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EXISTENCE OF SOLUTIONS FOR p-LAPLACIAN-LIKE
DIFFERENTIAL EQUATION WITH MULTI-POINT NONLINEAR

NEUMANN BOUNDARY CONDITIONS AT RESONANCE

LE XUAN TRUONG, LE CONG NHAN

Abstract. This work concerns the multi-point nonlinear Neumann boundary-
value problem involving a p-Laplacian-like operator

(φ(u′))′ = f(t, u, u′), t ∈ (0, 1),

u′(0) = u′(η), φ(u′(1)) =
mX

i=1

αiφ(u′(ξi)),

where φ : R → R is an odd increasing homeomorphism with φ(±∞) = ±∞
such that

0 < α(A) := lim sup
s→+∞

φ(A+ s)

φ(s)
<∞, for A > 0.

By using an extension of Mawhin’s continuation theorem, we establish suffi-

cient conditions for the existence of at least one solution.

1. Introduction

In this article, by using an extension of Mawhin’s continuation theorem, we
obtain a solution for the p-Laplacian-like differential equation

(φ(u′))′ = f(t, u, u′), t ∈ (0, 1), (1.1)

associated with the multi-point nonlinear Neumann type boundary conditions

u′(0) = u′(η), φ(u′(1)) =
m∑
i=1

αiφ(u′(ξi)), (1.2)

where η ∈ (0, 1), αi ∈ R and ξi, i = 1, 2, . . . ,m, are given numbers satisfying
0 < ξ1 < ξ2 < · · · < ξm < 1; φ is an odd increasing homeomorphism from R onto
R and function f : [0, 1]× R× R→ R is Carathéodory.

We notice that problem (1.1)-(1.2) is always at resonance in the sense that the
associated boundary-value problem

(φ(u′))′ = 0, t ∈ (0, 1),

u′(0) = u′(η), φ(u′(1)) =
m∑
i=1

αiφ(u′(ξi)),
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has the nontrivial solution u(t) = c1 and u(t) = c1 + c2t, c1, c2 ∈ R (arbitrary
constants) provided that

∑m
i=1 αi 6= 1 and

∑m
i=1 αi = 1, corresponding.

The study of multi-point boundary-value problems in the case φ = Id was ini-
tiated by Il’in and Moiseev in [11, 12] and has been studied extensively by many
authors with different boundary conditions for both cases non-resonance and reso-
nance [2, 3, 9, 10], [13] - [18].

Recently multi-point boundary-value problem involving p-Laplacian operator or
p-Laplacian-like operator (φ(u′))′ have been studied for both cases linear and non-
linear boundary conditions, see for example [5, 6, 7].

In [6, 7], by using topology degree arguments, Garcia-Huidobro, Gupta and
Manasevich have studied the p-Laplacian-like differential equations (1.1) in (a, b)
with nonlinear boundary conditions

u′(0) = 0, θ(u′(1)) =
m−2∑
i=1

aiθ(u′(ξi)) or

u(0) = 0, θ(u′(1)) =
m−2∑
i=1

aiθ(u′(ξi))

where θ be two odd increasing homeomorphisms from R onto R. In these setting,
the set of nontrivial solutions of the associated homeogeneous problem is isomorphic
to R.

Ge and Ren [8] gave an extension of Mawhin’s continuation theorem in order
to solve the abstract equation Mx = Nx when M is a noninvertible nonlinear
operator. And then they used this result to study the existence of solutions for the
boundary-value problem involving p-Laplacian operator at resonance of the form

(φ(u′))′ + f(t, u) = 0, t ∈ (0, 1),

u(0) = 0 = G(u(η), u(1)),

where φp(s) = |s|p−2s, p > 1 and η ∈ (0, 1) is constant. By topology approach,
the boundary-value problems with one dimension p-Laplacian or p-Laplacian like
operator are usually reduced to fixed point problem. To avoid this reduction, the
approach of Ge and Ren seems to be very useful. However, in [8], the definition
of quasi-linear and M -compact operators in [8] have a little complicated and do
not generalize the notations of Fredholm operator of index zero and L-compact
operator [4, 17].

Motivated by these works, in this paper, we modify the Ge and Ren’s result
with some minor changes (e.g. Definition 2.1 and Definition 2.2) and then apply
them to handle the problem (1.1)-(1.2). In our best of knowledge, most of the
previous papers are only considered the cases dim kerM = 0 or dim kerM = 1.
Complemented with these, in our setting, we deal with both cases dim kerM = 1
and dim kerM = 2 in which the most interesting occurs in the case dim kerM = 2
due to some technical difficulties like constructing the projector Q. In that case,
we have to use some more delicate arguments (e.g. Lemma 2.7).

This article is organized as follows. In section 2, we first modify an extension
of Mawhin’s continuation Theorem which was introduced by Ge and Ren [8] and
then present an abstract equation of the boundary-value problem (1.1)-(1.2) in
which we can apply this Theorem. In section 3, we apply the modified Theorem
to obtain several existence theorems for the boundary-value problem (1.1)-(1.2)
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and eventually illustrate some of our results by a simple example containing the
p-Laplacian operator.

2. Preliminary results

We begin this section with slight modifications of an extension of Mawhin’s
continuation theorem which was given in [8].

2.1. An extension of Mawhin’s continuation theorem. Let X and Z be two
real Banach spaces with norms ‖ · ‖X and ‖ · ‖Z , respectively. We now introduce
some definitions.

Definition 2.1. An operator M : X ∩ domM → Z is said to be quasi-linear if
(i) kerM := {x ∈ X ∩ domM : Mx = 0} is linearly homeomorphic to Rn,

n <∞, where domM denotes the domain of the operator M ;
(ii) there exists a subspace Z2 of Z possessing finite codimension such that

ImM is a closed subset of Z2 and

dim kerM = codimZ2.

It follows from (i) and (ii) that there exist the continuous projectors P : X → X,
Q : Z → Z such that

ImP = kerM and kerQ = Z2.

And hence we have the decompositions X = kerM ⊕ kerP and Z = ImQ⊕ Z2.
We now let Ω be an open bounded subset of X and let N : X → Z. Then for

each λ ∈ [0, 1], we put
Σλ = {x ∈ Ω : Mx = λNx}.

Definition 2.2. The operator N is said to be M -compact in Ω if there exists
R : Ω× [0, 1]→ kerP being completely continuous such that

(a) the map QN : Ω→ Z is continuous and QN(Ω) is bounded in Z,
(b) R(·, 0) is the zero operator and R(·, λ)|Σλ = (I − P )|Σλ ,
(c) M [P +R(·, λ)] = λ(I −Q)N .

Let J : ImQ → kerM be an isomorphism. We define Sλ : Ω ∩ domM → X,
λ ∈ [0, 1] by

Sλ = P + JQN +R(·, λ).

Then Sλ is a completely continuous mapping.

Remark 2.3. In the Definition 2.1, if M is a linear operator, then M is a Fredholm
operator of index zero by taking Z2 = ImL. On the other hand, we notice that the
assumption on continuity of the operator M (in [8]) is unnecessary.

Moreover, the continuity assumption on Nλ in [8] is not enough to ensure that
Sλ is a completely continuous operator. To overcome this situation, we need the
assumption (a) in Definition 2.2.

Lemma 2.4. Let X and Z be Banach spaces, Ω ⊂ X an nonempty open and
bounded set, M be a quasi-linear operator and N be a M -compact operator in Ω.
Then the abstract equation Mx = λNx is equivalent to the fixed point equation
x = Sλx, for λ ∈ (0, 1] and x ∈ Ω.



4 L. X. TRUONG, L. C. NHAN EJDE-2016/206

Theorem 2.5. Let X and Z be two Banach spaces with the norms ‖ · ‖X and
‖ · ‖Z , respectively, and Ω ⊂ X an nonempty open and bounded set. Suppose that
M : X ∩ domM → Z is a quasi-linear operator and N : Ω → Z is M-compact. In
addition, if the following conditions hold:

(1) Mx 6= λNx for every (x, λ) ∈ (∂Ω ∩ domM)× (0, 1);
(2) deg(JQN ; Ω ∩ kerM, 0) 6= 0, where J : ImQ → kerM is an isomorphism,

and Q : Z → Z is a projector given as above.

Then the equation Mx = Nx has at least one solution in domM ∩ Ω.

The proof of Lemma 2.4 and Theorem 2.5 are similar to the proof of Ge and Ren
[8] with some minor changes. However, for the sake of completeness, we present
the proofs here.

Proof of Lemma 2.4. Let x ∈ Ω and λ ∈ (0, 1] such that Mx = λNx, then we have
Nx ∈ ImM ⊂ Z2 = kerQ, that is, QNx = 0. And therefore, we obtain

JQNx = 0, (2.1)

where J : ImQ→ kerM is an isomorphism.
On the other hand, since N is M -compact in Ω, we deduce from (b) of Definition

2.2 that

R(x, λ) = (I − P )x. (2.2)

It follows from (2.1) and (2.2) that

x = Px+R(x, λ) = Px+R(x, λ) + JQNx.

And hence, x is a fixed point of Sλ in Ω; that is,

x = Sλx, x ∈ Ω, λ ∈ (0, 1].

Conversely, we assume that x ∈ Ω satisfies

x = Sλx, λ ∈ (0, 1]. (2.3)

Since N is M -compact on Ω, we have PR(x, λ) = 0. And therefore, we deduce
from (2.3) and the Definition of operator Sλ that

Px = PSλx = Px+ P (JQNx),

which implies JQNx = 0 and QNx = 0. Hence, from (2.3), we obtain

x = Px+R(x, λ).

From (c) of Definition 2.2, we obtain

Mx = M [Px+R(x, λ)]

= λ(I −Q)Nx
= λNx− λQNx
= λNx.

The proof is complete. �



EJDE-2016/206 P-LAPLACIAN-LIKE DIFFERENTIAL EQUATIONS 5

Proof of Theorem 2.5. By Lemma 2.4, the equation Mx = λNx is equivalent to
the fixed point equation

x = Sλx,

for all x ∈ Ω, λ ∈ (0, 1]. Furthermore, it is obviously that Sλ is a completely
continuous mapping for (x, λ) ∈ Ω× [0, 1] due to the M -compactness of N in Ω.

To apply the Leray-Schauder degree, we need to prove that Sλ does not possess
any fixed point on ∂Ω. In fact, by Lemma 2.4 and condition (1) of Theorem 2.5,
we obtain

x 6= Sλx, λ ∈ (0, 1), x ∈ ∂Ω.

Furthermore, without loss of generality, we can assume that x 6= S1x for x ∈ ∂Ω.
Since if it is not valid, there exists x0 ∈ ∂Ω such that x0 = S1x0. By Lemma 2.4,
we obtain Mx0 = Nx0 for x0 ∈ ∂Ω ⊂ Ω. So the Theorem 2.5 is verified for this
case.

For λ = 0, assumption (2) of Theorem 2.5 implies x 6= S0x for x ∈ ∂Ω. In fact,
if there exists x ∈ ∂Ω satisfying x = S0x, then x = Px + JQNx ∈ kerM . So we
obtain Px = Px + P (JQNx) which implies JQN = 0 for x ∈ ∂Ω ∩ kerM . This
contradicts to the condition (2) of Theorem 2.5. Thus, we gain

x 6= Sλx, λ ∈ [0, 1], x ∈ ∂Ω.

