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SUBLINEAR EIGENVALUE PROBLEMS WITH SINGULAR
WEIGHTS RELATED TO THE CRITICAL HARDY INEQUALITY

MEGUMI SANO, FUTOSHI TAKAHASHI

Abstract. In this article, we consider a weighted sublinear eigenvalue prob-
lem related to an improved critical Hardy inequality. We discuss to what

extent the weights can be singular for the existence of weak solutions. Also we

study the asymptotic behavior of the first eigenvalues as a parameter involved
varies.

1. Introduction

Let Ω be a bounded domain in RN , N ≥ 2, with 0 ∈ Ω. Here and henceforth, we
put R = supx∈Ω |x|. In this article, we consider the quasilinear eigenvalue problem
with singular weights

−∆Nu− µ
|u|N−2u

|x|N (log Re
|x| )

N
= λf(x)|u|q−2u in Ω,

u = 0 on ∂Ω,
(1.1)

where ∆Nu = div(|∇u|N−2∇u) is the N -Laplacian, 1 < q, 0 ≤ µ < (N−1
N )N ,

λ ∈ R and f ∈ L∞loc(Ω \ {0}) is a positive weight function which may be unbounded
near the origin. We assume that the weight function f satisfies |φ|qf ∈ L1(Ω) for
any φ ∈ W 1,N

0 (Ω). This problem is related to the critical Hardy inequality due to
Adimurthi and Sandeep [2]:∫

Ω

|∇u|Ndx ≥
(N − 1

N

)N ∫
Ω

|u|N

|x|N (log Re
|x| )

N
dx, ∀u ∈W 1,N

0 (Ω). (1.2)

In the appendix, we provide a simple proof of (1.2) for the sake of completeness.
Thanks to (1.2), the operator

Lµu = −∆Nu− µ
|u|N−2u

|x|N (log Re
|x| )

N

acting on W 1,N
0 (Ω) is positive and coercive. We call a function u ∈ W 1,N

0 (Ω) a
weak solution of the problem (1.1) if∫

Ω

|∇u|N−2∇u · ∇φdx = µ

∫
Ω

|u|N−2uφ

|x|N (log Re
|x| )

N
dx+ λ

∫
Ω

|u|q−2uφf(x)dx
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holds whenever φ ∈W 1,N
0 (Ω).

When q − 1 = N − 1 case, (1.1) becomes a genuine eigenvalue problem for Lµ,
and under suitable integrability assumptions of the indefinite weight function f , the
existence of the positive first eigenvalue, its simplicity, and the isolation property are
obtained [16]. Also in [19], the authors obtain an unbounded sequence of minimax
eigenvalues of Lµ by the use of the cohomological index theory.

When q− 1 > N − 1 ((N − 1)-superlinear case), since |u|q−2u is subcritical from
the view point of Trudinger-Moser inequality, we find several references in which
the existence of (multiple) weak solutions is obtained, see for example [18], [19],
and the reference therein. See also [9] for the critical growth case and [13], [15] for
related results.

In this article, we focus on the (N − 1)-sublinear case; 0 < q − 1 < N − 1.
For f in an appropriate class of weight functions, we look for a weak solution
u ∈ W 1,N

0 (Ω) of (1.1) by a constrained minimization argument. The solution
obtained here corresponds to the first eigenvalue of λµ(f) of the operator Lµ:

λµ(f) = inf
u∈W 1,N

0 (Ω)\{0}

∫
Ω
|∇u|Ndx− µ

∫
Ω

|u|N

|x|N (log Re
|x| )

N dx( ∫
Ω
|u|qf(x)dx

)N/q .

Furthermore we study the asymptotic behavior of λµ(f) as µ↗ (N−1
N )N .

To state the main result in this paper, for 0 < q < N , put α∗ = (N−1
N )q+ 1 and

define a class of weight functions

FN =
{
f : Ω→ R+ : f ∈ L∞loc(Ω\{0}) and ∃α ∈ (α∗, N ] such that

lim sup
|x|→0

f(x)|x|N
(

log
Re

|x|
)α

<∞
}
.

