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DETERMINATION OF THE ORDER OF FRACTIONAL
DERIVATIVE AND A KERNEL IN AN INVERSE PROBLEM

FOR A GENERALIZED TIME FRACTIONAL DIFFUSION
EQUATION

JAAN JANNO

Abstract. A generalized time fractional diffusion equation containing a lower

order term of a convolutional form is considered. Inverse problem to determine

the order of a fractional derivative and a kernel of the lower order term from
measurements of states over the time is posed. Existence, uniqueness and

stability of the solution of the inverse problem are proved.

1. Introduction

Subdiffusion processes in porous, fractal, biological etc. media are described
by differential equations containing fractional time (time and space) derivatives
[1, 2, 13, 14, 27].

In many practical situations parameters of media or model are unknown or
scarcely known. They can be determined solving inverse problems for governing
differential equations.

Analytical and numerical study of inverse problems for fractional diffusion equa-
tions is undergoing an intensive development during the present decade. Series of
papers are devoted to problems to determine unknown source terms [4, 19, 22, 25,
28], boundary conditions [8], initial conditions [12], coefficients [3, 15, 11], orders
of derivatives [3, 7, 15, 18] and nonlinear terms [9, 20, 21, 23].

Fractional time derivatives in diffusion models result from postulating the power
law waiting time density of a stochastic processes going on in micro-level. However,
there are no convincing arguments that the waiting time density has to be exactly
of the power law. In the present paper we consider a more general model that is
governed by an equation that involves “almost” fractional time derivative. Namely,
we replace the power function tβ−1 occurring in the fractional derivative by the
sum of tβ−1 and a convolution of tβ−1 with an arbitrary kernel m.

We pose an inverse problem to reconstruct β and m from measurements of the
states over the time. We prove the existence and uniqueness of the solution of the
inverse problem and establish a stability estimate for m with respect to the data.
Results are global in time. Moreover, we deduce an explicit formula for β and
present a numerical example. The analysis is implemented in the Fourier domain.
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2. Formulation of direct and inverse problems

Continuous time random walk models of subdiffusion with power law waiting
time densities yield in macro-level differential equations that contain fractional
derivatives of order between 0 and 1. The simplest equation of such kind is [1, 2,
14, 27]

Ut(x, t) = D1−βUxx(x, t),

where U is the state variable, x is the space variable, t is the time and

D1−βU(x, t) =
d

dt

∫ t

0

(t− τ)β−1

Γ(β)
U(x, τ)dτ

is the Riemann-Liouville fractional derivative of the order 1− β with 0 < β < 1.
An equation that corresponds to general waiting time densities is [2, Eq. (10)]

Ut =
d

dt

∫ t

0

M(t− τ)Uxx(x, τ)dτ, (2.1)

where M is an arbitrary function. Because of the physical background, M is pos-
itive, decreasing and has a weak singularity at t = 0. Let us suppose that the
function M has the form

M(t) =
tβ−1

Γ(β)
+
tβ−1

Γ(β)
∗m(t) (2.2)

with some kernel m, where ∗ denotes the time convolution; i.e.,

v1 ∗ v2(t) =
∫ t

0

v1(t− τ)v2(τ)dτ.

Then the equation (2.1) reads Ut = D1−β(Uxx +m ∗ Uxx).
Our aim is to pose and study an inverse problem to determine the order of the

fractional derivative β and the kernel m in this equation. But before we proceed,
we generalize this equation a bit:

Ut = D1−β(Uxx +m ∗ Uxx +m0 ∗ Uxx) + G. (2.3)

The function G is a source term. The inclusion of the addend with m0 has a math-
ematical reason. Namely, the study of stability in Section 7 requires a previously
proved existence result for an inverse problem that contains the additional term
with m0. Therefore, it makes sense to incorporate this term already from the
beginning. On the other hand, m0 can be interpreted as an initial guess for an
unknown kernel of the form m0 + m. In this case, the perturbation part m of the
kernel is to be determined in the inverse problem.

Next we transform the equation under consideration to a more common in the
mathematical literature form. To this end we introduce the operator of fractional
integration Iα defined by the formula

Iαv(t) =
tα−1

Γ(α)
∗ v(t) =

∫ t

0

(t− τ)α−1

Γ(α)
v(τ)dτ.

Applying the operator I1−β to the equation (2.3), we reach the equivalent equation

t−β

Γ(1− β)
∗ [Ut − G] = Uxx +m ∗ Uxx +m0 ∗ Uxx.
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We mention that the left hand side of (2.7) contains the Caputo derivative of the
order β of U, i.e. t−β

Γ(1−β) ∗ Ut.
Let us formulate the following initial-boundary value problem for this equation

in a bounded domain (x1, x2)× (0, T ):

t−β

Γ(1− β)
∗ [Ut(x, t)− G(x, t)] = Uxx(x, t) +m ∗ Uxx(x, t) +m0 ∗ Uxx(x, t),

(x, t) ∈ (x1, x2)× (0, T ),

U(x, 0) = U0(x), x ∈ (x1, x2),

B1U(·, t) = b1(t), B2U(·, t) = b2(t), t ∈ (0, T ),

(2.4)

where B1 and B2 are boundary operators at x = x1 and x = x2, respectively. More
precisely,

for any j ∈ {1; 2} either Bjv = v(xj) or
Bjv = v′(xj) + θjv(xj) with θj ∈ R, (−1)jθj ≥ 0. (2.5)

Here and in the sequel we use for x- and t-dependent functions v(x, t) the al-
ternative notation v(·, t) that means a function of t with values as functions of
x.

To formulate an inverse problem, let us introduce an observation functional Φ
that maps functions defined on the interval [x1, x2] onto R. For instance, Φ can be
defined as follows:

Φ[v] = v(x0) or Φ[v] = v′(x0) + ϑv(x0) or Φ[v] =
∫ x2

x1

κ(x)v(x)dx,

where x0 ∈ [x1, x2], ϑ ∈ R, κ : (x1, x2)→ R are given. It is natural to assume that
Φ does not coincide with any of the boundary operators, i.e. Φ 6= B1 and Φ 6= B2.

Now we are in a situation to formulate the inverse problem. Given G,m0, U0, b1
and b2, find the pair (β,m) such that the solution U of the (direct) problem (2.4)
satisfies the additional condition

Φ[U(·, t)] = H(t), t ∈ (0, T ), (2.6)

where H is a prescribed function (observation of the physical state U).
It is more convenient to deal with a problem with homogeneous boundary con-

ditions. Then it is possible to interpret the second order space derivative in the
equation (2.4) as a linear operator in some functional space. Let Û be a func-
tion satisfying the nonhomogeneous boundary conditions, i.e. B1Û(·, t) = b1(t) and
B2Û(·, t) = b2(t) for t ∈ (0, T ). Performing the change of variables U = Û + u, we
obtain the following equation and conditions for u:

t−β

Γ(1− β)
∗ [ut(x, t)− g(x, t)]

= uxx(x, t) + f(x, t) +m ∗ [uxx(x, t) + ψ(x, t)] +m0 ∗ uxx(x, t),

(x, t) ∈ (x1, x2)× (0, T ),

u(x, 0) = ϕ(x), x ∈ (x1, x2),

B1u(·, t) = 0, B2u(·, t) = 0, t ∈ (0, T ),

(2.7)

and
Φ[u(·, t)] = h(t), t ∈ (0, T ), (2.8)

where g = G − Ût, ψ = Ûxx, f = Ûxx +m0 ∗ Ûxx, ϕ = U0 − Û(·, 0) and h = H−Φ[Û].
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The relations (2.7) form a direct problem for u. The inverse problem consists in
determining (β,m) such that the solution u of (2.7) satisfies the additional condition
(2.8).

In this article we prove well-posedness results for the inverse problem with the
component m in spaces Lp(0, T ), where p ∈ [1,∞). This covers as particular cases
functions M of the form M(t) = tβ−1

Γ(β) +
∑n
i=1 cit

si−1, where si > β (for with

such M , see [7]). Then m(t) =
∑n
i=1

ciΓ(si)
Γ(si−β) t

si−β−1. Another example of m is
the exponentially decreasing flux relaxation (memory) kernel m(t) =

∑n
i=1 cie

−αit,
where αi > 0 [24].

3. Abstraction and reformulation in Fourier domain

Let X be a Hilbert space and A : D(A) → X be a linear operator with the
domain D(A) ⊆ X. Moreover, let g, f, ψ : (0, T )→ X, m0, h : (0, T )→ R, be given
functions, ϕ ∈ X a given element and Φ : D(A)→ R a given linear functional.

In the abstract inverse problem we seek for a number β and a function m :
(0, T )→ R such that a solution u : [0, T ]→ X of the (forward) problem

t−β

Γ(1− β)
∗ [u′(t)− g(t)]

= Au(t) + f(t) +m ∗ [Au(t) + ψ(t)] +m0 ∗Au(t), t ∈ (0, T ),

u(0) = ϕ

(3.1)

satisfies the additional condition

Φ[u(t)] = h(t), t ∈ (0, T ). (3.2)

Firstly, let us formulate a theorem that gives sufficient conditions for the well-
posedness of the abstract direct problem (3.1).

Theorem 3.1. Assume that A is closed and densely defined in X and satisfies the
following property:

ρ(A) ⊃ Σ(βπ/2) , ∃M > 0 : ‖(λ−A)−1‖ ≤ M

|λ|
∀λ ∈ Σ(βπ/2), (3.3)

where ρ(A) is the resolvent set of A and Σ(θ) = {λ ∈ C : |argλ| < θ}. Let XA be
the domain of A endowed with the graph norm ‖z‖XA = ‖z‖ + ‖Az‖. Moreover,
assume ϕ ∈ XA, f, ψ, g ∈ W 1

1 ((0, T );X) and m,m0 ∈ L1(0, T ). Then (3.1) has
a unique solution in the space C([0, T ];XA) and t−β

Γ(1−β) ∗ u
′ ∈ C([0, T ];X). The

solution continuously depends on ϕ, f, ψ, g,m and m0 in norms of the mentioned
spaces.

The above theorem follows from [17, Theorem 2.3 and Proposition 1.2].

