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MULTIPLE SOLUTIONS FOR IMPULSIVE HAMILTONIAN
SYSTEMS

GUANGHUI ZHOU

Abstract. In this article, we study second-order impulsive Hamiltonian sys-
tems, We obtain some existence and multiplicity results, by using a variational

method and critical point theorem. An example illustrate the feasibility of our

results.

1. Introduction

In this article, we study the second-order Hamiltonian systems with impulsive
effects

−ü+A(t)u = λb(t)∇G(u), a.e. t ∈ [0, T ],

∆(u̇i(tj)) = u̇i(t+j )− u̇i(t−j ) = Iij(ui(tj)), i = 1, 2, . . . , N, j = 1, 2, . . . , l,

u(0)− u(T ) = u′(0)− u′(T ) = 0,

(1.1)

where A : [0, T ] → RN×N is a continuous map from [0, T ] to the set of N -order
symmetric matrices, T is a real positive number, u(t) = (u1(t), u2(t), . . . , uN (t)),
tj , j = 1, 2, . . . , l, are the instants where the impulses occur and 0 = t0 < t1 < t2 <
· · · < tl < tl+1 = T , Iij : R→ R (i = 1, 2, . . . , N ; j = 1, 2, . . . , l) are continuous.

Recently, with the development of theory and applications of impulsive differ-
ential systems, there have been some results considering the existence and mul-
tiplicity of solutions for impulsive problems, by using variational method (see
[1, 2, 3, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]). To obtain the existence and
multiplicity of solutions, impulsive functions Iij(·) of all theorems in [14, 18], are
required to satisfy the following conditions

Iij(y)y ≥ 0 for all i ∈ A = {1, 2, . . . , N}, ]; j ∈ B = {1, 2, . . . , l}, y ∈ R, (1.2)

or
Iij(y)y ≤ 0 for all i ∈ A, j ∈ B, y ∈ R. (1.3)

However, as Dai pointed out in [3], there are many functions which do not satisfy
(1.2) or (1.3). For example, when N = 3 and l = 2, impulsive functions of (1.1) are

Iij(y) = −y + 1 for i = 1, 2, 3; j = 1, 2, (1.4)
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or a more complicated case such as

Iij(y) =


y
2 + 1, i = 1, 2, 3; j = 1,
−y i = 1, 2; j = 2,
y
2 i = 3, j = 2.

(1.5)

So it is important to consider such case. Motivated by [3, 5] and the above facts, we
will reconsider problem (1.1) and study the existence of solutions without assump-
tion (1.2) or (1.3), which show that suitable impulses won’t influence the existence
of of solutions.

The organization of this article is as follows. In Section 2, we introduce some
definitions and lemmas. In Section 3, by using critical point theorem [6, 7], we
obtain some existence and multiplicity result of solutions for (1.1).

2. Preliminaries

In this section, we introduce notation, definitions, and preliminary facts. A :
[0, T ] → RN×N is a matrix-valued function fulfilling the following technical as-
sumptions:

(A1) A(t) = (aij(t)) is a symmetric matrix with aij ∈ L∞([0, T ],R+) for every
t ∈ [0, T ].

(A2) There exists a positive constant µ such that A(t)ξ · ξ ≥ µ|ξ|2 for every
ξ ∈ RN and a.e. t ∈ [0, T ].

The set

H1
T =

{
u : [0, T ]→ RN : u is absolutely continuous,

u(0) = u(T ) and u̇ ∈ L2([0, T ],RN )
}

is a Hilbert space with the usual norm

‖u‖H1
T

=
(∫ T

0

(|u̇(t)|2 + |u(t)|2)dt
)1/2

.

For every u, v ∈ H1
T , by (A1), (A2), we define an inner product

〈u, v〉 =
∫ T

0

[(u̇(t), v̇(t)) + (A(t)u(t), v(t))]dt, ∀u, v ∈ H1
T ,

which induces the norm

‖u‖ =
(∫ T

0

(|u̇(t)|2 +A(t)|u(t)|2)dt
)1/2

.

