-(1+\varepsilon)\left[\delta\left(P_{1}, \theta\right)+\beta \delta\left(P_{2}, \theta\right)+b \cos (n \theta)\right]
$$

From

$$
0<\varepsilon<\frac{(1-\beta)\left|a_{n, 2}\right|-\left|a_{n, 1}\right|+b}{2\left[(1+\beta)\left|a_{n, 2}\right|+\left|a_{n, 1}\right|-b\right]}
$$

and $\cos (n \theta)<0$, we obtain

$$
\begin{aligned}
\gamma_{1} & =-\left\{(1-\beta)\left|a_{n, 2}\right|-\left|a_{n, 1}\right|+b-\varepsilon\left[(1+\beta)\left|a_{n, 2}\right|+\left|a_{n, 1}\right|-b\right]\right\} \cos (n \theta) \\
& >-\frac{\left[(1-\beta)\left|a_{n, 2}\right|-\left|a_{n, 1}\right|+b\right]}{2} \cos (n \theta)>0
\end{aligned}
$$

Thus (5.3) is a contradiction. Hence $\left|f^{(s)}(z)\right| \leq M$ on $\arg z=\theta$, where $M(>0)$ is a constant. We can easily obtain (3.8) on $\arg z=\theta$. By Lemma 2.4, (3.8) and the fact that $E_{1} \cup E_{2} \cup H_{1}$ has linear measure zero, we obtain that $f(z)$ is a polynomial with $\operatorname{deg} f \leq s$, which contradicts our assumption. Therefore $\sigma(f)=+\infty$.
(ii) If $(1-\alpha) a_{n, 1}-b<a_{n, 2}<0$, for any given ε,

$$
\left.0<\varepsilon<\frac{(1-\alpha)\left|a_{n, 1}\right|-\left|a_{n, 2}\right|+b}{\left.2\left[(1+\alpha)\left|a_{n, 1}\right|+\left|a_{n, 2}\right|-b\right)\right]}\right),
$$

and all z satisfying $\arg z=\theta$ and $|z|=r$ sufficiently large, we have (3.24) and (3.25).

Now we prove that $\left|f^{(s)}(z)\right|$ is bounded on the ray $\arg z=\theta$. If $\left|f^{(s)}(z)\right|$ is unbounded on the ray $\arg z=\theta$, then by Lemma 2.3 , there exists an infinite sequence of points $z_{m}=r_{m} e^{i \theta}(m=1,2, \ldots)$, where $r_{m} \rightarrow+\infty$ such that $f^{(s)}\left(z_{m}\right) \rightarrow \infty$ and 3.6 holds.

By (1.3), (3.1), (3.6), (3.24), (3.25), 4.8) and (5.1), for the above z_{m}, we obtain

$$
\begin{align*}
& \exp \left\{(1-\varepsilon) \delta\left(P_{1}, \theta\right) r_{m}^{n}\right\} \\
& \leq M_{2} r_{m}^{d_{2}} \exp \left\{(1+\varepsilon)\left[\delta\left(P_{2}, \theta\right)+\alpha \delta\left(P_{1}, \theta\right)+b \cos (n \theta)\right] r_{m}^{n}\right\} \tag{5.4}
\end{align*}
$$

where $M_{2}, d_{2}(>0)$ are constants. By (5.4), we have

$$
\begin{equation*}
\exp \left\{\gamma_{2} r_{m}^{n}\right\} \leq M_{2} r_{m}^{d_{2}} \tag{5.5}
\end{equation*}
$$

where

$$
\gamma_{2}=(1-\varepsilon) \delta\left(P_{1}, \theta\right)-(1+\varepsilon)\left[\delta\left(P_{2}, \theta\right)+\alpha \delta\left(P_{1}, \theta\right)+b \cos (n \theta)\right]>0
$$

Thus (5.5) is a contradiction. Hence $\left|f^{(s)}(z)\right| \leq M$ on $\arg z=\theta$, where $M(>0)$ is a constant. We can easily obtain (3.8) on $\arg z=\theta$. Using similar arguments as above, we deduce that $\sigma(f)=+\infty$.
Case 2: $\delta\left(P_{1}, \theta\right)<0$. Using similar reasoning as in subcase 1.1(c) of the first step in the proof of Theorem 1.2 , we can also obtain that $\sigma(f)=+\infty$.