Remark 3.2. Define X = L2(x1, x2). Then the operator A = d2

dx2 with the domain

D(A) = {w : z ∈W 2
2 (x1, x2), B1w = 0, B2w = 0} (3.4)

satisfies the assumptions of Theorem 3.1 (see [10, Theorem 3.1.3]). Consequently,
Theorem 3.1 applies to the problem (2.7).
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Our next step is to reformulate the abstract inverse problem (3.1), (3.2) in the
Fourier domain. Let us further assume that

the spectrum of A is discrete, the eigenvalues λi, i = 1, 2, . . . of
the operator −A are nonnegative, ordered in the usual manner,
i.e. 0 ≤ λ1 ≤ λ2 ≤ . . . and the corresponding eigenvectors vi,
i = 1, 2, . . ., form an orthonormal basis in X.

(3.5)

Remark 3.3. It is well-known that the operator A = d2

dx2 with the domain (3.4)
satisfies the property (3.5).

We expand the functions involved in (3.1), (3.2) as follows:

u(t) =
∞∑
i=1

ui(t)vi, g(t) =
∞∑
i=1

gi(t)vi, f(t) =
∞∑
i=1

fi(t)vi,

ψ(t) =
∞∑
i=1

ψi(t)vi, ϕ =
∞∑
i=1

ϕivi,

(3.6)

where ui : [0, T ] → R, gi, fi, ψi : (0, T ) → R, ϕi ∈ R are the Fourier coefficients.
Moreover, let us denote

γi = Φ[vi], i = 1, 2, . . . .

Taking the inner product of the equalities (3.1) with the elements vi, i = 1, 2, . . .,
and inserting the series of u into (3.2), we obtain

t−β

Γ(1− β)
∗ [u′i(t)− gi(t)] + λiui(t)

= fi(t) +m ∗ [ψi(t)− λiui(t)]−m0 ∗ λiui(t), t ∈ (0, T ), ui(0) = ϕi,

(3.7)

where i = 1, 2, . . .,
∞∑
i=1

γiui(t) = h(t), t ∈ (0, T ). (3.8)

The relations (3.7) represent the direct problem, reformulated in the Fourier do-
main. The corresponding inverse problem is stated as follows.
Inverse Problem (IP). Given gi, fi, ψi, ϕi, i = 1, 2, . . . and m0, h, find β and m such
that solutions ui of (3.7) satisfy the condition (3.8).

4. Notation and preliminaries

Let us introduce the Bessel potential spaces

Hs
p(0, T ) =

{
v|[0,T ] : v ∈ Hs

p(R) = {w : F−1((1 + |ω|2)
s
2Fw) ∈ Lp(R)}

}
for 1 < p <∞, s > 0 and their subspaces

0H
s
p(0, T ) = {v|[0,T ] : v ∈ Hs

p(R), supp v ⊆ [0,∞)}.

Here F is the Fourier transform and the symbol v|[0,T ] stands for the restriction
onto [0, T ] of a function defined on R.

In case n ∈ N the space Hn
p (0, T ) coincides with the Sobolev space

Wn
p (0, T ) = {w : w(j) ∈ Lp(0, T ), j = 0, . . . , n}.
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Remark 4.1. When s ∈ (0, 1), p ∈ (1, 1/s) it holds 0H
s
p [0, T ] = Hs

p(0, T ). On
the other hand, when s ∈ (0, 1), p ∈ ( 1

s ,∞) the space Hs
p(0, T ) is embedded in the

space of continuous on [0, T ] functions C[0, T ] and w ∈ Hs
p(0, T )⇔ w = w(0) + w,

w(0) ∈ R, w ∈ 0H
s
p(0, T ) (see [26, p. 27-28]).

We use of the following abbreviation for the norms in Lebesgue spaces Lp(0, T ):

‖w‖p := ‖w‖Lp(0,T ).

Let us formulate a lemma that describes the functions ts−1

Γ(s) ∗m where m ∈ Lp(0, T ).

Lemma 4.2. . Let s ∈ (0, 1), p ∈ (1,∞). The operator of fractional integration of
the order s, given by Isz = ts−1

Γ(s) ∗ z, is a bijection from Lp(0, T ) onto 0H
s
p(0, T ),

the inverse of Is is the Riemann-Liouville fractional derivative Ds = d
dtI

1−s and

‖w‖s,p := ‖Dsw‖p

is a norm in 0H
s
p(0, T ).

The above lemma follows from [26, Corollary 2.8.1].
In our analysis we will use the Mittag-Leffler functions Eβ and Eβ,β in case

β ∈ (0, 1). The functions Eβ and Eβ,γ are defined by the following power series:

Eβ(t) =
∞∑
k=0

tk

Γ(βk + 1)
, Eβ,γ(t) =

∞∑
k=0

tk

Γ(βk + γ)
.

Note that Eβ is a generalization of the exponential function. Indeed, in case β = 1
it holds Eβ(t) = et. Like the exponential function, Eβ and Eβ,γ are also entire
functions. Moreover, Eβ(−t) and Eβ,γ(−t) are completely monotonic for t ∈ [0,∞)
and

Eβ(0) = 1 , Eβ,β(0) =
1

Γ(β)
, E′β =

1
β
Eβ,β (4.1)

(see [5]).
Next we prove a lemma that will be applied in a treatment of the direct problem

(3.7).

Lemma 4.3. Let z ∈ H1−β
r (0, T ) with some β ∈ (0, 1), r ∈ (1, 1

1−β ) and y ∈
L1(0, T ), λ,w0 ∈ R. Then the Cauchy problem

t−β

Γ(1− β)
∗w′(t)+ t−β

Γ(1− β)
∗y∗w′(t)+λw(t) = z(t), t ∈ (0, T ), w(0) = w0 (4.2)

has a unique solution w in the space W 1
r (0, T ). This solution has in case y = 0 the

representation

w(t) = w0Eβ
(
−λtβ

)
+
∫ t

0

(t− τ)β−1Eβ,β
[
−λ(t− τ)β

]
z(τ)dτ. (4.3)

Proof. By Lemma 4.2, Remark 4.1 and the relation w = I1w′ + w0, (4.2) is equiv-
alent to

w′(t) + y ∗ w′(t) + λD1−β(I1w′(t) + w0) = D1−βz(t), t ∈ (0, T ), w(0) = w0.
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Since D1−βI1 = D1−βI1−βIβ = Iβ , the obtained equation for w′ is the Volterra
equation of the second kind

w′(t) +
∫ t

0

[
y(t− τ) + λ

(t− τ)β−1

Γ(β)

]
w′(τ)dτ

= D1−βz(t)− λw0
tβ−1

Γ(β)
, t ∈ (0, T ).

(4.4)

The right-hand side D1−βz − λw0
tβ−1

Γ(β) belongs to Lr(0, T ). By well-known results
for the Volterra equations of the second kind [6], the equation (4.4) has a a unique
solution w′ ∈ Lr(0, T ). This proves the existence and uniqueness assertions of the
lemma.

It remains to prove the formula (4.3). From [5, p. 172-173], it follows that the
second addend in (4.3), i.e.

ω(t) :=
∫ t

0

(t− τ)β−1Eβ,β
[
−λ(t− τ)β

]
z(τ)dτ

solves the equation Dβω + λω = z. Since ω(0) = 0 we have Dβω = t−β

Γ(1−β) ∗ ω
′.

Consequently, we obtain the relation

t−β

Γ(1− β)
∗ ω′(t) + λω(t) = z(t), t ∈ (0, T ), ω(0) = 0. (4.5)

Further, by [5, (4.10.16)], the function φ(t) := Eβ
(
−λtβ) solves the equation

Dβφ+ λφ =
t−β

Γ(1− β)
.

This yields t−β

Γ(1−β) ∗ φ
′(t) + λφ(t) = 0. Moreover, φ(0) = 1. Therefore, for the first

addend in (4.3), i.e. χ(t) := w0Eβ
(
−λtβ

)
the relations

t−β

Γ(1− β)
∗ χ′(t) + λχ(t) = 0, t ∈ (0, T ), χ(0) = w0 (4.6)

are valid. The summa w = ω + χ solves (4.2) with y = 0. Summing the formulas
of ω and χ we obtain (4.3). �

Let us introduce further auxiliary material. We use the following family of
weighted norms in the spaces 0H

s
p(0, T ) and Lp(0, T ):

‖w‖s,p;σ = ‖e−σtDsw‖Lp(0,T ), and ‖w‖p;σ = ‖e−σtw‖Lp(0,T ),

where σ ≥ 0. Evidently, the equivalence relations

e−σT ‖w‖s,p ≤ ‖w‖s,p;σ ≤ ‖w‖s,p , e−σT ‖w‖p ≤ ‖w‖p;σ ≤ ‖w‖p (4.7)

are valid. Moreover, by the dominated convergence theorem, in case p <∞,

‖w‖s,p;σ → 0 and ‖w‖p;σ → 0 as σ →∞. (4.8)

Lemma 4.4. Let β ∈ (0, 1). Then the functions

Ẽβ,i(t) = tβ−1Eβ,β
[
−λitβ

]
(4.9)

satisfy the following estimates:

‖λiẼβ,i‖1;σ ≤ 1 (4.10)
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‖λ1−ε
i Ẽβ,i‖1;σ ≤

cβ,ε
σβε

, 0 < ε ≤ 1, (4.11)

for i = 1, 2, . . ., where cβ,ε is a constant independent of σ and i. The symbol ‖ · ‖1;σ

denotes the norm ‖ · ‖p;σ in case p = 1.

Proof. Using the positivity of Eβ,β(−t) for t ≥ 0 and (4.1) we deduce

‖λiẼβ,i‖1;σ =
∫ T

0

e−σtλit
β−1Eβ,β(−λitβ)dt

≤
∫ T

0

λit
β−1Eβ,β(−λitβ)dt

= −
∫ T

0

d

dt
Eβ(−λitβ)dt = Eβ(0)− Eβ(−λiT β).

Since Eβ(−t) is positive for t ≥ 0 and Eβ(0) = 1 we reach (4.10). Further, taking
the asymptotical relation Eβ,β(−t) = O(t−2) as t→∞ (see [16, Thm. 1.2.1]) into
account, we have

(
λit

β
)δ
Eβ,β(−λitβ) ≤ c1β,δ for t ≥ 0 and 0 ≤ δ ≤ 2 with some

constant c1β,δ. Thus, for 0 < ε ≤ 1 we deduce

‖λ1−ε
i Ẽβ,i‖1;σ =

∫ T

0

e−σt
(
λit

β
)1−ε

tβε−1Eβ,β(−λitβ)dt

≤ c1β,1−ε
∫ T

0

e−σttβε−1dt

=
c1β,1−ε
σβε

∫ σT

0

e−ssβε−1ds

<
c1β,1−ε
σβε

∫ ∞
0

e−ssβε−1ds.

