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EXISTENCE OF NONNEGATIVE SOLUTIONS FOR SINGULAR
ELLIPTIC PROBLEMS

TOMAS GODOY, ALFREDO J. GUERIN

Abstract. We prove the existence of nonnegative nontrivial weak solutions
to the problem

−∆u = au−αχ{u>0} − bup in Ω,

u = 0 on ∂Ω,

where Ω is a bounded domain in Rn. A sufficient condition for the existence of a
continuous and strictly positive weak solution is also given, and the uniqueness

of such a solution is proved. We also prove a maximality property for solutions

that are positive a.e. in Ω.

1. Introduction and statement of the problem

Let Ω be a bounded domain in Rn with C1,1 boundary, let a and b be nonnegative
functions on Ω, and let α and p be positive real numbers. Consider the following
singular elliptic problem

−∆u = au−α − bup in Ω,
u = 0 on ∂Ω,
u > 0 in Ω

(1.1)

Problems like (1.1) appear in chemical catalysts process, non-Newtonian fluids, and
in models for the temperature of electrical devices (see e.g., [10, 7, 16, 19]).

Several works can be found concerning the existence of positive solutions to (1.1)
for the case b = 0, i.e., for the problem −∆u = au−α in Ω, u = 0 on ∂Ω, u > 0 in Ω;
let us mention a few: Classical solutions u ∈ C2(Ω)∩C(Ω) satisfying u(x) > 0 for all
x ∈ Ω were obtained by Crandall, Rabinowitz and Tartar [11] under the following
hypothesis: a ∈ C1(Ω) and minΩ a > 0. Lazer and McKenna [24] proved the
existence of positive weak solutions u ∈ H1

0 (Ω) to (1.1) assuming that a ∈ Cγ(Ω),
γ ∈ (0, 1), and, again, a strictly positive on Ω. The case 0 ≤ a ∈ L∞(Ω), a 6≡ 0
(that is: |{x ∈ Ω : a(x) > 0}| > 0) was studied by Del Pino [12]. Situations where
a is singular on the boundary ∂Ω were considered by Bougherara, Giacomoni and
Hernández [5].

The existence of classical solutions to problem (1.1) was proved by Coclite and
Palmieri [9] for a and b in C1(Ω), 0 < p < 1, and a strictly positive on Ω (see [9,
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Theorem 1]). Related singular elliptic problems were treated by Shi and Yao [29],
and by Aranda and Godoy [3], [2]. Elliptic problems with singular terms and free
boundaries were considered by Dávila and Montenegro [13], [14].

Ghergu and Rădulescu [22] studied multi-parameter singular bifurcation prob-
lems of the form −∆u = g(u) + λ|∇u|p + µf(., u) in Ω, u = 0 on ∂Ω, u > 0 in Ω,
where Ω is a smooth bounded domain in Rn, λ, µ ≥ 0, 0 < p ≤ 2, f : Ω× [0,∞)→
[0,∞) is a Hölder continuous function such that f(., s) is nondecreasing with re-
spect to s, and g : (0,∞) → (0,∞) is a nonincreasing Hölder continuous function
such that lims→0+ g(s) = ∞. When g(s) behaves like s−α near the origin, with
0 < α < 1, the asymptotic behavior of the solution around the bifurcation point is
established.

Dupaigne, Ghergu and Rădulescu [18] obtained various existence and nonexis-
tence results for Lane–Emden–Fowler equations with convection and singular poten-
tial of the form −∆u±p(dΩ(x))g(u) = λf(x, u)+µ|∇u|β in Ω, u = 0 on ∂Ω, u > 0 in
Ω, where Ω is a smooth bounded domain in Rn, dΩ(x) = dist(x, ∂Ω), λ > 0, µ ∈ R,
0 < β ≤ 2, p(dΩ(x)) is a positive weight possibly singular at ∂Ω, g ∈ C1(0,∞) is a
positive decreasing function such that lims→0+ g(s) = ∞, f : Ω × [0,∞) → [0,∞)
is a Hölder continuous function which is positive on Ω × (0,∞) and satisfies that
s→ f(x, s) is nondecreasing and also that f(x, s) is either linear or sublinear with
respect to s.

Rădulescu [28] states existence, nonexistence and uniqueness results for blow-up
boundary solutions of logistic equations and for Lane-Emden-Fowler equations with
singular nonlinearities and subquadratic convection term.

Existence and nonexistence results for solutions to the inequality Lu ≥ K(x)up

in Ω, u > 0 in Ω were obtained by Ghergu, Liskevich and Sobol [20] for the case
where Ω is a punctured ball BR(0)\{0}, p ∈ R, K ∈ L∞loc(BR(0)\{0}), ess inf K >

0, and Lu :=
∑

1≤i,j≤n aij(x) ∂2u
∂xi∂xj

+
∑

1≤j≤n bj(x) ∂u∂xj , where the matrix a =
{aij(x)}1≤i,j≤n is symmetric, uniformly elliptic on Ω, with each aij ∈ L∞(BR(0)),
and each bj is a measurable function and satisfies ess supx∈BR(0)\{0} |x|bj(x) <∞.

Existence and uniqueness results were obtained by Bougherara and Giacomoni
[4] for mild solutions to singular initial value parabolic problems involving the p-
Laplacian operator of the form ut − ∆pu = u−α + f(x, u) in QT := (0, T ) × Ω,
u = 0 on (0, T ) × ∂Ω, u > 0 in QT , u(0, x) = u0(x) in Ω where Ω is a regular
bounded domain in Rn, f : Ω×R→ R is a bounded below Carathéodory function
and nonincreasing with respect to the second variable, ∆pu := div(|∇u|p−2∇u),
1 < p <∞, α > 0, T > 0, and u0 in a suitable functional space.

Singularly perturbed elliptic problems on an annulus whose solutions concentrate
in a circle were studied by Manna and Srikanth [27].

Let us mention also that Loc and Schmitt [26], [25], extended the method of
sub and supersolutions to deal with singular elliptic problems. A comprehensive
treatment of the subject can be found in Ghergu and Rădulescu’s book [21] (see
also [28]), and in the survey article [15], by Dı́az and Hernández.

