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WELL-POSEDNESS AND EXACT CONTROLLABILITY OF A
FOURTH ORDER SCHRÖDINGER EQUATION WITH

VARIABLE COEFFICIENTS AND NEUMANN BOUNDARY
CONTROL AND COLLOCATED OBSERVATION

RUILI WEN, SHUGEN CHAI

Abstract. We consider an open-loop system of a fourth order Schrödinger

equation with variable coefficients and Neumann boundary control and collo-
cated observation. Using the multiplier method on Riemannian manifold we

show that that the system is well-posed in the sense of Salamon. This implies

that the exponential stability of the closed-loop system under the direct pro-
portional output feedback control and the exact controllability of open-loop

system are equivalent. So in order to conclude feedback stabilization from well-

posedness, we study the exact controllability under a uniqueness assumption
by presenting the observability inequality for the dual system. In addition, we

show that the system is regular in the sense of Weiss, and that the feedthrough
operator is zero.

1. Introduction and statement of main results

There is a wide class of infinite-dimensional linear systems introduced by Sala-
mon and Weiss in the 1980s [20, 21, 24, 27], which cover many control systems
described by partial differential equations (PDEs) with the actuators and sen-
sors supported at isolated points, subregions, or on boundaries of the spatial re-
gions. This class of infinite-dimensional systems, although the input and out-
put operators are allowed to be unbounded, may possess many properties that
make them similar in many ways to finite-dimensional ones, such as representation,
transfer function, internal model based tracking and disturbance rejection, stabi-
lizing controller parametrization, and quadratic optimal control [5]. As of now,
many multi-dimensional PDEs have been verified to be well-posed and regular; see
[1, 2, 3, 4, 5, 7, 8, 11, 12, 13, 14, 22, 30] and the references therein.

The fourth order Schrödinger equation arises in many scientific fields such as
quantum mechanics, plasma physics, nonlinear optics and so on. In quantum me-
chanics, the solution ϕ(x, t) of system (4.1) denotes the probability amplitude func-
tion, and the conservation of the norms validates the Born’s statistical interpreta-
tion of ϕ(x, t). Further more,

∫
Ω
|ϕ(x, t)|2dx represents the probability of finding

the particle in domain Ω at the time t and the conservation law provides the particle
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which will not disappear in Ω. Here we consider the control problem of a fourth
order Schrödinger equation with Neumann boundary conditions. On the one hand,
we generalize the well-posedness for fourth order Schrödinger equation with Neu-
mann boundary control and collocated observation [25] to the variable coefficients
case, and on the other hand, establish the exact controllability of this system. The
system that we are concerned with in this paper is described by the PDEs

iwt(x, t) + P 2w(x, t) = 0, x ∈ Ω, t > 0,

w(x, t) = 0, x ∈ ∂Ω, t > 0,

∂w(x, t)
∂νA

= 0, x ∈ Γ1, t > 0,

∂w(x, t)
∂νA

= u(x, t), x ∈ Γ0, t > 0,

y(x, t) = −iA(A−1w(x, t)), x ∈ Γ0, t > 0,

(1.1)

where Ω ⊂ Rn(n > 2) is an open bounded region with C3-boundary ∂Ω = Γ =
Γ0 ∩ Γ1 and assume that Γ0 (int(Γ0) 6= ∅) and Γ1 are relatively open in ∂Ω and
Γ0∩Γ1 = ∅. The operators A and A are defined in (1.3) and (1.5) later respectively,
and P is a second-order partial differential operator

P =
n∑

i,j=1

∂

∂xi

(
aij(x)

∂

∂xj

)
,

which, for some constants a, b > 0, satisfies

a

n∑
i=1

|ξi|2 6
n∑

i,j=1

aij(x)ξiξj 6 b
n∑
i=1

|ξi|2, ∀x ∈ Ω, ξ = (ξ1, ξ2, . . . , ξn) ∈ Cn,

aij(x) = aji(x) ∈ C∞(Rn), ∀i, j = 1, 2, . . . , n.
(1.2)

We define the operator A as

Af = Pf, D(A) = H2(Ω) ∩H1
0 (Ω), (1.3)

and

νA =
( n∑
k=1

νkak1(x),
n∑
k=1

νkak2(x), . . . ,
n∑
k=1

νkakn(x)
)
,

∂

∂νA
=

n∑
i,j=1

aij(x)νj
∂

∂xi
,

(1.4)

where ν = (ν1, ν2, . . . , νn) is the unit normal vector of ∂Ω pointing outward of Ω,
u and y are the boundary control and the boundary observation of system (1.1).

Now, let A be the positive self-adjoint operator in L2(Ω) defined by

Af = P 2f, D(A) = H4(Ω) ∩H2
0 (Ω). (1.5)

Just as in [15], one can show that

A1/2 = −A. (1.6)

Let H = H−2(Ω) and U = Y = L2(Γ0), where H−2(Ω) is the dual of H2
0 (Ω)

with respect to the pivot space L2(Ω). The following Theorem 1.1 shows that
system (1.1) is well-posed with the state space H and the input and output space
U = Y = L2(Γ0) [14].
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Theorem 1.1. System (1.1) is well-posed. More precisely, for any T > 0, initial
value w0 ∈ H, and the control input u ∈ L2(0, T ;U), there exists a unique solution
w ∈ C(0, T ;H) to (1.1) such that

‖w(·, T )‖2H + ‖y‖2L2(0,T ;U) 6 CT
[
‖w0‖2H + ‖u‖2L2(0,T ;U)

]
, (1.7)

where CT > 0 is used to represent the constant that depends only on Ω,Γ0, and T ,
although it may have different values in different contexts.

