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STANDING WAVES FOR DISCRETE NONLINEAR
SCHRÖDINGER EQUATIONS

MING JIA

Abstract. The discrete nonlinear Schrödinger equation is a nonlinear lat-

tice system that appears in many areas of physics such as nonlinear optics,

biomolecular chains and Bose-Einstein condensates. By using critical point
theory, we establish some new sufficient conditions on the existence results of

standing waves for the discrete nonlinear Schrödinger equations. We give an

appropriate example to illustrate the conclusion obtained.

1. Introduction

The discrete nonlinear Schrödinger (DNLS) equation is one of the most impor-
tant inherently discrete models, having a crucial role in the modeling of a great
variety of phenomena, ranging from solid-state and condensed-matter physics to
biology [6]. Fundamental states supported by the DNLS equations are standing
waves due to their periodic time behavior. This kind of solutions have been found
in the experimental observations [10].

In the past decade, the existence of standing waves of the DNLS equations has
drawn a great deal of interest [12, 17, 19, 23, 24, 25, 28, 29]. The existence for
the periodic DNLS equations with superlinear nonlinearity [19] and with saturable
nonlinearity [29] has been studied. And the existence results of standing waves of
the DNLS equations without periodicity assumptions were established in [28]. As
for the existence of the homoclinic orbits of nonlinear Schrödinger equations, we
refer to [5, 26].

We denote by N, Z and R the sets of all natural numbers, integers and real
numbers respectively. For a and b in Z, define Z(a, b) = {a, a+1, . . . , b} when a ≤ b

This article considers the DNLS equation

iψ̇n = −∆ψn + vnψn − γnf(ψn), n ∈ Z, (1.1)

where ∆ψn = ψn+1 +ψn−1−2ψn is discrete Laplacian operator, vn and γn are real
valued for each n ∈ Z, f ∈ C(R,R), f(0) = 0 and the nonlinearity f(u) is gauge
invariant, that is,

f(eiθu) = eiθf(u), θ ∈ R. (1.2)
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Since standing waves are spatially localized time-periodic solutions and decay to
zero at infinity, ψn has the form

ψn = une
−iωt,

and
lim
|n|→∞

ψn = 0,

where ψn is real valued for each n ∈ Z and ω ∈ R is the temporal frequency. Then
(1.1) becomes

−∆un + vnun − ωun = γnf(un), n ∈ Z, (1.3)

lim
|n|→∞

un = 0 (1.4)

holds, where |n| is the length of index n. Actually, our methods allow us to consider
the more general equation

∆k(pn−k∆kun−k) + (−1)kqnun = (−1)kfn(un), k ∈ Z(1), n ∈ Z, (1.5)

with the same boundary condition (1.4). Here, ∆ is the forward difference operator
[16, 22] ∆un = un+1 − un, ∆kun = ∆(∆k−1un), pn and qn are positive real valued
for each n ∈ Z. pn, qn and fn(x) are all T -periodic in n for a given positive integer
T . When k = 1, pn ≡ 1 and qn ≡ εn − ω, we obtain (1.3). Naturally, if we look for
standing waves of (1.1), we just need to get the solutions of (1.5) satisfying (1.4).

Peil and Peterson [20] in 1994 studied the asymptotic behavior of solutions of
2kth-order difference equation

k∑
i=0

∆i(ri(n− i)∆iu(n− i)) = 0 (1.6)

with ri(n) ≡ 0 for 1 ≤ i ≤ k − 1.
In 1998, Anderson [2] considered (1.6) for n ∈ Z(a), and obtained a formulation

of generalized zeros and (k, k)-disconjugacy for (1.6). Cai and Yu [3] in 2007 ob-
tained some criteria for the existence of periodic solutions of the following difference
equation

∆k(rn−k∆kun−k) + f(n, un) = 0. (1.7)
In 2013, Deng, Liu, Zhang and Shi [9] studied the existence of periodic for the

following 2nth-order difference equation containing both advance and retardation
with p-Laplacian

∆n(rk−nϕp(∆nuk−1)) = (−1)nf(k, uk+1, uk, uk−1), k ∈ Z. (1.8)

Recently, Liu, Zhang and Shi [14] established various sets of sufficient conditions
of the nonexistence and existence of solutions for mixed boundary value problem
and gave some new results to the following 2nth-order nonlinear difference equation

∆n(γi−n+1∆nui−n) = (−1)nf(i, ui+1, ui, ui−1), n ∈ Z(1), i ∈ Z(1, k), (1.9)

by using critical point theory.
Using critical point theory, Shi and Zhang [23] in 2016 investigated the more

general equation

∆k(rn−kϕp(∆kun−1)) + (−1)kqnϕp(un) = (−1)kγnf(un), k ∈ Z(1), n ∈ Z,
(1.10)

and obtained a new result concerning the existence of a standing wave solution.
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As it is well known, critical point theory is a powerful tool to deal with the
homoclinic solutions of differential equations [11] and is used to study homoclinic
solutions of discrete systems in recent years [1, 7, 8, 13, 15]. Our aim in this
paper is to obtain the existence results of standing waves for the discrete nonlinear
Schrödinger equations by using critical point theory. The main idea is to transfer
the problem of solutions in E (defined in Section 2) of (1.5) into that of critical
points of the corresponding functional. The motivation for the present work stems
from the recent paper [27].