Let us state the problem that we will consider from now on: Let Ω be a bounded
domain in Rn with C1,1 boundary, α ∈ (0, 1), and p ∈ (0, 2∗ − 1), where 2∗ is
defined by 1

2∗ = 1
2 −

1
n if n > 2 and 2∗ = ∞ if n ≤ 2. Let a and b be nonnegative

functions such that a belongs to L∞(Ω), a 6≡ 0, and b is in Lr(Ω), with r = 2
1−p if

p < 1, and r =∞ otherwise.
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We are concerned with weak solutions to the problem

−∆u = au−αχ{u>0} − bup in Ω,
u = 0 on ∂Ω,
u ≥ 0 in Ω

(1.2)

where au−αχ{u>0} stands for the function defined by au−αχ{u>0}(x) = a(x)u(x)−α

if u(x) 6= 0, and au−αχ{u>0}(x) = 0 if u(x) = 0.
By a weak solution to (1.2) we mean a nonnegative function u ∈ H1

0 (Ω) such
that, for all ϕ in H1

0 (Ω)∩L∞(Ω), (au−αχ{u>0}− bup)ϕ ∈ L1(Ω), and the following
holds ∫

Ω

〈∇u,∇ϕ〉 =
∫

Ω

(au−αχ{u>0} − bup)ϕ. (1.3)

The main aim of this work is to prove the existence of at least one nonnegative
weak solution u 6≡ 0 to the stated problem (see Theorem 3.1). Additionally, we
give a condition on a, b that guarantees the existence of a strictly positive weak
solution to (1.2) (see Theorem 3.5). In Theorem 3.8 we prove that there is at
most one solution that is positive a.e. in Ω, and give a maximality property for
such a solution. Examples of non-existence of strictly positive solutions, and of
non-uniqueness of the nonnegative solutions, are also provided.

To prove Theorem 3.1, we show that the energy functional J associated with (1.2)
attains its minimum at some nonnegative nontrivial u ∈ H1

0 (Ω)∩L∞(Ω). Note that
J may fail to be Gateaux differentiable at u; despite this fact, we manage to prove
that the said minimizer is indeed a weak solution of problem (1.2). Theorem 3.5
is proved using the sub and supersolutions method for singular elliptic problems
developed in [26].

2. Preliminary lemmas

Let J : H1
0 (Ω)→ R be the energy functional associated with (1.2),

J(u) :=
1
2

∫
Ω

|∇u|2 − 1
1− α

∫
Ω

a|u|1−α +
1

1 + p

∫
Ω

b|u|1+p. (2.1)

Let us start with the following lemma.

Lemma 2.1. The following statements hold:
(i) J is coercive on H1

0 (Ω).
(ii) infu∈H1

0 (Ω) J(u) > −∞.
((iii) infu∈H1

0 (Ω) J(u) is achieved at some u ∈ H1
0 (Ω).

Proof. Let u ∈ H1
0 (Ω). Since 0 < 1−α < 1, the Hölder’s and Poincare’s inequalities

give
1

1− α

∫
Ω

a|u|1−α ≤ c‖∇u‖1−α2

for some positive constant c independent of u, and so J(u) ≥ 1
2‖∇u‖

2
2− c‖∇u‖1−α2 ,

which clearly implies (i) and (ii).
To prove (iii), let β = infu∈H1

0 (Ω) J(u), and consider a sequence {uj}j∈N ⊂ H1
0 (Ω)

such that limj→∞ J(uj) = β. Then, by i), {uj}j∈N is bounded in H1
0 (Ω). Let q

be in (p + 1, 2∗). Since the inclusion H1
0 (Ω) ↪→ Lq(Ω) is a compact map, we

can assume (taking a subsequence if necessary) that {uj}j∈N converges strongly to
some u ∈ Lq(Ω). Since {uj}k∈N is bounded in H1

0 (Ω), there exists v ∈ H1
0 (Ω),
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and a subsequence {ujk}k∈N, such that the subsequence converges strongly to v in
L2(Ω), and {∇ujk}k∈N converges weakly to ∇v in L2(Ω,Rn). Thus v = u, {ujk}k∈N
converges to u in Lq(Ω), and

‖∇u‖2 ≤ lim inf
k→∞

‖∇ujk‖2. (2.2)

On the other hand, the Nemytskii operators f(u) := |u|1−α and g(u) := |u|1+p

are continuous from L2(Ω) into L
2

1−α (Ω), and from Lq(Ω) into L
q

1+p (Ω), respectively
[1, Theorem 1.2.1] and so, since a ∈ L∞(Ω) and b ∈ Lr(Ω),

lim
j→∞

∫
Ω

( 1
1− α

a|ujk |1−α −
1

1 + p
b|ujk |1+p

)
=
∫

Ω

(
1

1− α
a|u|1−α − 1

1 + p
b|u|1+p)

(2.3)

which, combined with (2.2), gives J(u) ≤ lim infk→∞ J(ujk) = β, therefore (iii)
holds (since β ≤ J(u)). �

Corollary 2.2. infu∈H1
0 (Ω) J(u) is achieved at some nonnegative u ∈ H1

0 (Ω).

Proof. Lemma 2.1 states that J attains its minimum at some u ∈ H1
0 (Ω). Since

J(u) = J(|u|), a nonnegative minimizer exists. �

For the rest of this article, we fix a nonnegative minimizer for J on H1
0 (Ω), and

denote it by u.

Lemma 2.3. The equality∫
Ω

〈∇u,∇(uϕ)〉 =
∫

Ω

(au1−α − bu1+p)ϕ (2.4)

holds for any ϕ ∈ H1(Ω) ∩ L∞(Ω) such that ϕu ∈ H1
0 (Ω).

Proof. Let ϕ ∈ H1(Ω) ∩ L∞(Ω) be such that ϕu ∈ H1
0 (Ω); satisfying, in addition,

‖ϕ‖∞ ≤ 1
2 . Let τ ∈ R such that |τ | < 1. Then u+τuϕ ≥ 0, and J(u) ≤ J(u+τuϕ).

A computation shows that this inequality can be written as

τ

∫
Ω

〈∇u,∇(uϕ)〉

≥ 1
1− α

∫
Ω

au1−α((1 + τϕ)1−α − 1
)
− 1

1 + p

∫
Ω

bu1+p
(
(1 + τϕ)1+p − 1

)
− τ2

2

∫
Ω

u2|∇ϕ|2 − τ2

2

∫
Ω

ϕ2|∇u|2 − τ2

∫
Ω

uϕ〈∇u,∇ϕ〉.

