
Electronic Journal of Differential Equations, Vol. 2016 (2016), No. 182, pp. 1–15.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

GROWTH OF TRANSCENDENTAL SOLUTIONS TO
HIGHER-ORDER LINEAR DIFFERENTIAL EQUATIONS WITH

ENTIRE COEFFICIENTS

KARIMA HAMANI

Abstract. In this article, we study the growth of transcendental solutions of

certain higher order linear differential equations with entire coefficients. Under

some conditions, we prove that every transcendental solution is of infinite
order. We also give an estimate of its hyper-order. We improve previous

results by Peng and Chen [14].

1. Introduction and statement of results

In this article, we use fundamental results and the standard notation of the
Nevanlinna’s value distribution theory of meromorphic functions (see [8, 16]). In
addition, we use the notation σ(f) to denote the order of growth of a meromorphic
function f and σ2(f) to denote the hyper-order of f which is defined in [16] by

σ2(f) = lim sup
r→+∞

log log T (r, f)
log r

,

where T (r, f) is the Nevanlinna characteristic function of f .
For the second order linear differential equation

f ′′ + e−zf ′ +B(z)f = 0, (1.1)

where B(z) is an entire function of finite order, it is well known that every solution
of (1.1) is an entire function and most solutions of (1.1) have an infinite order. Thus,
a natural question is: what conditions on B(z) will guarantee that every solution
f( 6≡ 0) of (1.1) has an infinite order? Ozawa [13], Gundersen [6], Langley [11].
Amemiya and Ozawa [1] have studied the problem, where B(z) is a nonconstant
polynomial or a transcendental entire function with order σ(B) 6= 1. In 2002, Chen
[3] investigated the growth of solutions of equation (1.1) in the case where σ(B) = 1.

In 1988, Gundersen [7] studied finite order solutions of second order linear dif-
ferential equations, where coefficients satisfy certain conditions in some angle. This
result was generalised to higher order linear differential equations by Laine and Yang
[10]. Recently, the authors [9] have studied completely regular growth solutions of
second order linear differential equations and discussed cases where coefficients and
or solutions of these equations are exponential polynomials.
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Recently, Peng and Chen [14] have studied the order and the hyper-order of
solutions of equation (1.1) and have proved the following result:

Theorem 1.1 ([14]). Let Aj(z) (6≡ 0) (j = 1, 2) be entire functions with σ(Aj) < 1,
a1, a2 be complex numbers such that a1a2 6= 0 and a1 6= a2 (suppose that |a1| ≤
|a2|). If arg a1 6= π or a1 < −1, then every solution f(6≡ 0) of the equation

f ′′ + e−zf ′ + (A1(z)ea1z +A2(z)ea2z)f = 0 (1.2)

is of infinite order and σ2(f) = 1.

In this article, we continue the research in this type of problem. We consider the
higher order linear differential equation

f (k) + hk−1(z)f (k−1) + · · ·+ h1(z)f ′ + h0(z)f = 0, (1.3)

where k > 2 is an integer and hj(z) (j = 0, . . . , k − 1) are entire functions. We
suppose that there exists only one coefficient of the form hs(z) = A1(z)eP1(z) +
A2(z)eP2(z), where Pl(z) =

∑n
i=0 ai,lz

i (l = 1, 2) are polynomials with degree n ≥
1 and Al(z) (6≡ 0) (l = 1, 2) are entire functions with σ(Al) < n. The other
coefficients have the form hj(z) = Bj(z)eQj(z) (j 6= s), where Qj(z) =

∑n
i=0 bi,jz

i

are polynomials with degree n ≥ 1 and Bj(z) ( 6≡ 0) are entire functions with
σ(Bj) < n. Under some conditions on the complex numbers an,l (l = 1, 2) and
bn,j (j 6= s), we will prove that every transcendental solution of equation (1.3) is
of infinite order. We also give an estimation of its hyper-order. We will prove the
following results:

Theorem 1.2. Let Pl(z) =
∑n
i=0 ai,lz

i (l = 1, 2) be polynomials with degree n ≥ 1,
where a0,l, . . . , an,l (l = 1, 2) are complex numbers such that an,1 6= an,2, Al(z)
(6≡ 0) (l = 1, 2) be entire functions with σ(Al) < n and hj(z) (j = 0, . . . , k − 1)
be entire functions. Suppose that there exists s ∈ {1, . . . , k − 1} such that hs(z) =
A1(z)eP1(z) + A2(z)eP2(z) and for j 6= s, hj(z) = Bj(z)eQj(z), where Bj(z) ( 6≡ 0)
are entire functions with σ(Bj) < n, Qj(z) =

∑n
i=0 bi,jz

i are polynomials with
degree n ≥ 1 and b0,j , . . . , bn,j (j 6= s) are complex numbers. Let I and J be two
sets satisfying I 6= ∅, J 6= ∅, I ∩ J = ∅ and I ∪ J = {0, . . . , s− 1, s+ 1, . . . , k − 1}
such that for j ∈ I, bn,j = αjan,1 (0 < αj < 1) and for j ∈ J , bn,j = βjan,2
(0 < βj < 1). Set an,l = |an,l| eiθl , θl ∈ [0, 2π) (l = 1, 2), α = max{αj : j ∈ I} and
β = max{βj : j ∈ J}.

If θ1 6= θ2 or θ1 = θ2 and (i) |an,1| < (1− β)|an,2| or (ii) |an,2| < (1− α)|an,1|,
then every transcendental solution f of equation (1.3) is of infinite order and sat-
isfies σ2(f) = n.

Theorem 1.3. Let Pl(z) =
∑n
i=0 ai,lz

i (l = 1, 2) be polynomials with degree n ≥ 1,
where a0,l, . . . , an,l (l = 1, 2) are complex numbers such that an,1 6= an,2 (suppose
that |an,1| ≤ |an,2|), Al(z) (6≡ 0) (l = 1, 2) be entire functions with σ(Al) < n and
hj(z) (j = 0, . . . , k−1) be entire functions. Suppose that there exists s ∈ {1, . . . , k−
1} such that hs(z) = A1(z)eP1(z) +A2(z)eP2(z) and for j 6= s, hj(z) = Bj(z)eQj(z),
where Bj(z) (6≡ 0) are entire functions with σ(Bj) < n, Qj(z) =

∑n
i=0 bi,jz

i are
polynomials with degree n ≥ 1 and b0,j , . . . , bn,j (j 6= s) are complex numbers. Let
I and J be two sets satisfying I 6= ∅, J 6= ∅, I ∩J = ∅ and I ∪J = {0, . . . , s− 1, s+
1, . . . , k− 1} such that for j ∈ I, bn,j = αjan,1 (0 < αj < 1) and for j ∈ J , bn,j are
real numbers satisfying bn,j < 0.
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If an,1 is a real number such that (1 − α)an,1 < b, where α = max{αj : j ∈ I}
and b = min{bn,j : j ∈ J}, then every transcendental solution f of equation (1.3)
is of infinite order and satisfies σ2(f) = n.