By the invariant property of homotopy and condition (2), one has

deg(I − S1,Ω ∩ domM, 0) = deg(I − S0,Ω ∩ domM, 0)

= deg(I − P − JQN,Ω ∩ domM, 0)

= deg(I − P − JQN,Ω ∩ kerM, 0)

= deg(−JQN,Ω ∩ kerM, 0) 6= 0.

Hence, S1 has a fixed point x0 ∈ Ω, that is, Mx0 = Nx0. This completes the proof
of Theorem 2.5. �

2.2. Abstract equation of the boundary-value problem (1.1)-(1.2). To apply
the Theorem 2.5, we shall rewrite the boundary-value problem (1.1)-(1.2) as an
abstract operator equation in the form of

Mu = Nu,

where M is a quasi-linear operator and N is a M -compact operator.
Let us introduce the spaces X = C1[0, 1] with the norm

‖u‖ = max{‖u‖∞, ‖u′‖∞},

and Z = L1[0, 1] with its usual norm ‖u‖1 =
∫ 1

0
|u(s)|ds. Let B1 : Z → R and

B2 : Z → R defined by

B1(z) =
∫ η

0

z(s)ds, and B2(z) =
∫ 1

0

z(s)ds−
m∑
i=1

αi

∫ ξi

0

z(s)ds. (2.4)

Then it is not difficult to show that B1 and B2 are linearly continuous operators.
We now consider two cases:
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Case 1:
∑m
i=1 αi = α 6= 1. We define the operator M1 : X ∩ domM1 → Z by

M1u := (φ(u′))′, where

domM1 =
{
u ∈ X : φ(u′) ∈ AC[0, 1], u′(0) = u′(η), φ(u′(1)) =

m∑
i=1

αiφ(u′(ξi)),

m∑
i=1

αi = α 6= 1
}
.

Then it is not difficult to see that

kerM1 = {u ∈ X : u(t) = c1, t ∈ [0, 1], c1 ∈ R},
and

ImM1 = {z ∈ Z : B1(z) = 0}. (2.5)

Indeed, let z ∈ ImM1, then there exists u ∈ domM1 such that M1u = z. It follows
that

φ(u′(t)) = φ(u′(0)) +
∫ t

0

z(s)ds, t ∈ [0, 1].

Since u ∈ domM1, we have u′(0) = u′(η), φ(u′(1)) =
∑m
i=1 αiφ(u′(ξi)), and∑m

i=1 αi = α 6= 1. And therefore, we obtain

B1z =
∫ η

0

z(s)ds = 0. (2.6)

Conversely, if z ∈ Z satisfies (2.6), then it is not difficult to see that z = M1u,
where u ∈ domM1 defined by

u(t) = a+
∫ t

0

[
φ−1(φ(b) +

∫ s

0

z(τ)dτ)
]
ds,

with a ∈ R, b satisfying (α − 1)φ(b) = B2(z). This shows that z ∈ ImM1. Thus,
(2.5) is valid.
Case 2:

∑m
i=1 αi = 1. We define the operator M2 : X ∩ domM2 → Z by M2u :=

(φ(u′))′, where

domM2 =
{
u ∈ X : φ(u′) ∈ AC[0, 1], u′(0) = u′(η), φ(u′(1)) =

m∑
i=1

αiφ(u′(ξi)),

m∑
i=1

αi = 1
}
.

By using similar argument, it is not difficult to show that

kerM2 = {u ∈ X : u(t) = c1 + c2t, t ∈ [0, 1], c1, c2 ∈ R}.
and

ImM2 = {z ∈ Z : B1(z) = 0 and B2(z) = 0}. (2.7)
Next, we have the following useful lemmas.

Lemma 2.6. Let αi ∈ R satisfy
∑m
i=1 αi = α 6= 1 and u ∈ domM1. Then we have

φ(‖u′‖∞) ≤ C‖M1u‖1,

where C = 1 + 1
|α−1|

(
1 +

∑m
i=1 |αi|

)
.
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Proof. Let u ∈ domM1. Then we have

φ(u′(ξi)) = φ(u′(0)) +
∫ ξi

0

M1u(s)ds, i = 1, 2, . . . ,m,

φ(u′(1)) = φ(u′(0)) +
∫ 1

0

M1u(s)ds.

Because u holds the condition φ(u′(1)) =
∑m
i=1 αiφ(u′(ξi)) with αi ∈ R satisfying∑m

i=1 αi = α 6= 1, we obtain

(α− 1)φ(u′(0)) = B2(M1u).

It follows from the definition of the operator B2 that

|φ(u′(0))| ≤ 1
|α− 1|

(
1 +

m∑
i=1

|αi|
)
‖M1u‖1.

On the other hand, from the identity

φ(u′(t)) = φ(u′(0)) +
∫ t

0

M1u(s)ds,

we obtain

|φ(u′(t))| ≤ |φ(u′(0))|+
∫ t

0

|M1u(s)|ds

≤
[
1 +

1
|α− 1|

(
1 +

m∑
i=1

|αi|
)]
‖M1u‖1,

for all t ∈ [0, 1]. Since φ is an odd increasing homeomorphism, we obtain φ(‖u′‖∞) ≤
C‖M1u‖1, where C = 1 + 1

|α−1| (1 +
∑m
i=1 |αi|). �

Lemma 2.7. Let αi ∈ R, i = 1, . . . ,m satisfy
∑m
i=1 αi = 1. Then the set

S =
{
n ∈ N : η

(
1−

m∑
i=1

αiξ
n+1
i

)
− ηn+1

(
1−

m∑
i=1

αiξi

)
= 0
}
,

is finite.