(2.5)

Note that, for γ > 0, the second-order Taylor expansion of the function h(t) =
(1 + t)γ − 1 gives

(1 + τϕ)γ − 1 = γτϕ− τ2

2
γ(γ − 1)(1 + ζτ,γ)γ−2ϕ2 (2.6)
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for some measurable function ζτ,γ : Ω → R satisfying |ζτ,γ | ≤ |τϕ| ≤ 1
2 . Inserting

(2.6) (used with γ = 1− α and γ = 1 + p) in (2.5), we obtain

τ

∫
Ω

〈∇u,∇(uϕ)〉

≥ τ
∫

Ω

au1−αϕ− τ2

2
α

∫
Ω

au1−α(1 + ζτ,1−α)−α−1ϕ2

−
(
τ

∫
Ω

bu1+pϕ+
τ2

2
p

∫
Ω

bu1+p(1 + ζτ,1+p)p−1ϕ2
)

− τ2

2

∫
Ω

u2|∇ϕ|2 − τ2

2

∫
Ω

ϕ2|∇u|2 − τ2

∫
Ω

uϕ〈∇u,∇ϕ〉.

(2.7)

Also, 1 + ζτ,1−α ≥ 1
2 and 1 + ζτ,1+p ≥ 1

2 , and thus

|
∫

Ω

au1−α(1 + ζτ,1−α)−α−1ϕ2| ≤ c,

|
∫

Ω

bu1+p(1 + ζτ,1+p)p−1ϕ2| ≤ c

for some positive constant c independent of τ . Now we take τ positive in (2.7).
Dividing by τ , and then letting τ → 0+, from (2.7) we obtain∫

Ω

〈∇u,∇(uϕ)〉 ≥
∫

Ω

au1−αϕ−
∫

Ω

bu1+pϕ.

We note that this inequality holds if we put −ϕ instead of ϕ; therefore we obtain
also the reverse inequality, and we conclude that (2.4) is valid for ‖ϕ‖∞ ≤ 1

2 .
Finally, since both sides in (2.4) are linear on ϕ, the assumption ‖ϕ‖∞ ≤ 1

2 can be
removed. �

Lemma 2.4. There exists v ∈ H1
0 (Ω) such that J(v) < 0.

Proof. It is sufficient to show that there exists a function Φ ∈ H1
0 (Ω) such that∫

Ω
a|Φ|1−α > 0. Indeed, if such a Φ exists, then, for t > 0, we have

J(tΦ) =
t2

2
‖∇Φ‖22 −

t1−α

1− α

∫
Ω

a|Φ|1−α +
t1+p

1 + p

∫
Ω

b|Φ|1+p

= t1−α(
t1+α

2
‖∇Φ‖22 −

1
1− α

∫
Ω

a|Φ|1−α +
tp+α

1 + p

∫
Ω

b|Φ|1+p)

which gives that J(tΦ) is negative for t positive and small enough. Such a Φ can
be constructed as follows: Let h ∈ C∞c (Rn) be a nonnegative radial function with
support in the unit ball B = {x ∈ Rn : |x| < 1}, and such that

∫
B
h = 1. For

ε > 0 let hε(x) := 1
εnh(xε ). For δ > 0 let Ωδ := {x ∈ Ω : dist(x, ∂Ω) > δ}. Since

|{x ∈ Ω : a(x) > 0}| > 0, we have |{x ∈ Ω : a(x) > 0} ∩ Ωδ| > 0 for δ positive and
small enough. We fix such a δ, and set E = {x ∈ Ω : a(x) > 0} ∩ Ωδ. For ε > 0
we define Φε := hε ∗ χE . Then Φε ∈ C∞(Rn) and supp(Φε) ⊂ Ω for ε < δ. Thus
Φε ∈ C∞c (Ω) for ε < δ. Also, limε→0+ Φε = χE with convergence in L2(Ω) (see [6,
Theorem 4.22]). Then limε→0+ aΦ1−α

ε = aχE with convergence in L1(Ω) (see [1,
Theorem 1.2.1]), therefore

lim
ε→0+

∫
Ω

aΦ1−α
ε =

∫
Ω

a(χE)1−α =
∫

Ω

aχE > 0.
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Then
∫

Ω
a|Φε|1−α > 0 for ε small enough. �

Corollary 2.5. u 6≡ 0.

Remark 2.6. Let us observe that ∇(v2) = 2v∇(v) for any (possibly unbounded)
v ∈ H1(Ω). Indeed, for k ∈ N, let vk be the truncation of v, defined by vk(x) = v(x)
if |v(x)| ≤ k, and by vk(x) = k sign(v(x)) otherwise. Then {vk}k∈N converges to v
in H1(Ω) as k tends to ∞, and, since each vk is bounded, it follows from the chain
rule (as stated e.g. in [23, Lemma 7.5]) that ∂

∂xi
(v2
k) = 2vk ∂vk∂xi

, i = 1, 2, . . . , n.
Since {vk}k∈N converges to v in L2(Ω), we have that {v2

k}k∈N converges to v2 in
L1(Ω), and so also in D′(Ω). Then { ∂

∂xi
(v2
k)}k∈N converges to ∂

∂xi
(v2) in D′(Ω).

Since {2vk ∂vk∂xi
}k∈N converges to 2v ∂v∂xi in L1(Ω), and therefore in D′(Ω), we obtain

that, for each i, ∂
∂xi

(v2) = 2v ∂v∂xi .

Lemma 2.7. u ∈ L∞(Ω).