It is proved in [9, Theorem 5.8] (see also [25, Theorem 5.2]) that if the abstract
system (2.19) introduced later is well-posed, it must be regular in the sense of Weiss
with the zero feedthrough operator. The following result is hence a consequence of
Theorem 1.1.

Corollary 1.2. System (1.1) is regular and the feedthrough operator is zero.

Theorem 1.1 implies that the open-loop system (1.1) is well-posed in the sense
of Salamom with the state space H and the same input and output space U = Y .
From this result and [9, Theorems 6.7 and 6.8] (see also [25, Theorems 5.3 and 5.4])
on the first order abstract system formulation (see also [10] for the second order
abstract system), we know that system (1.1) is exactly controllable on some interval
[0, T ] (T > 0) if and only if its corresponding closed loop systems under the output
proportional feedback u = −ky, k > 0 is exponentially stable. So, based on this
argument, to get the feedback stabilization of system (1.1) from the well-posedness,
we need to discuss the exact controllability of the open loop system (1.1). We show
that under the assumptions (H1) and (H2) stated below, system (1.1) is exactly
controllable on some interval [0, T ], T > 0.

It should be emphasized that due to the variable coefficients, the classical multi-
pliers method in Euclidean space seems invalid [26] to prove Theorem 1.1 and 1.3,
some computations on the Riemannian manifold are needed.

By the ellipticity condition (1.2), we denote the coefficients matrix and its inverse
by A(x) and G(x), respectively, and the determinant of G(x) by ρ(x),

A(x) = [aij(x)]n×n, G(x) = [gij(x)]n×n = [aij(x)]−1
n×n = A(x)−1,

ρ(x) = det[gij(x)]n×n, ∀x ∈ Rn.
(1.8)

Let Rn be the usual Euclidean space. For each x = (x1, x2, . . . , xn) ∈ Rn, define
the inner product and norm over the tangent space Rnx of Rn by

g(X,Y ) := 〈X,Y 〉g =
n∑

i,j=1

gijαiβj ,

|X|g := 〈X,X〉1/2g , ∀X =
n∑
i=1

αi
∂

∂xi
, Y =

n∑
i=1

βi
∂

∂xi
∈ Rnx .

(1.9)

Then (Rn, g) becomes a Riemannian manifold with Riemannian metric g [28, 29].
Denote by D the Levi-Civita connection with respect to g and let N be a smooth
vector field on (Rn, g). Then for each x ∈ Rn, the covariant differential DN of N
determines a bilinear form on Rnx × Rnx :

DN(X,Y ) = 〈DYN,X〉g, ∀X,Y ∈ Rnx , (1.10)

where DYN stands for the covariant derivative of the vector field N with respect
to Y .

In this article we use the following assumptions:
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(H1) There exists a vector field N on (Rn, g) such that

DN(X,X) = b(x)|X|2g, ∀ X ∈ Rnx , x ∈ Ω, (1.11)

where b(x) is a function defined on Ω so that

b0 = inf
x∈Ω

b(x) > 0. (1.12)

(H2) (Uniqueness assumption]) The problem

A2v = ζv, x ∈ Ω,

v =
∂v

∂νA
= 0, x ∈ Γ,

Av = 0, x ∈ Γ0,

(1.13)

possesses a unique zero solution, where ζ is an arbitrary complex number
and Γ0 is relatively open in Γ and satisfies

Γ0 = {x ∈ Γ|N(x) · ν > 0}. (1.14)

For the variable case, several corollaries were presented to show how to verify
Assumption (H1) by means of the Riemannian geometry method in [28]. In fact,
when aij(x) = δij , then for some given x0, the radial field N = x − x0 satisfies
Assumption (H1) with b(x) ≡ 1. As for Assumption (H2), it is a valid fact ([19,
Theorem 4.2] and [12, Theorem 1.3]), but it is not verified, as was indicated in [29],
the problem is not a Cauchy problem, and hence many uniqueness theorems cannot
be applied. We propose it as an unsolved problem here.

Theorem 1.3. Under Assumptions (H1), (H2), system (1.1) is exactly controllable
on some [0, T ], T > 0. That is, given initial data w0 ∈ H and any time T > 0,
there exists a boundary control u ∈ L2(0, T ;L2(Γ0)) such that the unique solution
w ∈ C(0, T ;H) of (1.1) satisfies w(T ) = 0.

The following result is a direct consequence of Theorems 1.1 and 1.3.

Corollary 1.4. Suppose (1.14) holds. Then system (1.1) is exponentially stable
under the proportional output feedback u = −ky for any k > 0.

This article is organized as follows. In Section 2, we formulate system (1.1)
into a collocated abstract first-order system. Some basic knowledge on Riemannian
geometry is stated. Sections 3 and 4 are devoted to the proofs of Theorems 1.1 and
1.2, respectively.