Proof. Suppose that S is an infinite set. Then there exists a sequence {nj} such
that nj < nj+1 and

η
(

1−
m∑
i=1

αiξ
nj+1
i

)
− ηnj+1

(
1−

m∑
i=1

αiξi

)
= 0.

Let nj → +∞ with noting that η ∈ (0, 1), ξi ∈ (0, 1), for all i ∈ {1, 2, . . . ,m} and∑m
i=1 αi = 1, we obtain a contradiction η = 0. This completes the proof. �

In the case
∑m
i=1 αi = 1, by setting ϕ1(t) = 1 and ϕ2(t) = tk, t ∈ [0, 1], with

k > max{n : n ∈ S}, then straightforward calculation gives us

B1(ϕ1) = η, B2(ϕ1) = 1−
m∑
i=1

αiξi,

B1(ϕ2) =
1

k + 1
ηk+1, B2(ϕ2) =

1
k + 1

(1−
m∑
i=1

αiξ
k+1
i ).
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It follows from Lemma 2.7 that

κ = B1(ϕ1)B2(ϕ2)− B1(ϕ2)B2(ϕ1) 6= 0.

Next, we define the operators Q1
2 : Z → R and Q2

2 : Z → R as follows

Q1
2(z) = κ−1[B2(ϕ2)B1(z)− B1(ϕ2)B2(z)], (2.8)

Q2
2(z) = κ−1[B1(ϕ1)B2(z)− B2(ϕ1)B1(z)]. (2.9)

Then Q1
2 and Q2

2 are continuous mappings by the continuity of the operators B1,
B2. Furthermore, from the linearity of the operators B1 and B2, it is not difficult
to see that

Q1
2(Q1

2(z)ϕ1) = Q1
2(z), Q1

2(Q2
2(z)ϕ2) = 0,

Q2
2(Q1

2(z)ϕ1) = 0, Q2
2(Q2

2(z)ϕ2) = Q2
2(z).

(2.10)

Lemma 2.8. The mappings Mj : X ∩ domMj → Z, j = 1, 2 are quasi-linear
operators.

Proof. It is clear that kerMj is linearly homeomorphic to Rj , j = 1, 2 and ImMj ⊂
Z. Furthermore, since B1 and B2 are linearly continuous operators, we gain ImMj ,
j = 1, 2 are closed subspaces of Z. We consider two following cases
Case 1: αi ∈ R, i = 1, 2, . . . ,m with

∑m
i=1 αi = α 6= 1. We now define the

operators P1 : X → X and Q1 : Z → Z as follows

P1u(t) = u(0), Q1z(t) =
1
η

∫ η

0

z(s)ds.

Then, it is not difficult to show that P1 and Q1 are linearly continuous projectors
and

ImP1 = kerM1 and kerQ1 = ImM1.

Therefore, we have X = kerM1⊕kerP1 and Z = ImQ1⊕ImM1. Furthermore, it is
obviously that dim kerM1 = dim ImQ1 = 1. Hence, there exists a closed subspace
ImM1 of Z and dim kerM1 = codim ImM1 = 1. ThusM1 is a quasi-linear operator.

Case 2: αi ∈ R, i = 1, 2, . . . ,m with
∑m
i=1 αi = 1. We define the operators

P2 : X → X and Q2 : Z → Z as follows

P2u(t) = u(0) + u′(0)t, Q2z(t) = Q1
2(z)ϕ1(t) +Q2

2(z)ϕ2(t),

where Q1
2(z) and Q2

2(z) are defined by (2.8) and (2.9). Then it is clear that P2 is
a linearly continuous projector satisfying ImP2 = kerM2. Furthermore, it follows
form (2.10) that Q2 is also a linearly continuous projector and kerQ2 = ImM2.
Hence, we have X = kerM2 ⊕ kerP2 and Z = ImQ2 ⊕ ImM2 and we also have
dim kerM2 = dim ImQ2 = 2. As a result, we can find a closed subspace ImM2

of Z satisfying dim kerM2 = codim ImM2 = 2. Thus, M2 is also a quasi-linear
operator. �

In the sequel, we assume that f : [0, 1]×R2 → R satisfies Carathéodory condition;
that is,

(a) f(·, u, v) is measurable for (u, v) ∈ R2,
(b) f(t, ·, ·) is continuous on R2 for almost every where t ∈ [0, 1],
(c) For each compact set K ⊂ R2, the function mK(t) = sup{|f(t, u, v)| :

(u, v) ∈ K} defined on [0, 1] satisfies mK ∈ L1[0, 1].
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With each function f : [0, 1]×R2 → R satisfying conditions above, we associate
its Nemytskii operator N : X → Z defined by

N(u)(t) = f(t, u(t), u′(t)).

Then problem (1.1)-(1.2) can be written as the operator equation

Mju = Nu,

where j = 1, 2 provided that
∑m
i=1 αi 6= 1 and

∑m
i=1 αi = 1, respectively.

By using the assumption on f and dominated convergence theorem, it is not
difficult to see that N is continuous mapping and takes bounded sets into bounded
sets.

Next, we define the operator R1 : X × [0, 1]→ kerP1 as follows

R1(u, λ) =
∫ t

0

φ−1
[
c+

∫ s

0

λ(N(u)(τ)−Q1 ◦N(u)(τ))dτ
]
ds,

where c is a constant depending on (u, λ) and satisfying

(α− 1)c = λB2 ◦N(u)− λB2 ◦Q1 ◦N(u).