Proof. Let Ω′ be a bounded C0,1 domain such that Ω ⊂ Ω′, and let ũ, ã : Rn → R
be the extensions by zero of u and a respectively. We consider first the case n > 2.
Let r = 1−α

2 , η = 2∗

1−α . Then 0 < r < 1, η > 1, and au2r ∈ Lη(Ω). Let
z ∈W 2,η(Ω′) ∩W 1,η

0 (Ω′) be the solution of

−∆z = 2ãũ2r in Ω′,

z = 0 on ∂Ω′.
(2.8)

Let z̃ : Rn → R be the extension by zero of z and let ϕ be a nonnegative function
in C∞c (Ω′) By Remark 2.6 and Lemma 2.3 we have∫

Ω′
〈∇(ũ2),∇ϕ〉 =

∫
Ω′
〈2ũ∇ũ,∇ϕ〉

=
∫

Ω

2u〈∇u,∇ϕ〉 ≤
∫

Ω

2〈∇(uϕ),∇u〉

= 2
∫

Ω

(au1−α − bup+1)ϕ

≤ 2
∫

Ω′
ãũ2rϕ =

∫
Ω′
〈∇z,∇ϕ〉

(2.9)

For ε > 0 let hε be the mollifiers defined as in the proof of Lemma 2.3. For ε small
enough we have 0 ≤ ϕ ∗ hε ∈ C∞c (Ω′), and so, by (2.9),∫

Ω′
〈∇(hε ∗ ũ2),∇ϕ〉 =

∫
Ω′
〈∇(ũ2), hε ∗ ∇ϕ〉

=
∫

Ω′
〈∇(ũ2),∇(hε ∗ ϕ)〉

≤
∫

Ω′
〈∇z,∇(hε ∗ ϕ)〉

where we have used that, since hε is an even function, the convolution operator with
kernel hε is self-adjoint in L2(Rn). Recall that z̃ ∈ W 1,η(Rn) and supp(z̃) ⊂ Ω′.
Also, ∇z̃ = ∇z a.e. in Ω′, and ∇z̃ = 0 a.e. in Rn − Ω′. Thus∫

Ω′
〈∇z,∇(hε ∗ ϕ)〉 =

∫
Rn
〈∇z̃,∇(hε ∗ ϕ)〉
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=
∫

Rn
〈∇(hε ∗ z̃),∇ϕ〉

=
∫

Ω′
〈∇(hε ∗ z̃),∇ϕ〉.

Then ∫
Ω′
〈∇(hε ∗ ũ2),∇ϕ〉 ≤

∫
Ω′
〈∇(hε ∗ z̃),∇ϕ〉

and so the divergence theorem gives

−
∫

Ω′
ϕ∆(hε ∗ ũ2) ≤ −

∫
Ω′
ϕ∆(hε ∗ z̃).

Since this inequality holds for all nonnegative ϕ ∈ C∞c (Ω′) we obtain

−∆(hε ∗ ũ2) ≤ −∆(hε ∗ z̃) in Ω′.

We have also hε ∗ ũ2 = 0 ≤ hε ∗ z̃ on ∂Ω′. Thus, the classical maximum principle
gives hε ∗ ũ2 ≤ hε ∗ z̃ in Ω′. Now, ũ2 and z̃ belong to L

2∗
2 (Rn), and so limε→0+(hε ∗

ũ2) = ũ2, and limε→0+(hε ∗ z̃) = z̃, in both cases with convergence in L
2∗
2 (Rn).

Then, limε→0+(hε ∗ ũ2)|Ω = ũ2
|Ω ; and limε→0+(hε ∗ z̃)|Ω = z̃|Ω, in each case with

convergence in L
2∗
2 (Ω). Then u2 ≤ z in Ω.

Now the lemma follows from the following standard bootstrap argument: Let
{ηj}j∈N be recursively defined by η1 = η∗ and by ηj+1 = η∗j . We can see inductively
that u ∈ L2ηj (Ω) for all j. Indeed, z ∈ W 2,η(Ω′), and so z ∈ Lη∗(Ω′). Then u2 ∈
Lη
∗
(Ω), and thus u ∈ L2η∗(Ω) = L2η1(Ω). Suppose now that u ∈ L2ηj (Ω), then

2ãũ2r ∈ L
ηj
p (Ω′) ⊂ Lηj (Ω′), and so z ∈ W 2,ηj (Ω′) ⊂ Lη

∗
j (Ω′) = Lη

∗
j (Ω′), which

gives u ∈ L2η∗j (Ω) = L2ηj+1(Ω). Thus u ∈ L2ηj (Ω) for all j, and so, taking j large
enough, we obtain u ∈ Ls(Ω) for some s > 2n, then 2ãũ2r ∈ L s

2r (Ω′) ⊂ L
s
2 (Ω′).

Thus z ∈W 2, s2 (Ω′) ⊂ L∞(Ω′). Since u2 ≤ z in Ω, we obtain u ∈ L∞(Ω).
Finally, if n ≤ 2, we have u ∈ Ls(Ω) for all s ∈ [1,∞). We take η > n and, for

r, z, z and ũ defined as above, we have au2r ∈ Lη(Ω). Thus z̃ ∈W 2,η(Ω′) ⊂ C(Ω′)
and, as before, u2 ≤ z in Ω. Then u ∈ L∞(Ω) also in this case. �

Lemma 2.8. ∫
Ω

〈∇u,∇(uϕ)〉 =
∫

Ω

(au1−α − bu1+p)ϕ (2.10)

for all ϕ ∈ H1(Ω) ∩ L∞(Ω).

Proof. Let ϕ ∈ H1(Ω) ∩ L∞(Ω). By Lemma 2.7 we have u ∈ L∞(Ω) and so
uϕ ∈ H1

0 (Ω). Thus Lemma 2.3 gives (2.10). �

3. Main results

Theorem 3.1. There exists a nonnegative weak solution 0 6≡ u ∈ H1
0 (Ω) ∩ L∞(Ω)

of problem (1.2).

Proof. Let u be the nonnegative minimizer of J considered in the previous section.
Let ψ be a nonnegative function in H1

0 (Ω) ∩ L∞(Ω), and let ε > 0. Note that
ψ

u+ε ∈ H
1(Ω) ∩ L∞(Ω), and that ∇(u ψ

u+ε ) = ε ∇u
(u+ε)2ψ + u

u+ε∇ψ, and so Lemma
2.8 gives

ε

∫
Ω

ψ
|∇u|2

(u + ε)2
+
∫

Ω

u
u + ε

〈∇u,∇ψ〉 =
∫

Ω

(au1−α − bu1+p)
1

u + ε
ψ. (3.1)
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Since ∇u = 0 a.e. on the set {x ∈ Ω : u(x) = 0}, and since au1−α = bu1+p = 0 on
the same set, (3.1) can be written as

ε

∫
{u>0}

ψ
|∇u|2

(u + ε)2
+
∫
{u>0}

u
u + ε

〈∇u,∇ψ〉+
∫
{u>0}

bup
u

u + ε
ψ

=
∫
{u>0}

au−α
u

u + ε
ψ.