Theorem 1.4. Let Pl(z) =
∑n
i=0 ai,lz

i (l = 1, 2) be polynomials with degree n ≥ 1,
where a0,l, . . . , an,l (l = 1, 2) are complex numbers such that an,1 6= an,2 (suppose
that |an,1| ≤ |an,2|), Al(z) (6≡ 0) (l = 1, 2) be entire functions with σ(Al) < n and
hj(z) (j = 0, . . . , k−1) be entire functions. Suppose that there exists s ∈ {1, . . . , k−
1} such that hs(z) = A1(z)eP1(z) +A2(z)eP2(z) and for j 6= s, hj(z) = Bj(z)eQj(z),
where Bj(z) (6≡ 0) are entire functions with σ(Bj) < n, Qj(z) =

∑n
i=0 bi,jz

i are
polynomials with degree n ≥ 1 and b0,j , . . . , bn,j (j 6= s) are complex numbers. Let
I and J be two sets satisfying I 6= ∅, J 6= ∅, I ∩J = ∅ and I ∪J = {1, . . . , s− 1, s+
1, . . . , k− 1} such that for j ∈ I, bn,j = αjan,1 + βjan,2 (0 < αj < 1), (0 < βj < 1)
and for j ∈ J , bn,j are real numbers satisfying bn,j < 0. Set α = max{αj : j ∈ I},
β = max{βj : j ∈ I} and b = min{bn,j : j ∈ J}.

If an,1 and an,2 are real numbers such that (i) (1− β)an,2 − b < an,1 < 0 or (ii)
(1 − α)an,1 − b < an,2 < 0, then every transcendental solution f of equation (1.3)
is of infinite order and satisfies σ2(f) = n.

Remark 1.5. In Theorem 1.1, the authors have considered conditions only on one
complex number a1. But in Theorem 1.2 and Theorem 1.4, conditions are imposed
to the two numbers an,l (l = 1, 2).

2. Preliminary Lemmas

Lemma 2.1 ([5]). Let f(z) be a transcendental meromorphic function of finite
order σ. Let Γ = {(k1, j1), (k2, j2), . . . , (km, jm)} denotes a set of distinct pairs
of integers satisfying ki > ji > 0 (i = 1, 2, . . . ,m), and let ε > 0 be a given
constant. Then there exists a set E1 ⊂ [0, 2π) that has linear measure zero such
that if θ ∈ [0, 2π)\E1, then there is a constant R1 = R1(θ) > 1 such that for all z
satisfying arg z = θ and |z| > R1, and for all (k, j) ∈ Γ, we have

|f
(k)(z)
f (j)(z)

| 6 |z|(k−j)(σ−1+ε). (2.1)

Lemma 2.2 ([2, 12]). Let P (z) = (α+iβ)zn+. . . (α, β are real numbers, |α|+|β| 6=
0) be a polynomial with degree n ≥ 1, and A(z) be an entire function with σ(A) < n.
Set f(z) = A(z)eP (z), z = reiθ, δ(P, θ) = α cos(nθ)−β sin(nθ). Then for any given
ε > 0, there exists a set E2 ⊂ [0, 2π) that has linear measure zero such that for any
θ ∈ [0, 2π)\E2 ∪H, where H = {θ ∈ [0, 2π) : δ(P, θ) = 0} is a finite set, there is a
constant R2 > 1 such that for |z| = r > R2, we have

(i) if δ(P, θ) > 0, then

exp{(1− ε)δ(P, θ)rn} ≤ |f(reiθ)| ≤ exp{(1 + ε)δ(P, θ)rn}, (2.2)

(ii) if δ(P, θ) < 0, then

exp{(1 + ε)δ(P, θ)rn} ≤ |f(reiθ)| ≤ exp{(1− ε)δ(P, θ)rn}. (2.3)

Lemma 2.3 ([7, 9]). Let d ≥ 1 be an integer, f(z) be an entire function and
suppose that |f (d)(z)| is unbounded on some ray arg z = θ. Then there exists an
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infinite sequence of points zm = rme
iθ (m = 1, 2, . . . ), where rm → +∞, such that

f (d)(zm)→∞ and∣∣f (j)(zm)
f (d)(zm)

∣∣ 6 1
(d− j)!

(1 + o(1))|zm|d−j (j = 0, . . . , d− 1). (2.4)

The following Lemma is a trivial consequence of theorems by Phragmèn-Lindelöf
and Liouville (see [13, p. 214]):

Lemma 2.4 ([4]). Let f(z) be an entire function of finite order ρ. Suppose that
there exists a set E3 ⊂ [0, 2π) that has linear measure zero such that for any ray
arg z = θ ∈ [0, 2π)\E3, |f(reiθ)| ≤Mrk, where M = M(θ) > 0 is a constant and k
(> 0) is a constant independent of θ. Then f(z) is a polynomial with deg f ≤ k.

Lemma 2.5 ([5]). Let f(z) be a transcendental meromorphic function. Let α > 1
and ε > 0 be given constants. Then there exist a set F1 ⊂ (1,+∞) having finite
logarithmic measure and a constant B > 0 that depends only on α and (i, j) (i, j
are positive integers with i > j), such that for all z satisfying |z| = r /∈ [0, 1] ∪ F1,
we have

| f
(i)(z)
f (j)(z)

| ≤ B
[T (αr, f)

r
(logα r) log T (αr, f)

]i−j
. (2.5)

Lemma 2.6 ([15]). Let f(z) be a transcendental entire function. For each suffi-
ciently large |z| = r, let zr = r eiθr be a point satisfying |f(zr)| = M(r, f). Then
there exist a constant δr (> 0) and a set F2 of finite logarithmic measure, such that
for all z satisfying |z| = r /∈ F2 and arg z = θ ∈ [θr − δr, θr + δr], we have

| f(z)
f (d)(z)

| ≤ r2d (d ≥ 1 is an integer). (2.6)

Lemma 2.7 ([7]). Let ϕ : [0,+∞) → R and ψ : [0,+∞) → R be monotone non-
decreasing functions such that ϕ(r) 6 ψ(r) for all r /∈ F3∪[0, 1], where F3 ⊂ (1,+∞)
is a set of finite logarithmic measure. Let α > 1 be a given constant. Then there
exists an r0 = r0(α) > 0 such that ϕ(r) 6 ψ(αr) for all r > r0.

