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WELL-POSEDNESS OF NON-AUTONOMOUS DEGENERATE
PARABOLIC EQUATIONS UNDER SINGULAR

PERTURBATIONS

JINGYU WANG, YEJUAN WANG, DUN ZHAO

Abstract. This article concerns the asymptotic behavior of the following non-
autonomous degenerate parabolic equation with singular perturbations defined

on a bounded domain in Rn,

∂u

∂t
+ λu− div(|∇u|p−2∇u)− ε div

“˛̨
∇
∂u

∂t

˛̨p−2∇
∂u

∂t

”
+ f(x, t, u) = g(x, t),

where λ is a positive constant, p > 2 and ε ∈ (0, 1]. The well-posedness and
upper semicontinuity of pullback attractors are established for the problem

without the uniqueness of solutions under singular perturbations.

1. Introduction

Let Ω be a bounded domain in Rn with sufficiently regular boundary ∂Ω. Con-
sider the following non-autonomous degenerate parabolic equation under singular
perturbations defined in Ω for t > τ with τ ∈ R,
∂u

∂t
+ λu− div(|∇u|p−2∇u)− εdiv

(
|∇∂u

∂t
|p−2∇∂u

∂t

)
+ f(x, t, u) = g(x, t), (1.1)

with boundary condition

u(x, t) = 0, x ∈ ∂Ω and t > τ, (1.2)

and initial condition
u(x, τ) = uτ (x), x ∈ Ω, (1.3)

where λ > 0 and p > 2 are constants and ε ∈ (0, 1].
Nonclassical diffusion equations have been used to model physical phenomena,

for instance non-Newtonian flows, soil mechanics, heat conduction, etc (see, e.g.,
[1, 12, 17]). In the case of p = 2, the upper semicontinuity of global attractors
of (1.1)–(1.3) has been studied by several authors in [2, 3, 20, 21, 24] and the
references therein as well as [5] for some interesting results on the attractors for
delay systems. The stability result of pullback attractors for multi-valued processes
was established in [23], and the upper semicontinuity of pullback attractors for
nonclassical diffusion equations without the uniqueness of solutions under singular
perturbations was addressed.
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Recently, the existence and upper semicontinuity of pullback attractors have
been proved in [15] for multi-valued processes generated by non-autonomous lat-
tice nonclassical diffusion delay systems, in particular, the operator (−1)p4p =
(−1)p4◦ · · · ◦4, p times, has been considered instead of −4, where p is any posi-
tive integer and 4 denotes the discrete one-dimensional Laplace operator. For the
continuous case, the p-Laplace operator was defined as

∆pu = div(|∇u|p−2∇u)

= |∇u|p−4
{
|∇u|24u+ (p− 2)

n∑
i,j=1

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj

}
.

The well-posedness and continuity of attractors for p-laplacian problems have been
investigated in [14] when the diffusion increases to infinity. For the non-autonomous
equation, the existence of uniform attractors and pullback attractors of non-au-
tonomous degenerate parabolic equations have been proved in [7, 19]. The existence
of random attractors for p-Laplace equations driven by deterministic and stochas-
tic forcing was studied in [18], in addition, the upper semicontinuity of random
attractors was presented as the intensity of noise approaches zero.

In this article, we assume that the nonlinearity f ∈ C(Ω × R × R; R) and the
external force g satisfy the following conditions:

(H1) the function F (x, t, s) =
∫ s

0
f(x, t, ω)dω satisfies

F (x, t, s) > γ1|s|q − ϕ1(x), (1.4)

|F ′t (x, t, s)| 6 α0F (x, t, s) + ϕ2(x, t), (1.5)

where γ1 > 0 and q > 2 are constants, α0 is sufficiently small, the functions
ϕ1 ∈ L1(Ω) and ϕ2 ∈ L1

loc(R;L1(Ω)) satisfies∫ t

−∞

∫
Ω

eαr|ϕ2(x, r)| dx dt <∞, ∀t ∈ R;

(H2) there exist positive constants γ2, γ3 and functions ϕ3 ∈ L1
loc(R;L1(Ω)),

ϕ4 ∈ Lq1(Ω) such that

f(x, t, s)s > γ2F (x, t, s)− ϕ3(x, t), (1.6)

|f(x, t, s)| 6 γ3|s|q−1 + ϕ4(x), (1.7)∫ t

−∞

∫
Ω

eαr|ϕ3(x, r)| dx dt <∞, ∀t ∈ R,

where 1
q + 1

q1
= 1;

(H3) the external force g ∈ L2
loc(R;L2(Ω)) satisfies∫ t

−∞

∫
Ω

eαr|g(x, r)|2 dx dt <∞, ∀t ∈ R, (1.8)

where α is a fixed number given in Lemma 3.2.
The main goal of this paper is to establish the well-posedness and upper semicon-

tinuity of pullback attractors for (1.1)–(1.3) under singular perturbations. Because
of the lack of the uniqueness of solutions, in order to obtain the pullback attrac-
tor we use the general theory of attractors for multi-valued processes developed in
[4, 22]. Comparing with the case of p = 2 the main new difficulty which appears is
to deal with the forth term in (1.1).
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This article is organized as follows. In Section 2, we recall basic concepts and
some necessary results concerning multi-valued processes and pullback attractors.
Section 3 is devoted to the asymptotic behavior of (1.1)–(1.3). The well-posedness
and upper semicontinuity of pullback attractors for (1.1)–(1.3) under singular per-
turbations are given in Section 4.