(3.2)

Also
lim
ε→0+

(
u

u + ε
〈∇u,∇ψ〉) = χ{u>0}〈∇u,∇ψ〉 = 〈∇u,∇ψ〉

a.e. in Ω, and | u
u+ε 〈∇u,∇ψ〉| ≤ |〈∇u,∇ψ〉| ∈ L1(Ω), and so Lebesgue’s dominated

convergence theorem gives

lim
ε→0+

∫
{u>0}

u
u + ε

〈∇u,∇ψ〉 =
∫

Ω

〈∇u,∇ψ〉. (3.3)

On the other hand, limε→0+ au−α u
u+εψ = au−αψ on the set {x ∈ Ω : u(x) > 0}

and, since au−α u
u+εψ is non-increasing in ε, the monotone convergence theorem

gives

lim
ε→0+

∫
{u>0}

au−α
u

u + ε
ψ =

∫
{u>0}

au−αψ =
∫

Ω

au−αχ{u>0}ψ (3.4)

Also

lim
ε→0+

∫
{u>0}

bup
u

u + ε
ψ =

∫
Ω

bupψ (3.5)

Then, from (3.2), (3.3), (3.4) and (3.5), we obtain∫
Ω

〈∇u,∇ψ〉+
∫

Ω

bupψ

= lim
ε→0+

(∫
{u>0}

u
u + ε

〈∇u,∇ψ〉+
∫
{u>0}

bup
u

u + ε
ψ
)

≤ lim sup
ε→0+

(∫
{u>0}

εψ|∇u|2

(u + ε)2
+
∫
{u>0}

u
u + ε

〈∇u,∇ψ〉+
∫
{u>0}

bup
u

u + ε
ψ
)

= lim sup
ε→0+

∫
{u>0}

au−α
u

u + ε
ψ

=
∫

Ω

au−αχ{u>0}ψ.

Thus ∫
Ω

〈∇u,∇ψ〉+
∫

Ω

bupψ ≤
∫

Ω

au−αχ{u>0}ψ. (3.6)

Let us see that the reverse inequality in (3.6) holds: A computation gives, for
t > 0,

0 ≤ 1
t
(J(u + tψ)− J(u))

=
∫

Ω

〈∇u,∇ψ〉+
t

2

∫
Ω

|∇ψ|2 − 1
(1− α)t

∫
Ω

a((u + tψ)1−α − u1−α)

+
1

(1 + p)t

∫
Ω

b((u + tψ)1+p − u1+p),
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and so
1

(1− α)t

∫
Ω

a((u + tψ)1−α − u1−α)

≤
∫

Ω

〈∇u,∇ψ〉+
1

(1 + p)t

∫
Ω

b((u + tψ)1+p − u1+p) +
t

2

∫
Ω

|∇ψ|2.
(3.7)

The mean value theorem gives (u+ tψ)1−α−u1−α = (1−α)(u+σt)−αtψ for some
measurable function σt such that 0 < σt < tψ. Thus

1
(1− α)t

∫
Ω

a((u + tψ)1−α − u1−α)

=
1

(1− α)t

∫
{a>0}∩{ψ>0}

a((u + tψ)1−α − u1−α)

=
∫
{a>0}∩{ψ>0}

a(u + σt)−αψ

Now, limt→0+ a(u + σt)−αψ = au−αψ a.e on the set {a > 0} ∩ {ψ > 0}. Then, by
Fatou’s Lemma,

lim inf
t→0+

1
(1− α)t

∫
Ω

a((u + tψ)1−α − u1−α)

= lim inf
t→0+

∫
{a>0}∩{ψ>0}

a(u + σt)−αψ

≥
∫
{a>0}∩{ψ>0}

au−αψ ≥
∫

Ω

au−αχ{u>0}ψ.

(3.8)

Again by the mean value theorem, we have

1
(1 + p)t

∫
Ω

b((u + tψ)1+p − u1+p) =
∫

Ω

b(u + σt)pψ.

Note that, for 0 < t < 1, we have 0 ≤ b(u + σt)pψ ≤ b(u + ψ)p+1 ∈ L1(Ω). Also,
limt→0+ b(u+σt)pψ = bupψ a.e. in Ω. Thus, by Lebesgue’s dominated convergence
theorem, we have

lim
t→0+

1
(1 + p)t

∫
Ω

b((u + tψ)1+p − u1+p) =
∫

Ω

bupψ. (3.9)

Now, from (3.7), (3.8), and (3.9), we obtain∫
Ω

〈∇u,∇ψ〉+
∫

Ω

bupψ ≥
∫

Ω

au−αχ{u>0}ψ (3.10)

Since bupψ ∈ L1(Ω), (3.10) implies that au−αχ{u>0}ψ ∈ L1(Ω). We apply (3.10),
combined with (3.6), to complete the proof. �

Remark 3.2. It is well known (see e.g., [17]) that, for m ∈ L∞(Ω) such that
|{x ∈ Ω : m(x) > 0}| > 0, there exists a unique λ = λ1(−∆,Ω,m) such that the
problem

−∆ϕ1 = λmϕ1 in Ω,
ϕ1 = 0 on ∂Ω,
ϕ1 > 0 in Ω
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has a solution ϕ1 ∈ H1
0 (Ω). This solution is unique up to a multiplicative constant,

belongs to C1.γ(Ω) for some 0 < γ < 1, satisfies that |∇ϕ|(x) > 0 for all x ∈ ∂Ω,
and there are positive constants c1, c2 such that c1dΩ ≤ ϕ ≤ c2dΩ in Ω, where
dΩ : Ω→ R is the function defined by

dΩ(x) = dist(x, ∂Ω).

λ1 and ϕ1 are called, respectively, the principal eigenvalue and a positive principal
eigenfunction for −∆ in Ω, with Dirichlet boundary condition and weight m.

Remark 3.3. It is well known that, under our assumptions on Ω, α, and a, the
problem

−∆θ = aθ−α in Ω,
θ = 0 on ∂Ω,
θ > 0 in Ω

has a unique weak solution θ ∈ H1
0 (Ω). Moreover, θ is in C(Ω), and θ ≥ c′dΩ for

some positive constant c′ (see [12, 3]). A computation shows that (in weak sense)
−∆(θα+1) = −(α + 1)θα∆θ − (α + 1)αθα−2|∇θ|2 ≤ (α + 1)‖a‖∞ in Ω, and so we

have θ ≤ c′′d
1

α+1
Ω in Ω, for some constant c′′ > 0.

