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EIGENVALUE ESTIMATES FOR STATIONARY
p(x)-KIRCHHOFF PROBLEMS

LUCA VILASI

Abstract. Using variational techniques we prove an eigenvalue theorem for

a stationary p(x)-Kirchhoff problem, and provide an estimate for the range
of such eigenvalues. We employ a specific family of test functions in variable-

exponent Sobolev spaces. Our approach permits to handle both non-degenerate

and degenerate Kirchhoff coefficients.

1. Introduction and functional set-up

In this article we analyze the stationary Kirchhoff-type problem

−k
(∫

Ω

|∇u(x)|p(x)

p(x)
dx
)

∆p(x)u = λf(u) in Ω

u = 0 on ∂Ω,
(1.1)

where Ω ⊂ Rn is a bounded domain with a smooth boundary ∂Ω, k : [0,+∞)→ R
is defined by

k(t) := a+ btγ for all t ∈ R, (1.2)
with a ≥ 0, b, γ > 0, λ is a positive parameter, f : R → R is continuous and
p ∈ C0(Ω) is a regular function such that

1 < p− := inf
x∈Ω

p(x) ≤ p+ := sup
x∈Ω

p(x) < +∞. (1.3)

The operator
∆p(x)u := div(|∇u|p(x)−2∇u)

is the p(x)-Laplacian and reduces to the classical p-Laplacian when p is a constant.
It has been recently used in several application contexts, the most notable being
the image processing [7] and the motion of electrorheological fluids [15].

Historically equations like (1.1) made their first appearance in [11] as a model
to describe free transverse vibrations of a clamped string in which the tension has
a non-negligible dependence on the deformation. The nonlocal coefficient (1.2)
generalizes the original one proposed by Kirchhoff (with γ = 1) to the sub/super-
linear cases and has already been taken into consideration in literature (cf. [1, 2, 3,
13, 16] and references therein). In many issues, like the decay rate of solutions of
wave equations, the growth of k plays, in particular, a central role (see [16] where
γ is deeply related to the critical exponent 2n/(n − 2), n > 2). In this paper
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we allow γ to range all over the positive reals and we take also account of the
circumstance a = 0 (we recall that if k takes the value 0 then problem (1.1) is said
to be degenerate; otherwise it is named non-degenerate).

Our aim is to provide a localization theorem for the eigenvalues of the problem
under exam. Starting from some results obtained in [4] via variational techniques
(see also [5, 6]), we first show that problem (1.1) indeed admits non-trivial solutions
for some positive λ. Then, constructing a suitable family of test functions in the
generalized Sobolev space W 1,p(x)

0 (Ω), depending in particular on the primitive of
f and the geometry of Ω, we are able to provide a lower bound for such a λ. As
previously mentioned, we manage to deal with both the non-degenerate and the
degenerate case. In both situations we require that a certain relationship involving
the growth rate of k, the dimension n and the “extreme” values p−, p+ of p be
satisfied; when a = 0 this relationship is more restrictive.

The whole of these results is presented in Section 2. In the remainder of the
current one we briefly introduce the functional framework in which (1.1) is set,
i.e. the variable exponent Sobolev spaces. We refer to [8, 9, 12] for a more com-
plete account on generalized Lebesgue and Sobolev spaces and for the proof of the
properties just stated below.

Hereafter p ∈ C0(Ω), satisfies (1.3) and is log-Hölder continuous, i.e.

|p(x)− p(y)| ≤ − c

log |x− y|
(1.4)

for some c > 0 and for all x, y ∈ Ω with |x− y| ≤ 1/2. Define the variable exponent
Lebesgue space Lp(x)(Ω) by

Lp(x)(Ω) = {u : Ω→ R measurable:
∫

Ω

|u(x)|p(x)dx <∞},

endowed with the Luxemburg norm

|u|p(x) = inf{σ > 0 :
∫

Ω

|u(x)
σ
|p(x)dx ≤ 1},

and the variable exponent Sobolev space W 1,p(x)(Ω) by

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)},

equipped with the standard norm

‖u‖W 1,p(x)(Ω) = |u|p(x) + |∇u|p(x).

Denote by W 1,p(x)
0 (Ω) the closure of C∞0 (Ω) in W 1,p(x)(Ω); in view of the assump-

tions on p, |∇u|p(x) turns out to be an equivalent norm on W
1,p(x)
0 (Ω) and we

will adopt the plain notation ‖u‖ = |∇u|p(x) for any u ∈ W
1,p(x)
0 (Ω). Lp(x)(Ω),

W 1,p(x)(Ω) and W
1,p(x)
0 (Ω) are separable and reflexive Banach spaces under the

norms introduced above.
The function

p∗(x) =

{
np(x)
n−p(x) if p(x) < n

+∞ if p(x) ≥ n.
represents the variable-exponent counterpart of the critical Sobolev exponent. If
q ∈ C0(Ω) and 1 < q(x) < p∗(x) for any x ∈ Ω, then W 1,p(x)(Ω) ↪→ Lq(x)(Ω)
continuously; if infΩ(p∗ − q) > 0 the embedding is compact.
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The functional

ρp(x)(u) =
∫

Ω

|u(x)|p(x)dx for all u ∈ Lp(x)(Ω),

called the modular of Lp(x)(Ω), is closely related to the norm | · |p(x), as clarified by
the following proposition.

Proposition 1.1. Let u ∈ Lp(x)(Ω); then
(i) |u|p(x) < 1 (= 1, > 1) ⇔ ρp(x)(u) < 1 (= 1, > 1);

(ii) |u|p(x) > 1 ⇒ |u|p
−

p(x) ≤ ρp(x)(u) ≤ |u|p
+

p(x);

(iii) |u|p(x) < 1 ⇒ |u|p
+

p(x) ≤ ρp(x)(u) ≤ |u|p
−

p(x);
(iv) limm→∞ |um − u|p(x) = 0 ⇔ limm→∞ ρp(x)(um − u) = 0.

The functional

Ψ(u) =
∫

Ω

|∇u(x)|p(x)

p(x)
dx for all u ∈W 1,p(x)

0 (Ω), (1.5)

appearing explicitly in problem (1.1), is known to satisfy the following remarkable
properties (cf. [10]).

Proposition 1.2. Ψ is sequentially weakly lower semicontinuous, convex and C1

in W
1,p(x)
0 (Ω). Its derivative, given by

Ψ′(u)(v) =
∫

Ω

|∇u(x)|p(x)−2∇u(x)∇v(x)dx

for any u, v ∈W 1,p(x)
0 (Ω), is a homeomorphism between the spaces W 1,p(x)

0 (Ω) and(
W

1,p(x)
0 (Ω)

)∗.
With the above premises, it is straightforward to realize that (1.1) represents

the Euler-Lagrange equation associated with the functional

u 7→ aΨ(u) +
b

γ + 1
Ψ(u)γ+1 − λ

∫
Ω

F (u)dx, u ∈W 1,p(x)
0 (Ω),

where

F (t) :=
∫ t

0

f(ξ)dξ for all t ∈ R.

Specifically, the weak solutions to (1.1) are those functions u ∈ W
1,p(x)
0 (Ω) such

that

k(Ψ(u))
∫

Ω

|∇u(x)|p(x)−2∇u(x)∇v(x)dx− λ
∫

Ω

f(u(x))v(x)dx = 0

for all v ∈W 1,p(x)
0 (Ω).

For the sequel, we introduce the following subset of W 1,p(x)
0 (Ω),

W := {u ∈W 1,p(x)
0 (Ω) :

∫
Ω

F (u)dx > 0},

and put

Λ := inf
u∈W

a(γ + 1)Ψ(u) + bΨ(u)γ+1

(γ + 1)
∫

Ω
F (u)dx

. (1.6)
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2. Results and applications

Before searching for possible bounds for the eigenvalues of (1.1), let us prove a
theorem which guarantees the existence of such eigenvalues. We will treat sepa-
rately the cases a 6= 0 and a = 0.

Theorem 2.1. Let k : [0,+∞)→ R be as in (1.2) with a, b, γ > 0, let

γ + 1
γ

p− ≤ n < p−p+

p+ − p−

and let f : R→ R be a continuous function such that

(i) lim sup|t|→+∞ |f(t)|/|t|q < +∞ for some q ∈
(
0, (n+1)p−−n

n−p−
)
,

(ii) lim supt→0 F (t)/|t|p+ ≤ 0,
(iii) supt∈R F (t) > 0.

Then, for each λ ∈ (Λ,+∞), problem (1.1) admits at least three weak solutions in
W

1,p(x)
0 (Ω).

The proof of Theorem 2.1 leans on the following multiplicity result (which, in
turn, is based on an abstract variational tool of [14]).

Theorem 2.2 ([4, Theorem 3.1]). Let (p+ − p−)n < p−p+, k : [0,+∞) → R a
non-decreasing continuous function satisfying

(A1) inf [0,+∞) k > 0,
(A2) lim inft→+∞

∫ t
0
k(ξ)dξ/tσ > 0 for some σ > 1.

Furthermore, denoting by A the class of all Carathéodory functions ϕ : Ω×R→ R
such that

sup
(x,t)∈Ω×R

|ϕ(x, t)|
1 + |t|q(x)

< +∞ (2.1)

for some q ∈ C0(Ω), 0 < q < p∗ − 1 in Ω, assume that f ∈ A and the following:
(A3) sup

u∈W 1,p(x)
0 (Ω)

∫
Ω
F (x, u)dx > 0;

(A4) lim supt→0 supx∈Ω F (x, t)/|t|p+ ≤ 0;
(A5) lim sup|t|→+∞ supx∈Ω F (x, t)/|t|σp− ≤ 0,

where, as usual, F (x, t) =
∫ t

0
f(x, ξ)dξ for each (x, t) ∈ Ω× R.

Under such hypotheses, if we set

Λ̃ := inf
{∫ R

Ω
|∇u(x)|p(x)

p(x) dx

0 k(ξ)dξ∫
Ω
F (x, u)dx

: u ∈W 1,p(x)
0 (Ω),

∫
Ω

F (x, u)dx > 0
}
, (2.2)

for each compact interval [Λ1,Λ2] ⊂ (Λ̃,+∞) there exists r > 0 with the following
property: for every λ ∈ [Λ1,Λ2] and every g ∈ A, there exists µ1 > 0 such that, for
each µ ∈ [0, µ1], the problem

−k
(∫

Ω

|∇u(x)|p(x)

p(x)
dx
)

∆p(x)u = λf(x, u) + µg(x, u) in Ω

u = 0 on ∂Ω

has at least three weak solutions whose norms in W
1,p(x)
0 (Ω) are smaller than r.
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Proof of Theorem 2.1. The function

k(t) = a+ btγ , t ≥ 0,

with a, b > 0 clearly satisfies (A1) while (A2) is satified by σ = γ + 1. The
membership of f in A follows easily from (i) while (A3) and (A4) are consequences
of (iii) and (ii), respectively.

It remains to show the validity of (A5). To this end, notice that due to (i) one
has

|F (t)|
|t|(γ+1)p−

≤ c1|t|1−(γ+1)p− + c2|t|q+1−(γ+1)p− (2.3)

for some c1, c2 > 0 and for all t 6= 0. Since (γ + 1)p− ≤ γn, we deduce that
(γ + 1)(p−)2 ≤ (γ + 1)np− − np− and therefore that

np−

n− p−
≤ (γ + 1)p−.

Taking account of the above inequality and the range of q, passing to the lim sup as
|t| → +∞ in (2.3) we get the verification of (A5). All the assumptions of Theorem
2.2 being fulfilled, the conclusion follows. �

Remark 2.3. From the hypotheses of Theorem 2.1 it is immediately seen that
when the ∆p(x) degenerates into the p-Laplacian, no upper bound on the dimension
is necessary. Moreover, as observed in [4] in the case γ = 1, when n < 2p− the
multiplicity of solutions associated with a fixed λ > Λ is lost and instead the
uniqueness occurs.

The underlying idea to obtain a concrete estimate of Λ is to build an ad-hoc
test function which lies in W and at which reasonably evaluating Ψ. To this end,
denote by B(x, r) the n-dimensional open ball centered at x ∈ Rn and of radius
r > 0. As Ω is open we can certainly fix a point x0 ∈ Ω and a number τ > 0 so
that B(x0, τ) ⊆ Ω.

Now, for any t ∈ R and η ∈ (0, 1), define ut,η to be

ut,η(x) :=


0 if x ∈ Rn \B(x0, τ)

t
(1−η)τ (τ − |x− x0|) if x ∈ B(x0, τ) \B(x0, ητ)

t if x ∈ B(x0, ητ),
(2.4)

where | · | stands for the usual Euclidean norm in Rn. Moreover, indicate by
ωn = 2πn/2/nΓ(n2 ) the Lebesgue measure of the unit ball in Rn, where Γ is the
Euler Gamma function, and for any c > 0 put

cp± := max{cp
−
, cp

+
}.

We are now in a position to prove the following result.

Theorem 2.4. Assume that all the hypotheses of Theorem 2.1 hold and let Λ be
defined by (1.6). Then there exists t0 ∈ R and η0 = η0(t0) ∈ (0, 1) such that
Λ ≤ Λ?, where

Λ? =
a(γ + 1)(p−(1− η0)p

+
)γ(1− ηn0 )

( |t0|
τ

)
p±

+ bωγn(1− ηn0 )γ+1
( |t0|
τ

)γ+1

p±
τnγ

(γ + 1)(p−(1− η0)p+)γ+1
(
F (t0)ηn0 − (1− ηn0 ) max|t|≤|t0| |F (t)|

) .

