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DIMENSION OF THE SET OF POSITIVE SOLUTIONS TO
NONLINEAR EQUATIONS AND APPLICATIONS

PETRONIJE S. MILOJEVIĆ

Abstract. We study the covering dimension of the set of (positive) solutions

to various classes of nonlinear equations involving condensing and A-proper

maps. It is based on the nontriviality of the fixed point index of a certain
condensing map or on oddness of a nonlinear map. Applications to nonlinear

singular integral equations and to semilinear ordinary and elliptic partial dif-
ferential equations are given with finite or infinite dimensional null space of

the linear part.

1. Introduction and statements of the basic results

Let K be a retract of a Banach space X (e.g., K is a closed and convex subset
of X, say a cone). Then K is closed. Let D ⊂ Rm×K be an open bounded subset
and F : D ⊂ Rm ×K → X be continuous and φ-condensing. Our first objective is
to study the set of positive solutions of the equation

x− F (λ, x) = f (1.1)

This equation is undetermined and under suitable assumptions on F we shall not
only prove the existence of its solutions but also that its set of positive solutions
has a covering dimension at least m. Unless otherwise specified, we shall assume
that m is a positive integer throughout the paper.

Our dimension results for (1.1) will be used to study semilinear operator equa-
tions of the form

Lx+Nx = f(x ∈ D̄, f ∈ Y ) (1.2)
where L : X → Y is a continuous linear surjective map with dimension of the null
space m ≤ ∞, N : X → Y is a suitable continuous nonlinear map, and X and Y are
Banach spaces. We prove that the dimension of the solution set of (1.2) is at least
m. The previous studies [10, 11, 12, 13, 14, 18, 22, 23, 29, 30, 31, 32, 33, 43, 44] and
the references therein) dealt with dimension results for compact perturbations of
the identity map, or with approximation-proper maps of the form L+N with L a
Fredholm linear map of positive index. The study of the latter class of maps requires
that spaces (X,Y ) posses projectionally complete schemes and, in particular, be
separable. Our study of (1.1)-(1.2) involves perturbations F (λ, x) and N that are
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φ-condensing relative to a general measure of noncompactness φ and is done in
general, not necessarily separable, Banach spaces. Applications to singular integral
equations and partial differential equations in Hölder spaces require such results.
Various existing generalized first Fredholm theorems are applicable to (1.2) with L
a linear homeomorphism or a surjective positive-homogeneous map. The solvability
of (1.2) with L a Fredholm linear map of index zero has been done under various
Landesman-Lazer type conditions. There is a vast literature on such study of (1.2)
(see [32, 38] and the references therein).

Beginning with a detailed study by Fitzpatrick-Massabo-Pejsachowicz [10], when
K = X the dimension of the solution set of equation (1.1) with F (λ, x) compact
and of equation (1.2) with L a Fredholm map of index m > 0 has been studied
by many authors using algebraic topology arguments (see [6, 10, 18] for extensive
expositions on the subject). In [10], the authors studied (1.2) with L a Fredholm
map of index m > 0 and L + N approximation-proper by reducing it to the form
(1.1). In our works [30, 31], we have studied (1.2) directly and proved dimension
results for approximation proper maps L+N with the index(L) > 0 under conditions
on N that are extensions of the corresponding Landesman-Lazer type conditions
for (1.2) when the indexL = 0. No surjectivity of L is required in any of these
works.

Zorn’s lemma argument in the study of dimensions of solution sets of nonlinear
equations has been used by Ize-Massabo-Pejsachowisz-Vignoli [22, 23]. Still other
approaches to studying the dimension of the solution sets of (1.1) and (1.2) based
on the selection theorems of Michael [30] and Saint-Raymond [46] can be found
in Ricceri [43, 44, 45], on degree theory in Gelman [12, 13, 14] with K = X, and
on equivariant essential maps by the author [29, 30, 31], Gorniewisz [18] and the
references therein. When the nonlinear perturbation is a k-Lipschitzian, Ricceri [45]
has shown that the solution set is an absolute extensor for paracompact spaces, but
no dimension assertion of it is given.

In this work, we shall prove our results using the fixed point index method for
multivalued φ-condensing maps developed in Fitzpatrick-Petryshyn [11], in con-
junction with the selection results of Michael [28] and Saint-Raymond [46]. In this
approach, we introduce a notion of a complementing map by a continuous multi-
valued compact map. It differs from the notion of complementing maps by a finite
dimensional single valued map introduced in [10]. But, in either case, the exis-
tence of a complementing map implies a dimension result. We prove that if the
restriction of F to D̄0 = D̄ ∩ (0×K) has a nonzero fixed point index, then F is a
complementing map. To the best of our knowledge, no prior dimension results for
positive solutions of nonlinear equations exist. When N is a k-Lipschitzian, using
Ricceri’s result [45], we prove that the solution set is also an absolute extensor for
paracompact spaces.

As we will see below, the main assumption on the linear part in our dimension
results for semilinear equations (1.2) with non-odd N is that it is surjective and has
a continuous linear right inverse. We know that the existence of such an inverse is
equivalent to the existence of a complement of the null space X0 of L in X. Such
complements always exist if X0 is finite dimensional, or if X0 is closed and either
the domain space is a Hilbert space or if the codimension of X0 is finite. In gen-
eral, it is known that there are continuous linear surjections between Banach spaces
which do not possess any continuous linear right inverse. We note that, beginning
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with a negative result of Grothendieck, existence and nonexistence of continuous
linear right inverses for various classes of partial differential operators have been
extensively studied and we refer to the survey paper by Vogt [47]. In Sections 5-
9, we prove the existence of a linear continuous right inverse for various ordinary
and elliptic partial differential operators L that also have infinite dimensional null
space. Michael [28] established that each continuous surjective linear map L be-
tween Banach spaces X and Y has a continuous right inverse K : Y → X such
that LK(y) = y for each y ∈ Y and K(ty) = tK(y) for all t and ‖K(y)‖ ≤ k‖y‖
for some k and all y. No other properties of K are known except that it is linear
if and only if the null space of L has a complement in X. Its existence is suitable
for studying nonlinear compact perturbations of L as was done by Gelman [13]. In
view of this, we require the existence of a continuous linear right inverse in order
to study various general classes of noncompact nonlinear perturbations. Another
approach to obtain dimension results for semilinear problems (1.2) with N compact
is given by Ricceri [45, 46] and is based on a really deep selection theorem by Saint
Raymond [46] conjectured by Ricceri. This approach does not require the existence
of a continuous right inverse of L.

To state our basic results, we need to introduce a notion of a complementing
map. Let D ⊂ Rm × K be an open subset (in the relative topology ) and F :
D → K be a continuous condensing map, i.e. φ(F (Q)) < φ(Q) for Q ⊂ Rm ×
K with φ(Q) 6= 0, where φ is a measure of noncompactness. We say that F
is complemented by a continuous compact multivalued map G : D → CV (Rm)
if the fixed point index i(H,D,Rm ×K) 6= 0 for the multivalued condensing map
H : D ⊂ (Rm×K)→ CV (Rm×K) given byH(λ, x) = (G(λ, x), F (λ, x)). Note that
(λ, x)−(G(λ, x), F (λ, x)) = (I−H)(λ, x) is a condensing perturbation of the identity
and Fix(H,D) = {(λ, x) : (λ, x) ∈ H(λ, x)} ⊂ S(F,D) = {(λ, x) : F (λ, x) = x}.
Our definition of a complementing map differs from the notion of a complementing
by finite dimensional single valued maps in Fitzpatrick-Massabo-Pejsachowicz [10].
A basic assumption that implies that F has a complement is that the fixed point
index for the condensing map i(F (0, .), D ∩ (0 × K),K) 6= 0. In that sense, our
results are of a continuation type involving an m-dimensional parameter space Rm

Recall that if D is a topological space, and m is a positive integer, then D
has the covering dimension equal to m provided that m is the smallest integer
with the property that whenever U is a family of open subsets of D whose union
covers D, there exists a refinement, U ′, of U whose union also covers D and no
subfamily of U ′ consisting of more than m+1 members has nonempty intersection.
If D fails to have this refinement property for each positive integer, then D is
said to have infinite dimension. Recall that when D is a convex set in a Banach
space, the covering dimension of D coincides with the algebraic dimension of D,
the latter being understood as ∞ if it is not finite. A covering dimension is a
topological invariant, i.e., if B and D are metric spaces and F : B → D is a
homeomorphism, then dim(B) = dim(D). Moreover, if D is a locally compact
metric space, then dim(D) = 0 if and only if D is hereditarily disconnected, i.e,
the connected components of D are singletons. If dim D > 0, it is known that the
cardinality card(D) ≥ c, where c denotes the cardinality of the continuum. The
converse is false as the set of irrational numbers shows. In the absence of a manifold
structure on D, the concept of dimension is a natural way in which to describe its
size.
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Unless otherwise stated, X and Y will be Banach spaces. Some of our basic
results for (1.1) and (1.2) are stated next.

Theorem 1.1. Let m be a positive integer and F : D ⊂ Rm × K → K be a
continuous condensing map complemented by a continuous multivalued compact
map G : D → CV (Rm) with dimG(λ, x) = m for each (λ, x) ∈ D. Then dim
S(F,D) ≥ m, and S(F,D) contains a nondegenerate (nonsingleton) connected com-
ponent.

The next result shows that F is complemented if its restriction to D̄0 = D̄∩ (0×
K) has a nonzero index.

Corollary 1.2. Let m be a positive integer, F : D ⊂ Rm ×K → K be continuous
and condensing, D0 = D ∩ (0 ×K) and F0(x) = F (0, x) : D0 ⊂ K → K be such
that its index i(F0, D0,K) 6= 0. Then F is complemented and dimS(F,D) ≥ m.
Moreover, S(F,D) contains a nondegenerate connected component.

Recall that a map T : X → Y satisfies condition (+) if {xn} is bounded whenever
Txn → y in Y . A nonlinear mapping T is quasibounded with the quasinorm |T | if

|T | = lim sup
‖x‖→∞

‖Tx‖/‖x‖ <∞

For a map T : X → Y , let Σ be the set of all points x ∈ X where T is not
locally invertible, and let cardT−1({f}) be the cardinal number of the set T−1({f}).
Define S(f) = {x : Lx−Nx = f}.

Theorem 1.3. Let L : X → Y be a not injective continuous linear surjection,
L+ : Y → X be a continuous linear right inverse of L and N : X → Y be a k-φ
contraction with k‖L+‖ < 1 such that I − tNL+ : Y → Y satisfies condition (+),
t ∈ [0, 1]. Then L−N : X → Y is surjective and, for each f ∈ Y ,

dimS(f) ≥ dim ker (L).

Moreover, S(f) contains a nondegenerate connected component and S(f) is un-
bounded if ‖Nx‖ ≤ a‖x‖ + b for some positive a and b with a‖L+‖ < 1. It is an
absolute extensor for paracompact spaces if N is k-Lipschitzian. If L is a homeo-
morphism, then S(f) 6= ∅ compact set for each f ∈ Y and the cardinal number of
S(f) is constant and finite on each connected component of Y \ (L−N)(Σ).

In dealing with some semilinear equations, like singular integral equations in
Hölder spaces, a nonlinear map can not be globally k-Lipschitzian unless it is affine
(see Section 5). For studying such problems we have the following result for locally
φ-contractive nonlinearities.

Theorem 1.4. Let L : X → Y be a not injective continuous linear surjection, L+ :
Y → X be a continuous linear right inverse of L with ‖L+‖ ≤ 1 and N : X → Y
be such that for some r > 0, N : B̄(0, r) ⊂ X → Y is a k(r)-φ- contraction with
k(r)‖L+‖ < min {1, r} and ‖Nx‖ ≤ k(r)‖x‖ on B̄(0, r). Then (1.2) is solvable for
each f ∈ Y satisfying

‖f‖ < r − ‖L+‖k(r)
and dim(S(f) ∩ B̄(0, r)) ≥ dim ker(L).

Next, to study wider classes of nonlinearities N , we need that spaces are sepa-
rable and L−N is approximation-proper relative to a suitable projection scheme.
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The following basic result for such maps with infinite dimensional null space of L
is an easy extension of of Fitzpatrick-Massabo-Pejsachwisz [10, Theorem 1.2]. No
A-properness of L−N on the whole space X is needed.

Theorem 1.5. Let X and Y be separable Banach spaces, L : X → Y be a not
injective continuous linear surjection with a continuous linear right inverse, X0 =
ker(L) be infinite dimensional, and X̃ be a complement of X0 in X. Let Γ =
{Xn, Yn, Qn} be a projectionally complete scheme for (X̃, Y ) and N : X → Y be a
continuous map such that for each m-dimensional subspace Um ⊂ kerL, the map
L − N : Um ⊕ X̃ → Y is A-proper with respect to Γm = {Um ⊕ Xn, Yn, Qn} for
(Um⊕ X̃, Y ) with dimXn = dimYn and the degree deg((Qn(L−N)|Xn, Xn, 0) 6= 0
for all large n. Assume that a projection Pm of Um ⊕ X̃ onto Um is proper on
{x ∈ Um ⊕ X̃; | Lx−Nx = f} for each f ∈ Y . Then

dim{x : Lx−Nx = f} =∞.
Moreover, for each m > 0, there is a connected subset of the solution set whose
dimension at each point is at least m.

Corollary 1.6. Let L : X → Y be a not injective continuous surjection with a
continuous linear right inverse and N : X → Y be a nonlinear map such that,
for each finite dimensional subspace Um of X0=ker(L), the restriction L − N :
Um ⊕ X̃ → Y is A-proper with respect to Γm. Let

‖Nx‖ ≤ a‖x‖+ b for all x ∈ X
and a‖L+‖ < 1. Then, for each f ∈ Y , S(f) is unbounded and

dimS(f) ≥ dim kerL.