Remark 3.4. Following [26], we say that w ∈ W 1,2
loc (Ω) is a subsolution (superso-

lution) to the problem
−∆z = az−α − bzp in Ω (3.11)

in the sense of distributions, if, and only if: w > 0 a.e. in Ω, aw−α−bwp ∈ L1
loc(Ω),

and for all nonnegative ϕ ∈ C∞c (Ω), it holds that∫
Ω

〈∇w,∇ϕ〉 ≤ (≥)
∫

Ω

(aw−α − bwp)ϕ.

We also say that z ∈ W 1,2
loc (Ω) is a solution, in the sense of distributions, of (3.11)

if, and only if, z > 0 a.e. in Ω, and, for all ϕ ∈ C∞c (Ω) it holds that∫
Ω

〈∇z,∇ϕ〉 =
∫

Ω

(az−α − bzp)ϕ.

For subsolutions, supersolutions and solutions defined in the above sense, [26, The-
orem 2.4] says that, if (3.11) has a subsolution z and a supersolution z (in the sense
of distributions), both in L∞loc(Ω), and such such that 0 < z(x) ≤ z(x) a.e. x ∈ Ω,
and if there exists k ∈ L∞loc(Ω) such that |as−α − bsp| ≤ k(x) a.e. x ∈ Ω for all
s ∈ [z(x), z(x)]; then (3.11) has a solution z in the sense of distributions, and z
satisfies z ≤ z ≤ z a.e. in Ω.

Theorem 3.5. Suppose that a ≥ εb for some ε > 0. Then there exists a weak
solution v ∈ H1

0 (Ω) ∩ L∞(Ω) of (1.2) such that v ≥ cdΩ in Ω for some c > 0, and
v ∈ C1

loc(Ω) ∩ C(Ω).

Proof. Suppose that a ≥ εb for some ε > 0. Let ϕ1 ∈ H1
0 (Ω) be the positive

principal eigenfunction associated to the weight function a, normalized by ‖ϕ1‖∞ =
1 (see Remark 3.2). Note that (in weak sense), for t positive and small enough,

−∆(tϕ1) ≤ a(tϕ1)−α − b(tϕ1)p in Ω. (3.12)

Indeed, −∆(tϕ1) = λ1atϕ1, and so (3.12) is equivalent to (1 − λ1(tϕ1)1+α)a ≥
(tϕ1)p+αb in Ω. But, for t small enough, we have b(tϕ1)p+α ≤ btp+α ≤ 1

2εb ≤
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1
2a ≤ (1 − λ1(tϕ1)1+α)a in Ω. Since tϕ1 > 0 in Ω, it follows that, for such a t,
tϕ1 is a subsolution of (1.2), in the sense of Remark 3.4. On the other hand, let
θ ∈ H1

0 (Ω) ∩C(Ω) be the solution of the problem −∆θ = aθ−α in Ω, θ = 0 on ∂Ω.
Since θ ≥ c′dΩ in Ω for some c′ > 0, we have that θ is strictly positive in Ω, and,
by diminishing t if necessary, we can assume, that tϕ1 ≤ θ. Clearly (in weak sense)
−∆θ ≥ aθ−α − bθp in Ω, and so θ is a supersolution of (1.2), again in the sense

of Remark 3.4). Since tϕ1 ≥ c1tdΩ in Ω for some c1 > 0, and since θ ≤ c′′d
1

α+1
Ω

in Ω for some c′′ > 0, we have [tϕ1(x), θ(x)] ⊂ [c1tdΩ(x), c′′d
1

α+1
Ω (x)] for x ∈ Ω.

Therefore a.e. x ∈ Ω, for all s ∈ [tϕ1(x), θ(x)], the following holds

|as−α − bsp| ≤ ‖a‖∞(c1t)−αdΩ(x)−α + ‖b‖∞(c′′)pd
p

α+1
Ω (x) := k(x).

Since k ∈ L∞loc(Ω), [26, Theorem 2.4] (see Remark 3.4), says that there exists
v ∈W 1,2

loc (Ω) such that tϕ1 ≤ v ≤ θ in Ω, and such that, for any ϕ ∈ C∞c (Ω),∫
Ω

〈∇v,∇ϕ〉 =
∫

Ω

(av−α − bvp)ϕ. (3.13)

Note that v ∈ H1
0 (Ω): Indeed, let Ω′ be a subdomain of Ω such that Ω′ ⊂ Ω. Since

v ≥ c′′dΩ in Ω for some c′′ > 0, we have av−α − bvp ∈ L∞(Ω′). Therefore, from
(3.13), a density argument, and Lebesgue’s dominated convergence theorem give
that, for any ϕ ∈ H1

0 (Ω′), it holds∫
Ω′
〈∇v,∇ϕ〉 =

∫
Ω′

(av−α − bvp)ϕ. (3.14)

Let ε > 0. Since v ≤ θ ≤ c′′d
1

1+α
Ω for some c′′ > 0, we have that supp(v − ε)+ ⊂ Ω′

for some subdomain Ω′ such that Ω′ ⊂ Ω. Also (v− ε)+ ∈ H1(Ω) and so (v− ε)+ ∈
H1

0 (Ω). Thus, from (3.14), we obtain∫
Ω

χ{v>ε}∇v.∇v =
∫

Ω′
∇v.∇(v − ε)+

=
∫

Ω′
(av−α − bvp)(v − ε)+

=
∫

Ω

(av−α − bvp)(v − ε)χ{v>ε}.

(3.15)

The monotone convergence theorem gives

lim
ε→0+

∫
Ω

χ{v>ε}∇v.∇v =
∫

Ω

∇v.∇v

and, since av−α− bvp ∈ L1(Ω), and v ∈ L∞(Ω), Lebesgue’s dominated convergence
theorem gives

lim
ε→0+

∫
Ω

(av−α − bvp)(v − ε)χ{v>ε} =
∫

Ω

(av1−α − bv1+p).

Taking limits in (3.15), we obtain∫
Ω

∇v.∇v =
∫

Ω

(av1−α − bv1+p) <∞.