2. Collocated formulation and preliminary results

In this section, we introduce some notations and facts in Riemannian geom-
etry that we need in the following sections. For any ϕ ∈ C2(Rn) and N =
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i=1 hi(x) ∂

∂xi
, denote

div0(N) =
n∑
i=1

∂hi(x)
∂xi

, Dϕ = ∇gϕ =
n∑

i,j=1

∂ϕ

∂xj
aij(x)

∂

∂xi
,

divg(N) =
n∑
i=1

1√
ρ(x)

∂

∂xi
(
√
ρ(x)hi(x)),

∆gϕ =
n∑

i,j=1

1√
ρ(x)

∂

∂xi

(√
ρ(x)aij(x)

∂ϕ

∂xj

)
= Pϕ− (Dp)ϕ,

p =
1
2

ln(det[aij(x)]),

(2.1)

where div0 is the divergence operator in Euclidean space Rn, and ∇g,divg and
∆g are the gradient operator, the divergence operator and the Beltrami-Laplace
operator in (Rn, g) respectively.

Let µ = νA
|νA|g be the unit outward-pointing normal to ∂Ω in terms of the Rie-

mannian metric g. The following Lemma [23, p. 128,138] provides some useful
identities.

Lemma 2.1. Let ϕ,ψ ∈ C2(Ω) and let N be a vector field on (Rn, g). Then we
have: (1) Divergence formulae and theorems

div0(ϕN) = ϕdiv0(N) +N(ϕ), divg(ϕN) = ϕdivg(N) +N(ϕ),∫
Ω

div0(N)dx =
∫

Γ

N · νdΓ,
∫

Ω

divg(N)dx =
∫

Γ

〈N,µ〉gdΓ.

(2) Green′s formulae∫
Ω

ψPϕdx =
∫

Γ

ψ
∂ϕ

∂νA
dΓ−

∫
Ω

〈∇gϕ,∇gψ〉gdx,∫
Ω

ψ∆gϕdx =
∫

Γ

ψ
∂ϕ

∂µ
dΓ−

∫
Ω

〈∇gϕ,∇gψ〉gdx.

Lemma 2.2. We denote by T 2(Rnx) the set of all covariant tensors of order 2 on
Rnx. Then T 2(Rnx) is an inner product space of dimension n2 with the inner product

〈F,G〉T 2(Rn
x ) =

n∑
i,j=1

F (ei, ej)G(ei, ej), ∀F,G ∈ T 2(Rnx), (2.2)

where {e1, e2, . . . , en} is an arbitrarily chosen orthonormal basis for (Rnx , g).
Let X (Rn) be the set of all vector fields on Rn. We denote by ∆ : X (Rn) →

X (Rn) the Hodge-Laplace operator. Then [29, (2.2.7),(2.2.14)]:

∆g(N(ϕ)) = (∆N)(ϕ) + 2〈DN,D2ϕ〉T 2(Rn
x ) +N(∆gϕ) + Ric(N,Dϕ),

N(∆gϕ) = N(Aϕ)−D2p(N,Dϕ)−D2ϕ(N,Dp), ∀ϕ ∈ C2(Rn),
(2.3)

where Ric(·, ·) is the Ricci curvature tensor of the Riemannian metric g, D2ϕ and
D2p are the Hessian of ϕ and p, respectively, in terms of the Riemannian metric
g.

For a fixed x ∈ Rn. Let E1, E2, . . . , En be a frame field normal at x on (Rn, g),
which means that 〈Ei, Ej〉 = δij in some neighborhood of x and (DEi

Ej)(x) = 0 for
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1 6 i, j 6 n. Set N =
∑n
i=1 γiEi, then N(ϕ) =

∑n
i=1 γiEi(ϕ), where Ei(ϕ) is the

covariant derivative of ϕ with respect to Ei under the Riemannian metric g. Then
〈Dp,D(N(ϕ))〉g = Ei(p)Ei(N(ϕ))

= Ei(p)[Ei(γj)Ej(ϕ) + γjEiEj(ϕ)]

= DN(Dϕ,Dp) +D2ϕ(N,Dp).

(2.4)

From (2.3) and (2.4), we obtain

A(N(ϕ)) = (∆gϕ+Dp)(N(ϕ))

= ∆g(N(ϕ)) + 〈Dp,D(N(ϕ))〉g
= (∆N)(ϕ) + 2〈DN,D2ϕ〉T 2(Rn

x ) +N(Aϕ)−D2p(N,Dϕ)

+ Ric(N,Dϕ) +DN(Dϕ,Dp).

(2.5)

Lemma 2.3 (see [16, Lemma 4.1]). Let ψ be a smooth function on Ω and satisfy
ψ|Γ = 0. Then there exists a continuous function q(x) on Γ which is independent
of ψ such that

∆gψ(x) =
∂2ψ

∂µ2
+ q(x)

∂ψ(x)
∂µ

, ∀x ∈ Γ. (2.6)

Moreover, if ψ satisfies ∂ψ
∂νA
|Γ = 0, then

N(ψ)|Γ = 0 on Ω for any vector field N. (2.7)

So,

A(ψ) = ∆gψ + (Df)(ψ) = ∆gψ =
∂2ψ

∂µ2
=

1
|νA|2g

∂2ψ

∂ν2
A

on Γ, (2.8)

and
∂N(ψ)
∂νA

= N
( ∂ψ
∂νA

)
= 〈N, νA

|νA|g
〉g

νA
|νA|g

( ∂ϕ
∂νA

)
= N · ν 1

|νA|2g
∂2ψ

∂ν2
A

= AψN · ν on Σ.
(2.9)

Lemma 2.4. Let ϕ be a complex function defined on Ω with suitable regularity.
Then there exist some constants C, possibly depending on g,N and Ω, such that:
(1)

sup
x∈Ω

|N |g 6 C, sup
x∈Ω

|DN |g 6 C, sup
x∈Ω

|divg(N)| 6 C,

sup
x∈Ω

|Dp|g 6 C, sup
x∈Ω

|∇g(divg N)|g 6 C,

(2)

|N(ϕ)| 6 C|∇gϕ|g, |Dp(ϕ)| 6 C|∇gϕ|g, |DN(∇gϕ,∇gϕ)| 6 C|∇gϕ|2g,
|〈∇gϕ,∇g(divg N)〉g| 6 C|∇gϕ|g, |(∆N)ϕ|g 6 C|∆N |g|∇gϕ|g 6 C|∇gϕ|g,

|〈DN,D2ϕ〉T 2(Rn
x )| 6 C|DN |g|D2ϕ|g 6 C|D2ϕ|g,

|D2p(N,Dϕ)| 6 |D2p|g|N |g|Dϕ|g 6 C|Dϕ|g,
|D2ϕ(N,Dp)| 6 |D2ϕ|g|N |g|Dp|g 6 C|D2ϕ|g,
|Ric(N,Dϕ)| 6 |Ric |g|N |g|Dϕ|g 6 C|Dϕ|g,

where p(x) = 1
2 ln(det[aij(x)]).
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(3)∫
Ω

|ϕ|2dx 6 C‖ϕ‖2H2(Ω),

∫
Ω

|Dϕ|2gdx 6 C‖ϕ‖2H2(Ω),

∫
Ω

|D2ϕ|2gdx 6 C‖ϕ‖2H2(Ω).

Now we cast the system (1.1) into an abstract first-order system in the state
space H = H−2(Ω) and control and output spaces U = Y .

Let A1 be the positive self -adjoint operator in H induced by the bilinear form
a(·, ·) defined by

〈A1f, g〉H−2(Ω)×H2
0 (Ω) = a(f, g) =

∫
Ω

AfAgdx, ∀f, g ∈ H2
0 (Ω).

By the Lax-Milgram theorem, A1 is a canonical isomorphism from D(A1) = H2
0 (Ω)

onto H. It is easy to show that A1f = Af whenever f ∈ H4(Ω) ∩ H2
0 (Ω) and

that A−1
1 g = A−1g for any g ∈ L2(Ω). Hence A1 is an extension of A to the space

H2
0 (Ω).
It is well known that D(A1/2

1 ) = L2(Ω) and A
1/2
1 is a canonical isomorphism

from L2(Ω) onto H (see [13]). Define the map γ ∈ L(L2(Γ0), H3/2(Ω)) [18, p. 189]
so that γu = φ if and only if

P 2φ(x) = 0, x ∈ Ω,

φ(x)
∣∣
Γ

= 0,
∂φ(x)
∂νA

∣∣
Γ1

= 0,
∂φ(x)
∂νA

∣∣
Γ0

= u(x).
(2.10)

In terms of the Dirichlet map, we can write (1.1) as

iẇ +A1(w − γu) = 0. (2.11)

It is clear that D(A1) is dense in H, so is D(A1/2
1 ). We identify H with its dual

H ′. Then the following Gelfand-triple of continuous and dense inclusions hold:

D(A1/2
1 ) ↪→ H = H ′ ↪→ D(A1/2

1 )′. (2.12)

Define an extension Ã ∈ L(D(A1/2
1 ), D(A1/2

1 )′) of A1 by

〈Ãf, g〉
D(A

1/2
1 )′,D(A

1/2
1 )

= 〈A1/2
1 f,A

1/2
1 g〉H , ∀f, g ∈ D(A1/2

1 ). (2.13)

Hence (2.11) can be written in D(A1/2
1 )′ as

ẇ = iÃw +Bu, (2.14)

where B ∈ L(U,D(A1/2
1 )′) is given by

Bu = −iÃγu, ∀u ∈ U. (2.15)

Define B∗ ∈ L(D(A1/2
1 ), U) by

〈B∗f, u〉U = 〈f,Bu〉
D(A

1/2
1 ),D(A

1/2
1 )′

, ∀f ∈ D(A1/2
1 ) = H1

0 (Ω), u ∈ U. (2.16)
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Then for any f ∈ D(A1/2
1 ) and u ∈ C∞0 (Γ), we have

〈Bu, f〉
D(A

1/2
1 )′,D(A

1/2
1 )

= 〈Ã−1Bu, Ãf〉
D(A

1/2
1 ),D(A

1/2
1 )′

= 〈A1/2
1 Ã−1Bu,A

1/2
1 f〉H

= 〈A−1
1 A

1/2
1 Ã−1Bu,A−1

1 A
1/2
1 f〉H2

0 (Ω)

= 〈A−1/2
1 (−iγu), A−1/2

1 f〉H2
0 (Ω)

= 〈−iγu, f〉L2(Ω)

= 〈−iγu,AA−1f〉L2(Ω) = 〈u,−iA(A−1f)〉L2(Γ0).