Moreover, for each m > 0, there is a connected subset of the solution set whose
dimension at each point is at least m. If L is a homeomorphism, then S(f) 6= ∅
compact set for each f ∈ Y and the cardinal number of S(f) is constant and finite
on each connected component of Y \ (L−N)(Σ).

Next, the study of the dimension of the solution set of semilinear equations
of the form Lx − Nx = 0 when L and N are equivariant relative to some group
of symmetries and L is a Fredholm linear map of positive index has been done
by many authors and we refer to the (survey) articles and books [6, 18, 22, 23].
Rabinowitz [42] estimated the genus (and therefore the dimension) of the solution
set for compact perturbations of continuous Fredholm maps of positive index. His
result has been extended by the author to the case when L − N is A-proper in
[29, 30, 31] and by Gelman [14] for compact perturbations of linear surjective maps.
In Section 4, we shall extend these results to odd perturbations of linear maps with
infinite dimensional null space. No surjectivity of L is required in this case. A basic
result is as follows.

Theorem 1.7. Let L : X → Y be a continuous linear map with X0 = kerL,
dim kerL =∞, X̃ be a complement of X0 in X and N : X → Y be an odd nonlinear
map such that, for each finite dimensional subspace Um of X0, the restriction L−N :
Um ⊕ X̃ → Y is A-proper with respect to Γm = {Um ⊕ Xn, Yn, Qn} at 0, where
{Xn, Yn, Qn} is a projectionally complete scheme for (X̃, Y ). Then, for each open,
bounded and symmetric relative to 0 subset D of X

dim{x ∈ ∂D : Lx−Nx = 0} =∞.
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In Sections 5-9, we give applications of the above results to semilinear singular
integral equations and to ordinary and elliptic partial differential equations. In
Section 5, we establish a dimension result for semilinear one-dimensional singular
integral equations with a Cauchy kernel

a(s)x(s) +
b(s)
πi

∫ d

c

x(t)
t− s

dt+
∫ d

c

k(s, t)
t− s

f(t, x(t))dt = h(s) (c ≤ s ≤ d).

in the classical Hölder space Hα([c, d]) (0 < α < 1) where a(s), b(s), h(s), k :
[c, d] × [c, d] → C and f : [c, d] × R → C are given functions. Here the induced
nonlinear Nemitskii map is locally k-Lipschitzian. It is known ([26, 27]) that the
Nemitskii map in Hα([c, d]) is globally k-Lipschitzian if and only if f(t, x(t)) is
affine, i.e., f(t, x(t)) = a(t)x+ b(t) for some functions a(t) and b(t). Such equations
arise in a variety of applications in physics, aerodynamics, elasticity and other fields
of engineering. We do not know of any dimension results for these equations. An
interested reader is referred to [33] for dimension results for semilinear Wiener-Hopf
integral equations.

Next, in Sections 6 and 7, we establish dimension results for ODE’s defined on
finite as well as infinite dimensional spaces

u′(t) +A(t)(u(t))− F (t, u(t), u′(t)) = f(t) for all t ∈ I.

Here, the surjectivity of the linear part in various Banach spaces of functions fol-
lows naturally from its ordinary or exponential dichotomy that have been studied
extensively (see [25, 34] and the references therein). In [34], some results have also
been proven about the surjectivity of Lu = u′(t) + A(t)u(t) when it doesn’t have
any dichotomy but satisfies a certain Riccati differential inequality. In Sections 8
and 9, we apply our results to semilinear partial differential equations with finite
and infinite dimensional null space of the linear operator in Hölder and Sobolev
spaces

Lu− F (x, u,Du,D2u) = f

that have continuous right inverses. We remark that some applications of the
dimension results of Ricceri [43, 44] to semilinear elliptic equations on bounded
domains involving nonlocal terms can be found in [43, 9]. Next, if L : X → Z
is a not injective continuous linear map with closed range Y = L(X) in Z and
if a nonlinear map N : X → Y , then our results apply to L + N : X → Y . A
particular case of this setting was given in Ricceri [43]. The closedness of the range
may be avoided sometimes (see [48]). In Section 9.2, we prove a unique solvability
result for convolution perturbations of elliptic differential maps L that have infinite
dimensional null space with the range R(L) of L not closed and the range of N is
contained in R(L).

2. Proofs of Theorems 1.1–1.4

Let X be a Banach space, and K(X) be closed convex subset of X. We need
the following continuous selection results of Michael [28] and Saint-Raymond [46].

Theorem 2.1. (a) ([28]) Let Y be a paracompact topological space, X be a Banach
space and G : Y → K(X) be a lower semicontinuous multivalued map. Then,
for each closed subset A of Y and each continuous selection ψ of G|A, there is a
continuous selection φ of G such that φA = ψ.
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(b) ([46]) Let Y be a compact metrisable subspace of dimension at most m − 1
of a Banach space X, H : Y → K(X) be a multivalued lower semicontinuous map
such that 0 ∈ H(x) and dim H(x) ≥ m for each x ∈ Y . Then there is a continuous
selection h of H such that h(x) 6= 0 for all x ∈ Y .

Recall that the set measure of noncompactness of a bounded set D ⊂ X is defined
as γ(D) = inf{d > 0 : D has a finite covering by sets of diameter less than d}.
The ball-measure of noncompactness of D is defined as χ(D) = inf{r > 0 : D ⊂
∪ni=1B(xi, r), xi ∈ X,n ∈ N}. Let φ denote either the set or the ball measure of
noncompactness. Then a mapping F : D ⊂ X → Y is said to be k-φ-contractive (φ-
condensing) if φ(F (Q)) ≤ kφ(Q) (respectively, φ(F (Q)) < φ(Q)) whenever Q ⊂ D
(with φ(Q) 6= 0). Next, let {Xn} and {Yn} be finite dimensional subspaces of
X and Y , respectively, with ∪∞n=1Xn dense in X, m = dimXn − dimYn ≥ 0 for
each n and Qn : Y → Yn be a projection onto Yn for each n. Recall also that
a map F : D ⊂ X → Y is A-proper (at f) with respect to a projection scheme
Γm = {Xn, Pn, Yn, Qn} for (X,Y) if QnF : D∩Xn → Yn is continuous for each large
n and whenever {xnk

∈ D ∩ Xnk
} is bounded and Qnk

Fxnk
→ f , a subsequence

xnk(i) → x with Fx = f . This is a customary definition when dimXn = dimYn
(see [38]). In dealing with dimension results, we need that m > 0 and such schemes
were first used in [10, 29]. The class of A-proper maps is rather large (see [10, 32, 38]
and also Proposition 3.1 below).

Recall that a closed subset K of a Banach space X is called a retract of X if
there is a continuous map, called a retraction, r : X → K such that r(x) = x for all
x ∈ K. For example, any closed convex subset K, say a cone, is a retract of X. Let
CV (K) be compact and convex subsets of K, D ⊂ K be an open subset of K (in
the relative topology on K). When dealing with multivalued positive condensing
maps F, we use the fixed point index i(F,D,K) of Fitzpatrick and Petryshyn [11].
Let Fix(F,D) = {x ∈ D : x ∈ F (x)}.

We begin by first proving a more general version of Theorem 1.1.

Theorem 2.2. Let F : D ⊂ K → CV (K) be an upper semicontinuous condensing
map, x /∈ F (x) for each x ∈ ∂D and the fixed point index i(F,D,K) 6= 0. Suppose
that there is an open neighborhood U in K with Fix(F,D) ⊂ U ⊂ D and a lower
semicontinuous map G : U → CV (X) such that G(x) ⊂ F (x), dim G(x) ≥ m for
each x ∈ U and x ∈ G(x) for each x ∈Fix(F,D). Then dim Fix(F,D) ≥ m and
Fix(F,D) contains a nondegenerate connected component.

Proof. Suppose that the claim is false, i.e., dim Fix(F,D) ≤ m − 1. Since F
is upper semicontinuous and condensing, it is easy to show that Fix(F,D) is a
compact metric subspace of X. Let H : U → CK(X) be given by H = I − G
and H1 = I − G|Fix(F,D). Since G is lower semicontinuous from K to CV (X), it
follows that H1 : Fix(F,D)→ CV (X) is lower semicontinuous from K to CV (X),
0 ∈ H1(x) and dim H1(x) ≥ m for each x ∈ Fix(F,D). Then, by Saint Raymond’s
Theorem 2.1-(b) there is a continuous selection h1 : Fix(F,D) → X of H1, with
h1 = I−f1 : Fix(F,D)→ X, 0 6= h1(x) ∈ H1(x) for each x ∈ Fix(F,D). Since U is
paracompact and H : U → CV (X) is lower semicontinuous, by Michael’s Theorem
2.1-(a) there is a continuous selection h : U → X, h(x) ∈ H(x) for each x ∈ U , such
that h|Fix(F,D) = h1 and h(x) 6= 0 for each x ∈ U since 0 /∈ H(x) if x ∈ U\Fix(F,D).
Moreover, h(x) = x − f(x) ∈ H(x) ⊂ x − F (x) with f(x) ∈ G(x) ⊂ K for each
x ∈ U .
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Define a new multivalued map F1 : D ⊂ K → CV (K) by F1(x) = f(x) for x ∈ U
and F1(x) = F (x) for x /∈ U . It is easy to see that F1 is an upper semicontinuous
condensing multivalued map with x /∈ F1(x) ⊂ F (x) for all x ∈ D. Since F1 and
F coincide on the boundary of D, we have that i(F1, D,K) = i(F,D,K) 6= 0.
Hence, x ∈ F1(x) for some x ∈ D, in contradiction to the definition of F1. Thus,
dim Fix(F,D) ≥ m. Since Fix(F,D) is a compact metric space and m ≥ 1, it
contains a nondegenerate connected component. �

Remark 2.3. If F in Theorem 2.2 is also lower semicontinuous, and therefore
continuous, then we can take G = F and U = D in Theorem 2.2. When K = X,
Theorem 2.2 was proved by Gelman [12] using the degree theory for the multivalued
map I − F .

Proof of Theorem 1.1. Since F is complemented by G, the map H : D → CV (Rm×
K), given by H(λ, x) = (G(λ, x), F (λ, x)), is a multivalued continuous condensing
map with compact convex values, dim(λ, x) = dimG(λ, x) ≥ m for each (λ, x) ∈ D
and has a nonzero fixed point index i(H,D,Rm ×K). Hence, dim Fix(H,D) ≥ m
by Theorem 2.2. Since Fix(H,D) ⊂ S(F,D), we get that dim S(F,D) ≥ m by
the monotonicity property of dimension. Moreover, since Fix(H,D) is a compact
metric space, as in Theorem 2.2, we get a nondegenerate connected component of
S(F,D). �

Proposition 2.4. Let F : D ⊂ Rm × K → K be continuous and condensing,
D0 = D∩(0×K) and F0(x) = F (0, x) : D0 ⊂ K → K be such that i(F0, D0,K) 6= 0.
Then F is complemented by the continuous compact multivalued map G(λ, x) =
B(0, r) ⊂ Rm for all (λ, x) ∈ D and some fixed r > 0.

Proof. Define Hr : D → CV (Rm ×K) by Hr(λ, x) = B(0, r) × F (λ, x). We claim
that Hr has no fixed points in ∂D for some r > 0. If not, then there would exist
(λk, xk) ∈ ∂D such that (λk, xk) ∈ Hk(λk, xk) = B(0, 1/k) × F (λk, xk) for each
positive integer k. Hence λk ∈ B̄(0, r) and xk ∈ F (λk, xk). Since F is condensing,
we have that xk → x0 ∈ ∂D0 and therefore (λk, xk)→ (0, x0) and x0 = F (0, x0) in
contradiction to our assumption on F . Thus, for some r > 0, (λ, x) /∈ Hr(λ, x) for
all (λ, x) ∈ ∂D. Since h(λ, x) = (0, F (λ, x)) is a continuous selection of Hr(λ, x),
we have that the fixed point index

i(Hr, D,B(0, r)×K) = i(h,D,B(0, r)×K).

Since h : D ⊂ Rm × K → K and K is a retract of Rm × K, the permanence
property of the index implies that i(h,D,B(0, r) ×K) = i(h,D0, 0 ×K). Hence,
i(Hr, D,B(0, r) ×K) = i(F0, D0,K) 6= 0, proving that F is complemented by the
(constant) compact multivalued map G(λ, x) = Bm(0, r) ⊂ Rm for some r > 0. �

Proof of Corollary 1.2. By Proposition 2.4, F is complemented by a continuous
compact multivalued map G(λ, x) = Bm(0, r) ⊂ Rm for all (λ, x) ∈ D and some
r > 0. Hence, H : D → Rm×K given by H(λ, x) = Bm(0, r)×F (λ, x) is a contin-
uous multivalued condensing map with compact convex values and dimH(λ, x) =
dimBm(0, r) ≥ m for each (λ, x) ∈ D. By Theorem 1.1, dim S(F,D) ≥ m and the
other conclusion also holds. �

We need the following result to study the unboundedness of the solution set.
If X is a Banach space, define a norm of the Banach space X1 = R × X by
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‖(t, x)‖ = (|t|2 + ‖x‖2)1/2. Let B1(0, r) be the closed ball of radius r in X1 and
Sr = ∂B1(0, r) be its boundary.

Lemma 2.5. Let K be a closed convex subset of a Banach space X containing
zero, F : K1 = R1 × K → K, ‖F (t, x)‖ ≤ r for all (t, x) ∈ Sr ∩ K1 and satisfy
either one of the following conditions:

(a) F is continuous and condensing on [0, r]∩K, i.e., φ(F ([0, r]×Q)) < φ(Q)
for all Q ⊂ K with φ(Q) > 0.

(b) The map H : K1 → K given by H(t, x) = x − F (t, x) is A-proper on
B1(0, r) ∩K1 with respect to Γ = {R×Xn, Xn, Pn} with Pn(K) ⊂ K.

Then F (t, x) = x has a solution in Sr ∩ K1, and in case (a) dimS(F,Br) =
dim{(t, x) ∈ B1(0, r) : F (t, x) = x} ≥ 1 provided that ‖F (0, x)‖ < r for ‖x‖ = r.