Second step. We prove that $\sigma_{2}(f)=n$. By Lemma 2.5. there exist a constant $B>0$ and a set $F_{1} \subset(1,+\infty)$ having finite logarithmic measure such that for all z satisfying $|z|=r \notin[0,1] \cup E_{1}$, we have 3.28 . For each sufficiently large $|z|=r$, we take a point $z_{r}=r e^{i \theta_{r}}$ satisfying $\left|f\left(z_{r}\right)\right|=M(r, f)$. By Lemma 2.6, there exists a constant $\delta_{r}(>0)$ and a set F_{2} of finite logarithmic measure such that for all all z satisfying $|z|=r \notin F_{2}$ and $\arg z=\theta \in\left[\theta_{r}-\delta_{r}, \theta_{r}+\delta_{r}\right]$, we have (3.29). For any given $\theta \in\left[\theta_{r}-\delta_{r}, \theta_{r}+\delta_{r}\right] \backslash E_{2} \cup H_{3}$, we have (3.17), where E_{2} and H_{3} are defined above.
Case 1: $\delta\left(P_{1}, \theta\right)>0$.
(i) If $(1-\beta) a_{n, 2}-b<a_{n, 1}<0$, for any given $\varepsilon\left(0<\varepsilon<\frac{(1-\beta)\left|a_{n, 2}\right|-\left|a_{n, 1}\right|+b}{2\left[(1+\beta)\left|a_{n, 2}\right|+\left|a_{n, 1}\right|-b\right]}\right)$ and all z satisfying $\arg z=\theta$ and $|z|=r$ sufficiently large, we have (3.18), (3.19), 4.8) and (5.1). By (1.3), (3.18, (3.19), (3.28), (3.29), 4.8) and (5.1), for all z satisfying $|z|=r \notin[0,1] \cup F_{1} \cup F_{2}$ and $\arg z \in\left[\theta_{r}-\delta_{r}, \theta_{r}+\delta_{r}\right] \backslash E_{2} \cup H_{3}$, we obtain

$$
\begin{equation*}
\exp \left\{\gamma_{1} r^{n}\right\} \leq M_{3} r^{2 s+1}[T(2 r, f)]^{k+1} \tag{5.6}
\end{equation*}
$$

where $M_{3}(>0)$ is a constant and γ_{1} is defined above. Hence by using Lemma 2.7 and (5.6), we obtain $\sigma_{2}(f) \geq n$. From this and Lemma 2.8, we have $\sigma_{2}(f)=n$.
(ii) If $(1-\alpha) a_{n, 1}-b<a_{n, 2}<0$, for any given ε,

$$
\left(0<\varepsilon<\frac{(1-\alpha)\left|a_{n, 1}\right|-\left|a_{n, 2}\right|+b}{\left.2\left[(1+\alpha)\left|a_{n, 1}\right|+\left|a_{n, 2}\right|-b\right)\right]}\right)
$$

and all z satisfying $\arg z=\theta$ and $|z|=r$ sufficiently large, we have (3.23) and (3.24). By (1.3), (3.24), (3.25), (3.28), (3.29) and 4.8), for all z satisfying $|z|=$ $r \notin[0,1] \cup F_{1} \cup F_{2}$ and $\arg z \in\left[\theta_{r}-\delta_{r}, \theta_{r}+\delta_{r}\right] \backslash E_{2} \cup H_{3}$, we obtain

$$
\begin{equation*}
\exp \left\{\gamma_{2} r^{n}\right\} \leq M_{4} r^{2 s+1}[T(2 r, f)]^{k+1} \tag{5.7}
\end{equation*}
$$

where $M_{4}(>0)$ is a constant and γ_{2} is defined above. Hence by using Lemma 2.7 and (5.7), we obtain $\sigma_{2}(f) \geq n$. From this and Lemma 2.8, we have $\sigma_{2}(f)=n$.