Lemma 2.8 ([4]). Let k ≥ 2 be an integer and Aj(z) (j = 0, 1, . . . , k− 1) be entire
functions of finite order. Set ρ = max{σ(Aj) : j = 0, 1, . . . , k−1}. If f is a solution
of equation

f (k) +Ak−1(z)f (k−1) + · · ·+A1(z)f ′ +A0(z)f = 0, (2.7)

then σ2(f) ≤ ρ.

3. Proof of Theorem 1.2

Assume f is a transcendental solution of (1.3).
First step. We prove that σ(f) = +∞. Suppose that σ(f) = ρ < +∞. By
Lemma 2.1, there exists a set E1 ⊂ [0, 2π) that has linear measure zero such that
if θ ∈ [0, 2π) − E1, then there is a constant R1 = R1(θ) > 1 such that for all z
satisfying arg z = θ and |z| > R1, we have∣∣f (j)(z)

f (i)(z)

∣∣ ≤ |z|kρ (0 ≤ i < j ≤ k). (3.1)

By Lemma 2.2, for any given ε > 0, there exists a set E2 ⊂ [0, 2π) that has linear
measure zero such that if z = reiθ, θ ∈ [0, 2π)/E2 ∪H1 and r is sufficiently large,
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then Al(z)ePl(z) (l = 1, 2) and Bj(z)eQj(z) (j 6= s) satisfy (2.2) or (2.3), where
H1 = {θ ∈ [0, 2π) : δ(P1, θ) or δ(P2, θ) = 0}.
Case 1. Suppose that θ1 6= θ2. Set H2 = {θ ∈ [0, 2π) : δ(P1, θ) = δ(P2, θ)}.
Since θ1 6= θ2, it follows that H2 has linear measure zero. For any given θ ∈
[0, 2π)\E1 ∪ E2 ∪H1 ∪H2, we have

δ(P1, θ) 6= 0, δ(P2, θ) 6= 0 and

δ(P1, θ) > δ(P2, θ) or δ(P1, θ) < δ(P2, θ).
(3.2)

Set δ1 = δ(P1, θ) and δ2 = δ(P2, θ).
Subcase 1.1: δ1 > δ2. Here we also divide our proof in three subcases:
(a): δ1 > δ2 > 0. Set δ3 = max{δ2, δ(Qj , θ) : j ∈ I}. Then 0 < δ3 < δ1. Thus for
any given ε (0 < ε < δ1−δ3

2(δ1+δ3)
) and all z satisfying arg z = θ and |z| = r sufficiently

large, we have

|A1(z)eP1(z)| ≥ exp{(1− ε)δ1rn}, (3.3)

|A2(z)eP2(z)| ≤ exp{(1 + ε)δ3rn} (3.4)

|Bj(z)eQj(z)| ≤ exp{(1 + ε)δ3rn} (j 6= s). (3.5)

Now we prove that |f (s)(z)| is bounded on the ray arg z = θ. If |f (s)(z)| is un-
bounded on the ray arg z = θ, then by Lemma 2.3, there exists an infinite sequence
of points zm = rme

iθ (m = 1, 2, . . . ), where rm → +∞ such that f (s)(zm) → ∞
and ∣∣f (j)(zm)

f (s)(zm)

∣∣ 6 1
(s− j)!

(1 + o(1))|zm|s−j (j = 0, . . . , s− 1). (3.6)

By (1.3), (3.1) and (3.3)–(3.6), for the above zm, we obtain

exp{(1− ε)δ1rnm} ≤M1r
d1
m exp{(1 + ε)δ3rnm}, (3.7)

where M1, d1(> 0) are constants. This is a contradiction. Hence |f (s)(z)| ≤M on
arg z = θ, where M (> 0) is a constant. We can easily obtain

|f(z)| ≤M |z|s (3.8)

on arg z = θ. By Lemma 2.4, (3.8) and the fact that E1 ∪E2 ∪H1 ∪H2 has linear
measure zero, we obtain that f(z) is a polynomial with deg f ≤ s, which contradicts
our assumption. Therefore σ(f) = +∞.
(b): δ1 > 0 > δ2. Thus for any given ε (0 < ε < 1−α

2(1+α) ) and all z satisfying
arg z = θ and |z| = r sufficiently large, we have (3.3),

|A2(z)eP2(z)| ≤ exp{(1− ε)δ2rn} < 1, (3.9)

|Bj(z)eQj(z)| ≤ exp{(1 + ε)αδ1rn} (j ∈ I), (3.10)

|Bj(z)eQj(z)| ≤ exp{(1− ε)δ(Qj , θ)rn} < 1 (j ∈ J). (3.11)

Now we prove that |f (s)(z)| is bounded on the ray arg z = θ. If |f (s)(z)| is un-
bounded on the ray arg z = θ, then by Lemma 2.3, there exists an infinite sequence
of points zm = rme

iθ (m = 1, 2, . . . ), where rm → +∞ such that f (s)(zm) → ∞
and (3.6) holds.

By (1.3), (3.1), (3.3), (3.6) and (3.9)-(3.11), for the above zm, we obtain

exp{(1− ε)δ1rnm} ≤M2r
d2
m exp{(1 + ε)αδ1rnm}, (3.12)
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where M2, d2 (> 0) are constants. This is a contradiction. Hence |f (s)(z)| ≤M on
arg z = θ, where M (> 0) is a constant. We can easily obtain (3.8) on arg z = θ.
Using similar arguments as above, we deduce that σ(f) = +∞.
(c): 0 > δ1 > δ2. Thus for any given ε (0 < 2ε < 1) and all z satisfying arg z = θ
and |z| = r sufficiently large, we have

|Al(z)ePl(z)| ≤ exp{(1− ε)δ(Pl, θ)rn} (l = 1, 2), (3.13)

|Bj(z)eQj(z)| ≤ exp{(1− ε)δ(Qj , θ)rn}(j 6= s). (3.14)

By (1.3), we obtain

− 1 = hk−1(z)
f (k−1)(z)
f (k)(z)

+ · · ·+ hs(z)
f (s)(z)
f (k)(z)

+ · · ·+ h0(z)
f(z)
f (k)(z)

. (3.15)

Now we prove that |f (k)(z)| is bounded on the ray arg z = θ. If |f (k)(z)| is un-
bounded on the ray arg z = θ, then by Lemma 2.3, there exists an infinite sequence
of points zm = rme

iθ (m = 1, 2, . . . ), where rm → +∞ such that f (k)(zm) → ∞
and ∣∣ f (j)(zm)

f (k)(zm)

∣∣ 6 1
(k − j)!

