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MULTIPLICITY OF SOLUTIONS FOR EQUATIONS INVOLVING
A NONLOCAL TERM AND THE BIHARMONIC OPERATOR

GIOVANY M. FIGUEIREDO, RÚBIA G. NASCIMENTO

Abstract. In this work we study the existence and multiplicity result of so-

lutions to the equation

∆2u−M
“Z

Ω
|∇u|2 dx

”
∆u = λ|u|q−2u+ |u|2

∗∗
u in Ω,

u = ∆u = 0 on ