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WEAK SOLUTIONS FOR PARABOLIC EQUATIONS WITH
p(x)-GROWTH

NING PAN, BINLIN ZHANG, JUN CAO

Abstract. In this article we study nonlinear parabolic equations with p(x)-

growth in the space W 1,xLp(x)(Q) ∩ L∞(0, T ; L2(Ω)). By using the method

of parabolic regularization, we prove the existence and uniqueness of weak
solutions for the equation

∂u

∂t
= div(a(u)|∇u|p(x)−2∇u) + f(x, t).

Also, we study the localization property of weak solutions for the above equa-

tion.

1. Introduction and statement of main results

Let N ≥ 2 be an integer and Ω be a bounded simply connected domain in
RN . Let Q be Ω × (0, T ) where T > 0 is given. We consider the parabolic initial
boundary-value problem

∂u

∂t
= div(a(u)|∇u|p(x)−2∇u) + f(x, t), (x, t) ∈ Q,

u(x, t) = 0, (x, t) ∈ Γ,

u(x, 0) = u0(x), x ∈ Ω.

(1.1)

where Γ denotes the lateral boundary of the cylinder Q, and a(u) = uσ + d0 with
σ and d0 two positive constants to be defined later.

For the case p constant, there are many results about the existence, uniqueness
and the qualitative properties of the solutions, we refer the reader to [6, 7, 19, 24].

In recent years, the research of variational problems with nonstandard growth
conditions has been an interesting topic, see for examples [1, 2, 3, 4, 8, 9, 10, 13,
15, 16, 17, 20, 21, 23] and the references therein. In [4], the authors studied the
nonlinear parabolic equations with nonstandard anisotropic growth conditions:

ut −
∑
i

d

dxi
[ai(z, u)|Diu|pi(z)−2Diu+ bi(z, u)] + d(z, u) = 0 (1.2)

where z = (x, t). They proved the existence and uniqueness of weak solutions
by applying Galerkin’s method in the Orlicz-Sobolev spaces W (Q) with the norm
‖u‖W (Q) =

∑
i ‖Diu‖pi(z),Q + ‖u‖2,Q. Note that the coefficient of nonlinearity in

[4] is allowed to depend on x and t and is assumed to be the Caratheodory function,
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and so problem (1.2) is called the evolutional p(x, t)-Laplacian. In [13], the authors
considered the quasilinear degenerate parabolic problem with nonstandard growth:

∂u

∂t
= div(a(u)|∇u|p(x,t)−2∇u) + f(x, t), (x, t) ∈ QT ,

u(x, t) = 0, (x, t) ∈ ΓT ,

u(x, 0) = u0(x), x ∈ Ω.

(1.3)

and studied the existence, uniqueness and localization property of weak solutions for
(1.3). It is worthy pointing out that they used the Banach spaces Lp(x,t)(QT ) and
W (QT ) which appeared in [13] as solution space. Indeed, many authors dedicated
to studying the variable exponent problems, in which p(x, t) depends on x and t, see
for instance [4, 13, 3, 20]. But for some important problems, the solution spaces only
depending on variable x for parabolic equations are needed. Note that p(x)-growth
problems can be regarded as a kind of problems with nonstandard growth, which
appear in nonlinear elastic, electrorheological fluids and other physics phenomena.
For a recent overview of variable exponent spaces with applications to nonlinear
partial differential equations we refer to [16] and the references therein.

To illustrate the significance of variable exponent spaces independent of the time
variable t, we would like to mention a paper [5], which has been an excellent ref-
erence as the applications of variable exponent spaces. More precisely, the authors
in [5] studied the Dirichlet problem

∂u

∂t
− div(φr(x,Du)) + λ(u− I) = 0, (x, t) ∈ Ω× [0, T ], (1.4)

which is a model for image denoising, enhancement, and restoration, where λ ≥ 0
is a constant,

φ(x, r) =

{
1

q(x) |r|
q(x), |r| ≤ β,

|r| − βq(x)−βq(x)
q(x) , |r| > β,

where q(x) satisfies 1 ≤ q(x) ≤ 2. They proved the existence and uniqueness of
weak solutions and also discussed the behavior of weak solutions for (1.4) as t→∞.
Notice that the direction and speed of diffusion at each location depend on the local
behavior, hence q(x) only depends on the location x in the image. Thanks to this
fact, the authors gave the above model which can study the denoising, enhancement,
and restoration for the image well. Based on the above reason, we thus seek for a
kind of space in which the variable exponent only depend on x for problem (1.2).
Considering that the space W 1,xLp(x)(Q), which is different from the space W (QT )
in [4, 13], can provide a suitable framework to discuss the similar physical problems
in [5], which was introduced and discussed in [11, 18], so we take this space as our
working space to discuss the problem (1.2), where p(x) only depends on the space
variable x, not on the time variable t.