This implies (4.11). �

Finally, we point out the Young’s theorem for convolutions that will be an im-
portant tool in our computations:

‖w1 ∗ w2‖p3 ≤ ‖w1‖p1‖w2‖p2 , where
1
p1

+
1
p2

= 1 +
1
p3
. (4.12)

5. Results for direct problem in Fourier domain

In this section, we prove two propositions for the direct problem (3.7).

Proposition 5.1. Let β ∈ (0, 1), m,m0 ∈ L1(0, T ) and fi, ψi ∈ H1−β
r (0, T ),

gi ∈ Lr(0, T ) with some r ∈ (1, 1
1−β ). Then the problem (3.7) has a unique solution

ui ∈W 1
r (0, T ). Moreover, the following assertions are valid:

(i) if

‖m‖1;σ + ‖m0‖1;σ ≤
1
2

(5.1)

then the estimate

‖u′i‖r;σ + λi‖ui‖1−β,r;σ ≤ C0

[
λi|ϕi|+ ‖fi‖1−β,r;σ + ‖ψi‖1−β,r;σ + ‖gi‖r;σ

]
(5.2)

holds, where C0 is a constant independent of σ and i;
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(ii) if (5.1) is satisfied and fi, ψi ∈ L∞(0, T ), I1−βgi ∈ L∞(0, T ) then the
estimate

λi‖ui‖∞;σ ≤ C1

[
λi|ϕi|+ ‖fi‖∞;σ + ‖ψi‖∞;σ + ‖I1−βgi‖∞;σ

]
(5.3)

holds, where C1 is a constant independent of σ and i.

Proof. Since m,m0 ∈ L1(0, T ), the Volterra equation of the second kind

y(t) + (m+m0) ∗ y(t) +m(t) +m0(t) = 0, t ∈ (0, T ),

has a unique solution y ∈ L1(0, T ) (see [6, Theorem 3.1]). From this equation we
obtain the operator relations

(I + y∗)
(
I + (m+m0) ∗

)
=
(
I + (m+m0) ∗

)
(I + y∗) = I,

where I is the unity operator. Applying the operator I + y∗ to the equation in
(3.7) we obtain the problem

t−β

Γ(1− β)
∗ [u′i(t) + y ∗ u′i(t)] + λiui(t) = f̃i(t), t ∈ (0, T ),

ui(0) = ϕi,

(5.4)

where f̃i(t) = fi(t) + y ∗ fi(t) + I1−βgi(t) + y ∗ I1−βgi(t) + (m + y ∗ m) ∗ ψi(t).
Conversely, applying the operator I+ (m+m0)∗ to the equation in (5.4), we reach
(3.7). Therefore, problems (3.7) and (5.4) are equivalent. From the assumptions of
the proposition, Lemma 4.2 and Remark 4.1 we have

f̃i(t) = fi(t) + y ∗ t−β

Γ(1− β)
∗D1−βfi(t) + I1−βgi(t)

+ y ∗ t−β

Γ(1− β)
∗ gi(t) + (m+ y ∗m) ∗ t−β

Γ(1− β)
∗D1−βψi(t)

= fi(t) + I1−βgi(t) +
t−β

Γ(1− β)
∗
[
y ∗D1−βfi(t) + y ∗ gi(t)

+ (m+ y ∗m) ∗D1−βψi(t)
]
,

where y ∗ D1−βfi + y ∗ gi + (m + y ∗m) ∗ D1−βψi ∈ Lr(0, T ). This implies f̃i ∈
H1−β
r (0, T ). In view of Lemma 4.3, the problem (5.4) has a unique solution in

W 1
r (0, T ). This proves the existence and uniqueness assertion of the proposition.
Further, let us prove (i). For this purpose, we represent the solution of (3.7) by

means of the formula (4.3). Using the abbreviation (4.9) we have

ui(t) = ϕiEβ
(
−λitβ

)
+
∫ t

0

Ẽβ,i(t− τ)
[
fi(τ) +

τ−β

Γ(1− β)
∗ gi(τ)

+ ψi ∗m(τ)
]
dτ −

∫ t

0

Ẽβ,i(t− τ)λiui ∗ [m(τ) +m0(τ)]dτ.
(5.5)
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In view of the relation I = I1−βD1−β = t−β

Γ(1−β) ∗ D
1−β that holds in H1−β

r (0, T )
we obtain

ui(t) = ϕiEβ
(
−λitβ

)
+
∫ t

0

Ẽβ,i(t− τ)

×
[ τ−β

Γ(1− β)
∗
(
D1−βfi(τ) + gi(τ)

)
+

τ−β

Γ(1− β)
∗D1−βψi ∗m(τ)

]
dτ

−
∫ t

0

Ẽβ,i(t− τ)λi
τ−β

Γ(1− β)
∗D1−βui ∗ [m(τ) +m0(τ)]dτ.

(5.6)

Applying the operator D1−β = d
dt
tβ−1

Γ(β)∗ and taking the relations tβ−1

Γ(β) ∗
t−β

Γ(1−β) = 1
and

d

dt
Eβ
(
−λitβ

)
= −λiẼβ,i(t), (5.7)

following from (4.1) and (4.9), we reach the expression

D1−βui(t) = −λiϕi
∫ t

0

Ẽβ,i(t− τ)
τβ−1

Γ(β)
dτ + ϕi

tβ−1

Γ(β)

+
∫ t

0

Ẽβ,i(t− τ)
[
D1−βfi(τ) + gi(τ) +D1−βψi ∗m(τ)

]
dτ

−
∫ t

0

Ẽβ,i(t− τ)λiD1−βui ∗ [m(τ) +m0(τ)]dτ.

Next we multiply this equality by λie−σt, bring the factor e−σt inside the integrals
and use the relation

e−σt[w1(t) ∗ w2(t)] = e−σtw1(t) ∗ e−σtw2(t).

Thereupon we estimate the obtained expression in the norm ‖ ·‖r and apply (4.12).
As a result we obtain

λi‖D1−βui‖r;σ ≤ λi|ϕi|
(
‖λiẼβ,i‖1;σ + 1

)∥∥ tβ−1

Γ(β)

∥∥
r;σ

+ ‖λiẼβ,i‖1;σ

(
‖D1−βfi + gi‖r;σ + ‖D1−βψi‖r;σ‖m‖1;σ

)
+ ‖λiẼβ,i‖1;σλi‖D1−βui‖r;σ[‖m‖1;σ + ‖m0‖1;σ].

(5.8)

Using (4.10) we obtain

λi‖ui‖1−β,r;σ ≤ 2ĉβ,rλi|ϕi|+ ‖fi‖1−β,r;σ + ‖gi‖r;σ + ‖ψi‖1−β,r;σ‖m‖1;σ

+ [‖m‖1;σ + ‖m0‖1;σ] · λi‖ui‖1−β,r;σ,

where ĉβ,r = ‖ t
β−1

Γ(β)‖r. In case (5.1) is valid, we estimate ‖m‖1;σ and ‖m‖1;σ +
‖m0‖1;σ by 1

2 , bring the term 1
2λi‖ui‖1−β,r;σ to the left-hand side and multiply the

obtained inequality by 2. This results in

λi‖ui‖1−β,r;σ ≤ C4

[
λi|ϕi|+ ‖fi‖1−β,r;σ + ‖ψi‖1−β,r;σ + ‖gi‖r;σ

]
, (5.9)

where C4 is a constant.
Further, applying D1−β to (3.7) we deduce

u′i = −λiD1−βui+D1−βfi+gi+
(
D1−βψi−λiD1−βui

)
∗m−λiD1−βui∗m0. (5.10)



EJDE-2016/199 DETERMINATION OF ORDER OF FRACTIONAL DERIVATIVE 11

Here we used that

D1−β(f ∗m) =
d

dt
Iβ(f ∗m) =

d

dt

( tβ−1

Γ(β)
∗ f ∗m

)
=

d

dt

( tβ−1

Γ(β)
∗ f
)
∗m+

( tβ−1

Γ(β)
∗ f
)
(t)|t=0 ·m

= D1−βf ∗m+
( tβ−1

Γ(β)
∗ t−β

Γ(1− β)
∗D1−βf

)
(t)|t=0 ·m

= D1−βf ∗m+
(
I1D1−βf

)
(t)|t=0 ·m = D1−βf ∗m

is valid for any f ∈ H1−β
r (0, T ). Assuming (5.1) and using (5.9) from (5.10) we

obtain
‖u′i‖r;σ ≤ λi‖ui‖1−β,r;σ + ‖fi‖1−β,r;σ + ‖gi‖r;σ

+
(
‖ψi‖1−β,r;σ + λi‖ui‖1−β,r;σ

)
‖m‖1;σ + λi‖ui‖1−β,r;σ‖m0‖1;σ

≤ C5

[
λi|ϕi|+ ‖fi‖1−β,r;σ + ‖ψi‖1−β,r;σ + ‖gi‖r;σ

] (5.11)

with a constant C5. Adding (5.9) and (5.11) we reach (5.2).
Finally, let us prove (ii). To this end, let us return to the equality (5.5). Multi-

plying (5.5) by λie−σt and estimating the result we obtain

λi‖ui‖∞;σ ≤ λi|ϕi|+ ‖λiẼβ,i‖1;σ

(
‖fi + I1−βgi‖∞;σ + ‖ψi‖∞;σ‖m‖1;σ

)
+ ‖λiẼβ,i‖1;σλi‖ui‖∞;σ[‖m‖1;σ + ‖m0‖1;σ].