And define the operator R2 : X × [0, 1]→ kerP2 as follows

R2(u, λ) =
∫ t

0

φ−1
[ ∫ s

0

λ(N(u)(τ)−
2∑
i=1

Qi2 ◦N(u)ϕi(τ))dτ + φ(u′(0))
]
ds

− u′(0)t.

Then, it is not difficult to show that R1(u, λ) ∈ C1[0, 1], R2(u, λ) ∈ C1[0, 1] and
R1(u, λ)(0) = 0 and R2(u, λ)(0) = R2(u, λ)′(0) = 0 hold by using φ−1(0) = 0.
Hence R1 and R2 are well defined. Furthermore, by the continuity of operators
composing R1, R2, we deduce that R1 and R2 are continuous.

Lemma 2.9. Rj : X×[0, 1]→ kerPj, j = 1, 2 are completely continuous operators.

Proof. We first prove that R1 is completely continuous operator. By the arguments
above, it suffices to prove that R1 takes bounded sets into relatively compact sets.
Let Ω ⊂ X be a nonempty and bounded set. Then there exists a positive constant
r such that ‖u‖ ≤ r. From the hypotheses of the function f we deduce that there
exists a positive function mr ∈ Z such that, for all u ∈ Ω,

|Nu(t)| = |f(t, u(t), u′(t))| ≤ mr(t), ∀t ∈ [0, 1]. (2.11)

Let

g(u)(t) = c+
∫ t

0

λ[N(u)(s)−Q1 ◦N(u)(s)]ds, t ∈ [0, 1],

where c is a constant depending on (u, λ) and satisfying

(α− 1)c = λB2 ◦N(u)− λB2 ◦Q1 ◦N(u).

It follows from (2.11) and the definition of the operator B2 that

|g(u)(t)| ≤
(
1 +

1
η

)[
1 +

1
|α− 1|

(1 +
m∑
i=1

|αi|)
]
‖mr‖1 := G, (2.12)

for all t ∈ [0, 1], u ∈ Ω. Hence, we can find a positive constant C1 such that

|R1(u, λ)(t)| ≤ C1, and |R1(u, λ)′(t)| ≤ C1, ∀t ∈ [0, 1], u ∈ Ω.



10 L. X. TRUONG, L. C. NHAN EJDE-2016/206

Thus, R1(Ω × [0, 1]) is bounded in X. On the other hand, for any t1, t2 ∈ [0, 1],
t1 < t2, u ∈ Ω, λ ∈ [0, 1], we infer from (2.12), the increasing property of φ−1, and
the definition of the operator R1 that

|R1(u, λ)(t1)−R1(u, λ)(t2)| ≤
∫ t2

t1

|φ−1(G)|ds,

which implies {R1(u, λ) : u ∈ Ω} are equicontinuous on [0, 1]. Further, we also have

|R1(u, λ)′(t1)−R1(u, λ)′(t2)| ≤ |φ−1 ◦ g(u)(t1)− φ−1 ◦ g(u)(t2)|.

For t1, t2 ∈ [0, 1], t1 < t2, u ∈ Ω, we have

|g(u)(t1)− g(u)(t2)| = |
∫ t2

t1

λ[Nf (u)(s)−Q1 ◦Nf (u)(s)]ds|

≤
∫ t2

t1

(
|mr(t)|+

1
η
‖mr‖1

)
ds.

It follows from mr ∈ L1[0, 1] that {g(u) : u ∈ Ω} are equicontinuous on [0, 1]. Since
φ−1 is uniformly continuous on [−G,G], we obtain that {R1(u, λ)′ : u ∈ Ω} are
equicontinuous on [0, 1]. Thus, R1 is a completely continuous operator by Arzela-
Ascoli’s theorem. By similar arguments, we can be able to prove that R2 is a
completely continuous operator. �

Lemma 2.10. Let Ω be a nonempty, open and bounded subset of X. Then N is
Mj-compact in Ω, j = 1, 2.

Proof. Since N is a continuous operator and takes the bounded sets into bounded
sets, so do QiN , i = 1, 2. By Lemma 2.9, the operators Rj : Ω × [0, 1] → kerPj ,
j = 1, 2 are completely continuous. It follows from the definitions of Rj that
Rj(u, 0) = 0 for all u ∈ X, j = 1, 2. Let u ∈

∑1
λ := {u ∈ Ω : M1u = λNu}. Then

we have u ∈ domM1, λNu ∈ ImM1 = kerQ1 and (φ(u′))′ = λN(u). It follows
that

R1(u, λ)(t) =
∫ t

0

φ−1
[
c+

∫ s

0

(φ(u′(τ)))′dτ
]
ds

=
∫ t

0

φ−1[c+ φ(u′(s))− φ(u′(0))]ds.

On the other hand, since u ∈ domM1, we have φ(u′(1)) =
∑m
i=1 αiφ(u′(ξi)) and

therefore c satisfies

(α− 1)c = λB2 ◦N(u)

=
∫ 1

0

[φ(u′(s))]′ds−
m∑
i=1

αi

∫ ξi

0

[φ(u′(s))]′ds

= (α− 1)φ(u′(0)).

Therefore, we obtain that

R1(u, λ)(t) =
∫ t

0

φ−1[c+ φ(u′(s))− φ(u′(0))]ds

= u(t)− u(0)

= (I − P1)u(t).
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Further, for u ∈ X, we have

M1[P1u+R1(u, λ)](t) = λN(u)(t)− λQ1 ◦N(u)(t) = λ(I −Q1)Nu(t).