In this article, we will the existence, uniqueness and localization property of
solutions for (1.2) in the space W 1,xLp(x)(Q). Throughout this paper, unless special
statement, we always suppose that the exponent p(x) is continuous on Ω with
logarithmic module of continuity

1 < p− = inf
x∈Ω

p(x) ≤ p(x) ≤ sup
x∈Ω

p(x) = p+ <∞. (1.5)

∀x ∈ Ω, y ∈ Ω, |x− y| < 1, |p(x)− p(y)| ≤ ω(|x− y|), (1.6)
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where
lim sup
τ→0+

ω(τ) ln
1
τ

= C < +∞.

First we give the definition of (weak) solutions for problem (1.1).

Definition 1.1. A function u(x, t) ∈ W 1,xLp(x)(Q) ∩ L∞(0, T ;L2(Ω)) is called a
(weak) solution of (1.1) if

−
∫
Q

u
∂ϕ

∂t
dx dt+

∫
Ω

uϕdx|T0 +
∫
Q

(uσ+d0)|∇u|p(x)−2∇u∇ϕdx dt =
∫
Q

f(x, t)ϕdx dt

for all ϕ ∈ C1(0, T ;C∞0 (Ω)).

Now we are in a position to give results about the existence and uniqueness of
solutions for problem (1.2).

Theorem 1.2. Let p(x) satisfy (1.5)–(1.6). If the following conditions hold

(H1) max{1, 2N
N+2} < p− < N , 2 ≤ σ < 2p+

p+−1 ;

(H2) u0 ≥ 0, f ≥ 0, ‖u0‖∞,Ω +
∫ T

0
‖f(x, t)‖∞,Ωdt := K(T ) <∞,

then (1.2) has at least one nontrivial weak solution in W 1,xLp(x)(Q).

Theorem 1.3. Suppose that the conditions in Theorem 1.2 are fulfilled and 2 <
σ < 2p+

p+−1 , p+ ≥ 2. Then the nonnegative solution of (1.2) is unique within the
class of all nonnegative weak solutions.

Let us define

suppω =
{
x ∈ G : lim

ρ→0

meas(G ∩Bρ(x))
meas(Bρ(x))

> 0
}
,

where G = {x ∈ Ω : ω > 0}, Bρ(x) = {y ∈ Ω : |x− y| < ρ}. Hence we can present
the localization property of solutions.

Theorem 1.4. Assume that the hypotheses of Theorem 1.3 are satisfied and 2 <
σ < 2(p+−p−)

p−(p+−1) , suppu0 ∈ Ω. If u is a nonnegative solution of problem (1.2) and
f ≡ 0, then suppu ⊂ suppu0 a.e. in Q.

This paper is organized as follows. In Section 2, we shall introduce the space
Wm,xLp(x)(Q) and the necessary properties, which will be needed later. Section 3
and Section 4 are devoted to proving the existence and uniqueness of solutions for
problem (1.2) respectively. In Section 5, we will discuss the localization property
of solutions to problem (1.2).

2. Preliminaries

In this section we recall the basic knowledge of the general spaces Lp(x)(Ω),
Wm,p(x)(Ω) and Wm,xLp(x)(Q) and the necessary results which will be useful in
the sequel, we refer to [11, 18, 12, 14] for more details. Denote

E = {ω : ω is a measurable function on Ω},
where Ω ⊂ RN is an open subset.

Let p(x) : Ω → [1,∞] be an element in E. Denote Ω∞ = {x ∈ Ω : p(x) = ∞}.
For u ∈ E, we define

ρ(u) =
∫

Ω\Ω∞
|u(x)|p(x)dx+ ess, supx∈Ω∞ |u(x)|.
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The space Lp(x)(Ω) = {u ∈ E : ∃λ > 0, ρ(λu) <∞} endowed with the norm

‖u‖Lp(x)(Ω) = inf{λ > 0 : ρ(
u

λ
) ≤ 1}.

We define the conjugate function p′(x) of p(x) by

p′(x) =


∞, if p(x) = 1;
1, if p(x) =∞;
p(x)
p(x)−1 , if 1 < p(x) <∞.

Lemma 2.1 ([11]). (a) The dual space of Lp(x)(Ω) is Lp
′(x)(Ω), if 1 ≤ p(x) <∞.

(b) The space Lp(x)(Ω) is reflexive if and only if (1.5) is satisfied.

Lemma 2.2 ([11]). If 1 ≤ p(x) < ∞, C∞0 (Ω) is dense in the space Lp(x)(Ω) and
Lp(x)(Ω) is separable.