(1 + o(1))|zm|k−j (j = 0, . . . , k − 1). (3.16)

Substituting (3.1), (3.13), (3.14) and (3.16) into (3.15), as rm → +∞, we obtain
1 ≤ 0. This contradiction implies |f (k)(z)| ≤M ′ on arg z = θ, where M ′ (> 0) is a
constant. We can easily obtain that |f(z)| ≤ M ′|z|k on arg z = θ. From this and
the fact E1 ∪E2 ∪H1 ∪H2 has linear measure zero, we obtain by Lemma 2.4 that
f(z) is a polynomial with deg f ≤ k, which contradicts our assumption. Therefore
σ(f) = +∞.
Subcase 1.2: δ1 < δ2. Using the same reasoning as in subcase 1.1 , we can also
obtain that f(z) is a polynomial, which contradicts our assumption. Therefore
σ(f) = +∞.
Case 2. Suppose that θ1 = θ2. For any given θ ∈ [0, 2π)/E1 ∪E2 ∪H1, where E1,
E2 and H1 are defined above, we have

δ(P1, θ) > 0 or δ(P1, θ) < 0. (3.17)

Subcase 2.1: δ(P1, θ) > 0.

(i) If |an,1| < (1 − β)|an,2|, for any given ε (0 < ε <
(1−β)|an,2|−|an,1|

2[(1+β)|an,2|+|an,1|] ) and all z
satisfying arg z = θ and |z| = r sufficiently large, we have

|A1(z)eP1(z)| ≤ exp{(1 + ε)δ(P1, θ)rn}, (3.18)

|A2(z)eP2(z)| ≥ exp{(1− ε)δ(P2, θ)rn}, (3.19)

|Bj(z)eQj(z)| ≤ exp{(1 + ε)αδ(P1, θ)rn} (j ∈ I), (3.20)

|Bj(z)eQj(z)| ≤ exp{(1 + ε)βδ(P2, θ)rn} (j ∈ J). (3.21)

Now we prove that |f (s)(z)| is bounded on the ray arg z = θ. If |f (s)(z)| is un-
bounded on the ray arg z = θ, then by Lemma 2.3, there exists an infinite sequence
of points zm = rme

iθ (m = 1, 2, . . . ), where rm → +∞ such that f (s)(zm) → ∞
and (3.6) holds.
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By (1.3), (3.1), (3.6) and (3.18)-(3.21), for the above zm, we obtain

exp{(1− ε)δ(P2, θ)rnm}

≤M3r
d3
m exp{(1 + ε)δ(P1, θ)rnm} exp{(1 + ε)βδ(P2, θ)rnm},

(3.22)

where M3, d3 (> 0) are constants. By (3.22), we have

exp{γ1r
n
m} ≤M3r

d3
m , (3.23)

where
γ1 = (1− ε)δ(P2, θ)− (1 + ε)δ(P1, θ)− (1 + ε)βδ(P2, θ).

Since

0 < ε <
(1− β)|an,2| − |an,1|

2[(1 + β)|an,2|+ |an,1|]
,

θ1 = θ2 and cos(θ1 + nθ) > 0, we have

γ1 = {(1− β)|an,2| − |an,1| − ε[(1 + β)|an,2|+ |an,1|]} cos(θ1 + nθ)

>
(1− β)|an,2| − |an,1|

2
cos(θ1 + nθ) > 0.

Hence (3.23) is a contradiction. Hence |f (s)(z)| ≤M on arg z = θ, where M (> 0)
is a constant. We can easily obtain (3.8) on arg z = θ. By Lemma 2.4, (3.8) and the
fact that E1∪E2∪H1 has linear measure zero, we obtain that f(z) is a polynomial
with deg f ≤ s, which contradicts our assumption. Therefore σ(f) = +∞.

(ii) If |an,2| < (1− α)|an,1|, for any given ε (0 < ε <
(1−α)|an,1|−|an,2|

2[(1+α)|an,1|+|an,2|] ) and all z
satisfying arg z = θ and |z| = r sufficiently large, we have

|A1(z)eP1(z)| ≥ exp{(1− ε)δ(P1, θ)rn}, (3.24)

|A2(z)eP2(z)| ≤ exp{(1 + ε)δ(P2, θ)rn}. (3.25)

Now we prove that |f (s)(z)| is bounded on the ray arg z = θ. If |f (s)(z)| is un-
bounded on the ray arg z = θ, then by Lemma 2.3, there exists an infinite sequence
of points zm = rme

iθ (m = 1, 2, . . . ), where rm → +∞ such that f (s)(zm) → ∞
and (3.6) holds.

By (1.3), (3.1), (3.6), (3.20), (3.21), (3.24) and (3.25), for the above zm, we
obtain

exp{(1− ε)δ(P1, θ)rnm}

≤M4r
d4
m exp{(1 + ε)αδ(P1, θ)rnm} exp{(1 + ε)δ(P2, θ)rnm},

(3.26)

where M4, d4 (> 0) are constants. By (3.26), we have

exp{γ2r
n
m} ≤M4r

d4
m , (3.27)

where
γ2 = (1− ε)δ(P1, θ)− (1 + ε)δ(P2, θ)− (1 + ε)αδ(P1, θ) > 0.