Then the main result of the paper reads as follows:

Theorem 1.1. Let 0 < q− 1 < N − 1. Then for all f ∈ FN and 0 < µ < (N−1
N )N ,

problem (1.1) admits a positive weak solution u ∈ W 1,N
0 (Ω) corresponding to λ =

λµ(f) > 0. Furthermore, λµ(f)→ λ(f) as µ↗ (N−1
N )N for a limit λ(f) > 0.

For the proof of Theorem 1.1, we need an improved version of the critical Hardy
inequality (1.2). It is known that the constant (N−1

N )N in (1.2) is optimal and never
attained on any bounded domain Ω ⊂ RN with 0 ∈ Ω, see Adimurthi and Sandeep
[2]. Therefore there is a possibility to add a nonnegative remainder term to the
right-hand side of (1.2). In [2], the authors claim that there exists C > 0 such that∫

Ω

|∇u|Ndx ≥
(N − 1

N

)N ∫
Ω

|u|N

|x|N (log Re
|x| )

N
dx+C

∫
Ω

|u|N

|x|N (log Re
|x| )

N (log(2) R1
|x| )

N
dx

for any u ∈ W 1,N
0 (Ω), where R1 ≥ (ee)2/NR. Here for k ∈ N, log(k) is defined

inductively by log(1)(·) = log(·), log(k)(·) = log(log(k−1)(·)) for k ≥ 2. However, the
proof of it is omitted in [2]. Barbatis, Filippas and Tertikas [4] proved that, among
other things, the improved critical Hardy inequality∫

Ω

|∇u|Ndx−
(N − 1

N

)N ∫
Ω

|u|N

|x|N (log Re
|x| )

N
dx
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≥ 1
2
(N − 1

N

)N−1
∞∑
i=2

∫
Ω

|u|N

|x|N (log Re
|x| )

N
X2

2 (
|x|
R

) . . . X2
i (
|x|
R

)dx

where for t ∈ (0, 1) and i = 2, 3, . . . ,

X1(t) = (1− log t)−1 =
1

log( et )
, Xi(t) = X1(Xi−1(t)).

Note that

X2(
|x|
R

) =
1

log(e log eR
|x| )

, X3(
|x|
R

) =
1

log(e log(e log eR
|x| ))

, . . . .

In [4], the authors use a “vector field approach” as in [3].
In this paper, we obtain another kind of remainder terms for the critical Hardy

inequality (1.2) in much simpler way, see Proposition 2.1. We use a classical idea
by Brezis and Vázquez [7] combined with a transformation of functions relevant to
our study, see (2.3) below.

The organization of this paper is as follows: In §2, an improved critical Hardy
inequality is proved. In §3, the optimality of the weight in the improved critical
Hardy inequality is discussed. Finally in §4, Theorem 1.1 is proved.

2. Improving the critical Hardy inequality with an idea of Brezis
and Vázquez

In this section, we improve the critical Hardy inequality (1.2) by adding a non-
negative term to the right hand side. In the proof of Proposition 2.1 below, we
utilize the well-known transformation of Brezis and Vázquez [7] combined with an
appropriate change of variables.

Proposition 2.1. Let Ω be a smooth bounded domain in RN , N ≥ 2, with 0 ∈ Ω,
and R = supx∈Ω |x|. For any −1 < L < N − 2 and 0 < q < ( N

N−1 )(N − 2−L), put

α = α(q, L) =
N − 1
N

q + L+ 2.

Then the inequality∫
Ω

|∇u|Ndx ≥
(N − 1

N

)N ∫
Ω

|u|N

|x|N (log Re
|x| )

N
dx

+ ω
1−Nq
N C(L,N, q)N/q

(∫
Ω

|u|q

|x|N
(

log Re
|x|
)α dx)N/q (2.1)

holds for all u ∈W 1,N
0 (Ω), where ωN is the area of the unit sphere in RN and

C(L,N, q)−1 =
∫ 1

0

sL(log
1
s

)
N−1
N qds = (L+ 1)−(N−1

N q+1)Γ(
N − 1
N

q + 1),

here Γ(·) is the Gamma function.