Lemma 2.3 ([11]). If 1 ≤ p(x) ≤ ∞, for every u(x) ∈ Lp(x)(Ω) and v(x) ∈
Lp
′(x)(Ω), we have∫

Ω

|u(x)v(x)|dx ≤ C‖u(x)‖Lp(x)(Ω)‖v(x)‖Lp′(x)(Ω),

where C is only dependent on p(x) and Ω, not dependent on u(x), v(x).

Lemma 2.4 ([11]). Let 1 ≤ p(x) <∞. The following conclusions hold:
(1) ‖u‖Lp(x)(Ω) < 1 (= 1, > 1) ⇔ ρ(u) < 1(= 1, > 1).

(2) If ‖u‖Lp(x)(Ω) ≥ 1, then ‖u‖p
−

Lp(x)(Ω)
≤ ρ(u) ≤ ‖u‖p

+

Lp(x)(Ω)
.

(3) If ‖u‖Lp(x)(Ω) ≤ 1, then ‖u‖p
+

Lp(x)(Ω)
≤ ρ(u) ≤ ‖u‖p

−

Lp(x)(Ω)
.

Let m > 0 be an integer. For each α = (α1, α2, · · · , αn), αi are nonnegative
integers and |α| = Σni=1αi, and denote by Dα the distributional derivative of order
α with respect to the variable x.

We now introduce the generalized Lebesgue-Sobolev space Wm,p(x)(Ω) which is
defined as

Wm,p(x)(Ω) = {u ∈ Lp(x)(Ω) : Dαu ∈ Lp(x)(Ω), |α| ≤ m}.

Here Wm,p(x)(Ω) is a Banach space endowed with the norm

‖u‖ =
∑
|α|≤m

‖Dαu‖Lp(x)(Ω).

The space Wm,p(x)
0 (Ω) is defined as the closure of C∞0 (Ω) in Wm,p(x)(Ω). The dual

space (Wm,p(x)
0 (Ω))∗ is denoted by W−m,p

′(x)(Ω) equipped with the norm

‖f‖W−m,p′(x)(Ω) = inf Σ|α|≤m‖fα‖Lp′(x)(Ω),

where infimum is taken on all possible decompositions

f =
∑
|α|≤m

(−1)|α|Dαfα, fα ∈ Lp
′(x)(Ω).

Lemma 2.5 ([11]). (i) Wm,p(x)(Ω) and Wm,p(x)
0 (Ω) are separable if 1 ≤ p(x) <∞.

(ii) Wm,p(x)(Ω) and Wm,p(x)
0 (Ω) are reflexive if (1.5) holds.
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We define the space

Wm,xLp(x)(Q) = {u ∈ Lp(x)(Q) : Dαu ∈ Lp(x)(Q), |α| ≤ m}.

It is easy to see that Wm,xLp(x)(Q) is a Banach space with the norm ‖u‖ =∑
|α|≤m ‖Dαu‖Lp(x)(Q), where p(x) is independent of t, see [8] for further discus-

sions. The space Wm,x
0 Lp(x)(Q) is defined as the closure of C∞0 (Q) in Wm,xLp(x)(Q)

and Wm,x
0 Lp(x)(Q) ↪→ Lp(x)(Q) is continuous embedding. Let M̄ be the number

of multiindexes α which satisfies 0 ≤ |α| ≤ m, then the space Wm,x
0 Lp(x)(Q)

can be considered as a close subspace of the product space ΠM̄
i=1L

p(x)(Q). So
if 1 < p(x) < ∞, ΠM̄

i=1L
p(x)(Q) is reflexive and further we can get that the

space Wm,x
0 Lp(x)(Q) is reflexive. The dual space (Wm,x

0 Lp(x)(Q))∗ is denoted by
W−m,xLp

′(x)(Q) equipped with the norm

‖f‖W−m,xLp′(x)(Q) = sup
‖u‖

W
m,x
0 Lp(x)(Q)

≤1

| < f, u > | = inf
∑
|α|≤m

‖fα‖Lp′(x)(Q),

where the infimum is taken on all possible decompositions

f =
∑
|α|≤m

(−1)|α|Dα
xfα, fα ∈ Lp

′(x)(Q).

In what follows, we denote ‖u(x, t)‖k,Ω =
( ∫

Ω
|u(x, t)|kdx

)1/k, ‖u(x, t)‖∞,Q =
sup(x,t)∈Q |u(x, t)|.

3. Existence of solutions

Let us consider the auxiliary parabolic problem

∂u

∂t
= div(an,H(u)|∇u|p(x)−2∇u) + f(x, t), (x, t) ∈ Q,

u(x, t) = 0, (x, t) ∈ Γ,

u(x, 0) = u0(x), x ∈ Ω,

(3.1)

here H stands for a positive parameter to be chosen later and notice that

0 < d0 ≤ an,H(u) =
(

min(|u|2, H2) +
1
n2

)σ/2
+ d0 ≤ (H2 + 1)σ/2 + d0,

and 1 < n <∞
Since C∞0 (Ω) is dense in W

1,p(x)
0 (Ω), we may construct the sequence of approx-

imate solutions un(x, t) =
∑n
k=1 c

n
k (t)ϕk(x), and with similar arguments as in [4],

we obtain that problem (3.1) has a weak solution un(x, t) ∈W 1,x
0 Lp(x)(Q)∩L2(Q)

satisfying the identity∫ t2

t1

∫
Ω

[untξ + an,H(un)|∇un|p(x)−2∇un∇ξ − f(x, t)ξ] dx dt = 0, (3.2)

where t1 < t2 ∈ (0, T ). To prove the main result, we need the following a priori
estimates.

Lemma 3.1. The solution of (3.1) satisfies the estimate

‖un‖∞,Ω ≤ ‖u0‖∞,Ω +
∫ T

0

‖f(x, t)‖∞,Ωdt = K(T ) <∞.
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Proof. First, we introduce the function

unH =


H, if un > H;
un, if |un| ≤ H;
−H, if un < −H.

We choose the function u2k−1
nH as a test function in (3.2) with k ∈ N . In (3.2), let

t2 = t+ h, t1 = t, with t, t+ h ∈ (0, T ). Then∫ t+h

t

∫
Ω

[
(unH)tu2k−1

nH + an,H(unH)|∇unH |p(x)−2∇unH∇u2k−1
nH

− f(x, t)u2k−1
nH

]
dx dt = 0,

i.e.
1
2k

∫ t+h

t

d

dt

(∫
Ω

u2k
nHdx

)
dt

+
∫ t+h

t

∫
Ω

(2k − 1)an,H(unH)u2(k−1)
nH |∇unH |p(x) dx dt

=
∫ t+h

t

∫
Ω

f(x, t)u2k−1
nH dx dt.

(3.3)

Dividing by h, letting h → 0, and applying Lebesgue’s dominated convergence
theorem, we have that for all t ∈ (0, T ),

1
2k

d

dt

∫
Ω

u2k
nHdx+

∫
Ω

(2k − 1)an,H(unH)u2(k−1)
nH |∇unH |p(x)dx

=
∫

Ω

f(x, t)u2k−1
nH dx.

(3.4)

By Lemma 2.3, the right-hand side of the above equality can be rewritten as∣∣ ∫
Ω

f(x, t)u2k−1
nH dx

∣∣ ≤ ‖unH‖2k−1
2k,Ω ‖f‖2k,Ω, k = 1, 2, 3, . . . ,

whence

‖unH‖2k−1
2k,Ω

d

dt
(‖unH‖2k,Ω) + (2k − 1)

∫
Ω

an,H(unH)u2(k−1)
nH |∇unH |p(x)dx

≤ ‖unH‖2k−1
2k,Ω ‖f‖2k,Ω, k = 1, 2, 3, . . .

(3.5)

Integrating over (0, t) for the above inequality for all t, we obtain

‖unH(·, t)‖2k,Ω ≤ ‖unH(·, 0)‖2k,Ω +
∫ T

0

‖f‖2k,Ωdt, ∀k ∈ N.

Letting k →∞, one gets

‖unH(·, t)‖∞,Ω ≤ ‖unH(·, 0)‖∞,Ω +
∫ T

0

‖f‖∞,Ωdt ≤ ‖u0‖∞,Ω +
∫ T

0

‖f‖∞,Ωdt.

If we choose H > K(T ), then unH(·, t) ≤ sup |unH(·, t)| ≤ K(T ) < H, and hence
unH(·, t) = un(·, t). �
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Remark 3.2. According to the above arguments, we obtain unH(·, t) = un(·, t),
and

min{u2
n, H

2} = u2
n, an,H(unH) = an,H(un) =

( 1
n2

+ u2
n

)σ/2
+ d0.

Corollary 3.3. If u0 ≥ 0 and f ≥ 0, then the solution un(x, t) is nonnegative in
Q.

Proof. Set u−n = min{un, 0}, then we obtain u−n (·, 0) = 0. By Remark 3.2, and let
k = 1 in (3.4), we obtain

1
2
d

dt
(‖u−n (x, t)‖22,Ω) +

∫
Ω

an,H(u−n )|∇u−n |p(x)dx ≤ 0,

since
∫

Ω
f(x, t)u−n dx ≤ 0. Then integrating over (0, t) for the above inequality for

all t, we obtain
‖u−n (x, t)‖2,Ω ≤ ‖u−n (·, 0)‖2,Ω = 0.