Proof. (a) Let B be the closed ball of radius r in X. Define the map G : B ∩K ⊂
X → K by G(x) = F ((r2 − ‖x‖2)1/2, x). For x ∈ B, ‖(r2 − ‖x‖2)1/2, x)‖ = r and
therefore G maps B ∩ K into itself and is φ-condensing. Indeed, let Q ⊂ B ∩ K
with φ(Q) > 0. Then φ(G(Q)) ≤ φ(F ([0, r]×Q)) < φ(Q). Hence, G(x) = F ((r2 −
‖x‖2)1/2, x) = x for some x ∈ B∩K by Sadovski’s fixed point theorem and therefore
F (t, x) = x with t2 = r2 − ‖x‖2 and ‖(t, x)‖ = r. Moreover, if ‖F (0, x)‖ < r
for ‖x‖ = r in B, then the fixed point index of F0 = F|B∩K : B ∩ K → K,
i(F0, B ∩K,K) = 1 since the homotopy H(t, x) = x− tF (0, x) 6= 0 for ‖x‖ = r and
t ∈ [0, 1]. Hence, dim S(F,B1(0, r)) ≥ 1 by Corollary 1.2.

(b) Define G as in (a). Then I −G is A-proper on B ∩K ⊂ X with respect to
Γ = {Xn, Pn} for X. Indeed, let xnk

∈ B(0, r) ∩ Xn ∩ K and xnk
− Pnk

Gxnk
→

f , i.e., xnk
− Pnk

F ((r2 − ‖xnk
‖2)1/2, xnk

) → f . Then a subsequence of {(r2 −
‖xnk

‖2)1/2, xnk
} converges to (r2 − ‖x‖2)1/2, x) with x − G(x) = x − F ((r2 −

‖x‖2)1/2, x) = f by the A-properness of H(t, x). Since PnG(B(0, r) ∩Xn ∩K) ⊂
B(0, r) ∩Xn ∩K and PnG : B(0, r) ∩Xn ∩K → B(0, r) ∩Xn ∩K is compact, by
Brouwer’s fixed point theorem PnG(xn) = PnF ((r2−‖xn‖2)1/2, xn) = xn for some
xn ∈ B(0, r)∩Xn∩K and all large n. Hence, PnF (tn, xn) = xn with t2n = r2−‖xn‖2
and ‖(tn, xn)‖ = r. By the A-properness of H on K1, a subsequence of {(tn, xn)}
converges to (t, x) ∈ K1 with F (t, x) = x and ‖(t, x)‖ = r. �

For the space Rm ×X, we use the norm ‖(λ, x)‖ =
√
‖λ‖2 + ‖x‖2.

Theorem 2.6. Let m > 0 be a positive integer, K be a closed unbounded subset of
a Banach space X containing zero and F : Rm×K → K be continuous, condensing
and quasibounded, i.e.

|F | = lim sup
‖(λ,x)‖→∞

‖F (λ, x)‖/‖(λ, x)‖ < 1.

Then S(F,Rm × K) = {(λ, x) : F (λ, x) = x} is unbounded and, for each r suf-
ficiently large, dim S(F,B(0, r) ∩ (Rm × K)) ≥ m and S(F,B(0, r) ∩ (Rm × K)
contains a nondegenerate connected component. If K = X, the same conclusions
hold for S(F − f,Rm × X) for each f ∈ X. If m = 0, then S(F,K) 6= ∅ and
compact. If m = 0 and K = X, then the cardinality of S(F − f,X) is positive,
finite and constant for each f in connected components of X \ (I − F )(Σ).

Proof. Let m > 0 and ε > 0 be such that |F |+ ε < 1 and rε > 0 be such that

‖F (λ, x)‖ ≤ (|F |+ ε)‖(λ, x)‖ < ‖(λ, x)‖ for all ‖(λ, x)‖ ≥ rε.
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Moreover, there is an r0 > rε such that for each r > r0, H(t, x) = x− tF (0, x) 6= 0
for all t ∈ [0, 1] and ‖x‖ = r in K. If not, then there would exist tn → t and xn
with ‖xn‖ → ∞ such that H(tn, xn) = 0 for all n. Hence, ‖xn‖ ≤ ‖F (0, xn)‖ ≤
(|F | + ε)‖xn‖ < ‖xn‖, which is a contradiction. Thus such an r0 exists and by
the homotopy theorem for condensing maps, i(F (0, .), B(0, r)∩K,K) = 1 for each
r > r0. Hence, dimS(F,B(0, r) ∩ (Rm ×K)) ≥ m and S(F,B(0, r) ∩ (Rm ×K))
contains a nondegenerate connected component by Corollary 1.2.

Next, let us prove that S(F,Rm ×K) is unbounded. For a fixed e ∈ Rm with
‖e‖ = 1, define Fe : R1 × K → K by Fe(t, x) = F (te, x). Note that if (t, x) ∈
∂B(0, r) ⊂ R1 × K, then (te, x) ∈ ∂B(0, r) ⊂ Rm × K. Then for each r > r0,
‖Fe(t, x)‖ ≤ r for (t, x) ∈ B(0, r) ⊂ R1×K and by Lemma 2.5, Fe(t, x) = x for some
(t, x) ∈ ∂B(0, r) ⊂ R1 ×K. Hence, x = F (te, x) with (te, x) ∈ ∂B(0, r) ⊂ Rm ×K
and therefore S(F,Rm ×K) is unbounded. If m = 0, then the above proof shows
that S(F,K) 6= ∅. Moreover, if x ∈ S(F,K) is such that ‖x‖ ≥ r, then as above

‖x‖ ≤ ‖F (x)‖ < ‖x‖

which is a contradiction. Hence, S(F,K) is bounded and therefore compact by
the properness of I − F on bounded closed subsets. If K = X, then Ff = F − f
satisfies all conditions of F for each f ∈ X and the conclusions of the theorem hold
for Ff . If m = 0 and K = X, then I − F is locally proper and satisfies condition
(+), i.e., {xn} is bounded whenever xn − Fxn → y in X. Hence, the cardinality of
(I − F )−1(f) is positive, finite and constant for each f ∈ X \ (I − F )(Σ) by [31,
Theorem 3.5]. �

Proof of Theorem 1.3. Let X0 = kerL, m = dim(X0) if X0 is finite dimensional
and m < dim(X0) be any positive integer otherwise. Let Um be an m-dimensional
subspace of X0. Since Nfx = Nx−f has the same properties as N , we may assume
f = 0 and study the equation Lx − Nx = 0. Define a map F : Um × Y → Y by
F (u, y) = N(u+ L+y) with ‖(u, y)‖ = max{‖u‖, ‖y‖}. We claim that F is k‖L+‖-
set contractive. Let Q ⊂ Um × Y be bounded. Then, without loss of generality,
we can assume that Q = Q1 × Q2 with both Q1 ⊂ Um and Q2 ⊂ Y bounded.
Moreover, Q3 = {u+ L+(y) : (u, y) ∈ Q} is also bounded. Hence

φ(F (Q)) = φ(N(Q3)) ≤ kφ(Q3) ≤ kφ(Q1 + L+(Q2))

≤ k(φ(Q1) + φ(L+(Q2))) = kφ(L+(Q2))

≤ k‖L+‖ φ(Q2) = k‖L+‖ φ(Q)

since Q1 is compact. Then (u, y) ∈ Um × Y is a solution of N(u + L+y) = y
if and only if x = u + L+y ∈ Um ⊕ L+(Y ) is a solution of Lx − Nx = 0. Since
X = X0⊕L+(Y ), the map A : Um×Y → Um⊕L+(Y ) defined by A(u, y) = u+L+y
is a continuous bijection. Its surjectivity is clear. It is injective since (u1, y1) 6=
(u2, y2) implies that A(u1, y1) 6= A(u2, y2) by the injectivity of L+ : Y → L+(Y ).
Next, we claim that there is an r > 0 such that H(t, (0, y)) = (0, y)− tF (0, y) 6= 0
for all t ∈ [0, 1] and (0, y) ∈ {0} × ∂BY (0, r). If not, then there would exist
tk ∈ [0, 1], yk ∈ Y such that ‖yk‖ → ∞ and H(tk, (0, yk)) = 0 for each k. This
contradicts condition (+) for I − tF (0, .) = I − tNL+. Hence, the homotopy H :
[0, 1]× (0×Y )→ Y given by H(t, (0, y)) = y− tF (0, y) is not zero for t ∈ [0, 1] and
y ∈ ∂BY (0, r) for some r > 0. Thus, the degree deg(I −F (0, .), 0×BY (0, r), 0) = 1
and dimS(F,Um × Y ) ≥ dimS(F,Bm(0, r)× Y ) ≥ m by Corollary 1.2.



EJDE-2016/213 DIMENSION OF THE SET OF POSITIVE SOLUTIONS 11

Since S(F,Bm(0, r)×Y ) is compact, the map A(u, y) = u+L+y is a homeomor-
phism from S(F,Bm(0, r) × Y ) onto its range in S(0). There is a nondegenerate
connected component Cm of S(F,Bm(0, r)×Y ) for each m and therefore A(Cm) is
a connected component of S(0). Moreover, by the monotonicity of the dimension

dimS(0) ≥ dimS(F,Bm(0, r)× Y ) ≥ m.
Since m was arbitrary, we have

dimS(0) ≥ dim ker(L).

Next, let N have a sublinear growth with a‖L+‖ < 1 and show that S(0) is un-
bounded. Observe that x ∈ S(0) if and only if x = u + L+y for a solution (u, y)
of y −N(u + L+y) = 0, where F (u, y) = N(u + L+y) is k‖L+‖-set contractive as
shown above. Suppose that S(0) is bounded. Since N is bounded, the set NS(0) is
also bounded and so ‖Nx‖ ≤ C for all x ∈ S(0) and some C > 0. For a fixed e ∈ X0

with ‖e‖ < (1 − a‖L+‖)/‖a‖, define Fe : R × Y → Y by Fe(t, y) = N(te + L+y).
Let r ≥ b/(1 − a‖L+‖ − a‖e‖). Then for (t, y) ∈ ∂B(0, r) ⊂ R1 × Y , we get that
|t|, ‖y‖ ≤ r and

‖N(te+ L+y)‖ ≤ a|t| ‖e‖+ a‖L+‖y‖+ b ≤ ar‖e‖+ ar‖L+‖+ b ≤ r.
Hence, Fe(t, y) = y for some (t, y) ∈ ∂B(0, r) and therefore x = te + L+y ∈ S(0).
Let tn →∞ as n→∞ and note that rn = tn‖e‖ | ≥ b/(1−a‖L+‖−a‖e‖) for large
n. Then, again by Lemma 2.5, there is (tn, yn) in the sphere Srn

⊂ R × Y such
that yn − F (tne, yn) = 0 and therefore xn = tne+ L+yn ∈ S(0). Hence,

‖yn‖ = ‖N(tne+ L+yn)‖ ≤ C for all n.

Then
‖tne‖ = |tn| ‖e‖ ≤ ‖xn‖+ ‖L+‖ ‖yn‖ ≤ C1 for all n

for some constant C1 > 0. This contradicts the fact that |tn| → ∞ as n → ∞.
Thus S(0) is unbounded. If L is a homeomorphism, then S(f) 6= ∅ by the above
proof, bounded and compact by the properness of I−F on bounded closed subsets.
The finite solvability on connected components follows from [31, Theorem 3.5]. �

In case of a k-Lipschitzian map N, we can say more. Recall that a topological
space V is an absolute extensor for paracompact (respectively, normal) spaces if for
each paracompact (respectively, normal) topological space U, each closed subset A
of U and each continuous function ψ : A → V , there exists a continuous function
φ : U → V such that φ|A = ψ. Note that an absolute extensor for paracompact
(respectively, normal) spaces is an absolute retract and is arcwise connected.

Theorem 2.7. Let L : X → Y be a not injective continuous linear surjection with
a continuous linear right inverse L+ and N : X → Y be a k-Lipschitzian map with
k‖L+‖ < 1. Then S(f) is unbounded and dim S(f) ≥ dim kerL. Moreover, S(f)
is a nonempty absolute extensor for paracompact spaces.

Proof. Since a k-Lipschitzian map is a k-φ-contraction, the dimension assertion
follows from Theorem 1.3. The absolute extensor property of S(f) was proved in
Ricceri [45]. �

In the case of compact nonlinearities, we do not need the linearity of a continuous
right inverse of L. As mentioned before, if L : X → Y is a linear continuous
surjection, then by Michael’s result [28], there is a continuous map K : Y → X such
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that LK(y) = y and ‖K(y)‖ ≤ k‖y‖ for all y ∈ Y for any k > c and K(ty) = tK(y)
for all t, where

c = sup{inf{‖x‖ : x ∈ L−1(y)} : y ∈ Y, ‖y‖ ≤ 1}.

We say that a continuous map N : X → Y is L-compact if N(B ∩ L−1(A)) is
compact for each bounded subsets B ⊂ X and A ⊂ Y . The dimension part of
the next result is an extension of a theorem by Gelman [13], who assumed that
nonlinearities have a linear growth and used different arguments. This result also
extends a result of Ricceri [43, 44] for a compact map N with bounded range
proven by a completely different method based on a deep result by Sain-Raymond
[46] on fixed points of convex-valued multifunctions that was conjectured by Ricceri.
Existence of a continuous right inverse of L is not required in [43, 44].

Theorem 2.8. Let L : X → Y be a not injective continuous linear surjection, and
N : X → Y be L-compact such that I − tNK : Y → Y satisfies condition (+),
t ∈ [0, 1]. Then L−N : X → Y is surjective and, for each f ∈ Y ,

dimS(f) ≥ dim ker(L).