Remark 2.2. Inequality (2.1) does not hold when L ≤ −1 (see Theorem 3.1).
Therefore we see that the weight function in the remainder term of (2.1) is optimal.

First, we recall a simple lemma.
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Lemma 2.3 ([10][Lemma 1.1]). Let N ≥ 2, and ξ, η be real numbers such that
ξ ≥ 0 and ξ − η ≥ 0. Then

(ξ − η)N +NξN−1η − ξN ≥ |η|N . (2.2)

Proof of Proposition 2.1.
Step 1: First we prove the inequality (2.1) when Ω is a ball BR(0) ⊂ RN and
for smooth nonnegative radially non-increasing functions u ∈ C∞0 (BR(0)). We
write u(x) = u(r) with r = |x| for radially symmetric functions u. We define the
transformation

v(s) = (log
Re

r
)−

N−1
N u(r), where r = |x|, s = s(r) =

(
log

Re

r

)−1 ∈ [0, 1],

s′(r) =
s(r)

r log Re
r

≥ 0.
(2.3)

Note that v(0) = v(1) = 0 since u(0) is finite and u(R) = 0, and

u′(r) = −
(N − 1

N

)(
log

Re

r

)−1/N v(s(r))
r

+
(

log
Re

r

)N−1
N v′(s(r))s′(r) ≤ 0. (2.4)

Now we observe that

I =
∫
BR(0)

|∇u|Ndx−
(N − 1

N

)N ∫
BR(0)

|u|N

|x|N (log Re
|x| )

N
dx

= ωN

∫ R

0

|u′(r)|NrN−1dr −
(N − 1

N

)N
ωN

∫ R

0

|u(r)|N

r(log Re
r )N

dr

= ωN

∫ R

0

(
N − 1
N

(log
Re

r
)−1/N v(s(r))

r
−
(

log
Re

r

)N−1
N v′(s(r))s′(r))NrN−1dr

−
(N − 1

N

)N
ωN

∫ R

0

|v(s(r))|N

r log Re
r

dr.

Here, we can apply Lemma 2.3 with the choice

ξ =
N − 1
N

(
log

Re

r

)−1/N v(s(r))
r

and η =
(

log
Re

r

)N−1
N v′(s(r))s′(r).

By noticing the cancellation of the term ξN in (2.2) and using the boundary con-
ditions v(0) = v(1) = 0, we obtain

I ≥ −ωNN
(N − 1

N

)N−1
∫ R

0

v(s(r))N−1v′(s(r))s′(r)dr

+ ωN

∫ R

0

|v′(s(r))|N (s′(r))N (r log
Re

r
)N−1dr

= −ωNN
(N − 1

N

)N−1
∫ 1

0

v(s)N−1v′(s)ds+ ωN

∫ 1

0

|v′(s)|NsN−1ds

= ωN

∫ 1

0

|v′(s)|NsN−1ds.

(2.5)

When N = 2, actually this inequality becomes the equality. On the other hand, by
using the estimate

|v(s)| =
∣∣ ∫ 1

s

v′(t)dt
∣∣ =

∣∣ ∫ 1

s

v′(t)t
N−1
N −N−1

N dt
∣∣
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≤
(∫ 1

0

|v′(t)|N tN−1 dt
)1/N(

log
1
s

)N−1
N

,

we obtain∫ 1

0

|v(s)|qsLds ≤
(∫ 1

0

|v′(s)|NsN−1ds
)q/N ∫ 1

0

sL
(

log
1
s

)N−1
N q

ds.