Then the required assertion follows. �

Remark 3.4. From Corollary 3.3 we know that the constructed weak solution is
nonnegative. But to our best knowledge, it still remains unknown whether any
solution of problem (1.2) is nonnegative if the given data are nonnegative.

Lemma 3.5. The solution of (3.1) satisfies the estimates∫
Q

uσn|∇un|p(x) dx dt ≤ HK(T )|Ω|1/2, (3.6)

1
nσ

∫
Q

|∇un|p(x) dx dt ≤ HK(T )|Ω|1/2, (3.7)

d0

∫
Q

|∇un|p(x) dx dt ≤ HK(T )|Ω|1/2. (3.8)

Proof. We proceed as in the proof of Lemma 3.1. Take k = 1 in (3.5), it follows

d

dt
(‖un‖2,Ω) +

1
‖un‖2,Ω

∫
Ω

an,H(un)|∇un|p(x)dx ≤ ‖f‖2,Ω.

Furthermore, we integrate the above equation over (0, t) for all t ∈ (0, T ),

‖un(·, t)‖2,Ω+
1

‖un‖2,Ω

∫ t

0

∫
Ω

an,H(un)|∇un|p(x) dx dt ≤ ‖un(·, 0)‖2,Ω+
∫ t

0

‖f‖2,Ωdt,

i.e. ∫ t

0

∫
Ω

an,H(un)|∇un|p(x) dx dt ≤ ‖un‖2,Ω(‖un(·, 0)‖2,Ω +
∫ t

0

‖f‖2,Ωdt)

≤ H|Ω|1/2K(T ).

Since an,H(un) ≥ d0, we obtain (3.8); since an,H(un) ≥ 1
nσ , we obtain (3.7); since

H > K(T ), one gets an,H(un) ≥ uσn, hence we obtain (3.6). �

Lemma 3.6. The solution of (3.1) satisfies the estimate

‖unt‖W−1,xLp(x)(Q) ≤ C(H,σ, p±,K(T ), |Ω|).
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Proof. From (3.2), for ξ ∈W 1,x
0 Lp(x)(Q) we have∫

Q

untξ dx dt

= −
∫
Q

[(
u2
n +

1
n2

)σ/2
+ d0

]
|∇un|p(x)−2∇un∇ξ dx dt+

∫
Q

fξ dx dt

≤
∫
Q

[(
u2
n +

1
n2

)σ/2
+ d0

]
|∇un|p(x)−1|∇ξ| dx dt+

∫
Q

|f ||ξ| dx dt

≤ 2‖[(u2
n +

1
n2

)σ/2 + d0]|∇un|p(x)−1‖p′(x)‖∇ξ‖p(x) + 2‖f‖p′(x)‖ξ‖p(x)

≤ 2 max
{(∫

Q

{[
(u2
n +

1
n2

)σ/2 + d0

]
|∇un|p(x)−1

} p(x)
p(x)−1

dx dt
) 1
p′+

,

(∫
Q

{[(
u2
n +

1
n2

)σ/2
+ d0

]
|∇un|p(x)−1

} p(x)
p(x)−1

dx dt
) 1
p′−
}
‖∇ξ‖p(x)

+ 2 max
{(∫

Q

|f |p
′(x) dx dt

) 1
p′+

,
(∫

Q

|f |p
′(x) dx dt

) 1
p′−
}
‖ξ‖p(x)

≤ (2((K2(T ) + 1)σ/2 + d0)
1

p±−1K(T )|Ω|H + 2|f |∞|T |)‖ξ‖W 1,xLp(x)(Q),

which yields the desired conclusion. �

From the above conclusion and the uniform estimates in n, we obtain a subse-
quence, still denoted {un}n, such that

un → u a.e. in Q;

∇un ⇀ ∇u weakly in Lp(x)(Q);

uσn|∇un|p(x)−2Diun ⇀ Ai(x, t) weakly in Lp
′(x)(Q);

|∇un|p(x)−2Diun ⇀Wi(x, t) weakly in Lp
′(x)(Q),

(3.9)

for u ∈W 1,xLp(x)(Q), Ai(x, t) ∈ Lp
′(x)(Q), Wi(x, t) ∈ Lp

′(x)(Q).

Lemma 3.7. For almost all (x, t) ∈ Q,

lim
n→∞

∫
Q

((
u2
n +

1
n2

)σ/2
− uσn

)
|∇un|p(x)−2∇un∇ξ dx dt = 0, ∀ξ ∈W 1,x

0 Lp(x)(Q).

Proof. By Young’s inequality, we have

I :=
∫
Q

((
u2
n +

1
n2

)σ/2
− uσn

)
|∇un|p(x)−2∇un∇ξ dx dt

=
σ

2
1
n2

∫
Q

(∫ 1

0

(
u2
n + s

1
n2

)σ−2
2
ds
)
|∇un|p(x)−2∇un∇ξ dx dt

≤ σ 1
n2

(
K2(T ) + 1

)σ−2
2 ‖|∇un|p(x)−1‖p′(x)‖∇ξ‖p(x)

≤ C 1
n2

{(∫
Q

|∇un|p(x) dx dt
) p+−1

p+
,
(∫

Q

|∇un|p(x) dx dt
) p−−1

p−
}
‖∇ξ‖p(x).