Moreover, S(f) contains a nondegenerate connected component and S(f) is un-
bounded if ‖Nx‖ ≤ a‖x‖ + b for all x ∈ X with a‖L+‖ < 1. If L is a homeomor-
phism, then S(f) 6= ∅ compact set for each f ∈ Y and the cardinal number of S(f)
is constant and finite on each connected component of Y \ (L−N)(Σ).

Proof. Let Um be an m-dimensional subspace of ker(L). Define the map F : Um ×
Y → Y by F (u, y) = N(u + K(y)). We shall prove that F is a compact map.
Let Q ⊂ Um × Y be bounded. Then, without loss of generality, we can assume
that Q = Q1 × Q2 with both Q1 ⊂ Um and Q2 ⊂ Y bounded. Moreover, Q3 =
{u + K(y) : (x, y) ∈ Q} is also bounded since ‖K(y)‖ ≤ k‖y‖ and Q3 ⊂ L−1(Q2).
Hence F (Q) = N(Q3) is compact by the L-compactness of N and so F is a compact
map. Continuing as in Theorem 1.3, we get the conclusions. �

Finally, we conclude this section by proving Theorem 1.4 for locally φ-contractive
nonlinearities which cannot be globally φ-contractive.

Proof of Theorem 1.4. If the ker(L) is finite dimensional, letm = dim ker(L). If
ker(L) is infinite dimensional, let m = dimUm for a finite dimensional subspace
Um of U = ker(L). Let F : Um × Y be given by F (u, y) = N(u + L+y). For each
f ∈ Y such that ‖f‖ < r − ‖L+‖k(r) and ‖y‖ ≤ r we have that

‖NL+y + f‖ ≤ ‖L+‖k(r) + ‖f‖ < r.

Thus, NL+ + f : B̄Y (0, r) → BY (0, r). Let D = B̄(0, r) ⊂ X and Q ⊂ {(u, y) :
‖(u, y)‖ ≤ r} ⊂ Um × Y be bounded, where ‖(u, y)‖ = max{‖u‖, ‖y‖}. Then
Q = Q1 × Q2 with Q1 ⊂ BUm

(0, r) = {u ∈ Um : ‖u‖ ≤ r} and Q2 ⊂ BY (0, r) =
{y ∈ Y : ‖y‖ ≤ r}. As in the proof of Theorem 1.3, we see that F (u, y) =
N(u + L+y) + f is k(r)‖L+‖ - set-contractive on Q with k(r)‖L+‖ < 1. Now,
H(t, (0, y)) = (0, y) − tF (0, y) = (0, y) − tNL+y − tf 6= 0 for all t ∈ [0, 1] and
(0, y) ∈ {0} × ∂BY (0, r) since NL+ + f : B̄Y (0, r) → BY (0, r). Continuing as in
Theorem 1.3, we get the conclusion. �
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Corollary 2.9. Let L : X → Y be a non injective continuous linear surjection,
L+ : Y → X be a continuous linear right inverse of L with ‖L+‖ ≤ 1 and N : X →
Y be locally Lipschitzian, i.e, for some r > 0, there is a k(r) > 0 such that

‖Nx−Ny‖ ≤ k(r)‖x− y‖ (for all ‖x‖, ‖y‖ ≤ r) (2.1)

with k(r)‖L+‖ < min{1, r} and N(0) = 0. Then (1.2) is solvable for each f ∈ Y
satisfying

‖f‖ < r − ‖L+‖k(r) (2.2)

and dim(S(f) ∩ B̄(0, r)) ≥ dim ker(L).

Proof. Since N is defined on the whole space X and N is k(r)-Lipschitzian on
B̄(0, r), it follows that N is k(r)-set contractive on B̄(0, r). Since N(0) = 0, we
get that ‖Nx‖ ≤ k(r)‖x‖ for each ‖x‖ ≤ r. Then the result follows from Theorem
1.4. �

3. Dimension results for semilinear equations involving A-proper
maps

The continuation theorem of Leray-Schauder on [0, 1] has been extended to the
whole line R by Rabinowitz [42] and to Rm, m > 1, by Fitzpatrick-Masabo-
Pejsashowitz [10]. Theorem 1.5 extends the continuation theorem to infinite di-
mensional parameter spaces. Let L : X → Y be a linear continuous surjec-
tion, X0 = KerL with dimX0 = ∞ and X = X0 ⊕ X̃ for some closed sub-
space X̃ of X. Take an increasing sequence of finite dimensional subspaces of X0:
U1 ⊂ U2 ⊂ · · · ⊂ Um ⊂ . . . . whose union is dense in X0. Then L : Um ⊕ X̃ → Y is
a surjective Fredholm map of index equal to dimUm. Let Pm : Um ⊕ X̃ → Um be
the projection onto Um.

Proof of Theorem 1.5. Let f ∈ Y be fixed and let U1 ⊂ U2 ⊂ · · · ⊂ Um ⊂ . . . be a
sequence of finite dimensional subspaces of X0 whose union is dense in X0. Then
the restriction L : Um ⊕ X̃ :→ Y is a Fredholm map of index dim Um. Moreover,
the restriction L − N : Um ⊕ X̃ → Y is A-proper with respect to the scheme
Γm = {Um ⊕ Xn, Yn, Qn} for {Um ⊕ X̃, Y }. The degree assumption implies that
L − N : Um ⊕ X̃ → Y is complemented by the projection Pm of Um ⊕ X̃ onto
Um in the sense of [10]. Since Pm is proper on {x ∈ Um ⊕ X̃ : Lx − Nx = f},
by Fitzpatrick-Massabo-Pejsachowisz [10, Theorem 1.2] applied to the restriction
L−N : Um ⊕ X̃ → Y we get that

dim{x : Lx−Nx = f, x ∈ Um ⊕ X̃} ≥ dimUm.

Letting m → ∞, this implies the conclusion of the theorem. The existence of
a connected subset of the solution set in the theorem follows from [10, theorem
1.2]. �

Proof of Corollary 1.6. Let X0 = kerL 6= {0} and X = X0 ⊕ X̃ for some closed
subspace X̃ of X. Set Um = X0 if dimX0 <∞ or let {Um} be an increasing sequence
of finite dimensional subspaces of X0 whose union is dense in X0. For a given f ∈ Y ,
let Bx = Nx−f . We need to show that deg(Qn(L−B)|Xn, Xn, 0) 6= 0 for all large
n. Consider the restriction of L−B to X̃. Define the homotopy H : [0, 1]× X̃ → Y
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by H(t, x) = Lx − tBx. Since L restricted to X̃ is a bijection from X̃ onto Y , it
follows that for some c > 0

‖Lx‖ ≥ c‖x‖, x ∈ X̃.
Since the quasinorm |B| is sufficiently small, let ε > 0 be such that |B|+ ε < c and
R = R(ε) > 0 be such that

‖Bx‖ ≤ (|B|+ ε)‖x‖ for all ‖x‖ ≥ R.
Then, for x ∈ X̃ \B(0, R), we get that

‖Lx− tBx‖ ≥ (c− |B| − ε)‖x‖
and therefore ‖H(t, x)‖ = ‖Lx − tBx‖ → ∞ as ‖x‖ → ∞ in X̃ independent of t.
Hence, arguing by contradiction, we see that there are an r > R and γ > 0 such
that

‖H(t, x)‖ ≥ γ for all t ∈ [0, 1], x ∈ ∂B(0, r) ⊂ X̃.
Since H is an A-proper homotopy relative to Γ0 = {Xn, Yn, Qn}, this implies that
there is an n0 ≥ 1 such that

QnH(t, x) 6= 0 for all t ∈ [0, 1], x ∈ ∂B(0, r) ∩Xn, n ≥ n0.

By the properties of the Brouwer degree we see that deg(Qn(L−B)|Xn, Xn, 0) 6= 0
for each n ≥ n0.

Next, we need to show that the projection Pm : Um ⊕ X̃ → Um is proper on
(L − B)−1(0) ∩ (Um ⊕ X̃). To see this, it suffices to show that if {xn} ⊂ Um × X̃
is such that yn = Lxn − Bxn → 0 and {Pmxn} is bounded, then {xn} is bounded
since the A-proper map L−B is proper when restricted to bounded closed subsets.
We have that xn = x0n+x1n with x0n ∈ Xm and x1n ∈ X̃ and c‖x1n‖ ≤ ‖Lx1n‖ ≤
(|N |+ ε)‖x1n‖+ ‖yn‖ for some ε > 0 with |N |+ ε < c if ‖x1n‖ ≥ R. This implies
that {x1n} is bounded as before. Since {x0n} = {Pmxn} is bounded, it follows that
{xn} is also bounded. Hence, for each f ∈ Y , the conclusions about the dimension
and a connected subset of the corollary follows from Theorem 1.5.

Next, let us show that S(f) is unbounded. This can be done as in the proof of
Theorem 1.3. Or, as in that proof, by Lemma 2.5, the equation N(te + L+y) = y
has a solution (te, y) ∈ ∂B(0, r) for any unit vector e ∈ Um. Then x = te + L+y

is a solution of Lx − Nx = 0. Since t2 + ‖y‖2 = r2, then either |t| > r/
√

2 or
‖y‖ > r/

√
2. If ‖y‖ > r/

√
2, then ‖y‖ = ‖L(x)‖ ≤ ‖L‖‖x‖, or ‖x‖ ≥ r/(

√
2‖L‖).

If |t| > r/
√

2, then, since ‖L+‖ ≤ c for some positive c,

‖x‖ ≥ ‖t‖ − ‖L+y‖ ≥ r/
√

2− c‖y‖ ≥ r/
√

2− c‖L‖‖x‖
and so

‖x‖ ≥ r/(
√

2(1 + c‖L‖)).
Hence, in ether case ‖x‖ → ∞ as r → ∞ and so S(f) is unbounded. If L is a
homeomorphism, then S(f) 6= ∅ by the above proof. Moreover, a‖L+‖ < 1 implies
that ‖x‖ ≤ ‖L+f‖+a‖L+‖ ‖x‖+b for each x ∈ S(f) and therefore S(f) is bounded.
The other assertions follow from [33, Theorem 3.5]. �

Theorem 1.5 and Corollary 1.6 apply to many types of nonlinearities N . One
class of them is given in Proposition 3.1 below (see also [10]). It involves Fred-
holm maps L : D(L) ⊂ X → Y of index i(L) = m ≥ 0 and a scheme Γm =
{Xn, Pn, Yn, Qn} for (X,Y ) such that QnLx = Lx for each x ∈ Xn and any n.
If i(L) = 0, such a scheme always exist for separable Banach spaces X and Y .
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Namely, since i(L) = 0, there is a compact linear map from X to Y such that
K = L + C : D(L) ⊂ X → Y is bijective. Let {Yn} be a sequence of finite di-
mensional subspaces of Y and Qn : Y → Yn be projections such that Qny → y
for each y ∈ Y . Define Xn = K−1(Yn) ⊂ D(L). Then Γ = {Xn, Yn, Qn} is a
projection scheme for (X,Y ) with QnLx = Lx for each x ∈ Xn and all n. Such
a scheme can also be constructed when i(L) = m > 0. Let X0=null space of
L and X̃ be its complement so that X = X0 ⊕ X̃. Since Ỹ = the range of L
of finite codimension, there is a finite dimensional subspace Y0 of Y such that
Y = Y0 ⊕ Ỹ . Let P : X → X0 and Q : Y → Y0 be projections onto X0 and Y0,
respectively. The restriction of L to D(L) ∩ X̃ has a bounded inverse L+ on Ỹ so
that LL+y = y for each y ∈ Ỹ . Let {Xn} be a monotonically increasing sequence
of finite dimensional subspaces of X and Pn : X → Xn be continuous linear pro-
jections onto Xn for each n such that Pnx → x for each x ∈ x, X0 ⊂ Xn and
PPn = P for each n. Then PnX̃ ⊂ X̃ and (I − Pn)(X) → X̃ for each n. Define
Qn = Q+ LPnL

+(I −Q). Then Qn : Y → Yn = Qn(Y ) is a continuous projection
with {Yn} being an increasing sequence of finite dimensional subspaces of Y with
Y0 ⊂ Yn, QQn = QnQ, Qn(Ỹ ) ⊂ Ỹ , (I − Q)(Y ) ⊂ Ỹ and QnLx = LPnx for all
x ∈ D(L) and dimXn−dimYn = m for each n. Moreover, Qny → y for each y ∈ Y
if LPnx → Lx for each x ∈ D(L), and, in particular when L is continuous. The
required approximation scheme for (X,Y ) is Γm = {Xn, Pn, Yn, Qn} (cf. [32, 38]).

Let us construct such a scheme for any separable Banach spaces X and Y and a
Fredholm map L : X → Y of index i(L) = m > 0. Using the above notation, select a
sequence {Xn} of increasing finite dimensional subspaces of X̃, as well as a sequence
{Yn = L(Xn)} of finite dimensional subspaces of Ỹ . Let Q̃n : Ỹ → Yn = L(Xn)
be projections onto Yn. Define Qn : Y → Y0 ⊕ Yn by Qn(y0 + y1) = y0 + Q̃ny1 for
y0 ∈ Y0 and y1 ∈ Ỹ . Then Γm = {X0⊕Xn, Y0⊕Yn, Qn} is a projection scheme for
(X,Y ) with QnLx = Lx for all x ∈ Xn. When L is continuous and surjective, we
get a scheme Γm = {X0 ⊕Xn, Yn, Qn} with QnLx = Lx for all x ∈ Xn.

Proposition 3.1 ([31, 32]). Let L : X → Y be a not injective linear continuous
surjective map, X0 = ker(L), dimX0 ≤ ∞, and X0 have a complement X̃ in
X. Let N : X → Y be a continuous k-ball contractive map with kδ < 1, where
δ = supn‖Qn‖ < ∞. Then, for each finite dimensional subspace Um of X0, L −
N : Um ⊕ X̃ → Y is A-proper with respect to Γm = {Um ⊕ Xn, Yn, Qn} with
QnLxn = Lxn for xn ∈ Xn.