Thus, by Definition 2.2, N is M1-compact in Ω. Similarly, let u ∈
∑2
λ := {u ∈ Ω :

M2u = λNu}. Then we have λNu ∈ ImM2 = kerQ2 and (φ(u′))′ = λN(u). It
follows that

R2(u, λ)(t) =
∫ t

0

φ−1[
∫ s

0

(φ(u′(τ)))′dτ + φ(u′(0))]ds− u′(0)t

= u(t)− u(0)− u′(0)t

= (I − P2)u(t).

And, for u ∈ X, we have

M2[P2u+R2(u, λ)](t) = λN(u)(t)− λ
2∑
i=1

Qi2 ◦N(u)ϕi(t) = λ(I −Q2)Nu(t).

Thus, N is also M2-compact in Ω. This completes the proof. �

3. Existenceof solutions

In this section we use Theorem 2.5 to prove the existence of solutions for problem
(1.1)-(1.2) in both cases

∑m
i=1 αi = α 6= 1 and

∑m
i=1 αi = 1.

We first prove the existence of solutions in the case
∑m
i=1 αi = α 6= 1. For this

purpose, we assume that the following conditions hold:
(A1) there exists a positive constant A such that for each u ∈ C1[0, 1] with

mint∈[0,1] |u(t)| > A, we have∫ η

0

f(s, u(s), u′(s))ds 6= 0;

(A2) there exist non-negative functions a, b, c ∈ Z satisfying ‖a‖1α(A) + ‖b‖1 <
1
C , with C is constant defined by Lemma 2.6 such that

|f(t, u, v)| ≤ a(t)φ(|u|) + b(t)φ(|v|) + c(t),

for a.e. t ∈ [0, 1] and for all u, v ∈ R;
(A3) there exists a constant ρ1 > 0 such that for all c1 ∈ R with |c1| > ρ1, then

either

c1

∫ η

0

f(s, c1, 0)ds < 0, (3.1)

or

c1

∫ η

0

f(s, c1, 0)ds > 0. (3.2)

Then we have the following lemmas.

Lemma 3.1. Let Ω1
1 = {u ∈ domM1 : M1u = λNu, λ ∈ (0, 1)}. Then Ω1

1 is
bounded in X.

Proof. Let u ∈ Ω1
1. Then there exists λ ∈ (0, 1) such that λQ1Nu = 0. This implies

Q1Nu(t) = 0 for all t ∈ [0, 1], that is,∫ η

0

f(s, u(s), u′(s))ds = 0.
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It follows from the assumption (A1) that there exists t0 ∈ [0, 1] such that

|u(t0)| ≤ A.

On the other hand, since u(t) = u(t0) +
∫ t
t0
u′(s)ds, we obtain

|u(t)| ≤ A+ ‖u′‖∞, ∀t ∈ [0, 1]. (3.3)

It follows from (3.3), the increasing property of φ, the assumption (A1) and Lemma
2.6 that

φ(‖u′‖∞) ≤ C‖M1u‖1 ≤ C‖Nu‖1
≤ C[‖a‖1φ(‖u‖∞) + ‖b‖1φ(‖u′‖∞) + ‖c‖1]

≤ C[‖a‖1φ(A+ ‖u′‖∞) + ‖b‖1φ(‖u′‖∞) + ‖c‖1].

(3.4)

Furthermore, because ‖a‖1α(A)+‖b‖1 < 1
C , we deduce from (3.4) that there exists

a positive constant K1 such that

‖u′‖∞ ≤ K1. (3.5)

Hence, it follows from (3.3) and (3.5) that Ω1
1 is bounded in X. This completes the

proof. �

Lemma 3.2. The set Ω1
2 = {u ∈ kerM1 : Nu ∈ ImM1} is a bounded subset in X.

Proof. Let u ∈ Ω2
2. Since u ∈ kerM1, we can assume that u(t) = c1, where c1 ∈ R.

Further it is clear that Q1Nu = 0 because of Nu ∈ ImM1 = kerQ1. By the same
arguments as in the proof of Lemma 3.1, we can find a positive constant k1 such
that ‖u‖ ≤ k1. Thus, Ω2 is bounded in X. �

Lemma 3.3. Assume that Ω1
3− = {u ∈ kerM1 : −λu + (1 − λ)J1Q1Nu = 0, λ ∈

[0, 1]} and

Ω1
3+ = {u ∈ kerM1 : λu+ (1− λ)J1Q1Nu = 0, λ ∈ [0, 1]},

where J1 : ImQ1 → kerM1 is the linear isomorphism defined by J−1
1 (c1) = c1,

c1 ∈ R. Then Ω1
3− and Ω1

3+ are bounded subsets in X provided that (3.1) and (3.2),
respectively.

Proof. First we assume that (3.1) holds. Let u ∈ Ω−3 . Then, since u ∈ kerM1,
there exists c1 ∈ R such that u(t) = c1, for all t ∈ [0, 1]. Further, we have

λJ−1
1 (c1) = (1− λ)Q1N(c1), ∀t ∈ [0, 1],

which is equivalent to

λc1 = (1− λ)
1
η

∫ η

0

f(s, c1, 0)ds.

If λ = 1 then c1 = 0. And therefore, Ω−3 is bounded. On the other hand, if λ ∈ [0, 1)
and |c1| > ρ1 then, by assumption (3.1), we obtain a contradiction

0 ≤ ηλc21 = (1− λ)c1
∫ η

0

f(s, c1, 0)ds < 0.

Therefore, ‖u‖ = |c1| ≤ ρ1. Thus, Ω1
3− is bounded in X. If (3.2) holds then by

using the same arguments as above we are able to prove that Ω1
3+ is also bounded

in X. �



EJDE-2016/206 P-LAPLACIAN-LIKE DIFFERENTIAL EQUATIONS 13

Theorem 3.4. We assume that the assumptions (A1)-(A3) hold and αi ∈ R,
i = 1, 2, . . . ,m with

∑m
i=1 α1 = α 6= 1. Then problem (1.1)-(1.2) has at least one

solution in X.