The following notation will be used throughout the paper. Let H = L2(Ω) with
the norm ‖ · ‖2 and inner product (·, ·), and let V = W 1,p

0 (Ω). The norm of Lp(Ω)
is written as ‖ · ‖p. The letter C is a generic positive constant which may change
their values from line to line or even in the same line.

2. Preliminaries

Let X be a Banach space with norm ‖ · ‖X , and let 2X be the collection of all
subsets of X. Denote by H∗X(·, ·) the Hausdorff semidistance between two nonempty
subsets of a Banach space (X, ‖ · ‖X), which are defined by

H∗X(A, B) = sup
a∈A

distX(a,B),

where distX(a, B) = infb∈B ‖a − b‖X . Finally, denote by N (A, r) the open neigh-
borhood {y ∈ X : distX(y,A) < r} of radius r > 0 of a subset A of a Banach space
X.

Definition 2.1. A family of mappings U(t, τ) : X → 2X , t > τ, τ ∈ R, is called to
be a multi-valued process (MVP in short) if it satisfies:

(1) U(τ, τ)x = {x} for all τ ∈ R, ;x ∈ X;
(2) U(t, s)U(s, τ)x = U(t, τ)x for all t > s > τ , τ ∈ R, x ∈ X.

Let D be a nonempty class of parameterized sets D = {D(t)}t∈R ⊂ 2X .

Definition 2.2. A collection D of some families of nonempty subsets of X is said
to be inclusion-closed if for each D ∈ D ,

{D̃(t) : D̃(t) is a nonempty subset of D(t),∀t ∈ R} (2.1)

also belongs to D , see, e.g., [9].

Definition 2.3. Let {U(t, τ)} be a multi-valued process on X.
(1) Q = {Q(t)}t∈R ∈ D is called a D-pullback absorbing set for {U(t, τ)} if for

any B = {B(t)}t∈R ∈ D and each t ∈ R, there exists a t0 = t0(B, t) ∈ R+ such that

U(t, t− s)B(t− s) ⊂ Q(t), ∀s > t0.

(2) {U(t, τ)} is said to be D-pullback asymptotically upper-semicompact in X
with respect to B if for any fixed t ∈ R, any sequence yn ∈ U(t, t − sn)xn has a
convergent subsequence in X whenever sn → +∞ (n → ∞), xn ∈ B(t − sn) with
B = {B(t)}t∈R ∈ D .

Definition 2.4. A family of nonempty compact subsets A = {A(t)}t∈R ∈ D is
called to be a D-pullback attractor for the multi-valued process {U(t, τ)}, if it
satisfies

(1) A = {A(t)}t∈R is invariant, i.e.,

U(t, τ)A(τ) = A(t), ∀t > τ, τ ∈ R;
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(2) A attracts every member of D ; that is, for every B = {B(t)}t∈R ∈ D and
any fixed t ∈ R,

lim
s→+∞

H∗X(U(t, t− s)B(t− s), A(t)) = 0.

Definition 2.5. A mapping ψ : R → X is called a complete orbit of the multi-
valued process {U(t, τ)} if for every τ ∈ R and t > τ , the following holds:

ψ(t) ∈ U(t, τ)ψ(τ).

If, in addition, there exists D = {D(t)}t∈R ∈ D such that ψ(t) belongs to D(t) for
every t ∈ R, then ψ is called a D-complete orbit of {U(t, τ)}.

The following existence result of pullback attractors for multi-valued processes
can be found in [4, 22].

Theorem 2.6. Let D be a inclusion-closed collection of some families of nonempty
subsets of X and {U(t, τ)} be a multi-valued process on X. Also U has closed
values and let U(t, τ)x is norm-to-weak upper-semicontinuous in x for fixed t >
τ , τ ∈ R (i.e., if xn → x in X, then for any yn ∈ U(t, τ)xn, there exists a
y ∈ U(t, τ)x such that yn ⇀ y (weak convergence)). Suppose that {U(t, τ)} is
D-pullback asymptotically upper-semicompact in X and {U(t, τ)} has a D-pullback
absorbing set Q = {Q(t)}t∈R in D . Then, the D-pullback attractor A = {A(t)}t∈R
is unique and is given by, for each t ∈ R,

A(t) = ∩T>0∪s>TU(t, t− s)Q(t− s)
= {ψ(t) : ψ is a D-complete orbit of {U(t, τ)}}.

(2.2)

Let X be a reflexive and separable Banach space, and let Xw be the space X
endowed with the weak topology. Since bounded closed and convex subsets in the
strong topology are compact in the weak topology (due to Mazur’s lemma), the
D-pullback absorbing set Q = {Q(t)}t∈R obtained through ultimately boundedness
is compact in Xw. Then in the same way as in Theorem 2.6 we have the following
result needed to multi-valued processes without further compactness assumptions.

Theorem 2.7. Let D be a inclusion-closed collection of some families of nonempty
subsets of X and {U(t, τ)} be a multi-valued process on X. Also for any fixed t > τ ,
τ ∈ R, U has weakly closed values and U(t, τ) is weakly upper-semicontinuous in
bounded sets. Assume that {U(t, τ)} has a D-pullback absorbing set Q = {Q(t)}t∈R
in D , and for all t ∈ R, Q(t) is a weakly closed nonempty subset of X. Then
{U(t, τ)} has a unique D-pullback attractor Aw = {Aw(t)}t∈R with weakly compact
component sets determined by

Aw(t) = ∩T>0∪s>TU(t, t− s)Q(t− s)
w

for each t ∈ R. (2.3)

Note that the component subsets Aw(t) of the pullback attractor Aw are weakly
compact in X, hence they are closed and bounded in the strong norm topology.

3. Existence of solutions and their long time behavior

In this section, we firstly establish the existence of solutions for (1.1)–(1.3), and
then give uniform estimates of solutions which are useful for obtaining the existence
of pullback attractors.
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Theorem 3.1. Suppose (H1), (H2) hold and let g ∈ L2
loc(R;L2(Ω)). Then for any

fixed ε ∈ (0, 1], every τ ∈ R and any uτ ∈ V ∩ Lq(Ω), there exists a solution u(t)
to problem (1.1)–(1.3), and u(t) satisfies

u ∈ C([τ, T ];V ) ∩ L∞(τ, T ;Lq(Ω)), ∀T > τ.

Proof. We divide the proof into two steps.

Step 1. Multiplying (1.1) by u+ ∂u
∂t and then integrating on Ω, we obtain

d

dt

(
(
1
2

+
λ

2
)‖u‖22 +

1
p
‖∇u‖pp

)
+ ‖∂u

∂t
‖22 + λ‖u‖22 + ‖∇u‖pp + ε‖∇∂u

∂t
‖pp

+ ε

∫
Ω

|∇∂u
∂t
|p−2∇∂u

∂t
∇udx+

∫
Ω

f(x, t, u)(u+
∂u

∂t
)dx

=
∫

Ω

g(x, t)(u+
∂u

∂t
)dx.

(3.1)

It follows from (1.5) and (1.6) that∫
Ω

f(x, t, u)(u+
∂u

∂t
)dx

>
d

dt

∫
Ω

F (x, t, u)dx+ (γ2 − α0)
∫

Ω

F (x, t, u)dx− ‖ϕ2(t)‖1 − ‖ϕ3(t)‖1.
(3.2)

By (3.2) and Young’s inequality, we deduce from (3.1) that

d

dt
((

1
2

+
λ

2
)‖u‖22 +

1
p
‖∇u‖pp +

∫
Ω

F (x, t, u)dx) +
λ

2
‖u‖22

+ (1− ε

2
)‖∇u‖pp +

ε

2
‖∇∂u

∂t
‖pp + (γ2 − α0)

∫
Ω

F (x, t, u)dx+
1
2
‖∂u
∂t
‖22

6 C‖g(t)‖22 + ‖ϕ2(t)‖1 + ‖ϕ3(t)‖1.

(3.3)

We choose α0 sufficiently small such that α0 < γ2. Using (1.4), we have

d

dt

(
(
1
2

+
λ

2
)‖u‖22 +

1
p
‖∇u‖pp +

∫
Ω

F (x, t, u)dx
)

+
λ

2
‖u‖22

+ (1− ε

2
)‖∇u‖pp +

1
2
‖∂u
∂t
‖22 + γ1(γ2 − α0)‖u‖qq +

ε

2
‖∇∂u

∂t
‖pp

6 (γ2 − α0)‖ϕ1‖1 + ‖ϕ2(t)‖1 + ‖ϕ3(t)‖1 + C‖g(t)‖22.

(3.4)

By (1.4), (1.7) and Young’ inequality, it yields∫
Ω

F (x, t, u(t))dx > γ1‖u(t)‖qq − ‖ϕ1‖1, (3.5)

and ∫
Ω

F (x, τ, u(τ))dx =
∫

Ω

∫ u(τ)

0

f(x, t, ω)dωdx

6
∫

Ω

∫ u(τ)

0

(γ3|ω|q−1 + ϕ4(x))dωdx

6 C‖u(τ)‖qq + C‖ϕ4‖q1q1 .

(3.6)
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Then, integrating (3.4) from τ to t, in view of (3.5) and (3.6), we obtain

(
1
2

+
λ

2
)‖u(t)‖22 +

1
p
‖∇u(t)‖pp + γ1‖u(t)‖qq +

λ

2

∫ t

τ

‖u(r)‖22dr

+
1
2

∫ t

τ

‖∂u(r)
∂r
‖22dr + (1− ε

2
)
∫ t

τ

‖∇u(r)‖ppdr

+ γ1(γ2 − α0)
∫ t

τ

‖u(r)‖qqdr +
ε

2

∫ t

τ

‖∇∂u(r)
∂r
‖ppdr

6 (
1
2

+
λ

2
)‖u(τ)‖22 +

1
p
‖∇u(τ)‖pp + C‖u(τ)‖qq +

∫ t

τ

‖ϕ2(r)‖1dr

+ C‖ϕ4‖q1q1 + ‖ϕ1‖1 + (γ2 − α0)‖ϕ1‖1(t− τ) +
∫ t

τ

‖ϕ3(r)‖1dr

+ C

∫ t

τ

‖g(r)‖22dr.