Proof. Since X = X0 ⊕ X̃, the restriction L : X̃ → Y is continuous and bijective,
and therefore ‖Lx‖ ≥ c‖x‖ for some c > 0 and all x ∈ X̃. As in [31, 32], we can
show that for any bounded sequence {xn} ⊂ X̃, the ball measure of noncompactness
χ({Lxn}) ≥ cχ({xn}). Let Um be a finite dimensional subspace of X0 and note that
the restriction L : Um ⊕ X̃ → Y is Fredholm of index m. Let un + xn ∈ Um ⊕Xn

be such that {un + xn} is bounded and yn = L(un + xn) − QnN(un + xn) → y.
Then {un} is precompact and

cχ({un + xn}) = cχ({xn}) ≤ χ({L(xn)}) ≤ δχ({N(un + xn)}) ≤ kδχ({xn}).

Hence {xn} is precompact and a subsequence of {un +xn} converges to u+x with
L(u + x) − N(u + x) = y. This proves that the map L − N : Um ⊕ X̃ → Y is
A-proper with respect to Γm. �
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The above example has an interesting feature. It shows that L−N : Um⊕X̃ → Y
is A-proper for each finite dimensional subspace Um of the null space of X0 of L,
but it can not be A-proper from X = X0 ⊕ X̃ → Y if dimX0 =∞. However, this
is sufficient to prove that the dimension of the solution set is infinite. To show that
L − N : X → Y is not A-proper, take a bounded sequence {un + xn} in X0 + X̃
with yn = L(un + xn) − QnN(un + xn) → y. Then cχ({un + xn}) = cχ({xn}) ≤
χ({L(xn)}) only if {un} ⊂ X0 is compact, which implies that X0 must be finite
dimensional. If dim ker(L) is finite, then no surjectivity of L is needed.

4. Semilinear equations with odd nonlinearities

Let X,Y be Banach spaces and look now at odd perturbations of linear maps
L : X → Y with infinite dimensional null space. Here no surjectivity of L is
needed. We begin with nonlinear perturbations N : X → Y of a closed densely
defined Fredholm map of positive index L : D(L) ⊂ X → Y . Then V = D(L) is a
Banach space with the graph norm |x| = ‖x‖+ ‖Lx‖. The following result with L
continuous on X was proved by Rabinowitz [42]. It extends easily to closed densely
defined maps.

Theorem 4.1. Let L : D(L) ⊂ X → Y be a closed densely defined Fredholm
map of positive index i(L) and N : X → Y be a compact odd nonlinear map.
Then for each closed bounded symmetric neighborhood Ω of 0 in V the solution set
Z = {x ∈ ∂Ω : Lx − Nx = 0} 6= ∅ and its genus γ(Z) ≥ i(L). In particular, the
dim(Z) ≥ i(L)− 1.

Proof. We have that L : V → Y is continuous and Fredholm of index i(L). Since
‖x‖ ≤ |x|, a bounded set in V is also bounded in X and therefore N : V → Y is
also compact. The result follows from the Rabinowitz’s theorem [42]. �

Rabinowitz proved his result by constructing finite dimensional odd approxi-
mations of N of Schauder type. In [29], we have extended Rabinowitz’s result to
noncompact perturbations N assuming that L−N is A-proper. Later, Gelman [14]
proved the dimension assertion of solutions of Lx − Nx = 0 with L a surjective
linear map and N an odd compact map on the boundary of the ball B(0, r) using
an odd selection theorem of Michael’s type. The next result, Theorem 1.7, extends
the above results to semilinear equations with infinite dimensional null space of the
linear map L that need not be surjective.

Proof of Theorem 1.7. Let U1 ⊂ U2 ⊂ · · · ⊂ Um ⊂ . . . be a sequence of finite
dimensional subspaces of X0 whose union is dense in X0, dimUm = m. Let D
be an open, bounded and symmetric relative to 0 subset of X. Then L − N :
D̄ ∩ (Um ⊕ V ) → Y is A-proper with respect to Γm = {Um ⊕ Xn, Yn, Qn} at 0.
Hence, by [29, Theorem 2.1], Z = {x ∈ ∂(D ∩ (Um ⊕ V )) : Lx − Nx = 0} 6= ∅,
its genus γ(Z) ≥ m and dimZ ≥ γ(Z) − 1 ≥ m − 1. Letting m → ∞, we get the
conclusion. �

In view of Proposition 3.1, we have the following corollary of Theorem 1.7. When
dim ker(L) is finite, no surjectivity of L is needed.

Corollary 4.2. Let L : X → Y be a linear continuous surjective map with X0 =
kerL, dimX0 =∞, X̃ be a complement of X0 in X and N : X → Y be an odd k-
ball contractive map with k < 1 and Γm = {Um⊕Xn, Yn, Qn} such that QnLx = Lx
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for x ∈ Xn. Then, for each open, bounded and symmetric relative to 0 subset D of
X

dim{x ∈ ∂D : Lx−Nx = 0} =∞.

For densely defined linear maps L we have the following corollary.

Corollary 4.3. Let L : D(L) ⊂ X → Y be a closed linear surjective map with
X0 = kerL, dimX0 = ∞, X̃ be a complement of X0 in X and N : X → Y be
an odd k-Lipschitzian map with k < 1 and Γm = {Um ⊕ Xn, Yn, Qn} such that
QnLx = Lx for x ∈ Xn. Then, for each open, bounded and symmetric relative to
0 subset D of V ,

dim{x ∈ ∂D : Lx−Nx = 0} =∞.

Proof. Let V = D(L) be the Banach space with the graph norm. Then N : V → Y
is again k-Lipschitzian and, for each finite dimensional subspace Um of X0, the
restriction L−N : Um⊕X̃ → Y is A-proper with respect to Γm at 0 by Proposition
3.1. Hence, the conclusion follows from Theorem 1.7. �

Remark 4.4. In Theorem 1.7, L−N : X → Y need not be A-proper (see Propo-
sition 3.1). It remains valid for G-equivariant A-proper maps at 0 for any index
theory related to the G-representation on X and having the d-dimension property
as discussed in [30, 31], where G is a compact Lie group.

5. Nonlinear singular integral equations

Consider a nonlinear one-dimensional singular integral equation with a Cauchy
kernel

a(s)x(s) +
b(s)
πi

∫ d

c

x(t)
t− s

dt+
∫ d

c

k(s, t)
t− s

f(t, x(t))dt = h(s) dim(c ≤ s ≤ d) (5.1)

where a(s), b(s), h(s), k : [c, d]×[c, d]→ C and f : [c, d]×R→ C are given functions.
We will study this equation in the classical Hölder space Hα([c, d]) (0 < α < 1),
equipped with the usual norm ‖x‖α = ‖x‖C + [x]α, where

[x]α = sup
s6=t

|x(s)− x(t)|
|s− t|α

and ‖x‖C is the sup norm. Write this equation in the operator form in Hα([c, d])
as

Lx+Nx = h (5.2)

where

Lx(s) = a(s)x(s) +
b(s)
πi

∫ d

c

x(t)
t− s

dt

and N = SF with

Sy(s) =
∫ d

c

k(s, t)
t− s

y(t)dt

and Fx(t) = f(t, x(t)). Suppose that a(s)+b(s) and a(s)-b(s) do not vanish any-
where on [c, d]. It is known that (Muskhlishvili [35]) if the index of L, i(L) ≥ 0,
then L : Hα([c, d])→ Hα([c, d]) is surjective and the dimension of the null space of
L is equal to the ind(L). We assume that S : Hα([c, d])→ Hα([c, d]) is linear and
continuous. Some sufficient condition for the continuity of S are given in Gusejnov
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and Mukhtarov [19] with an upper estimate for ‖S‖ in Hα([c, d]). To apply The-
orem 1.4 with D = B(0, R), we need a good upper estimate in terms of f(t, s) for
the local Lipschitz constant k(r) with

‖Fx− Fy‖α ≤ k(r)‖x− y‖α (x, y ∈ B̄(0, r), r ≤ R), (5.3)

where k(r) denotes the minimal Lipschitz constant for F on the ball B̄(0, R), i.e.

k(r) = sup{‖Fx− Fy‖α
‖x− y‖α

: ‖x‖α, ‖y‖α ≤ r ;x 6= y}.

It was shown in [26, 27] that F could satisfy the global Lipschitz condition on
Hα([c, d]), i.e. k(r) is a constant independent of r, only if the function f is affine in
the second variable, i.e. f(t, u) = a(t)+b(t)u with fixed coefficients a, b ∈ Hα([c, d]).
For simplicity, we assume that F (0) = 0.

Suppose g(t, u) = ∂f(t, u)/∂u exists and defines a superposition map Gz(t) =
g(t, z(t)) in Hα([c, d]). Since

f(t, x(t))− f(t, y(t)) = [x(y)− y(t)]
∫ 1

0

g[t, (1− λ)x(t) + λy(t)]dλ

and Hα([c, d]) is a normed algebra, we get

‖Fx− Fy‖α ≤ ‖x− y‖α‖
∫ 1

0

g[t, (1− λ)x(t) + λy(t)]dλ‖α.

Thus, k(r) ≤ sup{‖Gz‖α ; ‖z‖α ≤ r}. It was shown in [4] that

sup{‖Gz‖α : ‖z‖α ≤ r} = max{γC(r), γα(r)},
where

γC(r) = sup{|g(t, u)| : a ≤ t ≤ b |u| ≤ r}

γα(r) = sup{ |g(t, u)− g(s, v)|
|t− s|α

; a ≤ t, s ≤ b; |u|, |v| ≤ r; |u− v| ≤ |t− s|α}.

Theorem 5.1. Let the index of L : Hα → Hα be positive, ‖L+‖ ≤ 1, F (0) = 0, S,
F and G act in Hα and be bounded, and r > 0 be such that k1(r)‖L+‖ ≤ min{1, r},
where

k1(r) = ‖S‖max{γC(r), γα(r)}).
Then (5.1) is solvable for each h ∈ Hα satisfying

‖h‖α < r − k1(r)‖L+‖
and the dimension of the solution set is at least ind(L).

Proof. Since the index of L is positive, it is surjective and has a finite dimensional
null space [35]. Hence, it has a continuous right inverse L+. Since N = SF , by
the above discussion we have that ‖Nx − Ny‖α ≤ k1(r)‖x − y‖α for each x, y ∈
B̄(0, r) ⊂ Hα. Since N is defined on all of Hα, it follows that it is k1(r)‖L+‖ − φ-
contractive with k1(r)‖L+‖ < 1. Moreover, we have that N=SF:B̄(0, r) → B(0, r)
since ‖Nx‖α ≤ ‖S‖ ‖Fu‖ ≤ k1(r)‖x‖α < ‖x‖α. Hence, Theorem 5.1 follows from
Theorem 1.4. �

Example 5.2. Let f(u) = u2 + pu+ q for some p > 0 and q. Then γC(r) = 2r+ p
and γα = 2r and therefore

k(r) ≤ max{γC(r), γα(r)} = 2r + p.
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Then k1(r) = ‖S‖(2r + p) and we need that ‖L+‖k1(r) = ‖L+‖ ‖S‖(2r + p) <
min{1, r}. Since ‖L+‖ and ‖S‖ do not depend on r, the above inequality holds for
suitably chosen r and p depending on the sizes of ‖L+‖ and ‖S‖. Observe that
k(r) → ∞ as r → ∞ and F is not globally Lipschitzian. Note that if we would
work in Lp, then F (Lp) ⊂ Lp is known to imply that |f(t, u)| ≤ a(t) + b|u| for some
a ∈ Lp and b ≥ 0. Hence, in this case we have to restrict ourselves to sublinear
nonlinearities, unlike in the Hölder space setting.

By the above remarks, using a local Lipschitz condition allow us to study super-
linear nonlinearities. Actually, it was proven in [4], that if the derivative f ′(u) of
f(u) satisfies the local Lipschitz condition

|f ′(u)− f ′(v)| ≤ k1(r)|u− v| (|u|, |v| ≤ r),

then

k1(r) ≤ 2k(2r) + 1
r

with k(r) being the local Lipschitz constant for F (u) in the Hölder space. So, if
k(r) can be chosen independent of r, then k1(r)→ 0 as r →∞, showing that f ′(u)
is actually a constant, which means that f(u) must be an affine function. So, if
f(u) is not affine, then k(r) must depend on r and f(u) must have a superlinear
growth for large values of r since

lim inf
r→∞

k(r)
r

> 0.

Let us now make some more remarks about the Nemitskii map. If F is induced by
an autonomous f, i.e. Fx=f(x(t)), then it is known that F : Hα([c, d])→ Hα([c, d])
and is bounded if and only if f ∈ Liploc(R) and F is locally Lipschitz if and only if
f ∈ Lip1

loc(R) [8, 17]. In the non autonomous case, F(x)=f(t,x(t)) maps Hα([c, d])
into itself and is bounded if and only if (cf. [14]) for each r > 0 there is a constant
M(r) > 0 such that

|f(t, u)− f(s, u)| ≤M(r)|t− s|α for t, s ∈ [c, d], |u| ≤ R. (5.4)

Moreover, F is locally Lipschitz in Hα([c, d]) if and only if (cf. [2, 16]) for each
r > 0 there is a constant M(r) > 0 such that

|f(t, u)− f(s, v)| ≤M(r)(|t− s|α + |u− v|/r for t, s ∈ [c, d], |u|, |v| ≤ r. (5.5)

and f ′u satisfies this condition too. Clearly, condition (5.5) implies condition (5.4)
and f ∈ C([c, d], R). Moreover, if f satisfies (5.4) and f ′u ∈ C([c, d], R), then f
satisfies (5.5) too.

Remark 5.3. The study of (5.1) with a superlinear nonlinearity f has to be done
in a Hölder space. Since these spaces are nonseparable and therefore have no
approximation schemes, (5.1) can not be studied using A-proper mapping theory.
The condition ‖L+‖ ≤ 1 in Theorem 5.1 is satisfied for any L in a reformulated
equation when N is replaced by λN in (5.2) with sufficiently small λ (see the proof
of Theorem 8.1 below).