For basic knowledge of variational methods, the reader is referred to [18, 21].
Let Fn(x) =

∫ x
0
fn(t)dt, t ∈ R. Our main results are as follows.

Theorem 1.1. Suppose that the following hypotheses are satisfied:
(H1) Fn(x) is continuously differentiable in x for every n ∈ Z, Fn(x) ≥ 0,

Fn(0) = 0;
(H2) lim|x|→0

fn(x)
|x| = 0 for n ∈ Z;

(H3) lim|x|→∞
Fn(x)
x2 =∞ for n ∈ Z;

(H4) for any % > 0, there exist a = a% > 0, b = b% > 0 and α < 2 such that for
all n ∈ Z, |x| > %,(

2 +
1

a+ b|x|α/2
)
Fn(x) ≤ fn(x)x.

Then (1.5) has a nontrivial solution satisfying (1.4).

Theorem 1.2. Assume that (H1), (H2) and the following hypothesis are satisfied:
(H5) there exists γ > 2 such that

0 < γFn(x) ≤ xfn(x), ∀n ∈ Z, x ∈ R \ {0}.

Then (1.5) has a nontrivial solution satisfying (1.4).

2. Variational structure

To apply the critical point theory, the corresponding variational framework for
equation (1.5) is established. We start by some basic notations for the reader’s
convenience. Let S be the vector space of all real sequences of the form

u = (. . . , u−n, . . . , u−1, u0, u1, . . . , un, . . . ) = {un}+∞n=−∞,

namely S = {{un} : un ∈ R, n ∈ Z}. Define

E =
{
u ∈ S :

+∞∑
n=−∞

[
pn−1(∆kun−1)2 + qnu

2
n

]
< +∞

}
.

The space is a Hilbert space with the inner product

〈u, v〉 =
+∞∑

n=−∞
(pn−1∆kun−1∆kvn−1 + qnunvn), ∀u, v ∈ E, (2.1)

and the corresponding norm

‖u‖ =
( +∞∑
n=−∞

[
pn−1(∆kun−1)2 + qnu

2
n

] )1/2

, ∀u ∈ E. (2.2)
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On the other hand, we define the real sequence spaces

ls =
{
u ∈ S : ‖u‖s =

( +∞∑
n=−∞

|un|s
)1/s

< +∞
}
, 1 ≤ s < +∞, (2.3)

with ‖u‖∞ = supn∈Z |un| when s = +∞.
Since u ∈ E, it follows that lim|n|→∞ |un| = 0. Hence, there exists n∗ ∈ Z such

that
‖u‖∞ = |un∗ | = max

n∈Z
|un|.

By (2.2), we have

‖u‖2 ≥
∑
n∈Z

qnu
2
n ≥ q

∑
n∈Z

u2
n ≥ q‖u‖2∞.

Thus,
q‖u‖2∞ ≤ q‖u‖22 ≤ ‖u‖2. (2.4)

For all u ∈ E, define the functional J on E as follows:

J(u) :=
1
2

+∞∑
n=−∞

[
pn−1(∆kun−1)2 + qnu

2
n

]
−

+∞∑
n=−∞

Fn(un)

=
1
2
‖u‖2 −

+∞∑
n=−∞

Fn(un),

(2.5)

then J ∈ C1(E,R). By using

∆kun−1 =
k∑
i=0

(−1)i
(
k

i

)
un+k−i−1,

we can compute the partial derivative as

∂J(u)
∂un

= (−1)k∆k(pn−k∆kun−k) + qnun − fn(un), k ∈ Z(1), n ∈ Z. (2.6)

Thus, the critical points of J in E are solutions of (1.5) satisfying (1.4).

3. Main lemmas

To apply variational methods and critical point theory to study the existence
of a nontrivial solution of (1.5) satisfying (1.4), we shall state some lemmas which
will be used in the proofs of our main results.