Proof. We shall prove that all conditions of the Theorem 2.5 are satisfied, where Ω1

is an open and bounded such that ∪3
i=1Ω1

i ⊂ Ω1. Then we have M1 is a quasi-linear
operator by Lemma 2.8 and N is M1-compact on Ω1 by Lemma 2.10. It is clear
that the condition (1) of Theorem 2.5 hold by using Lemma 3.1. And therefore, it
remains to verify that the second condition of Theorem 2.5 holds. For this purpose,
we apply the degree property of invariance under a homotopy. Let us define

H1(u, λ) = ±λu+ (1− λ)J1Q1Nu.

By Lemma 3.2 and Lemma 3.3, we obtain that H1 is a homotopy and H1(u, λ) 6= 0
for all (u, λ) ∈ (kerM1 ∩ ∂Ω1)× [0, 1]. So

deg(J1Q1N ; Ω1 ∩ kerM1, 0) = deg(H1(·, 0); Ω1 ∩ kerM1, 0)

= deg(H1(·, 1); Ω1 ∩ kerM1, 0)

= deg(±Id; Ω1 ∩ kerM1, 0) = ±1 6= 0.

Thus, Theorem 3.4 is proved. �

Next, we establish the existence result for (1.1)-(1.2) in the case
∑m
i=1 αi = 1,

with αi ∈ R, i = 1, 2, . . . ,m. To gain this, we assume the following conditions:
(A4) there exist a positive constant B such that for each u ∈ C1[0, 1] satisfying

|u(t)|+ |u′(t)| > B, for all t ∈ [0, 1], we have Q2Nu(t) 6= 0;
(A5) there exist positive functions a, b, c ∈ Z with ‖a‖1α(B) + ‖b‖1 < 1 such

that
|f(t, u, v)| ≤ a(t)φ(|u|) + b(t)φ(|v|) + c(t),

for a.e. t ∈ [0, 1] and for all u, v ∈ R.
(A6) there exists a positive constant ρ2 such that if c1, c2 ∈ R with

∑2
i=1 |ci| >

ρ2, then there exists i ∈ {1, 2} such that either

ciQ
i
2N(c1 + c2t) < 0 (3.6)

or
ciQ

i
2N(c1 + c2t) > 0. (3.7)

Then we have the following lemmas.

Lemma 3.5. Let Ω2
1 = {u ∈ domM2 : M2u = λNu, λ ∈ (0, 1)}. Then Ω2

1 is
bounded in X.

Proof. Let u ∈ Ω2
1. Then there exists λ ∈ (0, 1) such that λQ2Nu = 0. This implies

Q2Nu(t) = 0 for all t ∈ [0, 1]. By using the assumption (A4), there exist t0 ∈ [0, 1]
such that

|u(t0)|+ |u′(t0)| ≤ B.
Then, from φ begin increasing homeomorphism and the identity

φ(u′(t)) = φ(u′(t0)) +
∫ t

t0

M2u(s)ds,

we infer that

φ(|u′(t)|) ≤ φ(B) + ‖M2u‖1 ≤ φ(B) + ‖Nu‖1, ∀t ∈ [0, 1]. (3.8)
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On the other hand, since u(t) = u(t0) +
∫ t
t0
u′(s)ds, we obtain

|u(t)| ≤ B + ‖u′‖∞, ∀t ∈ [0, 1]. (3.9)

Combining (3.8), (3.9) and the assumption (A5), it follows that

φ(|u′(t)|) ≤ φ(B) + ‖a‖1φ(‖u‖∞) + ‖b‖1φ(‖u′‖∞) + ‖c‖1
≤ ‖a‖1φ(B + ‖u′‖∞) + ‖b‖1φ(‖u′‖∞) + ‖c‖1 + φ(B), ∀t ∈ [0, 1].

This implies

φ(‖u′‖∞) ≤ ‖a‖1φ(B + ‖u′‖∞) + ‖b‖1φ(‖u′‖∞) + ‖c‖1 + φ(B). (3.10)

Because ‖a‖1α(B) + ‖b‖1 < 1, we deduce from (3.10) that there exists a positive
constant K2 such that

‖u′‖∞ ≤ K2. (3.11)

Thus, it follows from (3.9) and (3.11) that Ω2
1 is bounded in X. �

Lemma 3.6. The set Ω2
2 = {u ∈ kerM2 : Nu ∈ ImM2} is a bounded subset in X.

Proof. Let u ∈ Ω2
2. Since u ∈ kerM2 we can assume that u(t) = c1 + c2t, where

c1, c2 ∈ R. Further it is clear that Q2Nu = 0 because of Nu ∈ ImM2. By the same
arguments as in the proof of Lemma 3.5, we can find a positive constant k2 such
that ‖u‖ ≤ k2. Thus, Ω2

2 is bounded in X. �

Lemma 3.7. Assume that Ω2
3− = {u ∈ kerM2 : −λu + (1 − λ)J2Q2Nu = 0, λ ∈

[0, 1]} and

Ω2
3+ = {u ∈ kerM2 : λu+ (1− λ)J2Q2Nu = 0, λ ∈ [0, 1]},

where J2 : ImQ2 → kerM2 is the linear isomorphism which is defined by

J−1(c1 + c2t) = c1ϕ1(t) + c2ϕ2(t), c1, c2 ∈ R,

where (ϕ1(t), ϕ2(t)) = (1, tk), with k defined in the previous arguments. Then
Ω2

3− and Ω2
3+ are bounded subsets in X provided that ciQiN(c1 + c2t) are negative

for some i ∈ {1, 2} and that ciQiN(c1 + c2t) are positive for some i ∈ {1, 2},
respectively.