6. Semilinear ODE systems on the half-line

Let | · | be the norm in RM induced by a given inner product (·, ·) in RM .
Denote by | · |p the norm of Lp = Lp((0,∞),RM ), 1 ≤ p ≤ ∞. Then the norm on
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W 1
p = W 1

p ((0,∞),RM ) with p <∞ is

‖u‖1,p = {|u|pp + |u̇|pp}1/p.

Let A : R̄+ → L(RM ) be a locally bounded family of linear maps. Recall that the
problem

Lu = u̇+Au = 0 (6.1)
is said to have an exponential dichotomy (on R+ ) if there are a projection Π and
positive constants K, α and β such that

|Φ(t)ΠΦ−1(s)| ≤ Ke−α(t−s) for all t ≥ s ≥ 0 (6.2)

and
|Φ(t)(I −Π)Φ−1(s)| ≤ Ke−β(s−t) for all s ≥ t ≥ 0, (6.3)

where Φ(t) denotes the fundamental matrix of the system (6.1) satisfying Φ(0) = I.
In this case, we say that L has an exponential dichotomy with projection Π. It is
well known that the range of Π (but not Π itself) is uniquely determined, i.e. if
L has also an exponential dichotomy with projection Π′, then rge(Π′) = rgn(Π).
The exponential dichotomy of L is a basic assumption that implies its surjectivity
needed to study its nonlinear perturbations below. Some sufficient conditions using
a Riccati type inequality for exponential dichotomy of L in W 1

2 can be found in [34,
Corollary 3.4] as well as in [25]. The surjectivity of L can be also obtained when
it has no exponential dichotomy (see [34] and remarks at the end of the section).
Detailed study of the surjectivity of L between two suitable function spaces linked
to various definitions of dichotomy can be found in Massera and Schaffer [25]. Their
study is used in Section 7 for ordinary differential equations in Banach spaces of
the form (6.4).

For nonlinear perturbations of (6.1)

u̇+Au− F (t, u) = f (6.4)

we have the following result.

Theorem 6.1. Let A ∈ L∞ and L have an exponential dichotomy with projection
Π and F : [0,∞) × RM → RM be a Caratheodory function such that for some
a(t) ∈ Lp and b ≥ 0,

|F (t, x)| ≤ a(t)|x|+ b for all t ∈ [0,∞), x ∈ RM (6.5)

|F (t, x)− F (t, y)| ≤ k|x− y| for all t ∈ (0,∞), x, y ∈ RM (6.6)

with k sufficiently small. Then, for 1 ≤ p ≤ ∞ and each f ∈ Lp
dim{u ∈W 1

p : u̇+Au− F (t, u) = f} ≥ dim kerL = rank(Π)

and the solution set is an absolute extensor for paracompact spaces.

Proof. As shown in [34], the map L : X = W 1
p → Y = Lp defined by Lu = u̇+Au

is surjective and dim kerL = rank Π. Since the null space of L is finite dimensional,
it has a complement X̃ in X. Thus L has a continuous right inverse denoted by
L+ from Y onto X̃. Set N(u) = F (t, u). Then, N : X → Y is a k-Lipschitzian
by condition (6.6). Since the quasinorm |N | ≤ k, we get that I − tNL+ satisfies
condition (+) for t ∈ [0, 1] for k sufficiently small. Hence, the conclusion of the
theorem follows from Theorem 1.3. The solution set is an absolute extensor for
paracompact spaces by a theorem of Ricceri [45] (see Theorem 2.7). �
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Let us give a corollary to Theorem 6.1 when L has constant coefficients. Let
A ∈ L(RM ,RM ), σ(A) be its spectrum and σ0(A) = {λ ∈ σ(A) : Reλ = 0} =
σ(A) ∩ iR = ∅. Decompose RM as in Amann [1]

RM = X0 +X+ +X− such that AX0 ⊂ X0, AX+ ⊂ X+, AX− ⊂ X−.
X+ is called the positive (generalized) eigenspace of A. If σ(A) = ∅, then RM =
X+ +X−.

Corollary 6.2. Let A ∈ L(RM ,RM ) with σ0(A) = ∅ and F : [0,∞)× RM → RM
be a Caratheodory function satisfying (6.1)-(6.2). Then the conclusions of Theorem
6.1 hold.

Proof. As shown in [41], the bounded linear map L : X = W 1
p → Y = Lp defined

by Lu = u̇ + Au is a Fredholm map if and only if σ0(A) = ∅. Its null space is
kerL = {e−tAψ : ψ ∈ X+}, its range is R(L) = Y so that its index i(L) = dimX+.
Here, L has an exponential dichotomy (see the observation below). Since the null
space of L is finite dimensional, it has a complement X̃ in X. Thus L has a
continuous right inverse given by L+ from Y onto X̃. Hence, the conclusions follow
from Theorem 1.3 or Theorem 6.1. �

Next, we look at the boundary value problem

u̇+Au− F (t, u) = 0 (6.7)

P1u(0) = 0 (6.8)

associated with the splitting RM = X1 ⊕ X2 and P1 : RM → X1 is a projection.
Define the linear map Λ : W 1

p → Lp × X1 by Λu = (Lu, P1u(0)) with Lu =
u′(t) + A(t)u(t). The solutions of (6.7)-(6.8) are solutions of Λu + Nu = (0, 0).
Hence, the following theorem follows from Corollary 4.2. As remarked before it, no
surjectivity of L needed when dim ker(L) is finite.

Theorem 6.3. Let A ∈ L∞ and L have an exponential dichotomy with projection
Π and F : [0,∞)× RM → RM be a Caratheodory function that satisfies conditions
(6.5) and (6.6) and F is odd, i.e.,F (t,−u) = −F (t, u) for each (t, u) ∈ [0,∞)×RM .
Assume that rank Π >dim X1. Then, for 1 ≤ p ≤ ∞ and each r > 0

dim{u ∈ ∂B(0, r) ⊂W 1
p : Λu+ (F (t, u(t)), 0) = (0, 0) } ≥ rank Π− dimX1 − 1.

Proof. The linear map u ∈ W 1
p → (0, P1u(0)) ∈ Lp × X1 has finite rank and

therefore the index of the map Λ : W 1
p → Lp×X1 is rank Π-dim X1 > 0 (see [32]).

The map N : W 1
p → Lp×X1 given by Nu = (F (t, u(t)), 0) is odd and k-Lipschitzian

with k sufficiently small. Hence, the theorem follows from Corollary 4.2. �

In view of Theorem 6.1, it is useful to have easily verifiable conditions that imply
an exponential dichotomy. Exponential dichotomy and the characterization of rank
Π can be obtained through various available criteria (see [25, 34]). For example,
if limt→∞A(t) = A∞ exists (which includes the constant case) and the spectrum
σ(A∞) ∩ iR = ∅, then L has an exponential dichotomy and rank Π is the number
of eigenvalues of A∞ with positive real part. More generally, if A is bounded and
continuous, then L has an exponential dichotomy and rank Π coincides with the
number of eigenvalues of A(t) with positive real part for large enough t, provided
that these eigenvalues are bounded away from the imaginary axis and A is “slowly”
varying (see [34] for a more detailed discussion). Detailed study of the surjectivity
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of L (among other things) from a “natural” space W 1,2
A = {u : u̇ ∈ L2, Au ∈ L2}

onto L2 can be found in [34] without assuming that A is bounded or that L has
any dichotomy. It is based on Riccati differential inequalities. If A is bounded
and L has exponential dichotomy, then W 1,2

A = W 1
2 [34]. If A is bounded and

W 1,2
A ⊂ L2 (so that W 1,2

A = L2), additional conditions are needed for L to have
an exponential dichotomy (see [34]). When L has no exponential dichotomy, then
there are conditions in [34] that ensure that W 1,2

A ⊂ L2 continuously and therefore
W 1,2
A is continuously embedded in W 1,2, (or just require that W 1,2

A ⊂ L2) and to
study (6.2) from W 1,2

A into L2, it is enough to have that N is k-Lipschitzian N from
W 1

2 to L2. For other criteria for exponential dichotomy of L we refer to [34] and
the references therein.

7. Semilinear ordinary differential equations in Banach spaces

We need the following result about the existence of continuous linear right in-
verses of surjective linear maps.

Proposition 7.1. Let X and Y be Banach spaces, L : D(L) ⊂ X → Y be a
closed surjective linear map and P : X → Y be linear and continuous. Suppose that
the abstract boundary value problem: Lx = y with Px = 0 has a unique solution
x ∈ D(L) such that ‖x‖ ≤ k‖y‖ for all y ∈ Y and some constant k. Then L has a
continuous linear right inverse L+ : Y → X.

Proof. For a given y ∈ Y , define L+y = x where x ∈ D(L) is the unique solution
of the BVP in the theorem. It is clear that L+ is linear and continuous since
‖L+y‖ ≤ k‖y‖ for each y ∈ Y . Moreover, LL+ = I. �

Let E be an (infinite dimensional) Banach, L(E) be the space of all continuous
linear maps from E into E with the usual norm and I be a (nondegenerate) compact
real interval. Let X = C1(I, E) and Y = C(I, E) be the Banach spaces of E-valued
continuously differential and continuous function with the usual norms ‖ · ‖1 and
‖ · ‖, respectively.

Proposition 7.2. Let A : I → L(E) be a continuous function and L : X → Y be
the linear map given by Lu = u′ + A(t)u. Then L has a continuous linear right
inverse.

Proof. For any f ∈ Y , the Cauchy problem Lu = f , u(t0) = 0 has a unique solution
for a fixed t0 ∈ I. It is the unique solution of the integral equation

u(t) =
∫ t

t0

f(s)ds−
∫ t

t0

A(s)u(s)ds.

Applying Gronwall’s lemma, we obtain

‖u(t)‖ ≤
∫ t

t0

‖f(s)‖ds exp
∫ t

t0

‖A(s)‖ds ≤ eC
∫ t

t0

‖f(s)‖ds

since
∫ t
t0
‖A(s)‖ds ≤ C for some positive constant C. Hence, ‖u‖ ≤ K‖f‖ for some

K. Since u′(t) = f(t)−A(t)u(t), for some K1 > 0, we have

‖u′(t)‖ ≤ ‖f‖+ ‖A(t)‖ ‖u(t)‖ ≤ ‖f‖+K1‖u(t)‖
≤ ‖f‖+K1K‖f‖ = (1 +KK1)‖f‖.
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Thus
‖u‖1 ≤ (K +KK1)‖f‖.

Define a right inverse L+f = u, where U is the unique solution of the above Cauchy
problem. It is linear and continuous since ‖L+f‖1 ≤ (K +KK1)‖f‖. �

We have the following extension of [43, Theorem 2], where it is assumed that
the nonlinearity depends only on (t, u(t)).

Theorem 7.3. Let E be a Banach space, A : I → L(E) be a continuous function
and F : I × E × E → E be such that

(i) For each y ∈ E fixed, the function F (., y) : I × E → E is uniformly
continuous with relatively compact range.

(ii) ‖F (t, x, y)−F (t, x, z)‖ ≤ k‖y−z‖ for all t ∈ I, x, y, z ∈ E for k sufficiently
small.

Then for each f ∈ C(E),

dim{u ∈ C1(I, E) : u′(t) +A(t)(u(t))− F (t, u(t), u′(t)) = f(t) for all t ∈ I}
≥ dimE.

The solution set is an absolute extensor for paracompact spaces if F (t, .) is k-
Lipschitzian.

Proof. Set X = C1(I, E), Y = C(I, E) and Lu = u′ + A(.)(u(.)) for all u ∈ X. It
is well known that L : X → Y is a linear continuous surjection with dim ker(L) =
X0 = ∞. It has a linear continuous right inverse L+ by Proposition 7.2. Hence,
X0 has a complement X̃ in X. Define N : X → Y by Nu = F (·, u(·), u′(.)). Let
U(u, v) = F (t, u, v′). Then, for each fixed v ∈ X, the map U(·, v) : X → Y is
completely continuous by condition (i) and the Ascoli-Arzela theorem. Moreover,
for each fixed u ∈ X, the map U(u, ·) : X → Y is a k-Lipschitzian by condition
(ii). Hence, the map Nu = U(u, u) is k-ball-contraction (see Webb [49]) with
k‖L+‖ < 1. Moreover, the quasinorm |N | < k and so I − tNL+ satisfies condition
(+) for t ∈ [0, 1] since k is sufficiently small. Hence, the conclusion of the theorem
follow from Theorems 1.3 and 2.7. �

Next, we shall look at the surjectivity question of the linear map Lu = u′+A(t)u
in various Banach space valued function spaces defined on an interval J ⊂ R and
the existence of its right continuous inverse. It is based on ordinary or exponential
dichotomy of L and we refer to [25] for a detailed discussion. Let W denote the
space of real valued functions on J with the topology of convergence in the mean L1

on compact intervals of J . Then W is a Frechet (complete, linear metric) space. Let
Lp = Lp(J,R), 1 ≤ p ≤ ∞, denote the usual Banach spaces of real-valued functions
with the norm ‖·‖p. For other Banach spaces B of real-valued, measurable functions
φ(t), the notation |φ|B will be used for the norm of φ(t) in B. For a Banach space
Z, L(Z), Lp(Z), B(Z), . . . will represent the spaces of measurable vector valued
functions y(t) on J with values in Z such that φ(t) = ‖y(t)‖ is in W , Lp, B,. . . With
Lp or B, the norm |φ|p or |φ|B will be abbreviated to |y|p or |y|B . A Banach space U
will be said to be stronger than L(Z) if U is contained in L(Z) and the convergence
in U implies the convergence in L(Z). Each one of the following spaces is stronger
than L(Z) : Lp(Z), 1 ≤ p ≤ ∞, Cb(Z) - the space of continuous bounded functions
on J with the sup norm, A(Z) - the space of continuous bounded almost periodic
functions, etc. (see [25]).
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If U is a Banach space stronger than L(Z), a U -solution u(t) of u′ + A(t)u = 0
or u′ + A(t)u = y(t) means a solution u(t) ∈ U . The pair (U, V ) of Banach spaces
is said to be admissible for A(t) if each is stronger than L(Z), and, for every
f(t) ∈ V , the differential equation u′ + A(t)u = f(t) has a U-solution. Hence, the
map Lu = u′ + A(t)u maps D(L) ⊂ U onto V . It is known [18, 23] that the map
L is closed and dim ker(L) = dim(Z) and the null space of L is isomorphic to Z.
Detailed discussion of various pairs (U, V ) of (strongly) admissible spaces for L can
be found in Massera-Schaffer [25], Corduneanu [2].