Observing (4.10) and (5.1) we deduce (5.3). �

Proposition 5.2. Let β ∈ (0, 1), m,m0 ∈ Lp(0, T ) with some p ∈ (1,∞) and
fi ∈ W 1

p (0, T ), ψi ∈ W 1
1 (0, T ), gi ∈ 0H

β
p (0, T ). Then u′i + qβ,i ∈ 0H

β
p (0, T ), where

ui is the solution of (3.7) and

qβ,i(t) =
(
λiϕi − fi(0)

)
Eβ,β

(
−λitβ

)
tβ−1 =

(
λiϕi − fi(0)

)
Ẽβ,i(t). (5.12)

Moreover, in the case

T
p−1
p
(
‖m‖p;σ + ‖m0‖p;σ

)
≤ 1

2
(5.13)

the estimates

λi‖u′i + qβ,i‖p;σ ≤ C2‖λiẼβ,i‖1;σ

(
λi|ϕi|+ |fi(0)|

+ (|ψi(0)|+ ‖ψ′i‖1;σ)‖m‖p;σ + ‖f ′i‖p;σ + ‖gi‖β,p;σ
)
,

(5.14)

‖u′i + qβ,i‖β,p;σ ≤ C3

(
λi|ϕi|+ |fi(0)|

+ (|ψi(0)|+ ‖ψ′i‖1;σ)‖m‖p;σ + ‖f ′i‖p;σ + ‖gi‖β,p;σ
)
,

(5.15)

hold, where C2 and C3 are constants independent of σ and i.

Before proving Proposition 5.2, we prove a lemma concerning the function qβ,i.

Lemma 5.3. The function qβ,i satisfies the equations

t−β

Γ(1− β)
∗ qβ,i + λiI

1qβ,i = λiϕi − fi(0), (5.16)

Dβqβ,i + λiqβ,i = 0. (5.17)
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Proof. In case λi = 0 we have qβ,i(t) = −fi(0) t
β−1

Γ(β) and since t−β

Γ(1−β) ∗
tβ−1

Γ(β) = 1, the
relations (5.16) and (5.17) are immediate. Let λi > 0. By Lemma 4.3, the function
q̄i(t) = Eβ

(
−λitβ

)
is a solution of the equation t−β

Γ(1−β) ∗ q̄i
′+λiq̄i = 0. Multiplying

this equation by 1
λi

(
fi(0)− λiϕi

)
we obtain

t−β

Γ(1− β)
∗ 1
λi

(
fi(0)− λiϕi

)
q̄i
′ +
(
fi(0)− λiϕi

)
q̄i = 0. (5.18)

On the other hand, in view of (4.1) and the definitions of q̄i, qβ,i it holds the
formula 1

λi

(
fi(0)−λiϕi

)
q̄′i = qβ,i. Integrating, multiplying by λi and observing that

q̄i(0) = 1 we have another formula
(
fi(0)− λiϕi

)
q̄i(t) = λiI

1qβ,i(t) + fi(0)− λiϕi.
Using these relations in (5.18) we arrive at (5.16). Finally, differentiating (5.16) we
come to (5.17). �

Proof of Proposition 5.2. Since W 1
1 (0, T ) ⊂ H1−β

r (0, T ) and 0H
β
p (0, T ) ⊂ Lr(0, T )

for r ∈ (0, 1
1−β ), r ≤ p, by Proposition 5.1, problem (3.7) has a unique solution

ui ∈W 1
r (0, T ). Differentiating (5.5) and observing (5.7), (5.12) we obtain

u′i(t) + qβ,i(t)

=
∫ t

0

Ẽβ,i(t− τ)
[
f ′i(τ) +Dβgi(τ) + ψi(0)m(τ) + ψ′i ∗m(τ)

]
dτ

−
∫ t

0

Ẽβ,i(t− τ)λi
[
ϕi
(
m(τ) +m0(τ)

)
+u′i ∗

(
m(τ) +m0(τ)

)]
dτ.

(5.19)

From u′i ∈ L1(0, T ) and the assumptions of the proposition, the right-hand side
of this relation belongs to Lp(0, T ). Therefore, u′i + qβ,i ∈ Lp(0, T ). Multiplying
(5.19) by λie

−σt, representing u′i as u′i = −qβ,i + u′i + qβ,i at the right-hand side
and using (4.12) as well as the relation ‖m‖1;σ ≤ T

p−1
p ‖m‖p;σ we obtain

λi‖u′i + qβ,i‖p;σ ≤ ‖λiẼβ,i‖1;σ

(
‖f ′i‖p;σ + ‖gi‖β,p;σ

+ |ψi(0)|‖m‖p;σ + ‖ψ′i‖1;σ‖m‖p;σ
)

+ ‖λiẼβ,i‖1;σ

(
λi|ϕi|+ λi‖qβ,i‖1,σ

)(
‖m‖p;σ + ‖m0‖p;σ

)
+ ‖λiẼβ,i‖1;σT

p−1
p λi‖u′i + qβ,i‖p;σ

(
‖m‖p;σ + ‖m0‖p;σ

)
.

Note that
λi‖qβ,i‖1,σ ≤ λi|ϕi|+ |fi(0)| (5.20)

by (4.10) and (5.12). Thus, using (4.10) we deduce

λi‖u′i + qβ,i‖p;σ ≤ ‖λiẼβ,i‖1;σ

[
‖f ′i‖p;σ + (|ψi(0)|+ ‖ψ′i‖1;σ)‖m‖p;σ

+ ‖gi‖β,p;σ +
(
2λi|ϕi|+ |fi(0)|

)(
‖m‖p;σ + ‖m0‖p;σ

)]
+ T

p−1
p
(
‖m‖p;σ + ‖m0‖p;σ

)
·λi‖u′i + qβ,i‖p;σ.

In the case (5.13), from this relation we obtain (5.14).
Further, differentiating (3.7) we have

Dβu′i + λiu
′
i = f ′i +Dβgi +

(
ψi(0)− λiϕi

)
m+ (ψ′i − λiu′i) ∗m

− λiϕim0 − λiu′i ∗m0.
(5.21)
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Adding (5.21) and (5.17) we obtain

Dβ(u′i + qβ,i) = −λi(u′i + qβ,i) + f ′i +Dβgi +
(
ψi(0)− λiϕi

)
m

+ (ψ′i − λiu′i) ∗m− λiϕim0 − λiu′i ∗m0.
(5.22)

By the assumptions of the proposition and the relations u′i ∈ L1(0, T ), u′i + qβ,i ∈
Lp(0, T ), the right-hand side of (5.22) belongs to Lp(0, T ). Therefore, Dβ(u′i +
qβ,i) ∈ Lp(0, T ). This implies the assertion u′i + qβ,i ∈ 0H

β
p (0, T ). Estimating

(5.22) we have

‖u′i + qβ,i‖β,p;σ

≤ λi‖u′i + qβ,i‖p;σ + ‖f ′i‖p;σ + ‖gi‖β,p;σ +
[
|ψi(0)|+ ‖ψ′i‖1;σ

]
‖m‖p;σ

+
[
λi|ϕi|+ λi‖qβ,i‖1;σ + T

p−1
p λi‖u′i + qβ,i‖p;σ

](
‖m‖p;σ + ‖m0‖p;σ

)
.

Using (5.14) for λi‖u′i + qi‖p;σ, (4.10) for ‖λiẼβ,i‖1;σ, (5.20) for λi‖qβ,i‖1;σ, and
estimating ‖m‖p;σ + ‖m0‖p;σ by 1

2T
p
p−1 we obtain (5.15). �

6. Uniqueness

In the sequel we use the notations ui[β,m] and ui[m] to indicate the dependence
of the solution of (3.7) on the pair (β,m) and m.

Theorem 6.1. Let fi, ψi ∈ H1−s1
r (0, T )∩C[0, T ], gi ∈ Lr(0, T ), I1−s2gi ∈ L∞[0, T ],

i = 1, 2, . . . with some s1 ∈ [0, 1), s2 ∈ (0, 1], r ∈ (1,∞) and m0 ∈ L1(0, T ). More-
over, assume

∞∑
i=1

|γi|λi|ϕi| <∞,
∞∑
i=1

|γi|‖fi‖1−s1,r <∞,
∞∑
i=1

|γi|‖fi‖∞ <∞,

∞∑
i=1

|γi|‖ψi‖1−s1,r <∞,
∞∑
i=1

|γi|‖ψi‖∞ <∞,

∞∑
i=1

|γi|‖gi‖r <∞,
∞∑
i=1

|γi|‖I1−s2gi‖∞ <∞

(6.1)

and
∞∑
i=1

γi(λiϕi − fi(0)) 6= 0,
∞∑
i=1

γi(λiϕi − ψi(0)) 6= 0. (6.2)

If (βj ,mj) ∈ (s1, s2)×L1(0, T ), j = 1, 2, are solutions of the inverse problem, then
β1 = β2 and m1 = m2.

Proof. Without loss of generality we may assume r < min{ 1
1−β1

; 1
1−β2
}. In view

of Proposition 5.1, the problems (3.7) with the data (βj ,mj) ∈ (s1, s2) × L1(0, T )
have unique solutions uj,i := ui[βj ,mj ] ∈W 1

r (0, T ) ⊂ C[0, T ], i = 1, 2, . . ., j = 1, 2.
Due to (4.8) there exists σ > 0 such that ‖mj‖1;σ + ‖m0‖1;σ ≤ 1

2 , j = 1, 2. In view
of the estimates (5.2), (5.3), the assumptions (6.1) and the equivalence relations of
weighted norms (4.7) we have

∞∑
i=1

|γi|λi‖uj,i‖∞ <∞,
∞∑
i=1

|γi|‖u′j,i‖r <∞. (6.3)
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This implies
∑∞
i=1 γiλiuj,i ∈ C[0, T ],

∑∞
i=1 γiλiuj,i

∣∣
t=0

=
∑∞
i=1 γiλiϕi and∑∞

i=1 γiu
′
j,i ∈ Lr(0, T ).