By (3.7), we obtain

I ≤ CH
( 1
n

)2−σ p+−1
p+ ‖∇ξ‖p(x).
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Letting n→∞, we obtain the desired conclusion. �

Lemma 3.8. For almost all (x, t) ∈ Q,

Ai(x, t) = uσWi(x, t), i = 1, 2, . . . , N.

Proof. In (3.9), letting n→∞, we have∫
Q

uσn|∇un|p(x)−2∇un∇ξ dx dt→
N∑
i=1

∫
Q

Ai(x, t)Diξ dx dt; (3.10)

∫
Q

|∇un|p(x)−2∇un∇ξ dx dt→
N∑
i=1

∫
Q

Wi(x, t)Diξ dx dt. (3.11)

By Lebesgue’s dominated convergence theorem we have

lim
n→∞

N∑
i=1

∫
Q

(uσn − uσ)Ai(x, t)Diξ dx dt = 0. (3.12)

From (3.9) it follows that

lim
n→∞

N∑
i=1

∫
Q

[uσn|∇un|p(x)−2Diun − uσWi(x, t)]Diξ dx dt

= lim
n→∞

N∑
i=1

∫
Q

[(uσn − uσ)|∇un|p(x)−2Diun

+ uσ(|∇un|p(x)−2Diun −Wi(x, t))]Diξ dx dt = 0.

By (3.10)–(3.12) and the above equalities, we complete the proof. �

Lemma 3.9. For almost all (x, t) ∈ Q,

Wi(x, t) = |∇u|p(x)−2Di(u), i = 1, 2, . . . N.

Proof. In (3.2), choosing ξ = (un − u)Φ with Φ ∈W 1,x
0 Lp(x)(Q), Φ ≥ 0, we have∫

Q

[unt(un − u)Φ + Φ(uσn + d0)|∇un|p(x)−2∇un∇(un − u)] dx dt

+
∫
Q

[(un − u)(uσn + d0)|∇un|p(x)−2∇un∇Φ− f(x, t)(un − u)Φ] dx dt

+
∫
Q

((u2
n +

1
n2

)σ/2 − uσn)|∇un|p(x)−2∇un∇ξ dx dt = 0.

It follows that ∫
Q

Φ(uσn + d0)|∇un|p(x)−2∇un∇(un − u)] dx dt = 0. (3.13)

On the other hand, by the fact that un, u ∈ L∞(Q) and |∇u| ∈ Lp(x)(Q), we have

lim
n→∞

∫
Q

Φ(uσ + d0)|∇u|p(x)−2∇u∇(un − u) dx dt = 0. (3.14)

lim
n→∞

∫
Q

Φ(uσn − uσ)|∇u|p(x)−2∇u∇(un − u) dx dt = 0. (3.15)
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Note that

0 ≤ (|∇u|p(x)−2∇un − |∇u|p(x)−2∇u)∇(un − u)

≤ 1
d0

[(uσn + d0)|∇un|p(x)−2∇un − (uσn − uσ)|∇u|p(x)−2∇u]∇(un − u)

− 1
d0

(uσ + d0)|∇u|p(x)−2∇u∇(un − u).

(3.16)

Bring (3.13)–(3.15) into (3.16), we obtain

lim
n→∞

∫
Q

Φ(|∇un|p(x)−2∇un − |∇u|p(x)−2∇u)∇(un − u) dx dt = 0.

The rest arguments are the same as those of [22, Theorem 2.1]. Thus the existence
of weak solutions for problem (1.2) is obtained by a standard limiting process. �

4. Uniqueness of solutions

In this section, we study the uniqueness of the solutions to (1.1). To obtain the
main conclusion of this section, we need the following lemma.

Lemma 4.1. Let M(s) = |s|p(x)−2s, then for all ξ, η ∈ RN ,

(M(ξ)−M(η))(ξ − η)

≥

{
2−p(x)|ξ − η|p(x), if 2 ≤ p(x) <∞;

(p(x)− 1)|ξ − η|2(|ξ|p(x) + |η|p(x))
p(x)−2
p(x) , if 1 < p(x) < 2.