As in [4, 17], we have

A(t)ξ · ξ =
N∑
j=1

N∑
i=1

aij(t)ξiξj ≤
N∑
j=1

N∑
i=1

‖aij‖∞|ξ|2,

√
m‖u‖H1

T
≤ ‖u‖ ≤

√
M‖u‖H1

T
,

(2.1)

where m = min{1, µ},M = max{1,ΣNi,j=1‖aij‖∞}, ‖aij‖∞ = maxt∈[0,T ] |aij(t)|.
Since (H1

T , ‖ ·‖H1
T

) is compactly embedded in C([0, T ],RN ), then there is a positive
number k̄ such that for every u ∈ H1

T ,

‖u‖∞ ≤ k̄‖u‖, (2.2)
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Thus

k̄ ≤ k =

√
2
m

max{
√
T ,

1√
T
}. (2.3)

For any u, v ∈ H1
T , let

Φ(u) =
1
2
‖u‖2 +

l∑
j=1

N∑
i=1

∫ ui(tj)

0

Iij(s)ds, Ψ(u) =
∫ T

0

b(t)G(u(t))dt. (2.4)

By standard argument, we see that Φ,Ψ are Gâteaux differentiable at any u ∈ H1
T

and

〈Φ′(u), v〉 =
∫ T

0

[(u̇(t), v̇(t)) + (A(t)u(t), v(t))]dt+
l∑

j=1

N∑
i=1

Iij(ui(tj))vi(tj),

〈Ψ(u), v〉 =
∫ T

0

b(t)(∇G(u(t)), v(t))dt.

(2.5)

A critical point of the functional Φ−λΨ is a function u ∈ H1
T such that Φ′(u)(v)−

λΨ′(u)(v) = 0 for every v ∈ H1
T , i.e.

Definition 2.1. A function u ∈ H1
T is a weak solution of (1.1) if∫ T

0

[(u̇(t), v̇(t)) + (A(t)u(t), v(t))]dt+
l∑

j=1

N∑
i=1

Iij(ui(tj))vi(tj)

= λ

∫ T

0

b(t)(G(u(t)), v(t))dt

(2.6)

holds for any v ∈ H1
T .

Hence, we can claim that each critical point of the functional Φ− λΨ is a weak
solution to problem (1.1).

Theorem 2.2 ([4, Theorem 3.3]). Let X be a reflexive real Banach space, let
Φ,Ψ : X → R be two Gâteaux differentiable functionals such that Φ is sequentially
weakly lower semi-continuous and coercive and Ψ is sequentially weakly upper semi-
continuous. Assume that

(i) Φ is convex;
(ii) For every x1, x2 ∈ X such that Ψ(x1) ≥ 0 and Ψ(x2) ≥ 0, one has

infs∈[0,1] Ψ(sx1 + (1− s)x2) ≥ 0;
(iii) infX Φ = Φ(0) = Ψ(0) = 0;
(iv) there are three positive constants r1, r2, r3 with infX Φ < r1 < r2 such that,

if we put

ϕ(1)(ri) = inf
u∈Φ−1((−∞,ri))

supv∈Φ−1((−∞,ri)) Ψ(v)−Ψ(u)
ri − Φ(u)

,

ϕ2(r1, r2) = inf
u∈Φ−1((−∞,r1))

sup
v∈Φ−1([r1,r2))

Ψ(v)−Ψ(u)
Φ(v)− Φ(u)

,

ϕ(3)(r2, r3) =
supu∈Φ−1((−∞,r2+r3)) Ψ(u)

r3
,

ϕ3(r1, r2, r3) = max{ϕ(1)(r1), ϕ(1)(r2), ϕ(3)(r2, r3)},
one has ϕ3(r1, r2, r3) < ϕ2(r1, r2).
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(v) For each λ ∈ Λr1,r2,r3 := ( 1
ϕ2(r1,r2) ,

1
ϕ3(r1,r2,r3) ), if we put

Ψ r3
λ

(u) =

{
Ψ(u) if Ψ(u) ≤ r3

λ ,
r3
λ if Ψ(u) > r3

λ ,

then Φ− λΨ r3
λ

satisfies the condition (PS)c, with c ∈ R.
Then for each λ ∈ Λr1,r2,r3 , the functional Φ − λΨ admits at least three critical
points u1, u2, u3 ∈ X such that u1 ∈ Φ−1((−∞, r1)), u2 ∈ Φ−1([r1, r2)) and u3 ∈
Φ−1((−∞, r2 + r3)).

Theorem 2.3 ([6, Theorem 2.6]). Let X be a reflexive real Banach space, let
Φ : X → R be a be a sequentially weakly lower semi-continuous, coercive and
continuously Gâteaux differentiable functional whose Gâteaux derivative admits a
continuous inverse on X∗, and let Ψ : X → R be a sequentially weakly upper
semi-continuous and continuously Gâteaux differentiable functional whose Gâteaux
derivative is compact. Assume that there exist r ∈ R and x0, x̄ ∈ X, with Φ(x0) <
r < Φ(x̄) and Ψ(x0) = 0, such that

(i) supx∈Φ−1((−∞,r]) Ψ(x) < (r − Φ(x0)) Ψ(x̄)
Φ(x̄)−Φ(x0) ;

(ii) for each

λ ∈ Λr := (
Φ(x̄)− Φ(x0)

Ψ(x̄)
,

r − Φ(x0)
supx∈Φ−1((−∞,r]) Ψ(x)

),

the functional Φ− λΨ is coercive.
Then for each λ ∈ Λr, the functional Φ − λΨ has at least three distinct critical
points u1, u2, u3 ∈ X.

Theorem 2.4 ([7, Theorem 2.1]). Let X be a reflexive real Banach space, let
Φ,Ψ : X → R be two Gâteaux differentiable functionals such that Φ is sequen-
tially weakly lower semicontinuous and coercive and Ψ is sequentially weakly upper
semicontinuous. For every r > infX Φ, let us put

ϕ(r) := inf
u∈Φ−1((−∞,r))

supv∈Φ−1((−∞,r)) Ψ(v)−Ψ(u)
r − Φ(u)

,

and
γ := lim inf

r→+∞
ϕ(r), δ := lim inf

r→(infX Φ)+
ϕ(r).

Then one has
(a) For every r > infX Φ and every λ ∈ (0, 1

ϕ(r) ), the restriction of the func-
tional Iλ = Φ− λΨ to Φ−1((−∞, r)) admits a global minimum, which is a
critical point (local minimum) of Iλ in X.

(b) If γ < +∞ then, for each λ ∈ (0, 1
γ ), the following alternative holds: Either

(b1) Iλ possesses a global minimum, or
(b2) there is a sequence {un} of critical points (local minima) of Iλ such

that limn→∞ Φ(un) = +∞.
(c) If δ < +∞ then, for each λ ∈ (0, 1

δ ), the following alternative holds: Either
(c1) there is a global minimum of Φ which is a local minimum of Iλ, or
(c2) there is a sequence of pairwise distinct critical points (local minima)

of Iλ which weakly converges to a global minimum of Φ.

As in the proof of [3, Lemma 5], we have the following result.
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Lemma 2.5. Suppose that Iij(y) is nondecreasing in y ∈ R for all i = 1, 2, . . . , N ,

j = 1, 2, . . . , l. Then φ(u) =
∑l
j=1

∑N
i=1

∫ ui(tj)
0

Iij(s)ds is convex in u ∈ RN .

3. Existence and multiplicity of solutions

For convenience, we introduce the assumption
(A3) There exist constants cij > 0, dij > 0, γij ∈ [0, 1), i = 1, 2, . . . , N , j =

1, 2, . . . , l, such that

|Iij(y)| ≤ cij + dij |y|γij for all y ∈ R.

Theorem 3.1. Assume that (A1)–(A3) hold. Iij(y) is nondecreasing for y ∈ R,
for any i = 1, 2, . . . , N , j = 1, 2, . . . , l with Iij(0) = 0. Let G ∈ C1(RN , R) be such
that

(1) G(ξ) ≥ G(0) = 0 for any ξ ∈ RN ,
(2) there exist ρ2 � ρ1 > 0 and ξ̄ ∈ RN such that

(3) ρ1 < |ξ̄| <
√

4M
µ ρ2, where µ < M defined as (A2) and (2.1) respectively;

(4) (
1 +

4M
µ

)max|ξ|≤ρ1 G(ξ)
ρ2

1

+ 4
max|ξ|≤ρ2 G(ξ)

ρ2
2

<
G(ξ̄)
|ξ̄|2

.

Then for every b ∈ L1([0, T ]) \ {0} and for every λ in

Λρ1,ρ2,ρ3 :=
( MT

‖b‖L1

(
1− µ

M

) |ξ̄|2
G(ξ̄)

,
T

4‖b‖L1

1

max
{

1
µ

max|ξ|≤ρ1 G(ξ)

ρ2
1

, 1
M

max|ξ|≤ρ2 G(ξ)

ρ2
2

}),
Equation (1.1) has at least three nontrivial solutions u1, u2, u3 such that ‖ui‖∞ ≤
ρ2, i = 1, 2.

Proof. Let Φ,Ψ be as (2.4). Since Iij(y) is nondecreasing in y ∈ R for any i =
1, 2, . . . , N , j = 1, 2, . . . , l, we have

φ(u) =
l∑

j=1

N∑
i=1

∫ ui(tj)

0

Iij(s)ds

which is convex for u ∈ RN , from Lemma 2.5. It is obvious that ‖u‖ is convex
in u ∈ RN . Thus Φ(u) is convex in u ∈ RN . We also know Φ(u) is continuously
Gâteaux differentiable and sequentially weakly lower semi-continuous. By (A3) and
(2.2), we have

Φ(u) =
1
2
‖u‖2 +

l∑
j=1

N∑
i=1

∫ ui(tj)

0

Iij(s)ds

≥ 1
2
‖u‖2 −

l∑
j=1

N∑
i=1

(cij |u|+ dij |u|1+γij )

≥ 1
2
‖u‖2 −

l∑
j=1

N∑
i=1

(cij‖u‖∞ + dij‖u‖1+γij
∞ )

≥ 1
2
‖u‖2 −

l∑
j=1

N∑
i=1

(cij k̄‖u‖+ dij k̄
1+γij‖u‖1+γij )→ +∞
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as ‖u‖ → +∞, i.e. Φ is obviously coercive. Ψ is continuously Gâteaux differentiable
with compact derivative, hence it is sequentially weakly continuous. In addition,
assumption (1) and for every b ∈ L1([0, T ]) \ {0} imply that Ψ(u) ≥ 0 for every
u ∈ H1

T , hence (ii) of Theorem 2.2 holds. Again from assumption (1), we get (iii).
Choose v̄(t) = ξ̄, t ∈ [0, T ]. Let

r1 =
µTρ2

1

4
> 0, r2 = r3 = MTρ2

2 > 0,

for sufficiently small

ρ1 =
(2γ̄

∑l
j=1

∑N
i=1 dij

µT

) 1
1−γ̄

> 0,

ρ̄1 = min
{ µTρ2

1

8
∑l
j=1

∑N
i=1 cij

,
( µTρ2

1

8
∑l
j=1

∑N
i=1 dij

) 1
1+γ̄
}
,

and sufficiently big

ρ2 �
(2
∑l
j=1

∑N
i=1(cij + dij)
MT

) 1
1−γ̄

> 0,

where γ̄ = maxi,j{γij}. Then from Section 2, we have

Φ−1((−∞, r1)) ⊆ {u ∈ C([0, T ],RN ) : ‖u‖∞ ≤ ρ1}, (3.1)

Φ−1((−∞, r2)) ⊆ Φ−1((−∞, r2 + r3)) ⊆ {u ∈ C([0, T ],RN ) : ‖u‖∞ ≤ ρ2}, (3.2)

then by (3.1), (3.2), we have

ϕ(1)(ri) = inf
u∈Φ−1((−∞,ri))

supv∈Φ−1((−∞,ri)) Ψ(v)−Ψ(u)
ri − Φ(u)

≤
supv∈Φ−1((−∞,ri)) Ψ(v)

ri

≤


4‖b‖L1

µT

max|ξ|≤ρ1 G(ξ)

ρ2
1

, if i = 1,
4‖b‖L1

MT

max|ξ|≤ρ2 G(ξ)

ρ2
2

, if i = 2.

(3.3)

and

ϕ(3)(r2, r3) =
supu∈Φ−1((−∞,r2+r3)) Ψ(u)

r3
≤ 4‖b‖L1

MT

max|ξ|≤ρ2 G(ξ)
ρ2

2

, (3.4)

By (3.3), (3.4), we have

ϕ3(r1, r2, r3) = max{ϕ(1)(r1), ϕ(1)(r2), ϕ(3)(r2, r3)}

≤ 4‖b‖L1

T
max

{ 1
µ

max|ξ|≤ρ1 G(ξ)
ρ2

1

,
1
M

max|ξ|≤ρ2 G(ξ)
ρ2

2

}
.

(3.5)
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Taking into account (A2), (2) in the assumptions and (A3), we have

Φ(v̄) =
1
2
‖v̄‖2 +

l∑
j=1

N∑
i=1

∫ v̄i(tj)

0

Iij(s)ds

≥ µT

2
|ξ̄|2 −

l∑
j=1

N∑
i=1

(cij |ξ̄|+ dij |ξ̄|1+γij )

≥ µT

2
|ξ̄|2 −

l∑
j=1

N∑
i=1

(cij |ξ̄|+ dij |ξ̄|1+γ̄)

≥ inf
ρ̄1≥x≥ρ1

{µT
2
ρ2

1 −
l∑

j=1

N∑
i=1

(cijx+ dijx
1+γ̄)}

=
µTρ2

1

4
= r1 > 0,

(3.6)

for sufficiently small ρ1 > 0.
In view of (2), (H1) and (2.1), we have

Φ(v̄) =
1
2
‖v̄‖2 +

l∑
j=1

N∑
i=1

∫ v̄i(tj)

0

Iij(s)ds

≤ T

2

N∑
j=1

N∑
i=1

‖aij‖∞|ξ̄|2 +
l∑

j=1

N∑
i=1

(cij |ξ̄|+ dij |ξ̄|1+γij )

≤ TM

2
ρ2

2 +
l∑

j=1

N∑
i=1

(cijρ2 + dijρ
1+γ̄
2 ) ≤MTρ2

2 = r2,

(3.7)

for sufficiently big

ρ2 �
(2
∑l
j=1

∑N
i=1(cij + dij)
MT

) 1
1−γ̄

> 0,

so by (2), we have
r1 < Φ(v̄) < r2. (3.8)

Since

sup
v∈Φ−1([r1,r2))

Ψ(v)−Ψ(u)
Φ(v)− Φ(u)

≥ Ψ(v̄)−Ψ(u)
Φ(v̄)− Φ(u)

, (3.9)

for u ∈ Φ−1((−∞, r1)), it follows that

ϕ2(r1, r2) ≥ inf
u∈Φ−1((−∞,r1))

Ψ(v̄)−Ψ(u)
Φ(v̄)− Φ(u)

. (3.10)

Fix u ∈ Φ−1((−∞, r1)), from (3.1) and (g1)− (g3), we have

Ψ(v̄)−Ψ(u) ≥ ‖b‖L1

(
G(ξ̄)− max

|ξ|≤ρ1

G(ξ)
)
> 0.

From (3.7), we have

0 < Φ(v̄)− Φ(u) ≤ Φ(v̄) ≤ TM |ξ̄|2. (3.11)
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Then by (3.5), (3.10)-(3.11) and (2), we have

ϕ2(r1, r2) ≥ ‖b‖L
1

TM

(
G(ξ̄)−max|ξ|≤ρ1 G(ξ)

)
|ξ̄|2

>
‖b‖L1

MT

(
1− 1

max{1, Mµ }

)G(ξ̄)
|ξ̄|2

=
‖b‖L1

MT

(
1− µ

M

)G(ξ̄)
|ξ̄|2

> ϕ3(r1, r2, r3),

(3.12)

for M > µ > 0 ;i.e. that (iv) of Theorem 2.2 holds. Moreover Λρ1,ρ2 ⊆ Λr1,r2,r3
and for every λ ∈ Λρ1,ρ2 . Assumption (v) of Theorem 2.2 is verified as a simple
consequence of the regularity of Φ,Ψ (see [7, Remark 3.10]). Then from Theorem
2.2, the proof is complete. �

As in the proof of Theorem 3.1, by Theorem 2.3, we have the following result.

Theorem 3.2. Assume that the assumptions (A1), (A2) and the hypotheses (A3)
hold. Iij(y) is nondecreasing in y ∈ R for any i = 1, 2, . . . , N , j = 1, 2, . . . , l with
Iij(0) = 0. Let G ∈ C1(RN , R) be such that

(1) G(0) = 0;
(2) there exist ρ > 0 and ξ̄ ∈ RN such that

max|ξ|≤ρG(ξ)
ρ2

<
µ(M − µ)

4M2

G(ξ̄)
MT |ξ̄|2

;

(3) lim sup|ξ|→∞
G(ξ)
|ξ|2 <

max|ξ|≤ρG(ξ)

ρ2 .

Then for every b ∈ L1([0, T ]) \ {0} and for every λ in

Λ :=
( MT

‖b‖L1(1− µ
M )
|ξ̄|2

G(ξ̄)
,

Tµ

4‖b‖L1

ρ2

max|ξ|≤ρG(ξ)

)
,

(1.1) has at least three nontrivial solutions u1, u2, u3, where k, 0 < µ < M are
defined as (2.3), (A2), (2.1), respectively.

Theorem 3.3. Assume that (A1)-(A3) hold. Iij(y) is nondecreasing in y ∈ R for
any i = 1, 2, . . . , N, j = 1, 2, . . . , l with Iij(0) = 0. Let

α = lim inf
ρ→+∞

max|ξ|≤ρG(ξ)ξ
ρ2

, β = lim sup
ρ→+∞

G(ξ)ξ
|ξ|2

,

and assume that α < 4β. Then for every b ∈ L1([0, T ]) \ {0} and for every λ in
Λ :=

(
µT

4‖b‖L1β
, µT

4‖b‖L1α

)
, (1.1) has an unbounded sequence nontrivial solutions.

Proof. For every b ∈ L1([0, T ]) \ {0}, let Φ,Ψ be as (2.4), using Theorem 2.4, from
the proof of Theorem 3.1, we have that the functionals Φ,Ψ satisfy the regularity as-
sumptions required in Theorem 2.4. Let us now verify that γ = lim infρ→+∞ ϕ(ρ) <
+∞.

Let {ρn} be a sequence of positive numbers such that ρn → +∞ as n → +∞
and

lim
n→+∞

max|ξ|≤ρn G(ξ)
ρ2
n

= lim inf
ρ→+∞

max|ξ|≤ρG(ξ)
ρ2

. (3.13)
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Let rn = µTρ2
n

4 ,∀ n ∈ N , similar to the reasoning of (3.3), we have

ϕ(rn) = inf
u∈Φ−1((−∞,rn))

(
supv∈Φ−1((−∞,rn)) Ψ(v)

)
−Ψ(u)

rn − Φ(u)

≤
supv∈Φ−1((−∞,rn)) Ψ(v)−G(0)‖b‖L1

rn

≤ 4‖b‖L1

µT

max|ξ|≤ρn G(ξ)−G(0)
ρ2
n

=
4‖b‖L1

µT

max|ξ|≤ρn G(ξ)
ρ2
n

.