Thus v ∈ H1(Ω) and, since tϕ1 ≤ v ≤ θ, we have v ∈ H1
0 (Ω). Note also that

av−α− bvp ∈ L1(Ω) and so, again by a density argument, and applying Lebesgue’s
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dominated convergence theorem, we conclude that (3.13) holds for all ϕ in H1
0 (Ω)∩

L∞(Ω).
Let Ω′ be an arbitrary subdomain of Ω such that Ω′ ⊂ Ω, and let Ω′′ be such

that Ω′ ⊂ Ω′′ ⊂ Ω′′ ⊂ Ω. Since v ∈ L∞(Ω′′) and (av−α − bvp)|Ω′′ ∈ L∞(Ω′′), we
have v|Ω′ ∈ W 2,s(Ω′) for all s ∈ [1,∞) (see e.g., Proposition 4.1.2 in [8]) and so
v|Ω′ ∈ C1(Ω′). Thus v ∈ C1

loc(Ω) and, since tϕ1 ≤ v ≤ θ, v is continuous on ∂Ω. �

Example 3.6. Let Ω = (0, 2π), α = 1/3, and p ∈ (0, 1/5). Let a and b be the

functions defined on Ω by a = 2(1− cos(2x)) 3

√
sin2(x), b(x) = 2| sin2(x)|−p. Then

a ≥ 0, b ≥ 0, 0 6≡ a ∈ L∞(Ω) and b ∈ L
2

1−p (Ω). Consider now the following
three functions in C1(Ω): u(x) = sin2(x)χ(0,π), v(x) = sin2(x)χ(0,2π), and w(x) =
sin2(x)χ(π,2π). A computation shows that u, v, and w are all weak solutions of (1.2)
(v is in fact a classical solution). Therefore (without additional assumptions on a
and b) uniqueness is not to be expected for nonnegative nontrivial weak solutions
of (1.2). Notice that w ≡ 0 on (0, π). Note also that v(x) > 0 for x ∈ Ω − {π}
and v(π) = 0, therefore, by Theorem 3.8 below, there is no continuous and strictly
positive solution to (1.2).

Example 3.7. Let Ω = (0, 2), let α ∈ (0, 1), p ∈ (0, 1), let b := χ(0,1) and let
a := χ(1,1+δ), with

0 < δ ≤ (
1− α

2
)

1
1−α

(
(

2
p+ 1

)
1

1−p (
1− p

2
)

1+p
1−p

) 1+α
1−α

.

Let us show that the problem

−u′′ = au−α − bup in Ω,
u = 0 on ∂Ω

(3.16)

has no weak solution u ∈ H1
0 (Ω) such that u > 0 a.e. in Ω. Let us suppose,

for the sake of contradiction, that u is a weak solution such that u > 0 a.e. in
Ω. Since H1

0 (Ω) ⊂ Cγ(Ω) for some γ ∈ (0, 1), we have u ∈ Cγ(Ω) for such a
γ. Throughout this example, unless there is risk of confusion, the restrictions of
u to (0, 1), (1, 1 + δ), and (1 + δ, 2), will be still denoted by u. Since u belongs
to Cγ([0, 1]), and |up(x) − up(y)| ≤ |u(x) − u(y)|p for any x, y ∈ [0, 1], we have
up ∈ C .γp([0, 1]). Let A = u(1). Since

−u′′ = −up in (0, 1),

u(0) = 0,

u(1) = A

(3.17)

we have that u is a classical solution of (3.17) that belongs to C2([0, 1]) ∩ C([0, 1])
and so −u′′ = −up in [0, 1]. (see, e.g., [23, Theorem 6.14]). Note also that

u(x) ≥
(1− p

2
) 2

1−p
( 2
p+ 1

) 1
1−px

2
1−p for all x ∈ [0, 1]. (3.18)

Indeed, multiplying (3.17) by u′ we obtain 1
2 ((u′)2)′ = 1

p+1 (up+1)′ on [0, 1], and so
1
2 (u′(x))2 − 1

p+1u(x)p+1 = 1
2 (u′(0))2 ≥ 0 for all x ∈ [0, 1]. Thus

(u′)2 ≥ 2
p+ 1

up+1 in [0, 1]. (3.19)
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As u ≥ 0 on [0, 1] and u(0) = 0, we have u′(0) ≥ 0. Observe also that (3.17) implies
u′′ ≥ 0 on [0, 1], and so u is a convex function on [0, 1]. Thus u′ is nondecreasing
on [0, 1] and, since u′(0) ≥ 0, we have u′ ≥ 0 in [0, 1], and so, from (3.19), we
conclude

u′ ≥ (
2

p+ 1
)1/2u

p+1
2 in [0, 1]. (3.20)

If u(x) = 0 for some x ∈ (0, 1) we would have u(x) = 0 for all x ∈ (0, x), which
contradicts the assumption that u > 0 a.e. in Ω. Thus u(x) > 0 for all x ∈ [0, 1],
therefore (3.20) can be rewritten as u−

p+1
2 u′ ≥ ( 2

p+1 )1/2 on [0, 1]. By integrating

this inequality over (0, x) we obtain 2
1−p (u(x))

1−p
2 ≥ ( 2

p+1 )1/2x for all x ∈ [0, 1],
and so (3.18) holds. In particular we have

u(1) ≥
(1− p

2
) 2

1−p
( 2
p+ 1

) 1
1−px

2
1−p (3.21)

and then, by (3.20),

u′(1) ≥
( 2
p+ 1

) 1
1−p
(1− p

2
) 1+p

1−p . (3.22)

Consider now the restriction of u to (1, 1 + δ); u ∈ H1(1, 1 + δ) ⊂ C([1, 1 + δ]), and
solves

−u′′ = u−α in (1, 1 + δ)

u(1) ≥ 0, u(1 + δ) ≥ 0.

Let ζ ∈ H1
0 (1, 1 + δ) ⊂ C([1, 1 + δ]) be the solution to the problem

−ζ ′′ = ζ−α in (1, 1 + δ)

ζ > 0 in (1, 1 + δ)

ζ(1) = 0, ζ(1 + δ) = 0.