(2.17)

Since C∞0 (Γ0) is dense in L2(Γ0), we obtain

B∗f = −iA(A−1f), ∀f ∈ D(A1/2
1 ) = L2(Ω). (2.18)

Thus, we have formulated the open loop system (1.1) into an abstract first-order
form in H:

ẇ = iÃw +Bu,

y = B∗w.
(2.19)

where Ã, B and B∗ are defined by (2.13), (2.15) and (2.18), respectively.

3. Proof of Theorem 1.1

We need the following Lemma which comes from [6, Theorem A.1].

Lemma 3.1. If there exist constants T > 0, CT > 0 such that the input and output
of system (1.1) satisfy∫ T

0

‖y(t)‖2Udt 6 CT
∫ T

0

‖u(t)‖2Udt, ∀u ∈ L2(0, T ;L2(Γ0)), (3.1)

with w(·, 0) ≡ 0, then system (1.1) is well-posed.

Proof of Theorem 1.1. Introduce the transformation z = A−1
1 w ∈ H2

0 (Ω). Then z
satisfies

zt(x, t)− iA2z(x, t) = −i(γu(·, t))(x, t), (x, t) ∈ Ω× (0, T ] =: Q,

z(x, 0) = z0(x), x ∈ Ω,

z(x, t) =
∂z(x, t)
∂νA

= 0, (x, t) ∈ ∂Ω× [0, T ] =: Σ,

(3.2)

and from (2.18), the output of system (1.1) is changed into the form

y(x, t) = B∗w(x, t) = B∗A1A
−1
1 w(x, t) = B∗A1z(x, t) = −iAz(x, t) x ∈ Γ0, t > 0.

(3.3)
Therefore, by Lemma 3.1, Theorem 1.1 amounts to saying for some (and hence for
all) T > 0, that the solution to system (3.2) with zero initial data satisfies∫ T

0

∫
Γ0

|Az(x, t)|2dΓdt 6 CT
∫ T

0

∫
Γ0

|u(x, t)|2dΓdt. (3.4)

We proceed with the proof in three steps.
Step 1. (Energy identity) Since ∂Ω is of class C3, it follows from [15, Lemma 4.1]
that there exists a C2 vector field N on Ω such that

N(x) = µ(x), x ∈ Γ; |N(x)| 6 1, x ∈ Ω. (3.5)
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Now, multiply both sides of the first equation in (3.2) by N(z) and integrate over
Q to obtain

∫
Q

ztN(z)dQ− i
∫
Q

A2zN(z)dQ = −i
∫
Q

γuN(z)dQ. (3.6)

Compute the first term on the left-hand side of (3.6) to yield

∫
Q

ztN(z)dQ

=
∫

Ω

zN(z)dx
∣∣∣T
0
−
∫
Q

zN(zt)dQ

=
(∫

Ω

divg(|z|2N)dx−
∫

Ω

zN(z)dx−
∫

Ω

|z|2 divg(N)dx
)∣∣∣T

0

−
(∫

Q

divg(zztN)dQ−
∫
Q

ztN(z)dQ−
∫
Q

zzt divg(N)dQ
)
,

(3.7)

and hence

2i Im
∫
Q

ztN(z)dQ =
∫
Q

zzt divg(N)dQ−
(∫

Ω

zN(z)dx+
∫

Ω

|z|2 divg(N)dx
)∣∣∣T

0

=
∫
Q

iγuz divg(N)dQ−
∫
Q

iA2zz divg(N)dQ

−
(∫

Ω

zN(z)dx+
∫

Ω

|z|2 divg(N)dx
)∣∣∣T

0
.

(3.8)
Straightforward computations yield

∫
Q

A2zz divg(N)dQ

=
∫
Q

|Az|2 divg(N)dQ+
∫
Q

zA(divg(N))AzdQ+ 2
∫
Q

Az〈∇gz,∇g divg(N)〉gdQ,

(3.9)
where we used the fact A(ϕψ) = ψAϕ+ ϕAψ + 2〈∇gϕ,∇gψ〉g. Substituting (3.9)
in (3.8) yileds

Im
∫
Q

ztN(z)dQ =
1
2

∫
Q

γuz divg(N)dQ− 1
2

∫
Q

|Az|2 divg(N)dQ

− 1
2

∫
Q

zA(divg(N))AzdQ−
∫
Q

Az〈∇gz,∇g divg(N)〉gdQ

+
i
2

(∫
Ω

zN(z)dx+
∫

Ω

|z|2 divg(N)dx
)∣∣∣T

0
.

(3.10)
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Next we compute the second term on the left-hand side of (3.6) to yield

Im i
∫
Q

A2zN(z)dQ

= Re
∫
Q

A2zN(z)dQ = Re
∫
Q

∆g(Az)N(z)dQ+ Re
∫
Q

(Dp)(Az)N(z)dQ

= −Re
∫

Σ

∂(N(z))
∂µ

AzdΣ + Re
∫
Q

∆g(N(z))AzdQ

+ Re
∫
Q

(Dp)(Az)N(z)dQ

= −Re
∫

Σ

|Az|2dΣ + Re
∫

Σ

Az(Dp)(z)dΣ + Re
∫
Q

(∆N)(z)AzdQ

+ 2 Re
∫
Q

Az〈DN,D2z〉T 2(Rn
x )dQ+ Re

∫
Q

N(Az)AzdQ

− Re
∫
Q

D2p(N,Dz)AzdQ− Re
∫
Q

D2z(N,Dp)AzdQ

+ Re
∫
Q

Ric(N,Dz)AzdQ+ Re
∫
Q

(Dp)(Az)N(z)dQ,

(3.11)

where we have used (2.3) and the fact that

z
∣∣
Γ

=
∂z

∂µ

∣∣∣
Γ

= 0⇒ ∂2z

∂µ2

∣∣∣
Γ

= ∆gz
∣∣
Γ
,

while

Re
∫
Q

N(Az)AzdQ =
1
2

∫
Σ

|Az|2dΣ− 1
2

∫
Q

|Az|2 divg(N)dQ, (3.12)