Since (3.27) is a contradiction, |f (s)(z)| ≤ M on arg z = θ, where M (> 0) is a
constant. We can easily obtain (3.8) on arg z = θ. Using similar arguments as
above, we conclude that σ(f) = +∞.
Subcase 2.2: δ(P1, θ) < 0. Using the same reasoning as in subcase 1.1(c), we can
also conclude that σ(f) = +∞.
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Second step. Now we prove that σ2(f) = n. By Lemma 2.5, there exists a
constant B > 0 and a set F1 ⊂ (1,+∞) having finite logarithmic measure, such
that for all z satisfying |z| = r /∈ [0, 1] ∪ F1, we have∣∣f (j)(z)

f (i)(z)

∣∣ ≤ Br[T (2r, f)]j+1(0 ≤ i < j ≤ k). (3.28)

For each sufficiently large |z| = r, we take a point zr = reiθr satisfying |f(zr)| =
M(r, f). By Lemma 2.6, there exists a constant δr (> 0) and a set F2 of finite
logarithmic measure such that for all all z satisfying |z| = r /∈ F2 and arg z = θ ∈
[θr − δr, θr + δr], we have

| f(z)
f (d)(z)

| ≤ r2d (d = s, k). (3.29)

Case 1. Suppose that θ1 6= θ2. For any given θ ∈ [θr − δr, θr + δr]\E2 ∪H1 ∪H2,
we have (3.2), where E2, H1 and H2 are defined above. Set δ1 = δ(P1, θ) and
δ2 = δ(P2, θ).
Subcase 1.1: δ1 > δ2. Here we also divide our proof in three subcases:
(a): δ1 > δ2 > 0. Thus for any given ε (0 < ε < δ1−δ3

2(δ1+δ3)
) and all z satisfying

arg z = θ and |z| = r sufficiently large, we have (3.3)–(3.5), where δ3 is defined
above. By (1.3), (3.3)–(3.5), (3.28) and (3.29), for all z satisfying |z| = r /∈ [0, 1] ∪
F1 ∪ F2 and arg z ∈ [θr − δr, θr + δr]\E2 ∪H1 ∪H2, we obtain

exp{(1− ε)δ1rn} ≤M5r
2s+1 exp{(1 + ε)δ3rn}[T (2r, f)]k+1, (3.30)

where M5(> 0) is a constant. Hence by using Lemma 2.7 and (3.30), we obtain
σ2(f) ≥ n. From this and Lemma 2.8, we have σ2(f) = n.
(b): δ1 > 0 > δ2. Thus for any given ε (0 < ε < 1−α

2(1+α) ) and all z satisfying
arg z = θ and |z| = r sufficiently large, we have (3.3) and (3.9)–(3.11). By (1.3),
(3.3), (3.9)—(3.11), (3.28) and (3.29), for all z satisfying |z| = r /∈ [0, 1] ∪ F1 ∪ F2

and arg z ∈ [θr − δr, θr + δr]\E2 ∪H1 ∪H2, we obtain

exp{(1− ε)δ1rn} ≤M6r
2s+1 exp{(1 + ε)αδ1rn}[T (2r, f)]k+1, (3.31)

where M6(> 0) is a constant. Hence by using Lemma 2.7 and (3.31), we obtain
σ2(f) ≥ n. From this and Lemma 2.8, we have σ2(f) = n.
(c): 0 > δ1 > δ2. Set γ = min{αj , βj : j 6= s}. Thus for any given ε (0 < 2ε < 1)
and all z satisfying arg z = θ and |z| = r sufficiently large, we have

|Al(z)ePl(z)| ≤ exp{(1− ε)γδ1rn} (l = 1, 2), (3.32)

|Bj(z)eQj(z)| ≤ exp{(1− ε)γδ1rn} (j 6= s). (3.33)

By (1.3), (3.28), (3.29), (3.32) and (3.33), for all z satisfying |z| = r /∈ [0, 1]∪F1∪F2

and arg z ∈ [θr − δr, θr + δr]\E2 ∪H1 ∪H2, we obtain

1 ≤M7r
2k+1 exp{(1− ε)γδ1rn}[T (2r, f)]k+1, (3.34)

where M7 (> 0) is a constant. Hence by using Lemma 2.7 and (3.34), we obtain
σ2(f) ≥ n. From this and Lemma 2.8, we have σ2(f) = n.
Subcase 1.2: δ1 < δ2. Using the same reasoning as in subcase 1.1 of the second
step, we can also obtain that σ2(f) = n.
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Case 2. Suppose that θ1 = θ2. For any given θ ∈ [θr − δr, θr + δr]\E2 ∪H1, where
E2 and H1 are defined above, we have (3.17).
Subcase 2.1: δ(P1, θ) > 0.
(i) If |an,1| < (1− β)|an,2|, for any given ε,

0 < ε <
(1− β)|an,2| − |an,1|

2[(1 + β)|an,2|+ |an,1|]
,

and all z satisfying arg z = θ and |z| = r sufficiently large, we have (3.18) -(3.21).
By (1.3), (3.18)–(3.21), (3.28) and (3.29), for all z satisfying |z| = r /∈ [0, 1]∪F1∪F2

and arg z ∈ [θr − δr, θr + δr]\E2 ∪H1, we obtain

exp{γ1r
n} ≤M8r

2s+1[T (2r, f)]k+1, (3.35)

where M8 (> 0) is a constant and γ1 is defined above. Hence by using Lemma 2.7
and (3.35), we obtain σ2(f) ≥ n. From this and Lemma 2.8, we have σ2(f) = n.

(ii) If |an,2| < (1− α)|an,1|, for any given ε (0 < ε <
(1−α)|an,1|−|an,2|

2[(1+α)|an,1|+|an,2|] ) and all z
satisfying arg z = θ and |z| = r sufficiently large, we have (3.20) , (3.21), (3.24) and
(3.25). By (1.3), (3.20), (3.21), (3.24), (3.25), (3.28) and (3.29) for all z satisfying
|z| = r /∈ [0, 1] ∪ F1 ∪ F2 and arg z ∈ [θr − δr, θr + δr]\E2 ∪H1, we obtain

exp{γ2r
n} ≤M9r

2s+1[T (2r, f)]k+1, (3.36)

where M9 (> 0) is a constant and γ2 is defined above. Hence by using Lemma 2.7
and (3.36), we obtain σ2(f) ≥ n. From this and Lemma 2.8, we have σ2(f) = n.
Subcase 2.2: δ(P1, θ) < 0. Using the same reasoning as in subcase 1.1(c) of the
second step, we can also obtain that σ2(f) = n.

4. Proof of Theorem 1.3

Assume f is a transcendental solution of (1.3).
First step. We prove that σ(f) = +∞. Suppose that σ(f) = ρ < +∞. By
Lemma 2.1, there exists a set E1 ⊂ [0, 2π) that has linear measure zero such that
if θ ∈ [0, 2π)\E1, then there is a constant R1 = R1(θ) > 1 such that for all z
satisfying arg z = θ and |z| > R1, we have (3.1). Set an,l = |a

n,l
|eiθl , θl ∈ [0, 2π)

(l = 1, 2).
Assume that an,1 is a real number such that (1 − α)an,1 < b, which is θ1 = π.