Note that the last integral is finite when L > −1 and q > 0. Therefore, we have∫ 1

0

|v′(s)|NsN−1ds ≥ C(L,N, q)N/q
(∫ 1

0

|v(s)|qsL ds
)N/q

. (2.6)

Consequently, by (2.5) and (2.6), we obtain

I ≥ ωNC(L,N, q)N/q
(∫ 1

0

|v(s)|qsL ds
)N/q

= ωNC(L,N, q)N/q
(∫ R

0

|u(r)|q

r(log Re
r )α

dr
)N/q

= ω
1−Nq
N C(L,N, q)N/q

(∫
BR(0)

|u|q

|x|N (log Re
|x| )

α
dx
)N/q

.

where α = α(q, L) = N−1
N q + L+ 2.

Step 2: Let u# denote the symmetric decreasing rearrangement (the Schwarz
symmetrization) of u ∈ C∞0 (Ω):

u#(x) = u#(|x|) = inf{λ > 0 :
∣∣{x ∈ Ω : |u(x)| > λ}

∣∣ ≤ |B|x|(0)|},

where |A| denotes the measure of the set A ⊂ RN . Assume |Ω| = |BR̃(0)| for some
R̃ > 0. Note that the function r 7→ 1

rN (log Re
r )α

is monotonically decreasing on [0, R]
since α ≤ N . Thus by using the symmetrization argument, we obtain∫

Ω

|∇u|Ndx ≥
∫
BR̃(0)

|∇u#|Ndx

≥
(N − 1

N

)N ∫
BR̃(0)

|u#|N

|x|N (log R̃e
|x| )

N
dx

+ ω
1−Nq
N C(L,N, q)N/q

(∫
BR̃(0)

|u#|q

|x|N (log R̃e
|x| )

α
dx
)N/q

≥
(N − 1

N

)N ∫
BR̃(0)

|u#|N

|x|N (log Re
|x| )

N
dx

+ ω
1−Nq
N C(L,N, q)N/q

(∫
BR̃(0)

|u#|q

|x|N (log Re
|x| )

α
dx
)N/q

≥
(N − 1

N

)N ∫
Ω

|u|N

|x|N (log Re
|x| )

N
dx

+ ω
1−Nq
N C(L,N, q)N/q

(∫
Ω

|u|q

|x|N (log Re
|x| )

α
dx
)N/q

where the first inequality comes from the Pólya-Szegö inequality, the second one
comes from Step 1, the third one comes from the fact that R ≥ R̃, and the last one
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comes from the Hardy-Littlewood inequality:
∫
BR̃(0)

f#g# ≥
∫

Ω
fg for nonnegative

measurable functions f and g. Finally, a density argument assures (2.1) holds true
for all u ∈W 1,N

0 (Ω). The proof is complete. �

From Proposition 2.1, we easily have the following result.

Corollary 2.4 (Adimurthi-Sandeep [2, Theorem 1.3]). Let N ≥ 2. The best con-
stant

(
N−1
N

)N in the inequality (1.2) is never attained in W 1,N
0 (Ω).

3. Optimality of weights

In this section, we discuss the optimality of the weight function in the improved
critical Hardy inequality (2.1).

Theorem 3.1. Let Ω be a smooth bounded domain in RN , N ≥ 2, 0 ∈ Ω, with
R = supx∈Ω |x|. For 0 < q < N , put

α∗ =
(N − 1

N

)
q + 1

and define

FN =
{
f : Ω→ R+ : f ∈ L∞loc(Ω\{0}) and ∃α ∈ (α∗, N ] s.t.

lim sup
|x|→0

f(x)|x|N
(

log
Re

|x|
)α

<∞
}
,

and

GN =
{
f : Ω→ R+ : f ∈ L∞loc(Ω\{0}) and lim inf

|x|→0
f(x)|x|N (log

Re

|x|
)α
∗
> 0
}
.

If f ∈ FN , then there exists λ(f) > 0 such that the inequality∫
Ω

|∇u|Ndx ≥
(N − 1

N

)N ∫
Ω

|u|N

|x|N (log Re
|x| )

N
dx+ λ(f)(

∫
Ω

f(x)|u|q dx)N/q (3.1)

holds for all u ∈W 1,N
0 (Ω). If f ∈ GN , then no inequality of type (3.1) can hold.