Lemma 3.1 ([4]). Let E be a real Banach space with its dual space E∗ and assume
that J ∈ C1(E,R) satisfies

max{J(0), J(e)} ≤ η0 < η ≤ inf
‖u‖=ρ

J(u),

for some η0 < η, ρ > 0 and e ∈ E with ‖e‖ > ρ. Let c ≥ η be characterized by

c = inf
γ∈Γ

max
0≤t≤1

J(γ(t)),

where Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = e} is the set of continuous paths
joining 0 to e; then there exists {u(m)}m∈N ⊂ E such that J(u(m)) → c and (1 +
‖u(m)‖)‖J ′(u(m))‖E∗ → 0 as m→∞.
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Lemma 3.2. Assume that (H1)–(H4) are satisfied. Then there exists a constant
c > 0 and a sequence {u(m)}m∈Z satisfying

J(u(m))→ c, ‖J ′(u(m))‖(1 + ‖u(m)‖)→ 0, m→∞. (3.1)

Proof. From (H2) there exists ρ > 0 such that for any n ∈ Z and |x| ≤ ρ,

Fn(x) ≤
q

4
x2. (3.2)

Define ‖u‖ = q1/2ρ := η. For any n ∈ Z, it follows from (2.4) that |un| ≤ ρ.
Consequently, for u ∈ E, ‖u‖ = ρ, it comes from (2.5) and (3.2) that

J(u) =
1
2
‖u‖2 −

+∞∑
n=−∞

Fn(un)

≥ 1
2
η2 −

q

4

+∞∑
n=−∞

u2
n

≥ 1
2
η2 −

q

4
‖u‖22,

≥ 1
2
η2 − 1

4
η2 =

1
4
η2.

Set u(0)
0 = 1, u(0)

n = 0 for n 6= 0. Then, by (H1), (H2), (H4) and (2.3), we have

J(θu(0)) =
θ2

2
‖u(0)‖2 −

+∞∑
n=−∞

Fn(θu(0)
n )

≤ θ2

2
‖u(0)‖2 − F0(θu(0)

n )

≤ θ2
[1
2
‖u(0)‖2 − F0(θu(0)

n )

|θu(0)
0 |2

]
≤ 0

for large enough θ > 0. Thus, we can choose θ̄ > 1 such that θ̄‖u(0)‖ > η and
J(θ̄u(0)) ≤ 0. Define e = θ̄u(0), then e ∈ E, ‖e‖ > η and J(e) ≤ 0. By Lemma 3.1,
there exists c ≥ 1

4η
2 and a sequence {u(m)}m∈Z ⊂ E such that (3.1) holds. �

Lemma 3.3. Assume that (H1)–(H4) are satisfied. Then any sequence {u(m)}m∈N
satisfying

J(u(m))→ c > 0, ‖J ′(u(m))‖(1 + ‖u(m)‖)→ 0, m→∞ (3.3)

is bounded in E.

Proof. From (H3) it follows that there exists 0 < ρ < 1 such that for any n ∈ Z,
|x| ≤ ρ,

Fn(x) ≤
q

4
x2. (3.4)

For any n ∈ Z, by (H4), we have

fn(x)x > 2Fn(x) ≥ 0 (3.5)

and for |x| > ρ, we have

Fn(x) ≤ (a+ b|x|α/2)[fn(x)x− 2Fn(x)]. (3.6)
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By (2.5), (2.6) and (3.1), there exist K̃ and K̂ such that

K̃ ≥ 2J(u(m))− 〈J ′(u(m)), u(m)〉

=
+∞∑

n=−∞

[
fn(u(m)

n )u(m)
n − 2Fn(u(m)

n )
] (3.7)

and

J(u(m)) ≤ K̂. (3.8)

It comes from (2.5), (2.6), (3.3), (3.4), (3.5), (3.6), (3.7) and (3.8) that

1
2
‖u(m)‖2

= J(u(m)) +
+∞∑

n=−∞
Fn(u(m)

n )

= J(u(m)) +
∑

n∈Z(|u(m)
n |≤ρ)

Fn(u(m)
n ) +

∑
n∈Z(|u(m)

n |>ρ)

Fn(u(m)
n )

≤ J(u(m)) +
q

4

∑
n∈Z(|u(m)

n |>ρ)

|u(m)
n |2

+
∑

n∈Z(|u(m)
n |>ρ)

{a+ b|u(m)
n |α/2}

[
fn(u(m)

n )u(m)
n − 2Fn(u(m)

n )
]

≤ K̂ +
1
4
‖u(m)‖2 +

∑
n∈Z
{a+ b|u(m)

n |α/2}
[
fn(u(m)

n )u(m)
n − 2Fn(u(m)

n )
]

≤ K̂ +
1
4
‖u(m)‖2 + (a+ 2b‖u(m)‖α∞)

[
fn(u(m)

n )u(m)
n − 2Fn(u(m)

n )
]

≤ K̂ +
1
4
‖u(m)‖2 + K̃(a+ 2b‖u(m)‖α∞)

≤ K̂ +
1
4
‖u(m)‖2 + K̃(a+ 2q−

α
2 b‖u(m)‖α), m ∈ N.