Acknowledgements. The author is grateful to the referee for his/her valuable comments which lead to the improvement of this paper. I also would like to thank Professor B. Belaïdi for several discussions and for advising me about the paper of Heittokangas, Janne; Laine, Ilpo; Tohge, Kazuya; Wen, Zhi-Tao.

References

[1] I. Amemiya, M. Ozawa; Non-existence of finite order solutions of $w^{\prime \prime}+e^{-z} w^{\prime}+Q(z) w=0$, Hokkaido Math. J., 10 (1981), Special Issue, 1-17.
[2] S. B. Bank, J. K. Langley; On the oscillation of solutions of certain linear differential equations in the complex domain, Proc. Edinburgh Math. Soc. (2) 30 (1987) no. 3, 455-469.
[3] Z. X. Chen; the gowth of solutions of $f^{\prime \prime}+e^{-z} f^{\prime}+Q(z) f=0$, where the order $(Q)=1$, Sci. China Ser., A 45 (2002), no. 3, 290-300.
[4] Z. X. Chen, H. Shon; On the gowth of solutions of a class of higher order differential equations, Acta Mathematica Scientia, 24 B (2004), no. 1, 52-60.
[5] G. G. Gundersen; Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. London Math. Soc., 37 (1988), no. 1, 88-104.
[6] G. G. Gundersen; On the question of whether $f^{\prime \prime}+e^{-z} f^{\prime}+B(z) f=0$ can admit a solution $f \not \equiv 0$ of finite order, Proc. Roy. Soc. Edinburgh Sect., A 102 (1986), no. 1-2, 9-17.
[7] G. G. Gunderson; Finite order solutions of second order linear differential equations, Trans. Amer. Math. Soc. 305 (1988), no. 1, 415-429.
[8] W. K. Hayman; Meromorphic Functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.
[9] J. Heittokangas, I. Laine, K. Tohge, Z.-T. Wen; Completely regular growth solutions of second order complex linear differential equations, Ann. Acad. Sci. Fenn. Math. 40 (2015), no. 2, 985-1003.
[10] I. Laine, R. Yang; Finite order solutions of complex linear differential equations, Electron. J. Differ. Equ., 2004 (2004), no. 65, 1-8.
[11] J. K. Langley; On complex oscillation and a problem of Ozawa, Kodai Math. J., 9 (1986), no. 3, 430-439.
[12] A. I. Markushevich; Theory of functions of a complex variable, Vol. II, Translated by R. A. Silverman, Prentice-Hall, Englewood Cliffs, New Jersy, 1965.
[13] M. Ozawa; On a solution of $w^{\prime \prime}+e^{-z} w^{\prime}+(a z+b) w=0$, Kodai Math. J., 3 (1980), no. 2, 295-309.
[14] F. Peng, Z. X. Chen; On the growth of solutions of some second-order linear differential equations, J. Inequal. Appl., (2011), Art. ID 635604, 1-9.
[15] J. Tu, H.-Y. Xu, H.-M Liu, Y. Liu; Complex oscillation of higher order Linear differential equations with coefficients being lacunary series of finite iterated order, Abstr. Appl. Anal., (2013), Art. ID 634739, 1-8.
[16] C.-C. Yang, H.-X. Yi; Uniqueness Theory of Meromorphic Functions, Mathematics and Its Applications, 557, Kluwer Academic Publishers Group, Dordrecht, 2003.

Karima Hamani
Laboratory of Pure and Applied Mathematics, University of Mostaganem (UMAB), B.
P. 227 Mostaganem, Algeria

E-mail address: hamanikarima@yahoo.fr, karima.hamani@univ-mosta.dz

[^0]: 2010 Mathematics Subject Classification. 34M10, 30D35.
 Key words and phrases. Linear differential equation; transcendental entire function; order of growth; hyper-order.
 (C) 2016 Texas State University.

 Submitted February 15, 2016. Published July 11, 2016.