By Lemmas 2.2, for any given ε > 0, there exist a set E2 ⊂ [0, 2π) that has linear
measure zero, such that if z = reiθ, θ ∈ [0, 2π)/E2 ∪H1 and r is sufficiently large,
then Al(z)ePl(z) (l = 1, 2) and Bj(z)eQj(z) (j 6= s) satisfy (2.2) or (2.3), where H1

is defined as in the proof of Theorem 1.2.
Case 1. Suppose that θ1 6= θ2. For any given θ ∈ [0, 2π]/E1∪E2∪H1∪H2, we have
(3.2), where H2 is defined as in the proof of Theorem 1.2. Since (1− α)an,s < b, it
follows that |b

n,j
| < |a

n,1 | (j ∈ J). Set δ1 = δ(P1, θ) and δ2 = δ(P2, θ).
Subcase 1.1: δ1 > δ2. If (a): δ1 > δ2 > 0 or (b): δ1 > 0 > δ2, it follows that
0 < δ(Qj , θ) < δ1 (j ∈ J). Hence by using the same reasoning as in subcase 1.1(a)
of the first step in the proof of Theorem 1.2, we can also obtain that σ(f) = +∞.
If (c): 0 > δ1 > δ2, by using similar reasoning as in subcase 1.1(c) of the first step
in the proof of Theorem 1.2, we can also obtain σ(f) = +∞.
Subcase 1.2: δ2 > δ1. Here we also divide our proof in three subcases:
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(a): δ2 > δ1 > 0. Thus for any given ε (0 < ε < δ2−δ1
2(δ2+δ1)

) and all z satisfying
arg z = θ and |z| = r sufficiently large, we have

|A2(z)eP2(z)| ≥ exp{(1− ε)δ2rn}, (4.1)

|A1(z)eP1(z)| ≤ exp{(1 + ε)δ1rn}, (4.2)

|Bj(z)eQj(z)| ≤ exp{(1 + ε)δ1rn} (j 6= s). (4.3)

Now we prove that |f (s)(z)| is bounded on the ray arg z = θ. If |f (s)(z)| is un-
bounded on the ray arg z = θ, then by Lemma 2.3, there exists an infinite sequence
of points zm = rme

iθ (m = 1, 2, . . . ), where rm → +∞ such that f (s)(zm) → ∞
and (3.6) holds.

By (1.3), (3.1), (3.6) and (4.1)–(4.3), for the above zm, we obtain

exp{(1− ε)δ2rnm} ≤M1r
d1
m exp{(1 + ε)δ1rnm}, (4.4)

where M1, d1(> 0) are constants. This is a contradiction. Hence |f (s)(z)| ≤M on
arg z = θ, where M (> 0) is a constant. We can easily obtain (3.8) on arg z = θ. By
Lemma 2.4, (3.8) and the fact that E1 ∪E2 ∪H1 ∪H2 has linear measure zero, we
obtain that f(z) is a polynomial with deg f ≤ s which contradicts our assumption.
Therefore σ(f) = +∞.
(b): δ2 > 0 > δ1. Thus for any given ε (0 < 2ε < 1) and all z satisfying arg z = θ
and |z| = r sufficiently large, we have (4.1),

|A1(z)eP1(z)| ≤ exp{(1− ε)δ1rn} < 1, (4.5)

|Bj(z)eQj(z)| ≤ exp{(1− ε)δ(Qj , θ)rn} < 1 (j 6= s). (4.6)

Now we prove that |f (s)(z)| is bounded on the ray arg z = θ. If |f (s)(z)| is un-
bounded on the ray arg z = θ, then by Lemma 2.3, there exists an infinite sequence
of points zm = rme

iθ (m = 1, 2, . . . ), where rm → +∞ such that f (s)(zm) → ∞
and (3.6) holds.

By (1.3), (3.1), (3.6), (4.1), (4.5) and (4.6), for the above zm, we obtain

exp{(1− ε)δ2rnm} ≤M2r
d2
m , (4.7)

where M2, d2(> 0) are constants. This is a contradiction. Hence |f (s)(z)| ≤M on
arg z = θ, where M (> 0) is a constant. We can easily obtain (3.8) on arg z = θ.
Using similar arguments as above, we conclude that σ(f) = +∞.
(c): 0 > δ2 > δ1. Using similar reasoning as in subcase 1.1.(c) of the first step in
the proof of Theorem 1.2, we can also obtain that σ(f) = +∞.
Case 2. Assume that θ1 = θ2. Then θ1 = θ2 = π. For any given θ ∈ [0, 2π)/E1 ∪
E2 ∪H1, we have (3.17).
Subcase 2.1: δ(P1, θ) > 0. Since |an,1| ≤ |an,2|, an,1 6= an,2 and θ1 = θ2, it
follows that |an,1| < |an,2|. Thus for any given ε (0 < ε <

|an,2|−|an,1|
2(|an,2|+|an,1|) ) and all z

satisfying arg z = θ and |z| = r sufficiently large, we have (3.18)–(3.20) and

|Bj(z)eQj(z)| ≤ exp{(1 + ε)δ(Qj , θ)rn}
≤ exp{(1 + ε)brn cos(nθ)}(j ∈ J).

(4.8)

By (3.18) and (3.19), we obtain

|A1(z)eP1(z) +A2(z)eP2(z)| ≥ exp{(1 + ε)δ(P1, θ)rn}[exp{γ1r
n} − 1], (4.9)
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where
γ1 = (1− ε)δ(P2, θ)− (1 + ε)δ(P1, θ) > 0.

Hence from (4.9), we obtain

|A1(z)eP1(z) +A2(z)eP2(z)| ≥ (1− o(1)) exp{(1 + ε)δ(P1, θ)rn} exp{γ1r
n}. (4.10)

Now we prove that |f (s)(z)| is bounded on the ray arg z = θ. If |f (s)(z)| is un-
bounded on the ray arg z = θ, then by Lemma 2.3, there exists an infinite sequence
of points zm = rme

iθ (m = 1, 2, . . . ), where rm → +∞ such that f (s)(zm) → ∞
and (3.6) holds.

By (1.3), (3.1), (3.6), (3.20), (4.8) and (4.10), we obtain

(1− o(1)) exp{(1 + ε)δ(P1, θ)rnm} exp{γ1r
n
m}

≤M3r
d3
m exp{(1 + ε)αδ(P1, θ)rnm} exp{(1 + ε)brnm cos(nθ)},

(4.11)

where M3, d3 (> 0) are constants. Hence

(1− o(1)) exp{γ2r
n
m} ≤M3r

d3
m , (4.12)

where
γ2 = (1 + ε)[(1− α)δ(P1, θ)− b cos(nθ)] + γ1.