Re
∫
Q

Dp(Az)N(z)dQ

= −Re
∫
Q

AzDp(N(z))dQ− Re
∫
Q

N(z)Az divg(Dp)dQ.
(3.13)

Combining (3.6), (3.10), (3.11), (3.12) and (3.13) to obtain

1
2

∫
Σ

|Az|2dΣ

=
1
2

∫
Q

zA(divg(N))AzdQ+
∫
Q

Az〈∇gz,∇g(divg(N))〉gdQ

+ Re
∫
Q

(∆N)(z)AzdQ+ 2 Re
∫
Q

Az〈DN,D2z〉T 2(Rn
x )dQ

− Re
∫
Q

D2p(N,Dz)AzdQ− Re
∫
Q

D2z(N,Dp)AzdQ

+R1 +R2 + b0,T ,

(3.14)
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where

R1 = Re
∫
Q

Ric(N,Dz)AzdQ− Re
∫
Q

(Az)Dp(N(z))dQ

− Re
∫
Q

N(z)Az divg(Dp)dQ,

R2 = −1
2

∫
Q

γuz divg(N)dQ− Re
∫
Q

γuN(z)dQ,

b0,T = − i
2

(∫
Ω

zN(z)dx+
∫

Ω

|z|2 divg(N)dx
)∣∣∣T

0

Step 2. (Estimation of R1). Let γu = 0 in the first identity of (3.2) and note
that z = A−1

1 w ∈ H2
0 (Ω). We know that the solution to (3.2) is associated with a

C0-group on the space H2
0 (Ω). That is to say, for any z0 ∈ H2

0 (Ω), there exists a
unique solution z ∈ H2

0 (Ω) to (3.2), which depends continuously on z0. This fact
together with (3.14) implies that

1
2

∫
Σ

|Az|2dΣ 6 CT ‖z0‖H2
0 (Ω). (3.15)

This shows that the operator B∗ is admissible, and so is B [4]. In other words,

u 7→ w is continuous from L2(Σ) to C(0, T ;H−2(Ω)). (3.16)

Moreover, by (3.16),

z = A−1
1 w ∈ H2

0 (Ω) depends continuously on u ∈ L2(0, T ;L2(Γ0)). (3.17)

Therefore,
R1 6 CT ‖u‖2L2(0,T ;L2(Γ0)), ∀u ∈ L2(0, T ;L2(Γ0)). (3.18)

where we have used Lemma 2.4.
Step 3. (Estimation of R2 and b0,T ). This can be easily obtained from the repre-
sentations of R2 and b0,T in (3.14) and (3.17) that

R2 + b0,T 6 CT ‖u‖2L2(0,T ;L2(Γ0)), ∀u ∈ L
2(0, T ;L2(Γ0)). (3.19)

Finally, it follows from (3.14), (3.18), and (3.19) that (3.4) holds. The proof of
Theorem 1.1 is complete. �

4. Proof of Theorem 1.3

In this section, we show the exact controllability by means of the Hilbert Unique-
ness Method (HUM) [17]. Since by Theorem 1.1, system (1.1) is well-posed which is
cast into the abstract first-order formulation (2.19) and (iÃ)∗ = −iÃ in H−2(Ω), it
follows that ẇ = iÃw+Bu is exactly controllable if and only if ẇ = iÃw, y = B∗w
is exactly observable. More precisely, the exact controllability of system (1.1) is
equivalent to the exact observability of the dual system of system (1.1) as follows:

iϕt + P 2ϕ = 0 in Ω× (0, T ] =: Q,

ϕ = 0,
∂ϕ

∂νA
= 0 on ∂Ω× [0, T ] =: Σ,

ϕ(x, 0) = ϕ0(x) in Ω,

(4.1)
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with the output y = −iAϕ. That is to say, the “observability inequality” holds for
system (4.1) in the sense of (cf. (3.2) and (3.4)):∫ T

0

∫
Γ0

∣∣Aϕ∣∣2dΓdt > CT ‖ϕ0‖2H2
0 (Ω), ∀ϕ0 ∈ H2

0 (Ω), (4.2)

for some (and hence for all) positive T > 0.
To prove (4.2), we let A be defined by (1.5) and let ϕ be a solution to (4.1).

Then iA generates a strongly continuous unitary group on the space H2
0 (Ω) and

hence
‖ϕ(t)‖H2

0 (Ω) = ‖A1/2ϕ(t)‖L2(Ω) = ‖eiAtϕ0‖H2
0 (Ω)

= ‖ϕ0‖H2
0 (Ω) = ‖A1/2ϕ0‖L2(Ω).