Proof. First we assume that (3.6) holds. Let u ∈ Ω2
3− . Then, since u ∈ kerM2,

there exists c1, c2 ∈ R such that u(t) = c1 + c2t, for all t ∈ [0, 1]. Further, we have

λJ−1(c1 + c2t) = (1− λ)Q2N(c1 + c2t), ∀t ∈ [0, 1],

which is equivalent to

λ

2∑
i=1

ciϕi(t) = (1− λ)
2∑
i=1

Qi2N(c1 + c2t)ϕi(t), ∀t ∈ [0, 1].

Hence, from the independence of system of vectors {ϕ1, ϕ2} in Z, we deduce that

λci = (1− λ)QiN(c1 + c2t), ∀i ∈ {1, 2}.

If λ = 1, then ci = 0 for all i ∈ {1, 2}. And therefore Ω2
3− is bounded. On the other

hand, if λ ∈ [0, 1) and
∑2
i=1 |ci| > ρ2 then, by the assumption (3.6), we obtain a

contradiction

0 ≤ λc2i = (1− λ)ciQiN(c1 + c2t) < 0, ∀i ∈ {1, 2}.
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Therefore, we have ‖u‖ = max{‖u‖∞, ‖u′‖∞} ≤ ρ2. Thus, Ω2
3− is bounded in X.

If (A6)− (3.7) holds then by using the same arguments as above we can be able to
prove that Ω2

3+ is also bounded in X. �

Theorem 3.8. We assume that the assumptions (A4)–(A6) hold and αi ∈ R,
i = 1, 2, . . . ,m with

∑m
i=1 αi = 1. Then (1.1)-(1.2) has at least one solution in X.

Proof. We shall verify all conditions of the Theorem 2.5 are satisfied, where Ω2 is
an open and bounded such that ∪3

i=1Ω2
i ⊂ Ω2. Then we have M2 is a quasi-linear

operator by Lemma 2.8 and N is M2-compact on Ω2 by Lemma 2.10. It is clear
that condition (1) of Theorem 2.5 holds by using Lemma 3.5. And therefore, it
remains to verify that the second condition of Theorem 2.5 holds. To gain this, we
apply the degree property of invariance under a homotopy. Let us define

H2(u, λ) = ±λu+ (1− λ)J2Q2Nu.

By Lemma 3.6 and Lemma 3.7, we obtain that H2 is a homotopy and H2(u, λ) 6= 0
for all (u, λ) ∈ (kerM2 ∩ ∂Ω2)× [0, 1]. So

deg(J2Q2N ; Ω2 ∩ kerM2, 0) = deg(H2(·, 0); Ω2 ∩ kerM2, 0)

= deg(H2(·, 1); Ω2 ∩ kerM2, 0)

= deg(±Id; Ω2 ∩ kerM2, 0) = ±1 6= 0.

Thus, Theorem 3.8 is proved. �

We now give an example to illustrate our results.

Example. Consider the one dimension p-Laplacian differential equation(
|u′(t)|p−2u′(t)

)′ = f(t, u(t), u′(t)), t ∈ (0, 1), (3.12)

subjected to the multi-point nonlinear Neumann type boundary condition

u′(0) = u′(
1
2

),

|u′(1)|p−2u′(1) = −2
3
|u′(1

3
)|p−2u′(

1
3

) +
1
2
|u′(2

3
)|p−2u′(

2
3

),
(3.13)

where f(t, u, v) = 1
27 (1 + t)|u|p−1 + t

11 sin(|v|p−2v) + t2 + 1 and p > 1.
By setting φ(t) = ϕp(t) = |t|p−2t, p > 1, η = 1

2 , α1 = − 2
3 , α2 = 1

2 , ξ1 = 1
3

and ξ2 = 2
3 . Then the problem (3.12)-(3.13) is a particular case of the problem

(1.1)-(1.2). Because of α =
∑2
i=1 αi = − 1

6 6= 1, to show that (3.12)-(3.13) has one
solution, it suffices to verify the conditions of Theorem 3.4.

First, we note that f(t, u, v) > 0 provided that |u| > ϕq(54), with q > 1,
1
p + 1

q = 1. Hence, choosing A = ϕq(54) > 0, then we have∫ 1/2

0

f(s, u(s), u′(s))ds 6= 0

as mint∈[0,1] |u(t)| > A. So we obtain the condition (A1).
Next, by the definition of f , we obtain that f : [0, 1] × R2 → R satisfies

Carathéodory condition and

|f(t, u, v)| ≤ a(t)φ(|u|) + b(t)φ(|v|) + c(t),
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for a.e. t ∈ [0, 1] and for all u, v ∈ R, where

a(t) =
1
27

(1 + t), b(t) =
t

11
, c(t) = 1 + t2.

It is not difficult to calculate

C = 1 +
1

|α− 1|
(1 +

2∑
i=1

|αi|) =
20
7

and to see a, b, c ∈ L1[0, 1] satisfying C(‖a‖1α(A) + ‖b‖1) = C(‖a‖1 + ‖b‖1) =
20
7 ( 1

18 + 1
22 ) < 1. Therefore, the condition (A2) holds.

Finally, it is not difficult to see that f(t, c, 0) > 0 and f(t, c, 0) < 0 provided that
c > ϕq(54) and c < ϕq(−54), corresponding. Therefore, by choosing ρ1 = ϕq(54),
we obtain

c

∫ 1/2

0

f(s, c, 0)ds > 0.

Hence, the condition (A3) holds. Thus the problem (3.12)-(3.13) has one solution.
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