(2.5)
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Proof. Assumption (iii) of Theorem 2.1 of course provides the existence of a number
t0 ∈ R such that F (t0) > 0. Now let η0 ∈ (0, 1) be such that

max|t|≤|t0| |F (t)|
F (t0) + max|t|≤|t0| |F (t)|

< ηn0 < 1

and, with the same notation as (2.4), consider the function ut0,η0 .
Since |ut0,η0(x)| ≤ |t0| for every x ∈ B(x0, τ) \B(x0, η0τ), it follows that∫

B(x0,τ)\B(x0,η0τ)

F (ut0,η0(x))dx ≥ −(1− ηn0 )ωnτn max
|t|≤|t0|

|F (t)|,

and therefore∫
Ω

F (ut0,η0(x))dx

=
∫
B(x0,η0τ)

F (ut0,η0(x))dx+
∫
B(x0,τ)\B(x0,η0τ)

F (ut0,η0(x))dx

≥ F (t0)ηn0ωnτ
n +

∫
B(x0,τ)\B(x0,η0τ)

F (ut0,η0(x))dx

≥
(
F (t0)ηn0 − (1− ηn0 ) max

|t|≤|t0|
|F (t)|

)
ωnτ

n > 0.

(2.6)

On the other hand we can deduce the following upper estimate for Ψ:

Ψ(ut0,η0) =
∫

Ω

|∇ut0,η0(x)|p(x)

p(x)
dx

≤ 1
p−

∫
B(x0,τ)\B(x0,η0τ)

|t0|p(x)

((1− η0)τ)p(x)
dx

≤
(1− ηn0 )ωn

(
|t0|
τ

)
p±
τn

p−(1− η0)p+ .

(2.7)

So, thanks to Proposition 1.1 and the inequalities (2.6), (2.7), ut0,η0 ∈ W and,
recalling the definition of Λ, one has

Λ ≤ a(γ + 1)Ψ(ut0,η0) + bΨ(ut0,η0)γ+1

(γ + 1)
∫

Ω
F (ut0,η0)dx

≤

a(γ+1)(1−ηn0 )ωn

(
|t0|
τ

)
p±
τn

p−(1−η0)p+ +
b(1−ηn0 )γ+1ωγ+1

n

(
|t0|
τ

)γ+1

p±
τn(γ+1)

(p−(1−η0)p+ )γ+1

(γ + 1)
(
F (t0)ηn0 − (1− ηn0 ) max|t|≤|t0| |F (t)|

)
ωnτn

= Λ?,

as claimed. �

Remark 2.5. Let us notice that Λ? is a function of the nonlinearity f through
t0 and η0, of the elliptic operator through the constants a, b, γ, p−, p+, while it is
related to the geometry of the domain by τ .

Moreover, for fixed τ and t0, the sharp value of Λ? can be computed. Indeed,
thought of as a function of η, clearly Λ?(η) is continuous and, set

η? :=
( max|t|≤|t0| |F (t)|
F (t0) + max|t|≤|t0| |F (t)|

)1/n

,
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one has
lim
η→η?

Λ?(η) = +∞.

On the other hand, a simple application of de l’Hôpital’s rule shows that

lim
η→1−

Λ?(η) = +∞

and hence η 7→ Λ?(η) admits a minimum in (η?, 1).

Example 2.6. Let a, b > 0, γ = 1, Ω = B(0, 1) ⊂ R3,

p(x) = |x|2 +
5
2

and let f : R→ R be defined by

f(t) =

{
t−
√
t for t ≥ 0

0 for t < 0.

Clearly one has

lim
|t|→+∞

|f(t)|
|t|q

= 0, for all q ∈ (1, 14)

lim sup
t→0

F (t)
|t|7/2

= 0,

sup
t∈R

F (t) = +∞.

Therefore all the assumptions of Theorem 2.1 are met. Setting t0 = 2 and η0 ∈
( 3

√
(13 + 8

√
2)/41, 1), and considering the problem

−
(
a+ b

∫
Ω

|∇u(x)|p(x)

p(x)
dx
)

∆p(x)u = λf(u) in B(0, 1)

u = 0 on ∂B(0, 1),
(2.8)

for any λ varying inside the interval(2
11
2 · 15a(1− η0)

7
2 (1− η3

0) + 211πb(1− η3
0)2

25(1− η0)7
(
(13− 8

√
2)η3

0 − 1
) ,+∞

)
the above problem admits at least three weak solutions in W

1,p(x)
0 (B(0, 1)).