Let Z0 = Z0D denote the set of all initial values u(0) ∈ Z of U -solutions u(t) of
Lu = u′ +A(t)u = 0. The space Z0 may not be closed even if Z is a Hilbert space,
nor be complemented in Z if it is closed (cf. Massera-Schaffer [25]). If Z0 has a
complement Z1 in Z, let P0 be the projection from Z onto Z0 that annihilates Z1.
The following lemma gives conditions under which L has a continuous linear right
inverse.

Lemma 7.4. Let (U, V ) be admissible for A(t) and Z0 be complemented by Z1 in
Z. Then L : D(L) ⊂ U → V has a continuous linear right inverse from V into
U and from V into the Banach space U1 = D(L) endowed with the graph norm
induced by L.

Proof. By assumption, the linear map L : D(L) ⊂ U → V is surjective. Since
U and V are stronger than L(X), [25, Theorem 31.D] implies that the graph of
L is closed in U × V and so L is closed and for each f ∈ V there is a solution
y(t) ∈ L−1(f) such that ‖y‖U ≤ K‖f‖V by the Open mapping Theorem (see [20])
with K independent of f . By [25, Theorem 51.E], for each f(t) ∈ V there is a unique
solution u(t) ∈ U such that u(0) ∈ Z1 and satisfies ‖u‖U ≤ max{1, ‖P‖}K ′‖f‖V ,
where P is the projection along Z0 onto Z1, and K ′ = K + K1 is independent of
f , with the constant K1 explicitly determined in [23]. Define the linear map L+

by L+f = u, where U is this unique solution. Hence, L+ : V → U is a continuous
right inverse of L.

Next, as above, for each f(t) ∈ V there is a unique solution u(t) ∈ U such that
u(0) ∈ Z1. Then there is a one-to-one linear correspondence between f ∈ V and
the solutions u(t) of u′+A(t)u = 0 with u(0) ∈ Z1. The proof of the fact that L is
closed from D(L) ⊂ U → V (in Hartman [20, Lemma 6.2 ]) shows that if L1 is the
restriction of L with domain consisting of u(t) ∈ D(L) such that u(0) ∈ Z1, then L1

is closed. Hence, L1 : D(L1) ⊂ U1 ⊂ U → V is a closed linear one-to-one surjection.
Therefore, by the Open mapping Theorem [20], there is a constant K > 0 such that
if L1u = f , then ‖u‖U1 ≤ K‖f‖V for each f ∈ V . Define the linear map L+ by
L+f = u where L1u = f . Then L+ : V → U1 is a continuous right inverse of L
with ‖L+f‖U1 ≤ K‖f‖V . �

Theorem 7.5. Let (U, V ) be admissible for A(t) and Z0 be complemented by Z1.
Let U1 = D(L) be the Banach space with the graph norm and F : J ×X → X be a
k-Lipschitzian map, i.e., there is a sufficiently small k such that for each u1, u2 ∈ U ,

‖F (t, u1(t))− F (t, u2(t))‖V ≤ k‖u1(t)− u2(t)‖U (7.1)

Then, for each f ∈ V ,

dim{u ∈ U : u′ +A(t)u− F (t, u) = f} ≥ dim ker(L).

and the solution set is an absolute extensor for paracompact spaces.
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Proof. Let U1 be the Banach space D(L) endowed with the graph norm induced
by L. Then the map L : U1 → V is continuous and surjective and, by Lemma 7.4,
it has a continuous linear right inverse L+ : V → U1. Set Nu = F (t, u(t)). Then
the map N : U → V is a k-Lipschitzian with k‖L+‖ < 1 as well as from U1 into V .
Since the quasinorm |NL+| < 1, it follows that I − tNL+ satisfies condition (+) in
V . Hence, the proof follows from Theorem 2.7. �

The following corollary is a consequence of Lemma 7.4 for the pair (Cb, V ), and
extends in different ways a result of Perron [37] for a finite dimensional system of
the form u′+A(t)u = F (t, u) where it is assumed the existence of bounded solutions
of the linear part.

Corollary 7.6. Let (Cb, V ) be admissible for A(t) and Z0 be complemented by Z1.
Let U1=D(L) be the Banach space with the graph norm and F : J ×X → X be a
k-Lipschitzian, i.e., there is a sufficiently small k such that for each u1, u2 ∈ Cb,

‖F (t, u1(t))− F (t, u2(t))‖V ≤ k‖u1(t)− u2(t)‖Cb
.

Then, for each f ∈ V ,

dim{u ∈ Cb : u′ +A(t)u− F (t, u) = f} ≥ dim ker(L).

and the solution set is an absolute extensor for paracompact spaces.

As V in this corollary we can take any of the spaces: Lp(Z), 1 ≤ p ≤ ∞, Cb(Z)
- the space of continuous bounded functions on J with the sup norm, A(Z) - the
space of continuous bounded almost periodic functions, etc. (see [25]). Moreover,
for these choices of V , the pair (Cb, V ) is admissible if and only if there is a bounded
solution for each f in V such that ‖f(t)‖ = 1 for all t ≥ 0 [25]. Let M be the space
of functions f ∈ V for which

∫ t+1

t
‖f(s)‖ds is bounded for t ∈ J with the norm

‖f‖M = supt∈J
∫ t+1

t
‖f(s)‖ds. Let V be either M or Lp, 1 ≤ p ≤ ∞ and F (t, u)

be a function defined for t ∈ J , u ∈ Z, ‖u‖ < a (0 < a ≤ ∞) such that F (t, u) is a
measurable function in t for each ‖u‖ < a, F (t, 0) ∈ B with ‖F (t, 0)‖V = β, and,
for each u1, u2 ∈ Z with norms less than a

‖F (t, u1)− F (t, u2)‖ ≤ γ(t)‖u1 − u2‖ (7.2)

holds for all t ≥ 0 and some function γ(t) ∈ B(R). If β and γ = ‖γ(t)‖V are
sufficiently small, then F (t, u(t)) ∈ V and condition (7.2) holds (see [25]). Similarly,
if V = Cb, (7.2) holds and F (t, u) is a continuous function with F (t, 0) ∈ Cb with
‖F (0, t)‖ = β that satisfies (7.2) with γ(t) = γ, a constant, then (7.2) holds if β
and γ are sufficiently small (see [25]).

Remark 7.7. Since U and V need not be separable spaces (e.g., V = L∞(Z)),
therefore have no approximation schemes, Corollary 1.6 for A-proper maps cannot
be used in Theorem 7.5 and Corollary 7.6.

8. Semilinear elliptic equations on bounded domains

LetQ ⊂ Rn have smooth boundary and F = F (x, t, p, q) be a real valued function
defined on Q̄ × R × Rn × Rn2

= Q̄ × Rm, where m = 1 + n + n2. Consider the
equation

∆u− λF (x, u(x), Du,D2u) = h (u ∈ H2,α(Q̄, R)), h ∈ Hα(Q̄, R)) (8.1)
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where Du and D2u are shorthand notations for the first, respectively second order
derivatives of u and H2,α(Q̄, R), 0 < α < 1, is the Hölder space of real functions
defined on Q̄ with derivatives up to second order in Hα(Q̄, R) equipped with the
norm

‖u‖2,α = Σ|k|≤2‖Dku‖α
where k = (k1, . . . , kn) is a multi-index, |k| = k1 + · · ·+ kn and

Dku =
∂|k|u

∂k1x1 . . . ∂knxn
.

We will also need the Hölder space Hα(Q,Rm) with the norm

‖u‖α = Σmi=1‖ui‖α (u = (u1, . . . , um)).

Let I denote a bounded interval in Rm:

I = {x = (x1, . . . , xm) ∈ Rm : ai < xi < bi, i = 1, 2, . . . ,m}

with ai and bi real numbers, ai < bi, i = 1, . . . ,m, and Ī is the closure of I. Let
N1u = F (x, u(x)), F ′s = (Fs1 , . . . , Fsm

) denote the gradient of F (x, s) with respect
to the variables s ∈ Rm.

Theorem 8.1. Let F : Q×Rm → R be a continuous function of class H0,1(Q̄×Ī , R)
for any bounded interval I ⊂ Rm, be differentiable with respect to the Rm variable,
Fs ∈ H0,1(Q̄ × Ī ,Rm) for any bounded interval I ⊂ Rm, and λ > 0 be sufficiently
small, F (0) = 0. Then (8.1) is solvable for each h ∈ Hα of sufficiently small norm
and

dim{u ∈ H2,α(Q,R) : ∆u− λF (x, u(x), Du,D2u) = h} =∞.

Proof. Set X = H2,α(Q,R) and Y = Hα(Q,R). Define L : X → Y by Lu = ∆u.
As shown in [43], dim ker(L) =∞. By the classical PDE theory (see [15, Theorem
6.14 and page 123]), there is a positive constant C such that for every f ∈ Y there is
a unique solution u ∈ X of Lu = f , u|∂Q = 0 with ‖u‖ ≤ C‖f‖. Hence, L : X → Y

is surjective and has a continuous linear right inverse L+, and therefore the null
space of L has a complement in X. Since λ is sufficiently small, the equation ∆u =
λF (x, u(x), Du,D2u)+h can be written as λ−1

1 ∆u = λ2F (x, u(x), Du,D2u)+λ−1
1 h

with λ = λ1λ2 such that λ−1
1 ‖L+‖ < 1 and λ−1

1 L has the same properties as L. Let
N : X → Y be a map defined by Nu = λ2F (x, u,Du,D2u). Define the Nemitskii
map N1 : Z = Hα(Q,Rm) → Y by N1u = F (x, u(x)). It was shown in [34] that
N1 maps Z into Y and is locally Lipschitz.

Next, the map Ju = (u,Du,Du) is an isometry fromH2,α(Q,R) ontoHα(Q,Rm).
Since the map N1 : Hα(Q,Rm) → Y is locally Lipschitz, there is an r > 0 such
that ‖N1u−N1v‖Z ≤ k(r)‖u− v‖Y for some constant k(r) and all ‖u‖Z , ‖v‖Z ≤ r.
Set N2 = N1J . Since J is an isometry with J(0) = 0, for each u, v ∈ B̄(0, r) ⊂ X,
Ju, Jv ∈ B̄(0, r) ⊂ Z and therefore

‖N2u−N2v‖Y = ‖N1Ju−N1Jv‖Y ≤ k(r)‖Ju− Jv‖Z = k(r)‖u− v‖Y .

Hence, N2 : B̄(0, r) ⊂ X → Y is locally Lipshitzian. Since λ2 is sufficiently
small, we have that N = λ2N2 : B̄(0, r) ⊂ X → Y is locally Lipschitzian with
the Lipschitz constant λ2k(r). The equation ∆u = λF (x, u(x), Du,D2u) + h is
equivalent to λ1L = Nu+λ−1

1 h and the conclusion follows from Theorem 1.4 since
λ2 is sufficiently small. �



EJDE-2016/213 DIMENSION OF THE SET OF POSITIVE SOLUTIONS 27

Remark 8.2. Since X and Y are not separable spaces, A-proper mapping results
like Corollary 1.6 cannot be used in the above proof. Dimension results for nonlocal
perturbations of the Laplacian are given in Ricceri [43] and Faraci and Iannizzotto
[9].

Next, we shall study (8.1) in Sobolev spaces in which case we can allow a much
wider class of nonlinearities. Here, the induced nonlinear map can be globally
k-Lipschitzian. More generally, our result requires the k-contractivity only in vari-
ables that correspond only to the highest derivatives in the equation. Let Q ⊂ Rn,
n ≥ 2, be an open bounded set with a smooth boundary and W̊ 2

2 (Q) be the Sobolev
space of functions that are zero on the boundary of Q with the usual norm.

Theorem 8.3. Let F : Q × Rm → R, m = 1 + n + n2, be a continuous function
such that

(1) There is a sufficiently small constant k > 0 such that

|F (x, y, z1)− F (x, y, z2)| ≤ k|z1 − z2| for all x ∈ Q, y ∈ Rn+1, z1, z2 ∈ Rn
2

(2) For some a > 0 sufficiently small and b(x) ∈ L2(Q)

|F (x, y)| ≤ a|y|+ b(x) for all x ∈ Q, y ∈ Rm.
Then

dim{u ∈ W̊ 2
2 (Q) : ∆u = F (x, u(x), Du,D2u)} =∞.

The solution set is an absolute extensor for paracompact spaces if F (t, .) is k-
Lipschitzian.