(3.7)

Step 2. Let A : V → V ∗ be the operator defined by

(A(u1), u2)(V ∗,V ) =
∫

Ω

|∇u1|p−2∇u1 · ∇u2dx, for all u1, u2 ∈ V, (3.8)

where (·, ·)(V ∗,V ) is the duality pairing of V ∗ and V . Note that A is a monotone
operator as in [13]. Let {ej}∞j=1 ⊆ V ∩ Lq(Ω) be an orthonormal basis of H such
that the span {ej : j ∈ N} is dense in V ∩Lq(Ω). Given n ∈ N, let Xn be the space
spanned by {ej : j = 1, . . . , n} and Pn : H → Xn be the projection given by

Pnu =
n∑
j=1

(u, ej)ej , ∀u ∈ H.

Note that Pn can be extended to V ∗ and (Lq(Ω))∗ by

Pnφ =
n∑
j=1

(φ(ej))ej , for φ ∈ V ∗or φ ∈ (Lq(Ω))∗.

Consider the following system for un ∈ Xn defined for t > τ :

dun

dt
+ λun + PnA(un)− εPnA(

dun

dt
) + Pnf(·, t, un) = Png(·, t), (3.9)

with initial condition
un(τ) = Pnuτ . (3.10)

Then it follows from (3.7) that for any T > τ ,

{un}∞n=1 is bounded in L∞(τ, T ;V ) ∩ L∞(τ, T ;Lq(Ω)), (3.11)

{du
n

dt
}∞n=1 is bounded in Lp(τ, T ;V ). (3.12)

Analogous to the proof of [8, Theorem 3.1, Section XV.3] and the argument in [16,
Section IV4.4], by a standard argument we obtain that for any fixed ε ∈ (0, 1],
every τ ∈ R and any uτ ∈ V ∩ Lq(Ω), system (1.1)–(1.3) has a solution u ∈
C([τ, T ];V ) ∩ L∞(τ, T ;Lq(Ω)) for any T > τ . �
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Based on Theorem 3.1, we can define a family of multi-valued mappings Uε(t, τ) :
V ∩ Lq(Ω)→ V ∩ Lq(Ω) for each ε > 0 by setting

Uε(t, τ)uτ =
{
u(t) : u(·) is a solution of (1.1)–(1.3) with uτ ∈ V ∩ Lq(Ω)

}
.

Then we can verify that {Uε(t, τ)} be a multi-valued process on V ∩ Lq(Ω).
Let S be a nonempty bounded subset of the Banach space X, and let ‖S‖X =

supu∈S ‖u‖X . We consider a family D = {D(t)}t∈R of bounded nonempty subsets
of V ∩ Lq(Ω) such that for every t ∈ R,

lim
s→−∞

eαs(‖D(t+ s)‖2H + ‖D(t+ s)‖pV + ‖D(t+ s)‖qLq(Ω)) = 0, (3.13)

where α > 0 will be given in the proof of Lemma 3.2. In the sequel, we will use D
to denote the collection of all families with property (3.13):

D = {D = {D(t)}t∈R : D satisfies (3.13)}.

It is obvious that D is inclusion-closed.
To consider the asymptotic behavior of problem (1.1)–(1.3), we need the following

uniform estimates of solutions.

Lemma 3.2. Suppose (H1)–(H3) hold. Then the multi-valued process {Uε(t, τ)}
corresponding to problem (1.1)–(1.3) possesses a closed uniformly (with respect to
ε ∈ (0, 1]) D-pullback absorbing set Q = {Q(t)}t∈R in D , i.e., for each t ∈ R and
any B = {B(t)}t∈R ∈ D , there exists T = T (B, t) > 0 which is independent of ε
such that for all ε ∈ (0, 1],

Uε(t, t− s)B(t− s) ⊆ Q(t), ∀s > T.

Proof. We choose α and α0 sufficiently small, such that

λ

2
‖u‖22 + (1− ε

2
)‖∇u‖pp + (γ2 − α0)

∫
Ω

F (x, t, u)dx

> α
(

(
1
2

+
λ

2
)‖u‖22 +

1
p
‖∇u‖pp +

∫
Ω

F (x, t, u)dx
)
.