Especially, we cannot replace α in the remainder term of (2.1) by α∗. Also by
Theorem 3.1, we see

∫
Ω
f(x)|u|q dx <∞ for any u ∈W 1,N

0 (Ω) if f ∈ FN .

Remark 3.2. There exist functions f with f /∈ FN and f /∈ GN . For example,
fγ(x) = |x|−N (log Re

|x| )
−α∗( log | log Re

|x| |
)−γ for γ > 0 are such functions.

To prove Theorem 3.1, we follow the argument of the proof in Adimurthi-
Chaudhuri-Ramaswamy [1, Corollary 1.2].

Proof of Theorem 3.1. If f ∈ FN , then there exists α ∈ (α∗, N ] such that

lim
ε→0

sup
x∈Bε

f(x)|x|N
(

log
Re

|x|

)α
<∞.

Hence for sufficiently small ε > 0, there exists a constant C > 0 such that

f(x) <
C

|x|N (log Re
|x| )

α
in Bε(0).
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Outside of Bε, f is a bounded function and hence C can be chosen so that this
inequality holds in the whole of Ω. Then, it is easy to check that (3.1) follows from
the improved critical Hardy inequality (2.1).

For the proof of the latter half part of Theorem, let f ∈ GN . Then we can find
C > 0, b > 0 such that f(x) ≥ C

|x|N (log(Re/|x|))α∗ in 0 ≤ |x| ≤ bRe
2 . We may assume

that BbRe(0) ⊂ Ω (⊂ BR(0)). Let s < N−1
N be a positive parameter and we define

us(x) =


(log Re

|x| )
s if 0 ≤ |x| ≤ bRe

2

smooth if bRe
2 ≤ |x| ≤ bRe

0 if bRe ≤ |x|.
(3.2)

Direct calculations show that(∫
Ω

|us|q

|x|N (log Re
|x| )

α∗
dx
)N/q

=
(
ωN

1
(N−1
N − s)q

(
log

2
b

)(s−N−1
N )q

)N/q
+O(1),

(3.3)∫
Ω

|∇us|Ndx = ωN
−sN

(s− 1)N + 1
(

log
2
b

)(s−1)N+1 +O(1), (3.4)∫
Ω

|us|N

|x|N (log Re
|x| )

N
dx = ωN

−1
(s− 1)N + 1

(
log

2
b

)(s−1)N+1 +O(1) (3.5)

as s→ N−1
N . By (3.3), (3.4), (3.5) and N/q > 1, we have∫

Ω
|∇us|Ndx−

(
N−1
N

)N ∫
Ω

|us|N

|x|N (log Re
|x| )

N dx

(
∫

Ω
f(x)|us|qdx)N/q

≤

∫
Ω
|∇us|Ndx−

(
N−1
N

)N ∫
Ω

|us|N

|x|N (log Re
|x| )

N dx

C(
∫

Ω
|us|q

|x|N (log Re
|x| )

α∗ dx)N/q

= C
(N − 1

N
− s
)N
q −1 → 0

as s→ N−1
N . Thus the inequality (2.1) does not hold for f as above. �

4. Proof of Theorem 1.1

To prove the Theorem 1.1, we need the following lemmas.

Lemma 4.1 (Boccardo-Murat [5, Thm. 2.1]). Let {um}∞m=1 ⊂ W 1,p
0 (Ω) be such

that, as m→∞, um ⇀ u weakly in W 1,p
0 (Ω) and satisfies

−∆pum = fm + gm in D′(Ω),

where fm → 0 in W−1,p′

0 (Ω) and gm is bounded in M(Ω), the space of Radon
measures on Ω, i.e.

|〈gm, φ〉| ≤ CK‖φ‖∞
for all φ ∈ D(Ω) with suppφ ⊂ K. Then there exists a subsequence umk such that

umk → u in W 1,γ
0 (Ω) ∀γ < p.