(4.3)

In this Section, let N be an arbitrary vector field on (Rn, g). Assume that ϕ
solves problem (4.1). Multiply the both sides of the first equation in (4.1) by N(ϕ)
and integrate on Q to obtain∫

Q

ϕtN(ϕ)dQ− i
∫
Q

A2ϕN(ϕ)dQ = 0. (4.4)

Now use the same process as the computation from (3.7) to (3.10) to obtain

Im
∫
Q

ϕtN(ϕ)dQ = −1
2

∫
Q

|Aϕ|2 div0(N)dQ− 1
2

∫
Q

ϕA(div0(N))AϕdQ

−
∫
Q

Aϕ〈∇gϕ,∇g div0(N)〉gdQ

+
i
2

(∫
Ω

ϕN(ϕ)dx+
∫

Ω

|ϕ|2 div0(N)dx
)∣∣∣T

0
.

(4.5)

Next we compute the second term on the left hand side of (4.4)

Im i
∫
Q

A2ϕN(ϕ)dQ

= Re
∫
Q

A2ϕN(ϕ)dQ

= −Re
∫

Σ

∂(N(ϕ))
∂νA

A(ϕ)dΣ + Re
∫
Q

A(N(ϕ))AϕdQ

= −1
2

∫
Σ

|Aϕ|2N · νdΣ + Re
∫
Q

Aϕ[(∆N)(ϕ) + 2〈DN,D2ϕ〉T 2(Rn
x )

+ Ric(N,Dϕ)−D2p(N,Dϕ) +DN(Dϕ,Dp)]dQ

− 1
2

Re
∫
Q

|Aϕ|2 div0(N)dQ,

(4.6)

where we have used (2.5), (2.7) and (2.9).
To obtain the observability inequality, we define T ∈ T 2(Rnx) for any x ∈ Ω as

follows:
T (X,Y ) = DN(X,Y ) +DN(Y,X), ∀X,Y ∈ Rnx . (4.7)

It is clear that T (·, ·) is symmetric, and from (1.11), we have

DN(X,Y ) +DN(Y,X) = 2b(x)〈X,Y 〉g, ∀X,Y ∈ Rnx , x ∈ Ω. (4.8)
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Fix x ∈ Ω, and let {ei}ni=1 be an orthonormal basis of (Rnx , g). By (4.8), we have

〈DN,D2ϕ〉T 2(Rn
x ) =

n∑
i,j=1

DN(ei, ej)D2ϕ(ei, ej)

= b(x)∆gϕ = b(x)(Aϕ−Dp(ϕ)).

(4.9)

Combining (4.4), (4.5), (4.6) and (4.9) we obtain

1
2

∫
Σ

|Aϕ|2N · νdΣ = M1 +M2 +M3 +M4 (4.10)

where

M1 = 2
∫
Q

b(x)|Aϕ|2dQ,

M2 =
[1

2

∫
Q

ϕA(div0(N))AϕdQ+
∫
Q

Aϕ〈∇gϕ,∇g div0(N)〉gdQ

+ Re
∫
Q

Aϕ[(∆N)(ϕ) + Ric(N,Dϕ)−D2p(N,Dϕ) +DN(Dϕ,Dp)]dQ

− 2 Re
∫
Q

b(x)AϕDp(ϕ)dQ
]
,

M3 = − i
2

(∫
Ω

ϕN(ϕ)dx
∣∣∣T
0
,

M4 = − i
2

(∫
Ω

|ϕ|2 div0(N)dx
)∣∣∣T

0

Now define the energy function for (4.1) as

E(t) = E(ϕ, t) =
1
2

∫
Ω

|Aϕ|2dx. (4.11)

Then E(t) = E(0) for all t > 0. Set

L(t) =
∫

Ω

(|ϕ|2 + |∇gϕ|2g)dx (4.12)

be the lower order terms in composition of E(t).

Lemma 4.1. Suppose that (H2) holds. Let ϕ is the solution of (4.1) with Aϕ = 0
on Σ0. Then ϕ ≡ 0 in Q.

Proof. Let

J = {ϕ ∈ X = C(0, T ;H2
0 (Ω));ϕ is the solution of (4.1) with Aϕ|Σ0 = 0}.

We shall prove J = 0. First, note that for any given initial data ϕ0 ∈ H2
0 (Ω),

Equation (4.1) admits a unique weak solution

ϕ(t) ∈ C(0, T ;H2
0 (Ω)). (4.13)

From this and (4.24) below, we have

E(0) 6 C(‖Aϕ‖2L2(Σ0) + ‖ϕ‖2L∞(0,T ;H1
0 (Ω))), ∀ϕ ∈ Xsolves (4.1). (4.14)

Now, we show that there exists a constant C > 0 such that for any ϕ ∈ X satisfying

‖ϕ‖2L∞(0,T ;H1
0 (Ω)) 6 C(‖Aϕ‖2L2(Σ0) + ‖ϕ‖2L∞(0,T ;L2(Ω))). (4.15)



14 R. WEN, S. CHAI EJDE-2016/216

Actually, if (4.15) does not hold, then there exists a solution sequence {ϕn} ∈ X
to (4.1) satisfying

‖Aϕn‖2L2(Σ0) + ‖ϕn‖2L∞(0,T ;L2(Ω)) → 0, as n→∞, (4.16)