(3.9)

Combining with α < 2, (3.9) imply that {u(m)}m∈N is bounded. Hence, the proof
of Lemma 3.3 is complete. �

4. Proof of the main results

In this Section, we shall prove our main results by using the critical point method.

Proof of Theorem 1.1. By Lemma 3.2, there exists a sequence {u(m)}m∈N ⊂ E
satisfying (3.1), and so (3.3). It follows from Lemma 3.3 that {u(m)}k∈N is bounded
in E. Therefore, by (2.4), for all n ∈ N, we have there exists K̄ > 0 such that

q1/2‖u(m)‖∞ ≤ ‖u(m)‖ ≤ K̄. (4.1)

For any n ∈ Z, |x| ≤ q−1/2K̄, by (H2), we have∣∣1
2
fn(x)x− Fn(x)

∣∣ ≤ cq

4K̄2
x2 +

cq

4K̄2
x2 =

cq

2K̄2
x2. (4.2)
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By way of contradiction, suppose that ξ := lim supm→∞ ‖u(m)‖∞ = 0. Then, by
(H2), (2.1), (2.3) and (3.2), we have

c = J(u(m))− 1
2

〈
J ′(u(m)), u(m)

〉
+ o(1)

=
1
2

+∞∑
n=−∞

fn(u(m)
n )u(m)

n −
+∞∑

n=−∞
Fn(u(m)

n ) + o(1)

≤
cq

2K̄2

+∞∑
n=−∞

(u(m)
n )2

≤
cq

2K̄2
‖u(k)‖22 + o(1)

≤ c

2
+ o(1), k →∞.

This contradiction shows that ξ > 0.
First, going to a subsequence if necessary, we can assume that the existence of

n(m) ∈ Z independent of m such that

|u(m)

n(m) | = ‖u(m)‖∞ >
ξ

2
. (4.3)

Hence, making such shifts, we can assume that n(m) ∈ Z(0, T−1) in (4.3). Moreover,
passing to a subsequence of ms, we can even assume that n(m) = n(0) is independent
of m.

Next, we extract a subsequence, still denote by u(m), such that

u(m)
n → un, m→∞, ∀n ∈ Z.

Inequality (4.3) implies that |un(0) | ≥ ξ and, hence, u = {un} is a nonzero sequence.
Moreover,

∆k(pn−k∆kun−k) + (−1)kqnun − (−1)kfn(un)

= lim
m→∞

[
∆k(pn−k∆ku

(m)
n−k) + (−1)kqnu(m)

n − (−1)kfn(u(m)
n )

]
= lim
m→∞

0 = 0.

So u = {un} is a solution of (1.5) satisfying (1.4).
Finally, for any fixed ς ∈ Z and m large enough, we have

ς∑
n=−ς

|u(m)
n |2 ≤ 1

q
‖u(m)‖2 ≤ K̄2.

Since K̄2 is a constant independent of k, passing to the limit, we have
ς∑

n=−ς
|un|2 ≤ K̄2.

By the arbitrariness of ς, u ∈ l2. Therefore, u satisfies un → 0 as |n| → ∞. The
proof is complete. �

Proof of Theorem 1.2. The techniques of the proof of Theorem 1.2 are just the
same as those carried out in the proof of [13]. We do not repeat them here. �



8 M. JIA EJDE-2016/183

5. Example

As an application of Theorem 1.1, we give an example to illustrate our main
result. For n ∈ Z, k ∈ Z(1), assume that

∆k
((

3 + sin2 π(n− k)
T

)
∆kun−k

)
+ (−1)k(2 + cos2 πn

T
)un

= 2(9 + sin2 πn

T
)un ln(1 + |un|) +

u3
n

(1 + |un|)|un|
,

(5.1)

where T is a positive integer. We have

pn−k =
(

3 + sin2 π(n− k)
T

)
, qn =

(
2 + cos2 πn

T

)
,

Fn(x) =
(
9 + sin2 πn

T

)
x2 ln(1 + |x|).

Then

fn(x)x = 2(9 + sin2 πn

T
)x2 ln(1 + |x|) +

x2|x|
1 + |x|

≥
(
2 +

1
1 + |x|

)
Fn(x) ≥ 0.

This shows that (H4) holds with a = b = ν = 1. It is easy to check all the
assumptions of Theorem 1.1 are satisfied. Consequently, (5.1) has a nontrivial
solution satisfying (1.4).
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