Then it follows from (3.3) that

d

dt

(
(
1
2

+
λ

2
)‖u‖22 +

1
p
‖∇u‖pp +

∫
Ω

F (x, t, u)dx
)

+
1
2
‖∂u
∂t
‖22

+ α
(

(
1
2

+
λ

2
)‖u‖22 +

1
p
‖∇u‖pp +

∫
Ω

F (x, t, u)dx
)

+
ε

2
‖∇∂u

∂t
‖pp

6 C‖g(t)‖22 + ‖ϕ2(t)‖1 + ‖ϕ3(t)‖1.

(3.14)
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Using Gronwall’s lemma, we deduce that

(
1
2

+
λ

2
)‖u(t)‖22 +

1
p
‖∇u(t)‖pp +

∫
Ω

F (x, t, u(t))dx

+
1
2
e−αt

∫ t

t−s
eαr‖∂u(r)

∂r
‖22dr +

ε

2
e−αt

∫ t

t−s
eαr‖∇∂u(r)

∂r
‖ppdr

6 (
1
2

+
λ

2
)e−αs‖u(t− s)‖22 +

1
p
e−αs‖∇u(t− s)‖pp

+ e−αs
∫

Ω

F (x, t− s, u(t− s))dx+ Ce−αt
∫ t

t−s
eαr‖g(r)‖22dr

+ e−αt
∫ t

t−s
eαr(‖ϕ2(r)‖1 + ‖ϕ3(r)‖1)dr.

(3.15)

By a similar arguments as in (3.5) and (3.6), we have

(
1
2

+
λ

2
)‖u(t)‖22 +

1
p
‖∇u(t)‖pp + γ1‖u(t)‖qq

+
1
2
e−αt

∫ t

t−s
eαr‖∂u(r)

∂r
‖22dr +

ε

2
e−αt

∫ t

t−s
eαr‖∇∂u(r)

∂r
‖ppdr

6 Ce−αs(‖u(t− s)‖22 + ‖∇u(t− s)‖pp + ‖u(t− s)‖qq) + Ce−αs‖ϕ4‖q1q1

+ C‖ϕ1‖1 + Ce−αt
∫ t

t−s
eαr‖g(r)‖22dr

+ Ce−αt
∫ t

t−s
eαr(‖ϕ2(r)‖1 + ‖ϕ3(r)‖1)dr,

(3.16)

where C is independent of ε ∈ (0, 1]. Denote by R(t) the nonnegative number given
for each t ∈ R by

(R(t))2 = C + Ce−αt
∫ t

−∞
eαr‖g(r)‖22dr, (3.17)

and consider the family of closed bounded balls Q = {Q(t)}t∈R in V ∩Lq(Ω) defined
by

Q(t) = {ψ ∈ V ∩ Lq(Ω) : ‖ψ‖22 + ‖∇ψ‖pp + ‖ψ‖qq 6 (R(t))2}. (3.18)
It is straightforward to check that Q ∈ D , and moreover, by (3.13) and (3.16),
the family of Q is uniformly (with respect to ε ∈ (0, 1]) D-pullback absorbing for
the family of multi-valued processes {Uε(t, τ)}, ε ∈ (0, 1] and thus the proof is
complete. �

We recall that Xw be the Banach space X endowed with the weak topology. We
say that un → u ∈ C([τ, T ];Xw) in C([τ, T ];Xw) if

un(sn)→ u(s) in Xw for all sn → s ∈ [τ, T ].

Lemma 3.3. Let {unτ }∞n=1 be a bounded subset of V ∩ Lq(Ω), uτ ∈ V ∩ Lq(Ω) and
let unτ → uτ weakly in V ∩ Lq(Ω) as n → ∞. Suppose (H1)–(H3) hold and fix
T > τ . Then for any fixed ε ∈ (0, 1] and any sequence un(t) ∈ Uε(t, τ)unτ , there
exist u(t) ∈ Uε(t, τ)uτ and a subsequence {unk}∞k=1 satisfying

unk → u weakly in C([τ, T ];V ),

unk → u weak-star in L∞(τ, T ;Lq(Ω)).
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Proof. Inequality (3.7) implies that

{un}∞n=1 is bounded in L∞(τ, T ;V ) ∩ L∞(τ, T ;Lq(Ω)). (3.19)

Hence, there exist a function u ∈ L∞(τ, T ;V )∩L∞(τ, T ;Lq(Ω)) and a subsequence
{un}∞n=1 (relabeled as {un}∞n=1) such that

un → u weak-star in L∞(τ, T ;V ) ∩ L∞(τ, T ;Lq(Ω)). (3.20)

On the other hand, integrating (3.4) from s1 to s2 with s1, s2 ∈ [τ, T ] and s1 < s2,
then it follows from the similar argument of (3.7) that

ε

∫ s2

s1

‖∇∂u
n(r)
∂r

‖ppdr

6 (1 + λ)‖un(s1)‖22 +
2
p
‖∇un(s1)‖pp + C‖un(s1)‖qq + 2

∫ s2

s1

‖ϕ2(r)‖1dr

+ C‖ϕ4‖q1q1 + 2‖ϕ1‖1 + 2(γ2 − α0)‖ϕ1‖1(s2 − s1) + 2
∫ s2

s1

‖ϕ3(r)‖1dr

+ C

∫ s2

s1

‖g(r)‖22dr

6 (1 + λ)‖un(τ)‖22 +
2
p
‖∇un(τ)‖pp + C‖un(τ)‖qq

+ 4
∫ T

τ

‖ϕ2(r)‖1dr + C‖ϕ4‖q1q1 + 4‖ϕ1‖1 + 4(γ2 − α0)‖ϕ1‖1(T − τ)