Moreover, from (3.8) we obtain h′ =
∑∞
i=1 γiu

′
j,i, j = 1, 2. In view of this

relation, from (3.7) we deduce the expressions

t−βj

Γ(1− βj)
∗ (h′ −

∞∑
i=1

γigi)

=
∞∑
i=1

γi(fi − λiuj,i) +
∞∑
i=1

γi(ψi − λiuj,i) ∗mj −
∞∑
i=1

γiλiuj,i ∗m0,

(6.4)

for j = 1, 2. From the relations fi, ψi ∈ C[0, T ] and the third and fifth inequality in
(6.1) we have

∑∞
i=1 γifi ∈ C[0, T ] and

∑∞
i=1 γiψi ∈ C[0, T ]. Therefore, the right-

hand side of (6.4) belongs to C[0, T ]. We obtain t−βj

Γ(1−βj) ∗(h
′−
∑∞
i=1 γigi) ∈ C[0, T ],

j = 1, 2. Taking the limit t→ 0+ in (6.4), we have

lim
t→0+

t−βj

Γ(1− βj)
∗ (h′ −

∞∑
i=1

γigi) =
∞∑
i=1

γi(fi(0)− λiϕi), j = 1, 2. (6.5)

Suppose that β1 < β2. Then

t−β1

Γ(1− β1)
∗ (h′−

∞∑
i=1

γigi) =
tβ2−β1−1

Γ(β2 − β1)
∗ ζ(t), ζ(t) =

t−β2

Γ(1− β2)
∗ (h′−

∞∑
i=1

γigi).

Since ζ ∈ C[0, T ] it holds limt→0+
tβ2−β1−1

Γ(β2−β1) ∗ζ(t) = 0. Thus, limt→0+
t−β1

Γ(1−β1) ∗ (h′−∑∞
i=1 γigi) = 0. But this with (6.5) contradicts to the assumption (6.2). Similarly

we reach the contradiction in case β1 > β2. Consequently, β1 = β2.
Denote β := β1 = β2 and subtract the equalities (6.4) with j = 2 and j = 1:

∞∑
i=1

γi(ψi − λiu1,i) ∗ (m1 −m2)−
∞∑
i=1

γiλi(u1,i − u2,i) ∗ (m2 +m0)

−
∞∑
i=1

γiλi(u1,i − u2,i) = 0.

(6.6)

The differences vi = u1,i − u2,i, i = 1, 2, . . ., solve the problems

t−β

Γ(1− β)
∗ v′i + λivi = −λivi ∗ (m2 +m0) + (ψi − λiu1,i) ∗ (m1 −m2),

vi(0) = 0.
(6.7)

Let us consider the problems

t−β

Γ(1− β)
∗ w′i + λiwi = −λiwi ∗ (m2 +m0) + ψi − λiu1,i,

wi(0) = 0
(6.8)

for i = 1, 2, . . .. By Proposition 5.1, these problems have the unique solutions
wi ∈ W 1

r (0, T ) ⊂ C[0, T ], i = 1, 2, . . . and λi‖wi‖∞;σ ≤ C1(‖fi‖∞;σ + λi‖u1,i‖∞;σ).
( (3.7) takes the form of (6.8), if we replace the data vector (fi, gi, ψi,m,m0, ϕ) by
(ψi − λiu1,i, 0, 0, 0,m2 + m0, 0).) The properties of wi with (6.1) and (6.3) yield

the relations
∑∞
i=1 γiλiwi ∈ C[0, T ] and

∑∞
i=1 γiλiwi

∣∣∣
t=0

= 0. One can immediately

check that vi = wi ∗ (m1 − m2) solves (6.7). By the uniqueness of the solution
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of (6.7), it holds u1,i − u2,i = wi ∗ (m1 −m2), i = 1, 2, . . .. Consequently, we can
transform (6.6) as follows:

∞∑
i=1

γi

{
ψi − λiu1,i − λiwi ∗ (m2 +m0)− λiwi

}
∗(m1 −m2)(t) = 0, (6.9)

for t ∈ (0, T ). By Titchmarsh convolution theorem, there exist T1 ≥ 0 and T2 ≥ 0
such that T1 + T2 = T and

∞∑
i=1

γi

{
ψi − λiu1,i − λiwi ∗ (m2 +m0)− λiwi

}
(t) = 0 (6.10)

a.e. t ∈ (0, T1), and (m1−m2)(t) = 0 a.e. t ∈ (0, T2). But since the function at the
left-hand side of (6.10) is continuous and possesses the limit

∑∞
i=1(ψi(0)−λiϕi) 6= 0

as t → 0+, the equality T1 = 0 is valid. Consequently, (m1 − m2)(t) = 0 a.e.
t ∈ (0, T ). This completes the proof. �

7. Existence

Let us introduce the function

Qβ,ϕ,f (t) =
∞∑
i=1

γiqβ,i(t)t1−β =
∞∑
i=1

γi
(
λiϕi − fi(0)

)
Eβ,β

(
−λitβ

)
. (7.1)

Firstly, we prove a proposition that gives a necessary consistency condition for
h′ +Qβ,ϕ,f (t)tβ−1.

Proposition 7.1. Let (β,m) ∈ (0, 1) × Lp(0, T ) with some p ∈ (1,∞) solve IP.
Assume that fi ∈ W 1

p (0, T ), ψi ∈ W 1
1 (0, T ), gi ∈ 0H

β
p (0, T ), i = 1, 2, . . ., m0 ∈

Lp(0, T ) and
∞∑
i=1

|γi|λi|ϕi| <∞,
∞∑
i=1

|γi|‖fi‖W 1
p (0,T ) <∞,

∞∑
i=1

|γi|‖ψi‖W 1
1 (0,T ) <∞,

∞∑
i=1

|γi|‖gi‖β,p <∞.
(7.2)

Then h′ +Qβ,ϕ,f (t)tβ−1 ∈ 0H
β
p (0, T ).

Proof. Since 0H
β
p (0, T ) ↪→ Lr(0, T ) and W 1

1 (0, T ) ↪→ H1−β
r (0, T ) for r ∈ (1, 1

1−β ),
r ≤ p, Proposition 5.1 yields ui ∈W 1

r (0, T ). Moreover, (7.2) implies the inequalities∑∞
i=1 |γi|‖fi‖1−β,r < ∞,

∑∞
i=1 |γi|‖ψi‖1−β,r < ∞ and

∑∞
i=1 |γi|‖gi‖r < ∞. There

exist σ such that (5.13) (hence also (5.1)) is valid. Applying (5.2) we obtain the
relation

∑∞
i=1 |γi|‖u′i‖r;σ < ∞. Thus, h′ =

∑∞
i=1 γiu

′
i ∈ Lr(0, T ). Further, (5.15)

with (7.2) implies
∑∞
i=1 |γi|‖u′i + qβ,i‖β,p;σ < ∞. Since h′(t) + Qβ,ϕ,f (t)tβ−1 =∑∞

i=1 γi(u
′
i + qβ,i)(t), we deduce ‖h′ +Qβ,ϕ,f (t)tβ−1‖β,p;σ <∞. This with Lemma

4.2 implies the assertion of the proposition. �

For the statement and proof of an existence theorem, we define the following
balls in the space Lp(0, T ):

B%,σ = {w ∈ Lp(0, T ) : ‖w‖p;σ ≤ %}
and introduce the notation

d =
(
ϕi|i=1,...,∞, fi|i=1,...,∞, ψi|i=1,...,∞, gi|i=1,...,∞,m

0, h
)
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for the data vector of IP.

Theorem 7.2. Let fi ∈W 1
p (0, T ), ψi ∈W 1

1 (0, T ), i = 1, 2, . . ., m0 ∈ Lp(0, T ) with
some p ∈ (1,∞) and

∞∑
i=1

|γi|λ1+ε
i |ϕi| <∞,

∞∑
i=1

|γi|λεi |fi(0)| <∞,
∞∑
i=1

|γi|‖f ′i‖Lp(0,T ) <∞,

∞∑
i=1

|γi|λεi |ψi(0)| <∞,
∞∑
i=1

|γi|‖ψ′i‖L1(0,T ) <∞
(7.3)

with some ε ∈ (0, 1]. Moreover, b ∈ (0, 1) be such that

h′ +Qb,ϕ,f (t)tb−1 ∈ 0H
b
p(0, T ) (7.4)

and gi ∈ 0H
s
p(0, T ), i = 1, 2, . . . and

∞∑
i=1

|γi|‖gi‖s,p <∞ (7.5)

with some s ≥ b. Finally, assume the conditions
∞∑
i=1

γi
(
λiϕi − ψi(0)

)
6= 0, (7.6)

h(0) =
∞∑
i=1

γiϕi. (7.7)

Then there exists σ0[d] such that for σ = σ0[d] it holds

ωσ[d] := Ĉ|κ[d]|Nσ[d] ≤ 1
2
, (7.8)

where

Nσ[d] = ‖h′ +Qb,ϕ,f (t)tb−1‖b,p;σ +
[ ∞∑
i=1

|γi|λi|ϕi|+
∞∑
i=1

|γi||ψi(0)|
]
‖m0‖p;σ

+
{ 1
σbε

[ ∞∑
i=1

|γi|λ1+ε
i |ϕi|+

∞∑
i=1

|γi|λεi |fi(0)|+
∞∑
i=1

|γi|λεi |ψi(0)|
]

+
∞∑
i=1

|γi|‖f ′i‖p;σ +
∞∑
i=1

|γi|‖ψ′i‖1;σ +
∞∑
i=1

|γi|‖gi‖b,p;σ
}(

1 + ‖m0‖p;σ
)
,

(7.9)

Ĉ = (3C2 + 4T
p−1
p + 2)(C2 + 1)(cb,ε + 1)(T

p−1
p + 1),

κ[d] =
[ ∞∑
i=1

γi
(
ψi(0)− λiϕi

)]−1

. (7.10)

Moreover, IP has a solution (β,m) such that β = b and m belongs to B%σ [d],σ, where
σ is any number satisfying (7.8) and

%σ[d] = C
∣∣κ[d]

∣∣Rσ[d]



EJDE-2016/199 DETERMINATION OF ORDER OF FRACTIONAL DERIVATIVE 17

with

Rσ[d]

= ‖h′ +Qβ,ϕ,f (t)tβ−1‖β,p;σ

+
∞∑
i=1

|γi|λi|ϕi|‖m0‖p;σ +
{ 1
σβε

[ ∞∑
i=1

|γi|λ1+ε
i |ϕi|+

∞∑
i=1

|γi|λεi |fi(0)|
]

+
∞∑
i=1

|γi|‖f ′i‖p;σ +
∞∑
i=1

|γi|‖gi‖β,p;σ
}(

1 + ‖m0‖p;σ
)
,

(7.11)

where C = 2(C2 + 1)(cβ,ε + 1)(T
p−1
p + 1).