‖ϕn‖2L∞(0,T ;H1
0 (Ω)) = 1. (4.17)

It is easy to learn from (4.13) and (4.14) that {ϕn} is bounded in X and hence
is relatively compact in L∞(0, T ;H1

0 (Ω)). Without loss of generality, we extract a
subsequence {ϕn} and assume it converges strongly to ϕ ∈ L∞(0, T ;H1

0 (Ω)), by
(4.17), and satisfies

‖ϕ‖2L∞(0,T ;H1
0 (Ω)) = 1. (4.18)

However, (4.16) implies ϕ ≡ 0 in Q, which contradicts (4.18). So (4.15) holds.
From (4.14) and (4.15), we have

E(0) 6 C(‖Aϕ‖2L2(Σ0) + ‖ϕ‖2L2(0,T ;L2(Ω))), ∀ϕ ∈ Xthat solves (4.1). (4.19)

Then (4.19) still holds for ϕ ∈ L∞(0, T ;L2(Ω)) satisfying (4.1) by a denseness
argument. Thus, we have proved that ϕ ∈ J implies that ψ = ϕ̇ satisfies (4.1) with
Aψ|Σ0 = 0 and ψ ∈ L∞(0, T ;L2(Ω)). This together with (4.19) gets

ψ(0) ∈ H2
0 (Ω). (4.20)

At last, because of (4.13), ψ ∈ X, it follows from (4.19) that the map ∂
∂t : ϕ→ ϕ̇

is continuous from J to J and the injection of {ϕ ∈ J ; ϕ̇ ∈ J} is compact. Therefore,
J is a finite dimensional space. There must be an η ∈ C and ϕ ∈ J\{0} such that
ϕ̇ = ηϕ, which implies

ϕ(x, t) = eηtϕ(x, 0). (4.21)

Substitute (4.21) into (4.1) to obtain (1.13) with v(x) = ϕ(x, 0) and ζ = −iη. By
(H2), we obtain ϕ(x, t) ≡ 0, hence J = {0}. �

Next, we evaluate the terms on the right-hand side of (4.10).

M1 = 2 Re
∫
Q

b(x)|Aϕ|2dQ > 4b0TE(0),

|M2| 6 C1εTE(0) +
C2

ε

∫ T

0

L(t)dt,

|M3| =
∣∣∣− i

2

∫
Ω

ϕN(ϕ)dx
∣∣∣ 6 εE(0) +

1
16ε

L(t),

|M4| =
∣∣∣− i

2

∫
Ω

|ϕ|2 divg(N)dx
∣∣∣

=
∣∣∣− i

2

∫
Ω

ϕϕdivg(N)dx
∣∣∣

6 C3εE(0) +
C4

ε
L(t),

(4.22)
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where we have used Lemma 2.4 in the evaluation of M2, and (4.3) in the evaluations
of M3 and M4, respectively. So

1
2

∫
Σ0

|Aϕ|2N · νdΣ

>
1
2

∫
Σ

|Aϕ|2N · νdΣ

> 4b0
[
T − C1T + 2 + 2C3

4b0
ε
]
E(0)

− C2

ε

∫ T

0

L(t)dt− 1 + 16C4

16ε
L(T )− 1 + 16C4

16ε
L(0).

(4.23)

Setting ε > 0 small enough, we obtain

E(0) 6 CT
∫

Σ0

|Aϕ|2dΣ + C
(∫ T

0

L(t)dt+ L(T ) + L(0)
)
. (4.24)

Next, use the standard compact uniqueness argument to absorb the lower-order
terms in (4.24). That is to say, we want to show that there exists a constant C > 0
such that

‖ϕ‖2L∞(0,T ;H1
0 (Ω)) 6 C

∫
Σ0

|Aϕ|2dΣ, (4.25)

for the solution ϕ of (4.1). We will assume (4.25) is not true to obtain a contradic-
tion. To this purpose, let {ϕn} be the solution sequence of (4.1) such that∫

Σ0

|Aϕn|2dΣ→ 0, n→∞, (4.26)

‖ϕn‖2L∞(0,T ;H1
0 (Ω)) = 1. (4.27)

Then it follows from (4.24) that {ϕn} is a bounded sequence in C(0, T ;H2
0 (Ω)),

and so relatively compact in L∞(0, T ;H1
0 (Ω)) because of the injection

C(0, T ;H2
0 (Ω))→ L∞(0, T ;H1

0 (Ω))

is compact. Without loss of generality, we extract a subsequence {ϕn} and assume
that {ϕn} converges strongly to ϕ ∈ L∞(0, T ;H1

0 (Ω)). From (4.27),

‖ϕ‖2L∞(0,T ;H1
0 (Ω)) = 1. (4.28)

Furthermore, {ϕn} converges to ϕ in L∞(0, T ;H2
0 (Ω)) in weak star topology. There-

fore, ϕ is a solution to (4.1) with

ϕ ∈ C(0, T ;H2
0 (Ω)). (4.29)

By (3.15), we know that
1
2

∫
Σ0

|Aϕ|2dΣ 6 CT ‖ϕ0‖H2
0 (Ω).

From this fact and (4.26) to have

Aϕ = 0 on Σ0. (4.30)

Finally, by Lemma 4.1, we have

ϕ = 0 in Q, (4.31)

contradicting (4.28). So the proof of Theorem 1.3 is complete.
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