+ 4
∫ T

τ

‖ϕ3(r)‖1dr + C

∫ T

τ

‖g(r)‖22dr,

(3.21)

and thus by Hölder’s inequality, we have

‖∇un(s2)−∇un(s1)‖pp 6
∫

Ω

(s2 − s1)
p

p1

(∫ s2

s1

|∇∂u
n(r)
∂r

|pdr
)
dx

= (s2 − s1)p−1

∫ s2

s1

‖∇∂u
n(r)
∂r

‖ppdr

6
C

ε
(s2 − s1)p−1,

(3.22)

where 1
p + 1

p1
= 1. From (3.19) we deduce that for any t ∈ [τ, T ], the sequence

{un(t)}∞n=1 is relatively weakly compact in V ∩ Lq(Ω). Arguing as in the proof of
[6, Theorem 4], by the diagonal method and (3.22) we obtain the existence of a
continuous function v(·) and a subsequence of {un}∞n=1 (denoted again {un}∞n=1)
such that

un → v weakly in C([τ, T ];V ). (3.23)

By the similar argument of the existence of solutions in Theorem 3.1, in view of
(3.20) and (3.23), we conclude that u = v is a solution of (1.1)–(1.3) and u(τ) =
v(τ) = uτ , which completes the proof. �

Lemma 3.3 implies that for any fixed t > τ , τ ∈ R, U has weakly closed values
and U(t, τ) is weakly upper-semicontinuous in bounded sets. Thanks to Theorem
2.7 and Lemma 3.2, we obtain the following result.
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Theorem 3.4. Suppose (H1)–(H3) hold. Then for any ε ∈ (0, 1], the multi-valued
process {Uε(t, τ)} associated to problem (1.1)–(1.3) possesses a unique D-pullback
attractor Aεw = {Aεw(t)}t∈R, which is invariant and pullback attracts every member
of D in the weak topology of V ∩Lq(Ω), and its component sets are weakly compact
in V ∩ Lq(Ω).

Hence, the component sets are compact in the topology of H, and Aεw pullback
attracts every member of D in the topology of H.

4. Limit problem and convergence properties

In this section, we study the asymptotic dynamic of the problem (1.1)–(1.3) as
ε→ 0. When ε = 0, we need to consider the following system defined in Ω for t > τ
with τ ∈ R,

∂u

∂t
+ λu− div(|∇u|p−2∇u) + f(x, t, u) = g(x, t), (4.1)

with boundary condition

u(x, t) = 0, x ∈ ∂Ω and t > τ, (4.2)

and initial condition
u(x, τ) = uτ (x), x ∈ Ω. (4.3)

Analogous to the arguments in [19] and Theorem 3.4, we obtain the existence of
solutions and pullback attractors for (4.1)–(4.3).

Theorem 4.1. Suppose (H1)–(H3) hold and let g ∈ L2
loc(R;L2(Ω)). Then for every

τ ∈ R and any uτ ∈ H, there exists a solution u(t) to problem (4.1)–(4.3), and u(t)
satisfies

u ∈ C([τ, T ];H) ∩ Lp(τ, T ;V ) ∩ Lq(τ, T ;Lq(Ω)), ∀T > τ.

We consider a family D = {D(t)}t∈R of bounded nonempty subsets of H such
that for every t ∈ R,

lim
s→−∞

eαs‖D(t+ s)‖2H = 0, (4.4)

and we will use DH to denote the collection of all families with property (4.4):

DH = {D = {D(t)}t∈R : D satisfies (4.4)}.

It is clear that DH is inclusion-closed.

Theorem 4.2. Suppose (H1)–(H3) hold. Then

(1) there exists a unique DH-pullback attractor A0 = {A0(t)}t∈R for the multi-
valued process {U0(t, τ)} on H generated by problem (4.1)–(4.3);

(2) the multi-valued process {U0(t, τ)} possesses pullback attractors A0
V,w =

{A0
V,w(t)}t∈R and A0

Lq,w = {A0
Lq,w(t)}t∈R in the weak topology, their compo-

nent sets are weakly compact in V and Lq(Ω) and hence closed and bounded
in the topology of V and Lq(Ω), A0

V,w and A0
Lq,w pullback attract every

member of DH in the weak topology of V and Lq(Ω), respectively.

Now we present the equi-continuity of solutions of problem (1.1)–(1.3), which
will be used in the proof of Theorem 4.4.
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Lemma 4.3. Suppose (H1)–(H3) hold. Then for any fixed T > τ , every uτ ∈
V ∩ Lq(Ω) and any s1, s2 ∈ [τ, T ] with s1 < s2, any solution u of (1.1)–(1.3)
satisfies

‖u(s2)− u(s1)‖2 6 C(s2 − s1)1/2,

where C is independent of ε ∈ (0, 1].