(3.14)

Then

0 ≤ γ := lim inf
r→+∞

ϕ(r) ≤ 4‖b‖L1

µT
lim inf
ρ→+∞

max|ξ|≤ρG(ξ)
ρ2

=
4‖b‖L1

µT
α < +∞, (3.15)

i.e. γ = lim infρ→+∞ ϕ(ρ) = 4‖b‖L1

µT α < +∞. In view of α < 4β and (3.15), we
get that Λ ⊆ (0, 1

γ ). Now, we verify that the functional Φ− λΨ is unbounded from
below for λ ∈ Λ. In fact, by the choice of λ and the positivity of β, one has that
there exists a sequence {ξn} ⊆ RN with |ξn| → +∞ such that for any n ∈ N ,

lim inf
n→+∞

G(ξn)
|ξn|2

>
1

4‖b‖L1

µT λ
, (3.16)

i.e. |ξn| → +∞ for any n ∈ N , as |ξn| → +∞,

T

2

N∑
j=1

N∑
i=1

‖aij‖∞ +
l∑

j=1

N∑
i=1

(
cij
|ξn|

+
dij
|ξn|γ̄

)− λ‖b‖L1
G(ξn)
|ξn|2

< 0, (3.17)

If we let vn(t) = ξn, for all n ∈ N , then for vn ∈ H1
T , using the first equality of

(2.1), we have

Iλ = Φ(vn)− λΨ(vn)

=
1
2
‖vn‖2 +

l∑
j=1

N∑
i=1

∫ vin(tj)

0

Iij(s)ds−
∫ T

0

b(t)G(vn(t))dt

≤ T

2

N∑
j=1

N∑
i=1

‖aij‖∞|ξn|2 +
l∑

j=1

N∑
i=1

(cij |ξn|+ dij |ξn|1+γ̄)− λ‖b‖L1G(ξn)

= |ξn|2
[T

2

N∑
j=1

N∑
i=1

‖aij‖∞ +
l∑

j=1

N∑
i=1

(
cij
|ξn|

+
dij
|ξn|γ̄

)− λ‖b‖L1
G(ξn)
|ξn|2

]
.

(3.18)

By (3.17) and (3.18), we can conclude that Iλ = Φ−λΨ is unbounded from below.
Applying (b) of Theorem 2.4, the proof of Theorem 3.3 is complete. �
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Example 3.4. Let G ∈ C1(R,R) be as

G(x) =



0, if x ≤ 0;
1
2 e
ex−e(x+1)

16 , if 0 < x < e2;
ee
x
− 1

2 e
ee

2
−ex−e

16 , if e2 ≤ x < e6;

e(e
e2+2)−e
4e6 x3 − e(e

e2+2)−e
4 e12 + ee

e6
− 1

2 e
ee

2
−e7−e

16 , if x ≥ e6.

Then for suitable b ∈ L1([0, 1]) \ {0} and for

λ ∈
( M

‖b‖L1

(
1− µ

M

) |ξ̄|2
G(ξ̄)

,
1

4‖b‖L1

1

max
{

1
µ

max|ξ|≤ρ1 G(ξ)

ρ2
1

, 1
M

max|ξ|≤ρ2 G(ξ)

ρ2
2

}),
the problem

−ü+A(t)u = λb(t)∇G(u), a.e. t ∈ [0, 1],

∆(u̇i(tj)) = u̇i(t+j )− u̇i(t−j ) = Iij(ui(tj)), i = 1, j = 1, 2,

u(0)− u(1) = u′(0)− u′(1) = 0,

(3.19)

has at least two nontrivial solutions u1, u2 with ‖u‖∞ ≤ 2e6, where N = 1, T = 1,
A(t) = 1 + sin(2πt)

20 , µ = 0.95, M = 1.05, ρ1 = 1, ρ2 = 2e6, ξ̄ = 99e6

100 , and

Iij(y) =

{
y
4 + 1, i = 1, j = 1,
−y8 , i = 1, j = 2.

(3.20)

We easily have(
1 +

4M
µ

)max|ξ|≤ρ1 G(ξ)
ρ2

1

=
103
19

G(1) =
103
304

(ee − 2),

4
max|ξ|≤ρ2 G(ξ)

ρ2
2

= 4
G(e6)
e12

=
ee
e6 − 1

2e
ee

2

− e7 − e
16e12

,

G(ξ̄)
|ξ̄|2

=
ee

99
100 e

6

− 1
2e
ee

2

− ex− e
16× 9801e12

10000

=
625

9801e12
(ee

99
100 e

6

− 1
2
ee
e2

− 2
3
e7 − e),

then the assumptions of Theorem 3.1 are satisfied.
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