Proof. Since ‖f ′i‖p;σ → 0, ‖ψ′i‖1;σ → 0, ‖gi‖b,p;σ → 0 as σ →∞ for all i and

∞∑
i=1

|γi|‖f ′i‖p;σ ≤
∞∑
i=1

|γi|‖f ′i‖p <∞,

∞∑
i=1

|γi|‖ψ′i‖1;σ ≤
∞∑
i=1

|γi|‖ψ′i‖1 <∞,

∞∑
i=1

|γi|‖gi‖b,p;σ ≤
∞∑
i=1

|γi|‖gi‖b,p <∞,

the dominated convergence theorem for series implies

∞∑
i=1

|γi|‖f ′i‖p;σ → 0,
∞∑
i=1

|γi|‖ψ′i‖1;σ → 0,
∞∑
i=1

|γi|‖gi‖b,p;σ → 0

as σ → ∞. Moreover, ‖h′ + Qb,ϕ,f (t)tβ−1‖b,p;σ → 0 and ‖m0‖p;σ → 0 as σ → ∞.
Consequently, there exists such σ = σ0[d] that (7.8) is valid.

Let σ be some number satisfying (7.8). Setting β = b, it remains to show that
there exists a suitable m ∈ B%σ [d],σ such that the pair (β,m) solves IP. Let us
consider the following equation for m:

Dβ
(
h′ +Qβ,ϕ,f (t)tβ−1

)
= −

∞∑
i=1

γiλi(u′i + qβ,i) +
∞∑
i=1

γi(f ′i +Dβgi)

+
∞∑
i=1

γi
(
ψi(0)− λiϕi

)
m+

∞∑
i=1

γi
(
ψ′i − λi(u′i + qβ,i) + λiqβ,i

)
∗m

−
∞∑
i=1

γiλiϕim
0 −

∞∑
i=1

γi
(
λi(u′i + qβ,i)− λiqβ,i

)
∗m0,

(7.12)

where ui = ui[m] is the solution of (3.7). Due to the assumptions of the theorem,
Proposition 5.2, (5.20) and (4.12), all terms in (7.12) belong to Lp(0, T ) provided
m ∈ Lp(0, T ). Therefore, this equation is well-defined.

Firstly, let us show that if m ∈ Lp(0, T ) solves (7.12), then the pair (β,m)
solves IP. Suppose that m ∈ Lp(0, T ) solves (7.12). Substituting Qβ,ϕ,f (t)tβ−1 by
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i=1 γiqβ,i, ui + qβ,i − qβ,i by u′i in (7.12) and integrating from 0 to t we obtain

t−β

Γ(1− β)
∗
(
h′ +

∞∑
i=1

γiqβ,i
)

= −
∞∑
i=1

γiλiui +
∞∑
i=1

γifi +
t−β

Γ(1− β)
∗
∞∑
i=1

γigi

+
∞∑
i=1

γi
(
ψi − λiui

)
∗m−

∞∑
i=1

γiλiui ∗m0

−
∞∑
i=1

γiλiI
1qβ,i +

∞∑
i=1

γi
(
λiϕi − fi(0)

)
.

(7.13)

From (3.7) we obtain

t−β

Γ(1− β)
∗
∞∑
i=1

γiu
′
i = −

∞∑
i=1

γiλiui +
∞∑
i=1

γifi +
t−β

Γ(1− β)
∗
∞∑
i=1

γigi

+
∞∑
i=1

γi(ψi − λiui) ∗m−
∞∑
i=1

γiλiui ∗m0

(7.14)

and from (5.16) we deduce

t−β

Γ(1− β)
∗
∞∑
i=1

γiqβ,i = −
∞∑
i=1

γiλiI
1qβ,i +

∞∑
i=1

γi
(
λiϕi − fi(0)

)
. (7.15)

Subtracting the sum of (7.14) and (7.15) from (7.13) we have

t−β

Γ(1− β)
∗
(
h′ −

∞∑
i=1

γiu
′
i

)
= 0, t ∈ (0, T ).

This implies h′ −
∑∞
i=1 γiu

′
i = 0 for t ∈ (0, T ). Integrating from 0 to t and using

the assumption (7.7) we obtain (3.8). This proves that the pair (β,m) is a solution
of IP.

Secondly, let us denote ω = ωσ[d], % = %σ[d], κ = κ[d] and show that the
equation (7.12) has a unique solution m in the ball B%,σ. To this end, we rewrite
this equation in the fixed-point form

m = Fm, (7.16)

where

Fm = κ
{
Dβ
(
h′ +Qβ,ϕ,f (t)tβ−1

)
+
∞∑
i=1

γiλi(ui[m]′ + qβ,i)

−
∞∑
i=1

γi(f ′i −Dβgi)−
∞∑
i=1

γi
(
ψ′i − λi(ui[m]′ + qβ,i) + λiqβ,i

)
∗m

+
∞∑
i=1

γiλiϕim
0 +

∞∑
i=1

γi
(
λi(ui[m]′ + qβ,i)− λiqβ,i

)
∗m0

}
.

(7.17)

In view of (4.11), (5.12) and (7.3) it holds∥∥ ∞∑
i=1

γiλiqβ,i
∥∥

1,σ
≤
∞∑
i=1

|γi|λi‖qβ,i‖1,σ

≤ cβ,ε
σβε

[ ∞∑
i=1

|γi|λ1+ε
i |ϕi|+

∞∑
i=1

|γi|λεi |fi(0)|
]
.

(7.18)
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Let m ∈ B%,σ, i.e. ‖m‖p;σ ≤ %. From the definitions of ω and % and (7.9) we
deduce that T

p−1
p ‖m0‖p;σ ≤ ω

2 ≤
1
4 and T

p−1
p % ≤ ω

2 ≤
1
4 . Thus, the relation (5.13)

is valid. By means of the assumptions of the theorem, (4.10), (4.11), (5.14) and
(7.18) we estimate:

‖Fm‖p;σ

≤ |κ|
{
‖h′ +Qβ,ϕ,f (t)tβ−1‖β,p;σ +

C2cβ,ε
σβε

[ ∞∑
i=1

|γi|λ1+ε
i |ϕi|

+
∞∑
i=1

|γi|λεi |fi(0)|
]
+C2

[cβ,ε
σβε

∞∑
i=1

|γi|λεi |ψi(0)|+
∞∑
i=1

|γi|‖ψ′i‖1;σ

]
‖m‖p;σ

+ C2

[ ∞∑
i=1

|γi|‖f ′i‖p;σ +
∞∑
i=1

|γi|‖gi‖β,p;σ
]
+
∞∑
i=1

|γi|‖f ′i‖p;σ +
∞∑
i=1

|γi|‖gi‖β,p;σ

+
{ ∞∑
i=1

|γi|‖ψ′i‖1;σ +
C2cβ,εT

p−1
p

σβε

[ ∞∑
i=1

|γi|λ1+ε
i |ϕi|+

∞∑
i=1

|γi|λεi |fi(0)|
]

+ C2T
p−1
p

[cβ,ε
σβε

∞∑
i=1

|γi|λεi |ψi(0)|+
∞∑
i=1

|γi|‖ψ′i‖1;σ

]
‖m‖p;σ

+ C2T
p−1
p

[ ∞∑
i=1

|γi|‖f ′i‖p;σ +
∞∑
i=1

|γi|‖gi‖β,p;σ
]

+
cβ,ε
σβε

[ ∞∑
i=1

|γi|λ1+ε
i |ϕi|+

∞∑
i=1

|γi|λεi |fi(0)|
]}
‖m‖p;σ

+
∞∑
i=1

|γi|λi|ϕi|‖m0‖p;σ +
{C2cβ,εT

p−1
p

σβε

[ ∞∑
i=1

|γi|λ1+ε
i |ϕi|+

∞∑
i=1

|γi|λεi |fi(0)|
]

+ C2T
p−1
p

[cβ,ε
σβε

∞∑
i=1

|γi|λεi |ψi(0)|+
∞∑
i=1

|γi|‖ψ′i‖1;σ

]
‖m‖p;σ

+ C2T
p−1
p

[ ∞∑
i=1

|γi|‖f ′i‖p;σ +
∞∑
i=1

|γi|‖gi‖β,p;σ
]
+
cβ,ε
σβε

[ ∞∑
i=1

|γi|λ1+ε
i |ϕi|

+
∞∑
i=1

|γi|λεi |fi(0)|
]}
‖m0‖p;σ

}
.

Estimating ‖m‖p;σ by % and ‖m‖2p;σ by T
p
p−1 %

4 and simplifying we obtain

‖Fm‖p;σ ≤
%

2
+ ω1%,

where

ω1 = Ĉ1|κ|
{ 1
σβε

[ ∞∑
i=1

|γi|λ1+ε
i |ϕi|+

∞∑
i=1

|γi|λεi |fi(0)|+
∞∑
i=1

|γi|λεi |ψi(0)|
]

+
∞∑
i=1

|γi|‖f ′i‖p;σ +
∞∑
i=1

|γi|‖ψ′i‖1;σ +
∞∑
i=1

|γi|‖gi‖β,p;σ
}(

1 + ‖m0‖p;σ
)
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with

Ĉ1 = max{cβ,ε(1 +
5C2

4
+ C2T

p−1
p ); 1 +

5C2

4
+ C2T

p−1
p }

≤ 5
4

(C2 + 1)(cβ,ε + 1)(T
p−1
p + 1).

Since ω1 ≤ ω ≤ 1
2 we have ‖Fm‖p;σ ≤ %

2 + %
2 ≤ %. Thus, the operator F maps B%,σ

into B%,σ.
Let m1,m2 ∈ B%,σ. Then the difference vi = ui[m1]− ui[m2] solves the problem

t−β

Γ(1− β)
∗ v′i + λivi = f i − λivi ∗ (m2 +m0), vi(0) = 0, (7.19)

where
f i =

(
ψi − λiui[m1]

)
∗(m1 −m2).