Since γ1 > 0, cos(nθ) < 0, δ(P1, θ) = −|an,1| cos(nθ) and (1 − α)an,1 < b < 0, we
have

γ2 = −(1 + ε)[(1− α)|an,1|+ b] cos(nθ) + γ1 > γ1 > 0.
Hence (4.11) is a contradiction. Hence |f (s)(z)| ≤M on arg z = θ, where M (> 0)
is a constant. We can easily obtain (3.8) on arg z = θ. By Lemma 2.4, (3.8) and the
fact that E1∪E2∪H1 has linear measure zero, we obtain that f(z) is a polynomial
with deg f ≤ s which contradicts our assumption. Therefore σ(f) = +∞.
Subcase 2.2: δ(P1, θ) < 0. Using similar reasoning as in subcase 1.1(c) of the first
step in the proof of Theorem 1.2, we can also obtain that σ(f) = +∞.
Second step. Now we prove that σ2(f) = n. By Lemma 2.5, there exist a constant
B > 0 and a set F1 ⊂ (1,+∞) having finite logarithmic measure such that for all
z satisfying |z| = r /∈ [0, 1] ∪ F1, we have (3.28). For each sufficiently large |z| = r,
we take a point zr = reiθr satisfying |f(zr)| = M(r, f). By Lemma 2.6, there exists
a constant δr (> 0) and a set F2 of finite logarithmic measure such that for all all
z satisfying |z| = r /∈ F2 and arg z = θ ∈ [θr − δr, θr + δr], we have (3.29).
Case 1 Suppose that θ1 6= θ2. For any given θ ∈ [θr − δr, θr + δr]\E2 ∪H1 ∪H2,
we have (3.2), where E2, H1 and H2 are defined above. Set δ1 = δ(P1, θ) and
δ2 = δ(P2, θ).
Subcase 1.1: δ1 > δ2. Using the same reasoning as in subcase 1.1(a) of the second
step in the proof of Theorem 1.2, we can also obtain that σ2(f) = n.
Subcase 1.2: δ2 > δ1. Here we also divide our proof in three subcases:
(a): δ2 > δ1 > 0. Thus for any given ε (0 < ε < δ2−δ1

2(δ2+δ1)
) and all z satisfying

arg z = θ and |z| = r sufficiently large, we have (4.1)–(4.3). By (1.3), (3.28),
(3.29) and (4.1)–(4.3), for all z satisfying |z| = r /∈ [0, 1] ∪ F1 ∪ F2 and arg z ∈
[θr − δr, θr + δr]\E2 ∪H1 ∪H2, we obtain

exp{(1− ε)δ2rn} ≤M4r
2s+1 exp{(1 + ε)δ1rn}[T (2r, f)]k+1, (4.13)

where M4 (> 0) is a constant. Hence by using Lemma 2.7 and (4.13), we obtain
σ2(f) ≥ n. From this and Lemma 2.8, we have σ2(f) = n.
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(b): δ2 > 0 > δ1. Thus for any given ε (0 < 2ε < 1) and all z satisfying arg z = θ
and |z| = r sufficiently large, we have (4.1), (4.5) and (4.6). By (1.3), (3.28),
(3.29), (4.1), (4.5) and (4.6), for all z satisfying |z| = r /∈ [0, 1] ∪ F1 ∪ F2 and
arg z ∈ [θr − δr, θr + δr]\E2 ∪H1 ∪H2, we obtain

exp{(1− ε)δ2rn} ≤M5r
2s+1[T (2r, f)]k+1, (4.14)

where M5(> 0) is a constant. Hence by using Lemma 2.7 and (4.14), we obtain
σ2(f) ≥ n. From this and Lemma 2.8, we have σ2(f) = n.
(c): 0 > δ2 > δ1. Using similar reasoning as in subcase 1.1(c) of the second step
in the proof of Theorem 1.2, we can also obtain that σ2(f) = n.
Case 2. Assume that θ1 = θ2. For any given θ ∈ [θr − δr, θr + δr]\E2 ∪H1, where
E2 and H1 are defined above, we have (3.17).
Subcase 2.1: δ(P1, θ) > 0. For any given ε,

0 < ε <
|an,2| − |an,1|

2(|an,2|+ |an,1|)
,

and all z satisfying arg z = θ and |z| = r sufficiently large, we have (3.20), (4.8)
and (4.10). By (1.3), (3.20), (3.28), (3.29), (4.8) and (4.10), for all z satisfying
|z| = r /∈ [0, 1] ∪ F1 ∪ F2 and arg z ∈ [θr − δr, θr + δr]\E2 ∪H1, we obtain

(1− o(1)) exp{γ2r
n} ≤M6r

2s+1[T (2r, f)]k+1, (4.15)

where M6 (> 0) is a constant. Hence by using Lemma 2.7 and (4.15), we obtain
σ2(f) ≥ n. From this and Lemma 2.8, we have σ2(f) = n.
Subcase 2.2: δ(P1, θ) < 0. Using similar reasoning as in subcase 1.1(c) of the
second step in the proof of Theorem 1.2, we can also obtain that σ2(f) = n.

5. Proof of Theorem 1.4

Assume f is a transcendental solution of equation (1.3).
First step. We prove that σ(f) = +∞. Suppose that σ(f) = ρ < +∞. By
Lemma 2.1, there exists a set E1 ⊂ [0, 2π) that has linear measure zero such that
if θ ∈ [0, 2π) − E1, then there is a constant R1 = R1(θ) > 1 such that for all z
satisfying arg z = θ and |z| > R1, we have (3.1). Set an,l = |a

n,l
|eiθl , θl ∈ [0, 2π)

(l = 1, 2).
Assume that an,1 and an,2 are real numbers such that (1−β)an,2−b < an,1 < 0 or

(1−α)an,1−b < an,2 < 0, which is θ1 = θ2 = π. By Lemma 2.2, for any given ε > 0,
there exists a set E2 ⊂ [0, 2π) that has linear measure zero, such that if z = reiθ,
θ ∈ [0, 2π)/E2 ∪ H3 and r is sufficiently large, then Al(z)ePl(z) (l = 1, 2) and
Bj(z)eQj(z) (j 6= s) satisfy (2.2) or (2.3), where H3 = {θ ∈ [0, 2π) : cos(nθ) = 0}.