Proof. Integrating (3.4) from s1 to s2 with s1, s2 ∈ [τ, T ] and s1 < s2, then it
follows from the similar argument of (3.7) that∫ s2

s1

‖∂u(r)
∂r
‖22dr

6 (1 + λ)‖u(s1)‖22 +
2
p
‖∇u(s1)‖pp + C‖u(s1)‖qq + 2

∫ s2

s1

‖ϕ2(r)‖1dr

+ C‖ϕ4‖q1q1 + 2‖ϕ1‖1 + 2(γ2 − α0)‖ϕ1‖1(s2 − s1) + 2
∫ s2

s1

‖ϕ3(r)‖1dr

+ C

∫ s2

s1

‖g(r)‖22dr

6 (1 + λ)‖u(τ)‖22 +
2
p
‖∇u(τ)‖pp + C‖u(τ)‖qq + 4

∫ T

τ

‖ϕ2(r)‖1dr

+ C‖ϕ4‖q1q1 + 4‖ϕ1‖1 + 4(γ2 − α0)‖ϕ1‖1(T − τ)

+ 4
∫ T

τ

‖ϕ3(r)‖1dr + C

∫ T

τ

‖g(r)‖22dr,

(4.5)

and by Hölder’s inequality, we have

‖u(s2)− u(s1)‖22 6
∫

Ω

(s2 − s1)
(∫ s2

s1

|∂u(r)
∂r
|2dr

)
dx

= (s2 − s1)
∫ s2

s1

‖∂u(r)
∂r
‖22dr.

(4.6)

Then the conclusion follows immediately from (4.5) and (4.6). �

Theorem 4.4. Suppose (H1)–(H3) hold, let {uετ : ε ∈ (0, 1]} is a bounded subset of
V ∩ Lq(Ω), u0

τ ∈ H and let uετ → u0
τ in the topology of H as ε→ 0. Then for any

fixed T > τ and any sequence uε of (1.1)–(1.3) with initial data uετ , we can find
a solution u0 of (4.1)–(4.3) with initial data u0

τ and a subsequence of {uε} which
converges to u0 in C([τ, T ];H) and weakly to u0 in Lp(τ, T ;V ) ∩ Lq(τ, T ;Lq(Ω)).

Proof. We divide the proof into two steps.
Step 1. Let εn ∈ (0, 1] be a sequence of positive numbers with εn → 0 (n → ∞),
and let uεn be the solution of (1.1)–(1.3) with uεn(τ) = uεn

τ . It follows from (3.7)
that for any t ∈ [τ, T ],

{uεn(t)}∞n=1 is bounded in V ∩ Lq(Ω), (4.7)

{uεn}∞n=1 is bounded in L∞(τ, T ;H) ∩ L∞(τ, T ;V ) ∩ L∞(τ, T ;Lq(Ω)), (4.8)

consequently

{uεn}∞n=1 is bounded in Lp(τ, T ;V ) ∩ Lq(τ, T ;Lq(Ω)),

{∂u
εn

∂t
}∞n=1 is bounded in L2(τ, T ;H), (4.9)
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{Auεn}∞n=1 is bounded in Lp1(τ, T ;V ∗) with
1
p

+
1
p1

= 1, (4.10)

{f(t, x, uεn)}∞n=1 is bounded in Lq1(τ, T ;Lq1(Ω)) with
1
q

+
1
q1

= 1, (4.11)

ε1/p
n ‖∇

∂uεn

∂t
‖Lp(τ,T ;Lp(Ω)) 6 C0, (4.12)

for some constant C0 > 0. Hence, there exist a function u0 ∈ L∞(τ, T ;H) ∩
Lp(τ, T ;V )∩Lq(τ, T ;Lq(Ω)) and a subsequence of {uεn}∞n=1 (relabeled as {uεn}∞n=1)
such that

uεn → u0 weak-star in L∞(τ, T ;H), (4.13)

uεn → u0 weakly in Lp(τ, T ;V ) and Lq(τ, T ;Lq(Ω)), (4.14)

A(uεn)→ χ1 weakly in Lp1(τ, T ;V ∗), (4.15)

f(t, x, uεn)→ χ2 weakly in Lq1(τ, T ;Lq1(Ω)). (4.16)

Thanks to Lemma 4.3, (4.8) and the compactness of embedding V ↪→ H, by the
Ascoli-Arzelà theorem we deduce that there exists a subsequence of {uεn}∞n=1 (de-
noted again {uεn}∞n=1) such that

uεn → u0 strongly in C([τ, T ];H). (4.17)

Step 2. It remains to show that u0 is a solution of (4.1)–(4.3) with u0(τ) = u0
τ .