Now we shall prove Theorem 1.3 by contradiction. Suppose u(x, t) and v(x, t)
are two nonnegative weak solutions of problem (1.1) and there is a δ > 0 such that
for some 0 < τ ≤ T , w = u − v > δ on the set Ωδ = Ω ∩ {x : w(x, t) > δ} and
µ(Ωδ) > 0. Let

Fε(ξ) =

{
1

α−1ε
1−α − 1

α−1ξ
1−α, if ξ > ε;

0, if ξ ≤ ε.

where δ > 2ε > 0 and α = σ/2.
By the definition of weak solution, we take a test-function ξ = Fε(w),

0 =
∫
Qτ

[wtFε(w) + (vσ + d0)(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v)∇Fε(w)] dx dt

+
∫
Qτ

(uσ − vσ)|∇u|p(x)−2∇u∇Fε(w) dx dt

=
∫
Qε,τ

wtFε(w) dx dt

+
∫
Qε,τ

(vσ + d0)w−α(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v)∇w dxdt

+
∫
Qε,τ

(uσ − vσ)w−α|∇u|p(x)−2∇u∇w dxdt

= J1 + J2 + J3,

(4.1)

with Qε,τ = Qτ ∩ {(x, t) ∈ Qτ : w > ε}.
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Now, let t0 = inf{t ∈ (0, τ ] : w > ε}, then we estimate J1, J2, J3.

J1 =
∫
Qε,τ

wtFε(w) dx dt

=
∫

Ω

(∫ t0

0

wtFε(w)dt+
∫ τ

t0

wtFε(w)dt
)
dx

≥
∫

Ω

∫ w(x,τ)

ε

Fε(s) ds dx

≥
∫

Ωδ

∫ w(x,τ)

ε

Fε(s) ds dx

≥
∫

Ωδ

(w − 2ε)Fε(ε)dx

≥ (δ − 2ε)Fε(ε)µ(Ωδ),

(4.2)

Let us first consider the case p− ≥ 2. By the first inequality of Lemma 4.1, we
obtain

J2 =
∫
Qε,τ

(vσ + d0)w−α(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v)∇w dxdt

≥
∫
Qε,τ

(vσ + d0)w−α2−p(x)|∇w|p(x) dx dt

≥ 2−p
+
∫
Qε,τ

(vσ + d0)w−α|∇w|p(x) dx dt ≥ 0,

(4.3)

Noting that p(x)
p(x)−1 ≥

p+

p+−1 = α > 1 and applying Young’s inequality, we esti-
mate integrand of J3 in the following way

|(uσ − vσ)w−α|∇u|p(x)−2∇u∇w|

=
∣∣σw ∫ 1

0

(θu+ (1− θ)v)σ−1dθw−α|∇u|p(x)−2∇u∇w
∣∣

≤ C

Wα

[vσ + d0

C
|∇w|p(x) + C1(σ, d0,K(T ), p±)|w|p

′(x)|∇u|p(x)
]

≤ vσ + d0

2p++1wα
|∇w|p(x) + C1(σ, d0,K(T ), p±)|w|p

′(x)−α|∇u|p(x)

≤ vσ + d0

2p++1wα
|∇w|p(x) + C1(σ, d0,K(T ), p±)|∇u|p(x).

(4.4)

Substituting (4.4) into J3, we obtain

J3 ≤
1
2
J2 + C

∫
Qε,τ

|∇u|p(x) dx dt. (4.5)

Next we consider the case 1 < p− < p(x) < 2, p+ > 2. According to the second
inequality of Lemma 4.1, it is easy to see that the following inequalities hold

J2 =
∫
Qε,τ

(vσ + d0)w−α(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v)∇w dxdt

≥ (p− − 1)
∫
Qε,τ

(vσ + d0)w−α(|∇u|+ |∇v|)p(x)−2|∇w|2 dx dt ≥ 0.
(4.6)
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Using Young’s inequality and the fact that 1 < α ≤ p+

p+−1 ≤ 2, we evaluate integrand
of J3 as follows:

|(uσ − vσ)w−α|∇u|p(x)−2∇u∇w|

=
∣∣σw ∫ 1

0

(θu+ (1− θ)v)σ−1dθw−α|∇u|p(x)−2∇u∇w
∣∣

≤ (vσ + d0)(p− − 1)
2wα

(|∇u|+ |∇v|)p(x)−2|∇w|2

+ C1(σ, d0,K(T ), p±)|w|2−α(|∇u|+ |∇v|)p(x)

≤ (vσ + d0)(p− − 1)
2wα

(|∇u|+ |∇v|)p(x)−2|∇w|2

+ C1(σ, d0,K(T ), p±)(|∇u|+ |∇v|)p(x).

(4.7)

Inserting (4.7) into J3, we obtain

J3 ≤
1
2
J2 + C

∫
Qε,τ

(|∇u|+ |∇v|)p(x) dx dt.