By the vanishing initial condition and f i(0) = 0, the function (5.12), related to vi
is equal to zero. Moreover, T

p−1
p ‖m2‖p;σ + T

p−1
p ‖m0‖p;σ ≤ 1

2 . Therefore, (5.14)
applied to (7.19) yields

λi‖v′i‖p;σ ≤ C2‖λiẼβ,i‖1;σ‖f
′‖p;σ = C2‖λiẼβ,i‖1;σ

∥∥(ψi(0)− λiϕi
)
(m1 −m2)

+
[
ψ′i − λi(ui[m1]′ + qβ,i) + λiqβ,i

]
∗(m1 −m2)

∥∥
p;σ

≤ C2‖λiẼβ,i‖1;σ

[
|ψi(0)|+ λi|ϕi|+ ‖ψ′i‖1;σ

+ T
p−1
p λi‖ui[m1]′ + qβ,i‖p;σ + λi‖qβ,i‖1;σ

]
‖m1 −m2‖p;σ.

Using the estimate (5.14) for ui[m1]′+qβ,i, the relation ‖m‖p;σ ≤ T
p
p−1 1

4 for ‖m‖p;σ
in this estimate as well as (4.10), (4.11), (7.3), (7.5) and (7.18) we obtain

∞∑
i=1

|γi|λi‖v′i‖p;σ ≤ ω2‖m1 −m2‖p;σ, (7.20)

where

ω2 = Ĉ2

{ 1
σβε

[ ∞∑
i=1

|γi|λ1+ε
i |ϕi|+

∞∑
i=1

|γi|λεi |fi(0)|+
∞∑
i=1

|γi|λεi |ψi(0)|
]

+
∞∑
i=1

|γi|‖f ′i‖p;σ +
∞∑
i=1

|γi|‖ψ′i‖1;σ +
∞∑
i=1

|γi|‖gi‖β,p;σ
} (7.21)

with

Ĉ2 = C2 max{cβ,ε(T
p−1
p C2 + 2); cβ,ε(

C2

4
+ 1);C2T

p−1
p ;

C2

4
}

≤ 2C2(C2 + 1)(cβ,ε + 1)(T
p−1
p + 1).

Further, from (7.17) we have

Fm1 −Fm2 = κ
{ ∞∑
i=1

γiλiv
′
i +

∞∑
i=1

γiλiv
′
i ∗ (m2 −m0)

−
∞∑
i=1

γi
(
ψ′i − λi(ui[m1]′ + qβ,i) + λiqβ,i

)
∗(m1 −m2)

}
,
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hence

‖Fm1 −Fm2‖p;σ

≤ |κ|
{3

2

∞∑
i=1

|γi|λi‖v′i‖p;σ +
∞∑
i=1

|γi|‖ψ′i‖1;σ

+ T
p−1
p

∞∑
i=1

|γi|λi‖ui[m1]′ + qβ,i‖p;σ +
∞∑
i=1

|γi|λi‖qβ,i‖1;σ

}
‖m1 −m2‖p;σ.

Using the estimates (5.14), (7.18) and (7.20) we obtain

‖Fm1 −Fm2‖p;σ ≤
(3

2
|κ|ω2 + ω1

)
‖m1 −m2‖p;σ.

Since 3
2 |κ|ω2 + ω1 ≤ ω ≤ 1

2 we obtain ‖Fm1 − Fm2‖p;σ ≤ 1
2‖m1 −m2‖p;σ. This

shows that F is a contraction in the ball B%,σ. By Banach fixed-point principle,
the equation (7.16) has a unique solution in B%,σ. The proof is complete. �

The following theorem gives an explicit formula for the component β of the
solution of the inverse problem.

Theorem 7.3. Let
∞∑
i=1

|γi|
(
λi|ϕi|+ |fi(0)|

)
<∞,

∞∑
i=1

γi(λiϕi − fi(0)) 6= 0

and h′ +Qβ,ϕ,f (t)tβ−1 ∈ 0H
β
p (0, T ) for some p ∈ (1,∞) and β ∈ (0, 1). Then

β = µ(h) := lim
t→0+

ln |h(t)− h(0)|
ln t

. (7.22)

Proof. By Lemma 4.2, there exists z ∈ Lp(0, T ) such that h′+Qβ,ϕ,f (t)tβ−1 = Iβz.
Integrating this formula from 0 to t we have

h(t)− h(0) +
∞∑
i=0

γi
(
λiϕi − fi(0)

)∫ t

0

Eβ,β(−λiτ)τβ−1dτ = I1+βz(t).

Since
∫ t

0
Eβ,β(−λiτ)τβ−1dτ = tβEβ,β+1(−λitβ) ([5, (4.4.4)]), we obtain h(t)−h(0)

tβ
=

Z(t) with

Z(t) = −
∞∑
i=0

γi
(
λiϕi − fi(0)

)
Eβ,β+1(−λitβ) + t−βI1+βz(t).

Let us compute the limit of Z(t) in case t→ 0+. We have

c =: − lim
t→0+

∞∑
i=0

γi
(
λiϕi − fi(0)

)
Eβ,β+1(−λitβ) = − 1

Γ(β + 1)

∞∑
i=0

γi
(
λiϕi − fi(0)

)
and ∣∣t−βI1+βz(t)

∣∣ =
∣∣∣t−β ∫ t

0

(t− τ)β

Γ(β + 1)
z(τ)dτ

∣∣∣
≤ t−β

[∫ t

0

( (t− τ)β

Γ(β + 1)

) p
p−1

dτ
] p−1

p ‖z‖Lp(0,t)

=
t
p−1
p

Γ(β + 1)( βp
p−1 + 1)

p−1
p

‖z‖Lp(0,t) → 0 as t→ 0+.
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Thus limt→0+ Z(t) = c 6= 0. Taking logarithms the relation

|h(t)− h(0)|
tβ

= |Z(t)| (7.23)

and solving for β we obtain

β =
ln |h(t)− h(0)| − ln |Z(t)|

ln t
.

Taking the limit t → 0+ and observing that limt→0+
ln |Z(t)|

ln t = 0 we arrive at
(7.22). �

Remark 7.4. In practical computations, we can apply the formula (7.22) only
approximately, i.e. β ≈ ln |h(t1)−h(0)|

ln t1
, where t1 is some small value of the time. It

is possible increase the accuracy of computation of β incorporating the principal
term of Z(t), too. Namely, in the proof of Theorem 7.3 we saw that

Z(t) ∼ c = − 1
Γ(β + 1)

∞∑
i=0

γi
(
λiϕi − fi(0)

)
as t→ 0+. Thus, from (7.23) we obtain

|h(t)− h(0)|
tβ

≈ 1
Γ(β + 1)

∣∣∣ ∞∑
i=0

γi
(
λiϕi − fi(0)

)∣∣∣
if t ≈ 0. From this relation we deduce the following approximate equation for β
that is applicable in case of small t1:

|h(t1)− h(0)|∣∣∣∑∞i=0 γi
(
λiϕi − fi(0)

)∣∣∣ =
tβ̃1

Γ(β̃ + 1)
. (7.24)

8. Stability

Under the conditions of Theorem 7.3, the stability of β with respect to h is im-
mediate. Let

(
β, ϕi|i=1,...,∞, fi|i=1,...,∞, h

)
and

(
β̃, ϕ̃i|i=1,...,∞, f̃i|i=1,...,∞, h̃

)
satisfy

the assumptions of Theorem 7.3. Then µ(h̃) → µ(h) implies β̃ → β. Moreover,
d0(h1, h2) := |µ(h1)−µ(h2)|, h1, h2 ∈ H, defines a pseudometric on elements of the
space H := {h : µ(h) exists and is finite}. Thus, |β̃ − β| = d0(h̃, h).

Next we prove a theorem concerning the local Lipschitz-continuity of the com-
ponent m of the solution of IP with respect to the data.

Theorem 8.1. Let the data vectors

d =
(
ϕi|i=1,...,∞, fi|i=1,...,∞, ψi|i=1,...,∞, gi|i=1,...,∞,m

0, h
)
,

d̃ =
(
ϕ̃i|i=1,...,∞, f̃i|i=1,...,∞, ψ̃i|i=1,...,∞, g̃i|i=1,...,∞, m̃

0, h̃
)

satisfy the assumptions of Theorem 6.1 with same parameters p, ε, b and s. Let
(β,m) and (β, m̃) with β = b be the solutions of IP corresponding to the data d and
d̃, respectively. Let σ1[d] be a sufficiently large number such that for σ = σ1[d] the
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relation

Ĉ|κ[d]|
[
Nσ[d†] +

[ ∞∑
i=1

|γi||ψi(0)|+
∞∑
i=1

|γi|λi|ϕi|
]
‖m+m0‖p;σ

+
{ 1
σβε

[ ∞∑
i=1

|γi|λεi |ψi(0)|+
∞∑
i=1

|γi|λ1+ε
i |ϕi|

]
+
∞∑
i=1

|γi|‖ψ′i‖1;σ

+
∞∑
i=1

|γi|λi‖u′i[m]‖1;σ

}(
1 + ‖m+m0‖p;σ

)]
≤ 1

8

(8.1)

is valid. Moreover, assume that the data vector d̃ is sufficiently close to the data
vector d, so that ∣∣∣∑∞i=1 γi(ψi(0)− λiϕi)

∣∣∣∣∣∣∑∞i=1 γi
(
ψi(0)− λiϕi + ψ̃i(0)− ψi(0)− λi(ϕ̃i − ϕi)

)∣∣∣ ≤ 2 (8.2)

is valid and the estimates
‖m̃0 −m0‖p;σ ≤ 1 and

Ĉ|κ[d]|
{ ∞∑
i=1

|γi||ψi(0)|+
∞∑
i=1

|γi|λi|ϕi|

+
1
σβε

[ ∞∑
i=1

|γi|λεi |ψi(0)|+
∞∑
i=1

|γi|λ1+ε
i |ϕi|

]
+
∞∑
i=1

|γi|‖ψ′i‖1;σ

+
∞∑
i=1

|γi|λi‖u′i[m]‖1;σ

}
‖m̃0 −m0‖p;σ ≤

1
8

(8.3)

are satisfied, where σ = σ2[d] = max{σ0[d];σ1[d]} and

d† =
(

(ϕ̃i − ϕi)|i=1,...,∞, f
†
i |i=1,...,∞, (ψ̃i − ψi)|i=1,...,∞,

(g̃i − gi)|i=1,...,∞, m
†, h̃− h

)
,

f†i = f̃i − fi − (m̃0 −m0) ∗ λiui[m] +m ∗ (ψ̃i − ψi), m† = m+m0 + m̃0 −m0.