Proof. Set X = W̊ 2
2 (Q) and Y = L2(Q). Define L : X → Y by Lu = ∆u. As shown

in [43], dim ker(L) = ∞ in the Hölder space C2,α(Q)). But, a C2 function that
satisfies Lu=0 in the classical sense satisfies also Lu = 0 in the generalized sense by
the divergence theorem. Hence, dim ker(L) =∞ in X. By the classical PDE theory,
(see [15, Theorem 8.12]), there is a positive constant C such that for every f ∈ Y
there is a unique solution u ∈ X of Lu = f , u|∂Q = 0 with ‖u‖ ≤ C‖f‖. Hence,
L : X → Y is surjective and has a continuous linear right inverse and therefore
the null space of L has a complement in X. Let N : X → Y be a map defined by
Nu = F (x, u,Du,D2u). Define the map U(·, ·) by U(u, v) = F (x, u,Du,D2v). The
continuity and boundedness of N : X → Y and the Rellich compactness embedding
theorem imply that for each fixed v, if {un} ⊂ X converges weakly to u in X, then
U(un, v) converges to U(u, v) in Y . Moreover, the map U(u, ·) : X → Y is k-
Lipschitzian by condition (1). Hence, the map Nu = U(u, u) is k-ball-contractive
(see [49]) and I − tNL+ satisfies condition (+). Thus, the conclusions follow from
Theorems 1.3 and 2.7. �

Let us now look at the two dimensional problem with oblique derivative boundary
conditions

∆u− F (x, y, u, ux, uy, D2u) = 0, for all (x, y) ∈ Q (8.2)

a(x, y)∂u/∂x− b(x, y)∂u/∂y = 0, for all (x, y) ∈ ∂Q. (8.3)

with Q ⊂ R2 a bounded domain with smooth boundary, a(x, y) and b(x, y) are
smooth with a2 + b2 = 1.

Suppose that the following limits exist

a± = lim
x→±∞

a(x), b± = lim
x→±∞

b(x).
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Let b+ > 0, b− > 0 or b+ < 0, b− < 0 and I be the interval connecting the point
(a+, b+) with the point (a−, b−). Let C be the curve (a(x), b(x)), x∈ R1, completed
by the interval I and considered from (a−, b−) in the direction of growing values of
x. The rotation r of the vector (a(x), b(x)) is the number of rotations of the curve
C around the origin in the counterclockwise direction. Assume that r > 0.

Theorem 8.4. Suppose that the above assumptions on Q, a and b hold so that
r > 0 and that F : Q× R4 → R is a Caratheodory function such that

|F (x, y, z)| ≤ d|z|+ c(x, y), (x, y) ∈ Q, z ∈ R7 (8.4)

|F (x, y, z, w1)− F (x, y, z, w2)| ≤ k|w1 − w2|,
(x, y) ∈ Q, z ∈ R3, w1, w2 ∈ R4 (8.5)

for some d > 0 and k sufficiently small and a function c(x, y) ∈ L1(Q). Then
the dimension of the solutions of the BVP (8.2)-(8.3) is at least the index of the
associated linear map. The solution set is an absolute extensor for paracompact
spaces if F (x, .) is k-Lipschitzian.

Proof. Set X = W 2
2 (Q), Y = L2(Q)×W 1/2

2 (∂Q) and L : X → Y ,

Lu = (∆u, a∂u/∂x− b(x, y)∂u/∂y)

be the linear map corresponding to BVP (8.2)-(8.3). The index of L is i(L) = 2r+2
(see [48]), where r is the number of counterclockwise rotations of the vector (a, b).
Then L is surjective with dimension of the null space equals i(L). Define the map
N : X → Y by Nu = (F (x, y, u,Du,D2u), 0) and U(u, v) = F (x, y, u,Du,D2v).
By the compactness of the embedding of W 2

2 (Q) into L2(Q), for each fixed v,
the map U(., v) : W 2

2 (Q) → L2(Q) is compact. For each u, the map U(u, .) :
W 2

2 (Q) → L2(Q) is k-Lipschitzian by condition (8.5). Hence, N1u = U(u, u) is
k-ball contractive with k‖L+‖ < 1 as is Nu = (N1u, 0) from X to Y . Moreover,
‖Nu‖Y ≤ d‖u‖X + c for each u ∈ W 2

2 (Q) and some positive constants d and c.
Since d is sufficiently small, I − tNL+ satisfies condition (+) and the conclusions
follow from Theorems 1.3 and 2.7. �

Remark 8.5. If F (x, ·) is odd, i.e., F (x,−u) = −F (x, u) for all x and u, then the
solution sets of equations in Theorems 8.3 and 8.4 have infinite, respectively i(L)
dimension on the boundary of the ball B(0, r) for each r > 0 by Corollary 4.2.

Next, we give more examples of surjective Fredholm maps of positive index
defined on bounded and unbounded domains to which our results can apply.

Example 8.6. Let Q ⊂ R2 have a C∞ boundary. Then the map L : W 2
2 (Q) →

L2(Q)×W 1/2
2 (∂Q) given by Lu = (∆u, ∂u/∂x|∂Q) is a surjective Fredholm map of

index 2 (see Hörmander [21]). Its null space is {u = ay + b}.

Example 8.7. Let

Lu = (a(x)− 1)u′′ + (b(x)− b1(x))u′ + (c(x)− 2)u,

where b1(x) is a smooth function such that b1(x) = 2 for x ≥ 1 and b1(x) = −2
for x ≤ −1 and a(x), b(x) and c(x) are continuous on R and such that the map
B : W 2

p (R1) → Lp(R1) given by Bu = a(x)u′′ + b(x)u′ + c(x) is continuous and
has a sufficiently small norm. Define L1u = −u′′ − b1(x)u′ − 2u. It is shown by
Rabier [39] that L1 : W 2

p (R1) → Lp(R1) is surjective and dim kerL1 = 2. Hence,
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the map L = L1 + B : W 2
p (R1) → Lp(R1) is surjective and of index 2 since B has

a sufficiently small norm (see Jorgen [24, page 94]).

Example 8.8. Let H2,α(R,Rn) and Hα(R,Rn) be Hölder spaces and let L :
H2,α(R,Rn)→ Hα(R,Rn) be defined by

Lu = a(x)u′′ + b(x)u′ + c(x)u

where a(x), b(x) and c(x) are smooth n×n matrices having, respectively, the limits
a±, b± and c± as x→ ±∞. Then it was shown in [48] that if

T±(λ) = −a±λ2 + b±iλ+ c±

are invertible matrices for each λ ∈ R, then L is a Fredholm map of index k+−k−,
where k± are the number of solutions to the equation

det(a±λ2 − b±λ+ c±) = 0

which have positive real part.

9. Semilinear elliptic equations on RM with infinite dimensional null
space

In this section we shall study semilinear elliptic equations with infinite dimen-
sional null space defined on RM .

9.1. Linearities with a continuous right inverse. In this subsection we assume
that the null space of a linear map is infinite dimensional and has a continuous right
inverse. The following result provides some linear elliptic operators with infinite
dimensional null space when M > 1.

Lemma 9.1 (Rabier-Stuart [40]). Let L : W 2
p (RM ) → Lp(RM ), p ∈ (1,∞), be a

second order linear elliptic differential operator with continuous M -periodic coeffi-
cients. Then

(1) dim kerL = 0 or ∞ and dim kerL∗ = 0 or ∞.
(2) If M = 1 then dim kerL = 0 and, if in addition the range of L is closed,

then L is a homeomorphism.
(3) If M > 1, p ≥ 2, L has constant coefficients and is semi-Fredholm (i.e.,

has a finite dimensional null space and a closed range), then it is a home-
omorphism.

Theorem 9.2. Let L : W 2
p (RM ) → Lp(RM ), p ∈ (1,∞), be a second order lin-

ear elliptic differential operator with continuous M -periodic coefficients and have a
closed range. Let F : RM × Rs2 → R1 be a Caratheodory function such that

|F (x, ξ)| ≤ a|ξ|+ b(x) for x ∈ RM , ξ ∈ Rs2

and F (x, ξ) is such that F (., 0) ∈ L∞(RM ) and for some k > 0 sufficiently small,

|F (x, ξ)− F (x, ξ′)| ≤ k
∑
|α|≤2

|ξα − ξ′α|.

Let Nu = F (x, u,Du,D2u).
(a) If either M = 1, or M > 1, p ≥ 2, L has constant coefficients and

dim kerL = 0, then either
(i) L−N is locally injective, in which case L−N is a homeomorphism,

or
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(ii) L−N is not locally injective, in which case (L−N)−1(f) is compact
for each f ∈ Lp(RM ) and the cardinal number card(L − N)−1(f) is
positive, finite on each connected component of the set Lp(RM ) \ (L−
N)(Σ).

(b) If M > 1, p ≥ 2, L has constant coefficients, dim kerL =∞ and the kerL
has a complement also when p 6= 2, then

dim{u |Lu− F (x, u,Du,D2u) = f} =∞
for each f ∈ Lp(RM ) and the solution set is an absolute extensor for para-
compact spaces.

Proof. (a) By Lemma 9.1, L is an isomorphism if M = 1 and then parts (i) and
(ii) follow from [33, Theorem 3.5].

(b) Since p ≥ 2, the conjugate p′ ≤ 2 and the adjoint L∗ of L also has constant
coefficients. Since p′ ≤ 2, the Fourier transform maps Lp′(RM ) to Lp(RM ) (see [7]).
It follows at once that kerL∗ = 0 and, since the range of L is closed, L is surjective
onto Lp(RM ). Since Nu = F (x, u,Du,D2u) is k-Lipschitzian from W 2

p (RM ) to
Lp(RM ), the result now follows from Theorem 2.7. �

Let us now give some examples of linear elliptic PDE’s with infinite dimensional
null space. As noted above, Rabier and Stuart [40] proved that a second order
linear elliptic partial differential operator with continuous M -periodic coefficients
L : W 2

p (RM ) → Lp(RM ), p ∈ (1,∞), has either a trivial null space or an infinite
dimensional null space. Moreover, it is known that an elliptic partial differential
operator with constant coefficients L = −

∑M
i,k=1Aik∂

2
ik +

∑M
i=1Bi∂i + C is semi-

Fredholm (i.e., it has a finite dimensional null space and a closed range) from
W 2
p (RM ) to Lp(RM ), 1 < p < ∞, if and only if it is an isomorphism (see [40]).

This amounts to C > 0 if either M ≥ 2 or M = 1 and B1 = 0. If M = 1 and B1 6= 0,
then we need to assume C 6= 0. Hence, if these conditions on the coefficients are
not satisfied, then the null space of L is infinite dimensional in W 2

p (RM ) by Lemma
9.1, but its range may not be closed as shown below by the Helmholtz operator.
Here, C < 0.

9.2. Convolution perturbations of elliptic PDE with nonclosed range.
The closedness of the range of L, and in particular its surjectivity, is a crucial
assumption in our results. Here, we consider some linear elliptic maps with infinite
dimensional null space, a nonclosed range and yet whose perturbations by nonlinear
maps of convolution type have a unique solution. The Helmholtz map −∆ − 1 is
not Fredholm. It has an infinite dimensional null space in W 2

p (R2) for p > 4 since
u(x) = J0(|x|), where J0 is the Bessel function of the first kind and index 0, and
its translates u(x+ a) for a ∈ R2, are solutions to −∆u− u = 0 in R2 (Dautry and
Lions, [5, p. 642]). The range of L = −∆ − k2, k > 0, is not closed in L2(RM ).
Indeed, let fn ∈ R(L) be such that fn → f in L2(RM ) and that its Fourier transform
f̂n(ξ) vanishes at |ξ|2 = k. These functions can converge in L2(RM ) to f̂(ξ) which
does not vanish at |ξ|2 = k (see [48]). Hence, f /∈ R(L) and we can not apply our
results to perturbations of the Helmholtz operator. There is no solvability theory
of such non Fredholm maps nor of their perturbations (see Volpert [48]). Here, we
present a special nonlinear perturbation result. Since it has constant coefficients,
we can use the Fourier transform to obtain the following unique solvability result
for k-Lipschitz convolution perturbations. Consider the general linear differential
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elliptic operator with constant coefficients L : W 2
2 (RM )→ L2(RM ) with an infinite

dimensional null space whose range is not closed and look at its perturbation by a
convolution operator

Lu−
∫

RM

s(x− y)F (y, u(y))dy = 0 (9.1)

with s ∈ L2(RM ), and F satisfying the following conditions

|F (x, y1)− F (x, y2)| ≤ k|y1 − y2| for all x ∈ RM , y1, y2 ∈ R (9.2)

|F (x, y)| ≤ K|y|+ h(x) for all x ∈ RM , y ∈ R (9.3)

for some positive constants k, K and h(x) ∈ L2(RM ). Applying the Fourier
transform, we see that Lu = f has a unique solution u ∈ L2(RM ) if and only
if f̂(ξ)/φ(ξ) ∈ L2(RM ), where L̂u = φ(ξ)û is the Fourier transform of Lu. Assume
that for some C > 0,

|ŝ(ξ)/φ(ξ)| ≤ C for all ξ ∈ RM (9.4)

Theorem 9.3. Let conditions (9.2)-(9.4) hold and kC < 1. Then (9.1) has a
unique solution in L2(RM ).

Proof. For each v ∈ L2(RM ), the equation

Lu−
∫

RM

s(x− y)F (y, v(y))dy = 0 (9.5)

has a unique solution u ∈ L2(RM ). Define the map N : L2(RM ) → L2(RM ) by
Nv = u. N is a k-Lipschitzian. Indeed, for each v1, v2 in L2(RM ), let u1 and u2

be the unique solutions of (9.5). Then

û1(ξ)− û2(ξ) = ŝ(ξ)/φ(ξ)(f̂1(ξ)− f̂2(ξ)),

where f̂i(ξ) is the Fourier transform of F (y, vi(y)). This implies

‖u1 − u2‖ ≤ C‖f̂1 − f̂2‖

= C(
∫

RM

|F (y, v1(y))− F (y, v2(y))|2dy)1/2

≤ kC‖v1 − v2‖.

Hence, the conclusion follows from the contraction principle. �

For Lu = −∆u− k2u with k > 0, Theorem 9.3 was proved in [48]. Theorem 9.3
provides an example of a nonlinear map whose range is contained in the range of a
non surjective linear map that even has no closed range. Nonunique solvability of
(9.1) can be obtained in a similar way if condition (9.2) is replaced by conditions
on F that imply that N is compact in L2(RM ) and maps a closed convex set B into
itself. Our dimension results do not apply here since the range of L is not closed.
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