For any given θ ∈ [0, 2π)\E1 ∪ E2 ∪H3, we have (3.17).
Case 1: δ(P1, θ) > 0.
(i) If (1−β)an,2− b < an,1 < 0, for any given ε (0 < ε <

(1−β)|an,2|−|an,1|+b
2[(1+β)|an,2|+|an,1|−b] ) and

all z satisfying arg z = θ and |z| = r sufficiently large, we have (3.18), (3.19), (4.8),
and

|Bj(z)eQj(z)| ≤ exp{(1 + ε)αδ(P1, θ)rn} exp{(1 + ε)βδ(P2, θ)rn} (j ∈ I). (5.1)

Now we prove that |f (s)(z)| is bounded on the ray arg z = θ. If |f (s)(z)| is un-
bounded on the ray arg z = θ, then by Lemma 2.3, there exists an infinite sequence
of points zm = rme

iθ (m = 1, 2, . . . ), where rm → +∞ such that f (s)(zm) → ∞
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and (3.6) holds. By (1.3), (3.1), (3.6), (3.18), (3.19), (4.8) and (5.1), for the above
zm, we obtain

exp{(1− ε)δ(P2, θ)rnm}

≤M1r
d1
m exp{(1 + ε)[δ(P1, θ) + βδ(P2, θ) + b cos(nθ)]rnm},

(5.2)

where M1, d1 (> 0) are constants. By (5.2), we have

exp{γ1r
n
m} ≤M1r

d1
m , (5.3)

where

γ1 = (1− ε)δ(P2, θ)− (1 + ε)[δ(P1, θ) + βδ(P2, θ) + b cos(nθ)].

From

0 < ε <
(1− β)|an,2| − |an,1|+ b

2[(1 + β)|an,2|+ |an,1| − b]
and cos(nθ) < 0, we obtain

γ1 = −{(1− β)|an,2| − |an,1|+ b− ε[(1 + β)|an,2|+ |an,1| − b]} cos(nθ)

> − [(1− β)|an,2| − |an,1|+ b]
2

cos(nθ) > 0.

Thus (5.3) is a contradiction. Hence |f (s)(z)| ≤M on arg z = θ, where M (> 0) is
a constant. We can easily obtain (3.8) on arg z = θ. By Lemma 2.4, (3.8) and the
fact that E1∪E2∪H1 has linear measure zero, we obtain that f(z) is a polynomial
with deg f ≤ s, which contradicts our assumption. Therefore σ(f) = +∞.
(ii) If (1− α)an,1 − b < an,2 < 0, for any given ε,

0 < ε <
(1− α)|an,1| − |an,2|+ b

2[(1 + α)|an,1|+ |an,2| − b)]
),

and all z satisfying arg z = θ and |z| = r sufficiently large, we have (3.24) and
(3.25).

Now we prove that |f (s)(z)| is bounded on the ray arg z = θ. If |f (s)(z)| is un-
bounded on the ray arg z = θ, then by Lemma 2.3, there exists an infinite sequence
of points zm = rme

iθ (m = 1, 2, . . . ), where rm → +∞ such that f (s)(zm) → ∞
and (3.6) holds.

By (1.3), (3.1), (3.6), (3.24), (3.25), (4.8) and (5.1), for the above zm, we obtain

exp{(1− ε)δ(P1, θ)rnm}

≤M2r
d2
m exp{(1 + ε)[δ(P2, θ) + αδ(P1, θ) + b cos(nθ)]rnm},

(5.4)

where M2, d2 (> 0) are constants. By (5.4), we have

exp{γ2r
n
m} ≤M2r

d2
m , (5.5)

where

γ2 = (1− ε)δ(P1, θ)− (1 + ε)[δ(P2, θ) + αδ(P1, θ) + b cos(nθ)] > 0.

Thus (5.5) is a contradiction. Hence |f (s)(z)| ≤ M on arg z = θ , where M (> 0)
is a constant. We can easily obtain (3.8) on arg z = θ. Using similar arguments as
above, we deduce that σ(f) = +∞.
Case 2: δ(P1, θ) < 0. Using similar reasoning as in subcase 1.1(c) of the first step
in the proof of Theorem 1.2, we can also obtain that σ(f) = +∞.
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Second step. We prove that σ2(f) = n. By Lemma 2.5, there exist a constant
B > 0 and a set F1 ⊂ (1,+∞) having finite logarithmic measure such that for all
z satisfying |z| = r /∈ [0, 1] ∪E1, we have (3.28). For each sufficiently large |z| = r,
we take a point zr = reiθr satisfying |f(zr)| = M(r, f). By Lemma 2.6, there exists
a constant δr (> 0) and a set F2 of finite logarithmic measure such that for all all
z satisfying |z| = r /∈ F2 and arg z = θ ∈ [θr − δr, θr + δr], we have (3.29). For any
given θ ∈ [θr − δr, θr + δr]\E2 ∪H3, we have (3.17), where E2 and H3 are defined
above.
Case 1: δ(P1, θ) > 0.
(i) If (1−β)an,2− b < an,1 < 0, for any given ε (0 < ε <

(1−β)|an,2|−|an,1|+b
2[(1+β)|an,2|+|an,1|−b] ) and

all z satisfying arg z = θ and |z| = r sufficiently large, we have (3.18), (3.19), (4.8)
and (5.1). By (1.3), (3.18), (3.19), (3.28), (3.29), (4.8) and (5.1), for all z satisfying
|z| = r /∈ [0, 1] ∪ F1 ∪ F2 and arg z ∈ [θr − δr, θr + δr]\E2 ∪H3, we obtain

exp{γ1r
n} ≤M3r

2s+1[T (2r, f)]k+1, (5.6)

where M3 (> 0) is a constant and γ1 is defined above. Hence by using Lemma 2.7
and (5.6), we obtain σ2(f) ≥ n. From this and Lemma 2.8, we have σ2(f) = n.
(ii) If (1− α)an,1 − b < an,2 < 0, for any given ε,

(0 < ε <
(1− α)|an,1| − |an,2|+ b

2[(1 + α)|an,1|+ |an,2| − b)]
),

and all z satisfying arg z = θ and |z| = r sufficiently large, we have (3.23) and
(3.24). By (1.3), (3.24), (3.25), (3.28), (3.29) and (4.8), for all z satisfying |z| =
r /∈ [0, 1] ∪ F1 ∪ F2 and arg z ∈ [θr − δr, θr + δr]\E2 ∪H3, we obtain

exp{γ2r
n} ≤M4r

2s+1[T (2r, f)]k+1, (5.7)

where M4 (> 0) is a constant and γ2 is defined above. Hence by using Lemma 2.7
and (5.7), we obtain σ2(f) ≥ n. From this and Lemma 2.8, we have σ2(f) = n.
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