Plugging the estimates (4.2), (4.3), (4.5) and (4.2), (4.6), (4.7) into (4.1) and drop-
ping the nonnegative terms, we arrive at the inequality

(δ − 2ε)(1− 21−α)ε1−αµ(Ωδ) ≤ C̃,

with a constant C̃ independent of ε.
Notice that limε→0(δ−2ε)(1−21−α)ε1−αµ(Ωδ) = +∞, we obtain a contradiction.

This means µ(Ωδ) = 0 and w ≤ 0, a.e. in Qτ . Thus the proof is complete.

5. Localization property of solutions

In this section, we shall focus on the study of localization of solutions to problem
(1.1). The proof is similar to that of [13, Theorem 4.1], we would like to give the
detailed treatment, just for the reader’s convenience. In fact, by Definition 1.1, it
follows easily that ∫

Q

uτξ + (uσ + d0)|∇u|p(x)−2∇u∇ξ = 0, (5.1)

with τ ∈ (0, T ). Let

Ψ = inf{dist(x, supp u0 ∪ ∂Ω)/λ, 1},

where 0 < λ < 1, and Fε(ξ) is mentioned in Section 4 with α = σ/2. Taking
ξ = ΨFε(u)(0 < ε < 1) and substituting it into (5.1), we obtain

0 =
∫
Qε,τ

utΨFε(u) dx dt+
∫
Qε,τ

Ψ(uσ + d0)|∇u|p(x)−2∇u∇Fε(u) dx dt

+
∫
Qε,τ

Fε(u)(uσ + d0)|∇u|p(x)−2∇u∇Ψ dx dt := I1 + I2 + I3.

(5.2)



EJDE-2016/209 PARABOLIC EQUATIONS WITH p(x)-GROWTH 13

with Qε,τ = Qτ ∩ {(x, t) ∈ Qτ : u > ε}. Denote E = {x ∈ {Ψ = 1} : u(x, τ) > δ}
with δ > 2ε > 0, then

I1 =
∫
Qε,τ

utΨFε(u) dx dt ≥
∫

Ωε

χsupp ΨΨ
∫ u

ε

Fε(s) ds dx

≥
∫

Ωε

χsupp ΨΨ(u− ε)Fε(δ)dx

≥
(
δ − 3

2
ε
)
Fε
(3

2
ε
)

meas(E).

(5.3)

and

I2 =
∫
Qε,τ

Ψ(uσ + d0)|∇u|p(x)−2∇u∇ 1
α− 1

(−u1−α) dx dt

≥
∫
Qε,τ

Ψ(uσ + d0)|∇u|p(x)u−α dx dt ≥ 0.
(5.4)

Applying Young’s inequality with η and choosing η = (εβ)1−p(x), we may estimate
that

|I3| =
∣∣ ∫
Qε,τ

Fε(u)(uσ + d0)|∇u|p(x)−2∇u∇Ψ dx dt
∣∣

≤ C
∫
Qε,τ

ε1−α|∇u|p(x)−1|∇Ψ| dx dt

≤ C(σ, d0,K(T ), p±)εβ+
(1−α)p−

p−−1

∫
Qε,τ

|∇u|p(x) dx dt

+ εβ(1−p+)

∫
Qε,τ

|∇Ψ|p(x) dx dt,

(5.5)

where C > 0 denote the various constants. Choosing β = αp−−1
p−−1 > 0 and putting

(5.3)–(5.5) into (5.2), we deduce

1
2

[1− (3/2)1−α]ε2−α−β+
(α−1)p−

p−−1 meas(E)

≤ (δ − 3ε/2)[1− (3/2)1−α]ε1−α−β+
(α−1)p−

p−−1 meas(E)

≤ C̃
(

1 + ε
(α−1)p−

p−−1
−βp+

)
,

(5.6)

with the positive constant C̃ independent of ε. Noticing that

2 < σ <
2(p+ − p−)
p−(p+ − 1)

<
2p+

p+ − 1
,

we have

1 < α =
σ

2
<

(p+ − p−)
p−(p+ − 1)

, 1− β +
(α− 1)p−

p− − 1
= 0; (5.7)

(α− 1)p−

p− − 1
− βp+ =

(p+ − p−)− αp−(p+ − 1)
p− − 1

> 0. (5.8)

Assume that there exists the constant τ0 ∈ (0, T ) such that meas(E) 6= 0. Thus,
(5.6)–(5.8) yield a contradiction. Hence, we have

meas{x ∈ {Ψ = 1} : u(x, τ) > δ} = 0, (5.9)
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for all δ ∈ (0, 1) and a.e. τ ∈ (0, T ). Then Theorem 1.4 follows from (5.9) and the
arbitrariness of λ.
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