Now let us pass to consider the degenerate case. As already mentioned, a more
restrictive relationship among γ, p−, p+ and n needs to occur.

Theorem 2.7. Let k : [0,+∞)→ R be as in (1.2) with a = 0, b, γ > 0, let

(2(γ + 1)p− − 1)p−

(2γ + 1)p− − 1
≤ n < (γ + 1)p−p+

(γ + 1)p+ − p−

and let f : R→ R be a continuous function such that

(i) lim sup|t|→+∞ |f(t)|/|t|q < +∞ for some q ∈
(
0, (n+1)p−−n

2(n−p−)

)
,

(ii) lim supt→0 F (t)/|t|(γ+1)p+ ≤ 0,
(iii) supt∈R F (t) > 0.

Then, the conclusion of Theorem 2.1 holds.
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The proof of the above theorem is a consequence of the following result, which
can be deduced with slight modifications from [4, Theorem 3.2].

Theorem 2.8. Let γ > 0, ((γ + 1)p+ − p−)n < (γ + 1)p−p+, k : [0,+∞) → R a
non-decreasing continuous function satisfying

(A1’) k(t) ≥ k1t
γ for some k1 > 0 and for any t ≥ 0

and (A2). Moreover let f ∈ A satisfy (A3), (A5) and

(A4’) lim supt→0 supx∈Ω F (x, t)/|t|(γ+1)p+ ≤ 0.

Then, set Λ̃ as in (2.2), the same conclusion as Theorem 2.2 holds.

Proof of Theorem 2.7. It is obvious that the function

k(t) = btγ , t ≥ 0

satisfies (A1’) and (A2) for σ = γ+ 1. Moreover, on account of (i)–(jjj), f ∈ A and
promptly verifies (A3) and (A4’). Finally, notice that thanks to (i) one has

|F (t)|
|t|(γ+1)p−

≤ c1|t|1−(γ+1)p− + c2|t|q+1−(γ+1)p− (2.9)

for some c1, c2 > 0 and for all t 6= 0. Since

(2(γ + 1)p− − 1)p− ≤ n((2γ + 1)p− − 1),

it follows that

2(γ + 1)(p−)2 − p− ≤ 2(γ + 1)np− − np− − n
and hence

(n+ 1)p− − p−

2(n− p−)
≤ (γ + 1)p−. (2.10)

Inequality (2.10) and the definition of q imply that, if we take the lim sup as |t| →
+∞ in (2.9), (A5) is fulfilled as well. So the conclusion follows from Theorem
2.8. �

By the same line of reasoning as Theorem 2.4, we can obtain an estimate of Λ
also in the degenerate case.

Theorem 2.9. Assume that all the hypotheses of Theorem 2.7 hold. Then there
exists t0 ∈ R and η0 = η0(t0) ∈ (0, 1) such that

Λ ≤
bωγn(1− ηn0 )γ+1

( |t0|
τ

)γ+1

p±
τnγ

(γ + 1)(p−(1− η0)p+)γ+1
(
F (t0)ηn0 − (1− ηn0 ) max|t|≤|t0| |F (t)|

) . (2.11)

Example 2.10. Let γ = 1/2, Ω = B(0, 1/2) ⊂ R3, p(x) = |x|2 + 3
2 , and let

f : R→ R be defined by

f(t) =

{
t1/2 − t1/3 for t ≥ 0
0 for t < 0.

Being

lim
|t|→+∞

|f(t)|
|t|q

= 0 for all q ∈ (1/2, 1)

lim sup
t→0

F (t)
|t|21/8

= 0,
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sup
t∈R

F (t) = +∞,

all the requirements of Theorem 2.7 are satisfied. Setting t0 = 4 and η0 ∈ ( 3
√

4/2, 1),
and considering the problem

−
(∫

Ω

|∇u(x)|p(x)

p(x)
dx
)1/2

∆p(x)u = λf(u) in B(0, 1/2)

u = 0 on ∂B(0, 1/2),
(2.12)

we deduce that for each λ running in the interval( 2
39
8 π1/2b(1− η3

0)
3
2

9(16− 9 3
√

4)(1− η0)
7
4 (2η3

0 − 1)
,+∞

)
there exist at least three weak solutions in W

1,p(x)
0 (B(0, 1/2)).
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