Noticing that uεn is a solution of (1.1)–(1.3) with uεn(τ) = uεn
τ , i.e., uεn satisfies

∂uεn

∂t
+ λuεn − div(|∇uεn |p−2∇uεn)

− εn div(|∇∂u
εn

∂t
|p−2∇∂u

εn

∂t
) + f(x, t, uεn) = g(x, t),

(4.18)

from (4.12) and Hölder’s inequality, we obtain that for any ξ ∈ V ∩ Lq(Ω),

− εn
∫ T

τ

(
div(|∇∂u

εn(t)
∂t

|p−2∇∂u
εn(t)
∂t

), ξ
)

(V ∗,V )
dt

6 εn‖∇
∂uεn(t)
∂t

‖p−1
Lp(τ,T ;Lp(Ω))‖∇ξ‖Lp(τ,T ;Lp(Ω))

6 ε1/p
n Cp−1

0 ‖∇ξ‖Lp(τ,T ;Lp(Ω)) → 0 as n→∞.

(4.19)

By (4.12)–(4.17) and (4.19), one can show that
d

dt
(u0, ξ) + λ(u0, ξ) + (χ1, ξ)(V ∗,V ) + (χ2, ξ)(Lq1 ,Lq) = (g(t), ξ). (4.20)

Since V ↪→ H is compact, in view of (4.8) and (4.9), up to a subsequence we have

uεn → u0 in L2(τ, T ;L2(Ω)), (4.21)

which implies

uεn → u0 for almost every (t, x) ∈ [τ, T ]× Ω. (4.22)

From this and the continuity of f , we obtain

f(x, t, uεn)→ f(x, t, u0) for almost every (t, x) ∈ [τ, T ]× Ω. (4.23)

By (4.16) and (4.23), we have

χ2 = f(x, t, u0). (4.24)
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Finally, by the similar argument of (4.19), in view of (4.8) and (4.12), we find that

− εn
∫ T

τ

(
div(|∇∂u

εn(t)
∂t

|p−2∇∂u
εn(t)
∂t

), uεn(t)
)

(V ∗,V )
dt

6 εn‖∇
∂uεn(t)
∂t

‖p−1
Lp(τ,T ;Lp(Ω))‖∇u

εn(t)‖Lp(τ,T ;Lp(Ω))

6 ε1/p
n C → 0

(4.25)

as n→∞. By (4.13)–(4.17) and (4.25), we can argue as in [18] to show that

χ1 = A(u0). (4.26)

It follows from (4.20), (4.24) and (4.26) that u0 is a solution of problem (4.1)–(4.3),
and thus the proof of this theorem is complete. �

We obtain the upper semicontinuity of pullback attractors under singular per-
turbations.

Theorem 4.5. Suppose (H1)–(H3) hold, and let Aεw = {Aεw(t)}t∈R and A0 =
{A0(t)}t∈R be the pullback attractors for the multi-valued processes {Uε(t, τ)} and
{U0(t, τ)} in D and DH generated by (1.1)–(1.3) and (4.1)–(4.3), respectively.
Then for any τ ∈ R,

lim
ε→0

H∗
(
Aεw(τ), A0(τ)

)
= 0, (4.27)

where H∗(·, ·) is the Hausdorff semidistance between two nonempty subsets of H.

Proof. We will use the argument of contradiction. Indeed, assume that (4.27) is
not true, then there exist a τ ∈ R, a positive constant η, a sequence of positive
numbers εn converging to zero, and a corresponding sequence uεn

τ ∈ Aεn(τ) such
that

distH(uεn
τ , A

0(τ)) > η > 0, ∀n ∈ N. (4.28)

Let uεn be a solution of (4.1)–(4.3) with initial condition uεn(τ) = uεn
τ . It is clear

that uεn(t) belongs to Aεn(t) for all t > τ . Note that Aεw = {Aεw(t)}t∈R is invariant,
hence there exists uεn

τ−1 ∈ Aεn(τ − 1) such that uεn
τ ∈ Uεn(τ, τ − 1)uεn

τ−1. If we now
take uεn(s) ∈ Uεn(s, τ − 1)uεn

τ−1 for s ∈ [τ − 1, τ ], then we have uεn(s) ∈ Aεn(s)
for all s > τ − 1. Applying the above procedure several times we can construct
uεn(s) ∈ Aεn(s) for all s > τ − m, m ∈ N. Letting m → ∞, we obtain a D-
complete orbit of uεn(s), s ∈ R, of the multi-valued process Uεn(t, τ) such that
uεn(s) ∈ Aεn(s) for all s ∈ R.

For any t ∈ R, since {uεn(t)}∞n=1 is a bounded subset of V ∩Lq(Ω), there exists a
subsequence of {uεn(t)}∞n=1 (relabeled as {uεn(t)}∞n=1) such that uεn(t)→ u0(t) in
H as n→∞. Then, using Theorem 4.4 and the diagonal method, one can choose
a subsequence of {uεn(·)} and a DH -complete orbit u0 of (4.1)–(4.3) such that

uεn(t)→ u0(t) in C(J ;H) (4.29)

for any compact interval J ⊂ R. Theorem 2.6 implies that u0(t) ∈ A0(t) for
all t ∈ R, this and (4.29) lead to a contradiction with (4.28), hence the proof is
completed. �
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