Lemma 4.2 (Brezis-Lieb [6]). For p ∈ (0,+∞), let {gm}∞m=1 ⊂ Lp(Ω, µ) be a
sequence of functions on a measurable space (Ω, µ) such that
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(i) ‖gm‖Lp(Ω,µ) ≤ ∃C <∞ for all m ∈ N, and
(ii) gm(x)→ g(x) µ a.e. x ∈ Ω as m→∞.

Then
lim
m→∞

(‖gm‖pLp(Ω,µ) − ‖gm − g‖
p
Lp(Ω,µ)) = ‖g‖pLp(Ω,µ).

We may apply Lemma 4.2 to µ(dx) = f(x)dx, where f is any nonnegative L1(Ω)
function. Next we have a compactness theorem for the embedding W 1,N

0 (Ω) into a
weighted Lebesgue space Lq(Ω, f) = {u ∈ L1

loc(Ω) :
∫

Ω
|u|qf(x)dx <∞}.

Lemma 4.3. For any 0 < q < N and any α > α∗ = N−1
N q + 1, there exists C > 0

such that the inequality∫
Ω

|∇u|Ndx ≥ C
(∫

Ω

|u|q

|x|N (log Re
|x| )

α
dx
)N/q

(4.1)

holds for all u ∈W 1,N
0 (Ω). Moreover, for

fα(x) =
1

|x|N (log(Re/|x|))α
,

the embedding W 1,N
0 (Ω) ↪→ Lq(Ω, fα) is compact for 1 ≤ q < N .

Recently, inequality (4.1) was proved by Machihara-Ozawa-Wadade [12]. In the
following, we provide a simpler proof of (4.1) than the one in [12].

Proof. By Hölder inequality and the critical Hardy inequality (1.2), we have∫
Ω

|u|q

|x|N (log Re
|x| )

α
dx

≤
(∫

Ω

|u|N

|x|N (log Re
|x| )

N
dx
)q/N(∫

Ω

1

|x|N (log Re
|x| )

N
N−q (α−q)

dx
)1− q

N

≤
((N − 1

N

)−N ∫
Ω

|∇u|Ndx
)q/N(∫

Ω

1

|x|N (log Re
|x| )

N
N−q (α−q)

dx
)1− q

N

.

Since α > α∗ = N−1
N q + 1, the exponent N

N−q (β − q) > 1, so the last integral is
finite. Thus we have (4.1).

For the proof of the latter half part, we follow the argument by Chaudhuri-
Ramaswamy [8, Proposition 2.1]. The continuous embeddingW 1,N

0 (Ω) ↪→ Lq(Ω, fα)
comes from the inequality (4.1). To prove that this embedding is compact, let {um}
be a bounded sequence in W 1,N

0 (Ω). Then we have a subsequence {umk} such that

umk ⇀ u weakly in W 1,N
0 (Ω) as k →∞,

umk → u strongly in Lγ(Ω) as k →∞ ∀1 ≤ γ <∞.

Take β such that α > β > α∗ and note that lim|x|→0 |x|N (log Re
|x| )

βfα(x) = 0. Then
for any ε > 0 we can find δ > 0 such that

sup
Bδ(0)

|x|N
(

log
Re

|x|

)β
fα(x) ≤ ε and ‖fα‖L∞(Ω\Bδ(0)) <∞.

Thus

‖umk − u‖
q
Lq(Ω,fα) =

∫
Ω\Bδ(0)

|umk − u|qfα(x)dx+
∫
Bδ(0)

|umk − u|qfα(x)dx
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≤ ‖fα‖L∞(Ω\Bδ(0))‖umk − u‖
q
Lq(Ω) + ε

∫
Ω

|umk − u|q

|x|N (log Re
|x| )

β
dx

≤ ‖fα‖L∞(Ω\Bδ(0))‖umk − u‖
q
Lq(Ω) + εC‖∇(umk − u)‖q

LN (Ω)