Observe that u ≥ ζ on (1, 1 + δ). To prove this, suppose, for the sake of contra-
diction, that {x ∈ (1, 1 + δ) : u(x) < ζ(x)} 6= ∅, and let U be one of its connected
components. Note that U is an open interval, since u and ζ are continuous on
(1, 1 + δ). Since −ζ ′′ = ζ−α ≤ u−α = −u′′ on U , and ζ = u on ∂U , the maximum
principle gives ζ ≤ u on U , which is a contradiction. Thus u ≥ ζ on (1, 1 + δ) as
claimed.

Recall that there exists c > 0 such that ζ ≥ cd on (1, 1 + δ), where d(x) =
dist(x, ∂(1, 1 + δ)) for all x ∈ (1, 1 + δ) (see Remark 3.3); therefore u ≥ cd on
(1, 1 + δ). Note also that u(1 + δ) > 0. If not, since u(2) = 0 and u′′ = 0 in (1, 2),
we would have u = 0 in (1, 2); which would contradict u > 0 a.e. in Ω. Since
u(1) > 0, u(1 + δ) > 0, and u ≥ cd on (1, 1 + δ), it follows that u(x) > 0 for any
x ∈ [1, 1 + δ] and, since u is continuous on [1, 1 + δ], we have u ≥ const > 0 on
[1, 1 + δ]. Now

|u−α(x)− u−α(y)| = (u(x)u(y))−α|u(x)α − u(y)α|
≤ (u(x)u(y))−α|u(x)− u(y)|α

and so, since u ∈ Cγ(Ω), we have u−α ∈ Cαγ([1, 1+δ]). Let A = u(1), B = u(1+δ).
Since u solves

−u′′ = u−α in (1, 1 + δ)

u(1) = A, u(1 + δ) = B,
(3.23)
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it follows that u is a classical solution of (3.23) that belongs to C2([1, 1 + δ]) ∩
C([1, 1 + δ]) (see [23, Theorem 6.14]).

On the other hand, since u′′ = 0 on (1 + δ, 2) and u(2) = 0, we have

u(x) =
u(1 + δ)

1− δ
(2− x) for all x ∈ (1 + δ, 2) (3.24)

Since u−α ∈ Cαγ([1, 1 + δ]) and u ∈ H1
0 (Ω) ⊂ C(Ω), we have au−α − bup ∈ L2(Ω),

and thus, from (3.16), it follows that u ∈ W 2,2(Ω) ⊂ C1(Ω). Multiplying (3.23) by
u′ we obtain (1

2
(u′)2

)′
= − 1

1− α
(u1−α)′ on (1, 1 + δ) (3.25)

and so 1
2 (u′)2 + 1

1−αu
1−α = const = 1

2 (u′(1))2 + 1
1−αu(1)1−α. Therefore, for x ∈

(1, 1 + δ): u′(x) = 0 if, and only if, 1
1−αu

1−α(x) = 1
2 (u′(1))2 + 1

1−αu(1)1−α. If
there were no x in (1, 1 + δ) such that 1

1−αu
1−α(x) = 1

2 (u′(1))2 + 1
1−αu(1)1−α, we

would have u′(x) 6= 0 for all x ∈ (1, 1 + δ); which would imply that u′(x) > 0 for
all x ∈ (1, 1 + δ) (since u′ is continuous on [1, 1 + δ], and since u′(1) > 0). Thus
u′(1 + δ) ≥ 0, but, by (3.24), u′(1 + δ) = −u(1+δ)

1−δ < 0, which is a contradiction.
Therefore {x ∈ (1, 1 + δ) : 1

1−αu
1−α(x) = 1

2 (u′(1))2 + 1
1−αu(1)1−α} 6= ∅; let x1 be

its infimum. Since u is continuous, x1 is a minimum, therefore we have u(x1) =
( 1−α

2 (u′(1))2 + u(1)1−α)
1

1−α . Note that u′(x) > 0 for all x ∈ [1, x1). Moreover,
(3.23) gives that u is concave on [1, 1 + δ], and so u(x1)−u(1)

x1−1 ≤ u′(1). Then,
recalling (3.22),

x1 − 1 ≥ u(x1)− u(1)
u′(1)

=

(
1−α

2 (u′(1))2 + u(1)1−α) 1
1−α − u(1)

u′(1)

≥
(

1−α
2 (u′(1))2

) 1
1−α + (u(1)1−α)

1
1−α − u(1)

u′(1)

=
( 1−α

2 (u′(1))2)
1

1−α

u′(1)
=
(1− α

2
) 1

1−α
(
u′(1)

) 1+α
1−α

≥
(1− α

2
) 1

1−α
(( 2
p+ 1

) 1
1−p
(1− p

2
) 1+p

1−p
) 1+α

1−α ≥ δ,

which contradicts x1 < 1 + δ.

Theorem 3.8. There is at most one weak solution v ∈ H1
0 (Ω) ∩ L∞(Ω) of (1.2)

such that v(x) > 0 a.e. in Ω; and, if it exists, it satisfies v ≥ u for any other
nonnegative weak solution u ∈ H1

0 (Ω) ∩ L∞(Ω) of (1.2).

Proof. Since s → f(s) := as−α − bsp is nondecreasing, the uniqueness assertion
of the theorem follows from a standard argument: If w is another solution which
is positive a.e. in Ω, take ϕ := v − w as a test function in the weak form of the
equation

−∆(v − w) = f(v)− f(w) in Ω,
v − w = 0 on ∂Ω

to obtain
∫

Ω
|∇(v − w)|2 =

∫
Ω

(f(v)− f(w))(v − w) ≤ 0, which implies v = w.
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Let u ∈ H1
0 (Ω) ∩ L∞(Ω) be a nonnegative solution of 1.2. Therefore, for any

ϕ ∈ H1
0 (Ω) ∩ L∞(Ω), we have∫

Ω

〈∇(u− v),∇ϕ〉

=
∫

Ω

(au−αχ{u>0} − bup − (av−α − bvp))ϕ

=
∫
{u>0}

(f(u)− f(v))ϕ+
∫
{u=0}

(−av−α + bvp)ϕ.

(3.26)

Now, we take ϕ = (u− v)+. Since v > 0 a.e. in Ω, we have∫
{u=0}

(−av−α + bvp)(u− v)+ = 0.

Thus, from (3.26), we obtain
∫

Ω
|∇(u− v)+|2 ≤ 0, and so u ≤ v in Ω. �
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