Then

‖m̃−m‖p ≤ C[d]
{
‖h̃′ − h′ +Qβ,eϕ−ϕ, ef−f (t)tβ−1‖β,p

+
∞∑
i=1

|γi|λ1+ε
i |ϕ̃i − ϕi|+

∞∑
i=1

|γi|λεi |f̃i(0)− fi(0)|

+
∞∑
i=1

|γi||ψ̃i(0)− ψi(0)|+
∞∑
i=1

|γi|‖f̃ ′i − f ′i‖p

+
∞∑
i=1

|γi|‖ψ̃′i − ψ′i‖1

+
∞∑
i=1

|γi|‖g̃i − gi‖β,p + ‖m̃0 −m0‖p
}
,

(8.4)

where C[d] is a constant depending on the data vector d.
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Proof. Firstly we mention that the series in the formulas (8.1) and (8.3) converge be-
cause of the assumptions imposed on d and d̃. In particular,

∑∞
i=1 |γi|λi‖u′i[m]‖1;σ <

∞, because ‖u′i[m]‖1;σ ≤ T
p−1
p ‖u′i[m] + qβ,i‖p;σ + ‖qβ,i‖1;σ and

∞∑
i=1

|γi|λi‖u′i[m] + qβ,i‖p;σ <∞,
∞∑
i=1

|γi|λi‖qβ,i‖1;σ <∞

in view of Proposition 5.2, (7.18) and assumptions of the theorem. Secondly, due
to (4.8) and the dominated convergence theorem for series, there exists σ = σ1[d]
such that (8.1) is valid.

Denoting vi = ui[m̃] − ui[m], the difference (β, m̃ −m) = (β, k) is a solution of
the inverse problem

t−β

Γ(1− β)
∗ [v′i(t)− gi(t)] + λivi(t)

= f i(t) + k ∗ [ψi(t)− λivi(t)]−m0 ∗ λivi(t), t ∈ (0, T ), vi(0) = ϕi,
∞∑
i=1

γivi(t) = h(t), t ∈ (0, T )

(8.5)

with the data vector

d =
(
ϕi|i=1,...,∞, f i|i=1,...,∞, ψi|i=1,...,∞, gi|i=1,...,∞,m

0, h
)
,

where

ϕi = ϕ̃i − ϕi, f i = f†i , ψi = ψ̃i − ψi + ψi − λiui[m],

gi = g̃i − gi, m0 = m†, h = h̃− h.

By (8.2), it holds |κ[d]| ≤ 2|κ[d]|. Let us set σ = σ2[d] and estimate

ωσ[d] = Ĉ|κ[d]|Nσ[d]

≤ 2Ĉ|κ[d]|Nσ[d]

≤ 2Ĉ|κ[d]|
[
Nσ[d†] +

[ ∞∑
i=1

|γi||ψi(0)|+
∞∑
i=1

|γi|λi|ϕi|
]
‖m+m0 + m̃0 −m0‖p;σ

+
{ 1
σβε

[ ∞∑
i=1

|γi|λεi |ψi(0)|+
∞∑
i=1

|γi|λ1+ε
i |ϕi|

]
+
∞∑
i=1

|γi|‖ψ′i‖1;σ

+
∞∑
i=1

|γi|λi‖u′i[m]‖1;σ

}(
1 + ‖m+m0 + m̃0 −m0‖p;σ

)]
.

Since the norms ‖ · ‖p;σ and ‖ · ‖β,p;σ are nonincreasing in σ, the relation (8.1) is
valid for σ = σ2[d], too. Using (8.1) and (8.3) we reach the inequality ωσ[d] ≤ 1

2
for σ = σ2[d]. Now we can apply Theorem 7.2 to the inverse problem (8.5). We
conclude that (8.5) has a solution (β, k) such that k ∈ B%σ [d],σ, σ = σ2[d]. From the
uniqueness of the solution of (8.5) (following from Theorem 6.1), we have k = m̃−m.
Hence, for σ = σ2[d] it holds

‖m̃−m‖p;σ ≤ %σ[d]

= C|κ[d]|Rσ[d]

≤ 2C|κ[d]|Rσ[d]
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= 2C|κ[d]|
[
‖h̃′ − h′ +Qβ,eϕ−ϕ,f†(t)tβ−1‖β,p;σ

+
∞∑
i=1

|γi|λi|ϕ̃i − ϕi|‖m†‖p;σ

+
{ 1
σβε

[ ∞∑
i=1

|γi|λ1+ε
i |ϕ̃i − ϕi|+

∞∑
i=1

|γi|λεi |f
†
i (0)|

]
+
∞∑
i=1

|γi|‖f†
′

i ‖p;σ +
∞∑
i=1

|γi|‖g̃i − gi‖β,p;σ
}(

1 + ‖m†‖p;σ
)]
.

From the formula of f†i we obtain f†i (0) = f̃i(0)− fi(0) and

f†
′

i = f̃ ′i − f ′i − λiϕi(m̃0 −m0)− (m̃0 −m0) ∗ λiu′i[m] +
(
ψ̃i(0)− ψi(0)

)
m

+m ∗ (ψ̃′i − ψ′i).

Moreover, from (7.1) and the relation for f†(0) we see thatQβ,eϕ−ϕ,f† = Qβ,eϕ−ϕ, ef−f .
Using also the relation ‖m̃0 −m0‖p;σ ≤ 1 for the addend m̃0 −m0 in the term m†

and applying (4.12) we continue the estimation of ‖m̃−m‖p;σ as follows:

‖m̃−m‖p;σ

≤ C1[d]
{
‖h̃′ − h′ +Qβ,eϕ−ϕ, ef−f (t)tβ−1‖β,p;σ

+
∞∑
i=1

|γi|λi|ϕ̃i − ϕi|+
∞∑
i=1

|γi|λ1+ε
i |ϕ̃i − ϕi|+

∞∑
i=1

|γi|λεi |f̃i(0)− fi(0)|

+
∞∑
i=1

|γi|‖f̃ ′i − f ′i‖p;σ + ‖m̃0 −m0‖p;σ +
∞∑
i=1

|γi||ψ̃i(0)− ψi(0)|

+
∞∑
i=1

|γi|‖ψ̃′i − ψ′i‖1;σ +
∞∑
i=1

|γi|‖g̃i − gi‖β,p;σ
}
,

where C1[d] is a constant depending on d. Using (4.7) and the relation
∞∑
i=1

|γi|λi|ϕ̃i − ϕi| ≤
1
λε∗

∞∑
i=1

|γi|λ1+ε
i |ϕ̃i − ϕi|,

where λ∗ = min{λi : λi > 0}, we arrive at (8.4) with C[d] = (1 + 1
λε∗

)eσ2[d]C1[d]. �

9. Model problem and numerical example

A thorough numerical study of IP will be a subject of a forthcoming paper. The
present paper, focused on the analysis, is finished by a simpler numerical example.

Let us consider the direct problem (2.7) in the domain (x, t) ∈ (0, 2π)×(0, 1) with
the data g = ψ = m0 = 0, f(x, t) = 2 sinx, ϕ(x) = sinx and Dirichlet boundary
conditions u(0, t) = u(2π, t) = 0. In such a case the expansions of f and ϕ in (3.6)
contain only single addends corresponding to the eigenfunction v1 = sinx of the
operator A = d2

dx2 . The solution of (2.7) has the form u = u1(t) sinx, where u1 is
the solution of the following Cauchy problem for ODE:

t−β

Γ(1− β)
∗ u′1(t) + u1(t) +m ∗ u1(t) = 2, t ∈ (0, 1), u1(0) = 1.
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In view of Lemma 4.3, this problem is equivalent to the Volterra integral equation
of the second kind

u1(t) + tβ−1Eβ,β(−tβ) ∗m ∗ u1(t) = 2− Eβ(−tβ), t ∈ (0, 1). (9.1)

Let the state u be observed at the point, x = π
2 , i.e. Φ[z] = z(π2 ). Then

h(t) = u1(t) sin
π

2
= u1(t).

The inverse problem with such data satisfies the assumptions of Theorems 6.1 –
7.3.

In the numerical example we assumed m is of the form m(t) = c1e
−t + c2e

−2t,
where c1, c2 ∈ R are unknown coefficients. Then the kernel of the Volterra equation
(9.1) K = tβ−1Eβ,β(−tβ) ∗m is continuous.

Fixing certain values of β∗, c∗1 and c∗2 (exact solution of the inverse problem), we
solved (9.1) and computed the values h(ti) = u1(ti) in nodes ti = iη, i = 1, . . . , N ,
where η = 1

N and N is the number of the nodes. Moreover, we set h(0) = sin π
2 = 1.

The obtained vector h(ti), i = 0, . . . , N , formed the synthetic data of the inverse
problem.

The solution procedure was implemented in two stages. In the first stage we
found the approximate value of β by solving the equation (7.24). In the second
stage we determined c̃1 and c̃2 via minimization of the cost functional

J(c1, c2) =
N∑
i=1

∣∣h[c2, c2](ti)− h(ti)
∣∣,

where h[c1, c2] = u1[c2, c2] is the trace at x = π
2 of the solution of the direct problem

corresponding to the parameters β̃, c1 and c2.
The minimization of the cost functional was performed by means of the gra-

dient method. The solution of the Volterra equation (9.1) (direct problem) was
implemented using the collocation with piecewise constant splines.

Table 1. Results in case β = 0.8

N β̃ c̃1 c̃2
100 0.786 1.037 1.045
1000 0.799 1.004 1.006
10000 0.7998 1.0005 1.0006

Table 2. Results in case β = 0.2

N β̃ c̃1 c̃2
100 0.155 1.69 1.82
1000 0.194 1.08 1.09
10000 0.199 1.01 1.01

Tables 1 and 2 contain numerical results in cases β∗ = 0.8, c∗1 = c∗2 = 1 and
β∗ = 0.4, c∗1 = c∗2 = 1, respectively. In both cases we chose the initial guesses
c1,0 = 2, c2,0 = 3 for the minimization process.



EJDE-2016/199 DETERMINATION OF ORDER OF FRACTIONAL DERIVATIVE 27

Results show that the method to determine β proposed in Remark 7.4 works
well in the case of bigger β, but requires a quite small stepsize in the case of smaller
β.
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