= o(1) + εO(1) as k →∞,

here the second inequality comes from (4.1). Finally, letting ε → 0, we obtain
‖umk − u‖

q
Lq(Ω,fα) → 0 and the proof is complete. �

Proof of Theorem 1.1. We use the methods similar to the proof in [1, Theorem 1.2].
We look for a minimizer of the functional

Jµ(u) =
∫

Ω

|∇u|N dx− µ
∫

Ω

|u|N

(|x| log Re
|x| )

N
dx ∀u ∈W 1,N

0 (Ω)

over the manifold M = {u ∈ W 1,N
0 (Ω) :

∫
Ω
|u|qf(x)dx = 1}. Since f ∈ FN , M is

well-defined and non empty by Theorem 3.1. Note that Jµ is continuous, Gǎteaux
differentiable and coercive on W 1,N

0 (Ω) for any µ ∈ [0,
(
N−1
N

)N ) thanks to the
Hardy inequality (1.2). Thus it is clear that λµ(f) = infu∈M Jµ(u) is positive.
Let {um}∞m=1 ⊂ M be a minimizing sequence of λµ(f). By Ekeland’s Variational
Principle, we may assume J ′µ(um) → 0 in W−1,N ′

0 (Ω) as m → ∞ without loss of
generality. The coercivity of Jµ implies that {um}∞m=1 is a bounded sequence in
W 1,N

0 (Ω), hence we have a subsequence {umk}∞k=1 and u ∈W 1,N
0 (Ω) such that

umk ⇀ u weakly in W 1,N
0 (Ω) as k →∞, (4.2)

umk ⇀ u weakly in LN
(

Ω, (|x| log
Re

|x|
)−N

)
as k →∞, (4.3)

umk → u strongly in Lγ(Ω) as k →∞ ∀1 ≤ γ <∞), (4.4)

umk → u a.e. in Ω as k →∞ (4.5)

for some u ∈ W 1,N
0 (Ω). Note that the second convergence (4.3) comes from the

fact that (
LN (Ω, (|x| log

Re

|x|
)−N )

)∗
⊂W−1,N ′(Ω) = (W 1,N

0 (Ω))∗,

which is a consequence of the Hardy inequality (1.2), and (4.2). Recall that for
f ∈ FN , there exist C > 0 and α ∈ (α∗, N ] such that

f(x) ≤ C

|x|N
(

log Re
|x|
)α in Ω.

Thus W 1,N
0 (Ω) is compactly embedded in Lq(Ω, f) by Lemma 4.3. Hence M is

weakly closed in W 1,N
0 (Ω) and u ∈M .

Furthermore since ‖J ′µ(um)‖W−1,N′ (Ω) → 0, um satisfies

−∆Num = µ
|um|N−2um(
|x| log Re

|x|
)N + λm|um|q−2umf + fm

in D′(Ω), where fm → 0 in W−1,N ′(Ω) and λm → λ as m→∞. Putting

gm = µ
|um|N−2um

(|x| log Re
|x| )

N
+ λm|um|q−2umf,
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one can check that gm is bounded in M(Ω). Thus we have

∇umk → ∇u a.e. in Ω (4.6)

from Lemma 4.1. By using Lemma 4.2, (4.2), (4.3), (4.5), (4.6), and the Hardy
inequality (1.2), we obtain

λµ(f) = ‖∇umk‖NN − µ‖umk‖NLN (Ω,(|x| log Re
|x| )
−N )

+ o(1)

= ‖∇(umk − u)‖NN − µ‖umk − u‖NLN (Ω,(|x| log Re
|x| )
−N )

+ ‖∇u‖NN − µ‖u‖NLN (Ω,(|x| log Re
|x| )
−N )

+ o(1)

≥
((N − 1

N

)N − µ)‖umk − u‖NLN (Ω,(|x| log Re
|x| )
−N )

+ λµ(f) + o(1)

where o(1)→ 0 as k →∞. As µ <
(
N−1
N

)N , we conclude that

‖umk − u‖NLN (Ω,(|x| log Re
|x| )
−N )
→ 0 as k →∞,

‖∇(umk − u)‖NN → 0 as k →∞.
(4.7)

Hence we have the strong convergence of {umk} which implies Jµ(u) = λµ(f) and
λ = λµ(f). Since Jµ(|u|) = Jµ(u) and the strong maximum principle of ∆N , we
can take u > 0 in Ω. Then using Lemma 4.1 and (4.7), we assure that u is a
distributional solution of (1.1) corresponding to λ = λµ(f). Moreover u is a weak
solution of (1.1) from density argument.

Finally, Theorem 3.1 implies

λ(f) = inf
u∈W 1,N

0 (Ω)\{0}

∫
Ω
|∇u|Ndx−

(
N−1
N

)N ∫
Ω

|u|N

|x|N (log Re
|x| )

N dx( ∫
Ω
|u|qf(x)dx

)N/q > 0

if f ∈ FN . Since it is trivial that λµ(f) → λ(f) as µ ↗
(
N−1
N

)N , this completes
the proof. �

Remark 4.4. By using the test function us defined by (3.2), we check that

inf
u∈W 1,N

0 (Ω),u 6=0

∫
Ω
|∇u|Ndx( ∫

Ω
|u|q

|x|N (log Re
|x| )

α∗ dx
)N/q = 0.

Thus we cannot replace α in the inequality (4.1) by α∗. By this reason, if we define
the class of weight functions

FN =
{
f : Ω→ R+ : f ∈ L∞loc(Ω\{0}) and lim sup

|x|→0

f(x)|x|N
(

log
Re

|x|
)α∗

<∞
}
,

then we do not know the solvability of (1.1) for f ∈ FN .

5. Appendix

In this appendix, we prove the following result.

Lemma 5.1. Let Ω ⊂ RN , N ≥ 2, be a bounded domain. Then the inequality∫
Ω

∣∣ x
|x|
· ∇u

∣∣Ndx ≥ (N − 1
N

)N ∫
Ω

|u|N

|x|N (log Re
|x| )

N
dx (5.1)

holds for all u ∈W 1,N
0 (Ω).
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Proof. We argue as in [17]. It is sufficient to prove (5.1) for u ∈ C∞0 (Ω). By the
identity

div
( x

|x|N (log Re
|x| )

N−1

)
=

N − 1
|x|N (log Re

|x| )
N
,

integration by parts and Hölder’s inequality yield∫
Ω

|u(x)|N

|x|N (log Re
|x| )

N
dx

=
∣∣∣ 1
N − 1

∫
Ω

|u|N div
( x

|x|N (log Re
|x| )

N−1

)
dx
∣∣∣

=
∣∣∣− 1

N − 1

∫
Ω

∇(|u|N ) · x

|x|N (log Re
|x| )

N−1
dx
∣∣∣

=
∣∣∣− N

N − 1

∫
Ω

|u|N−2u∇u · x/|x|
|x|N−1(log Re

|x| )
N−1

dx
∣∣∣

≤ | N

N − 1
|
(∫

Ω

|u|N

|x|N (log Re
|x| )

N
dx
)(N−1)/N(∫

Ω

| x
|x|
· ∇u|Ndx

)1/N

.

After some manipulations, we obtain (5.1). �

Remark 5.2. The same proof as above yields the critical Hardy inequality in a
sharp form:∫

Ω

∣∣ x
|x|
· ∇u

∣∣Ndx ≥ (N − 1
N

)N ∫
Ω

|u|N

|x|N (log R
|x| )

N
dx, ∀u ∈W 1,N

0 (Ω), (5.2)

where Ω is a bounded domain in RN (N ≥ 2). Note that the weight function
1

|x|N (log R
|x| )

N is singular both on the origin and on the boundary. When Ω = BR(0)

case, Ioku and Ishiwata [11] showed that the constant (N−1
N )N in the inequality

(5.2) is optimal and never attained in W 1,N
0 (BR(0)). Furthermore in [14], the

current authors provide a remainder term for the inequality (5.2) when Ω = BR(0).
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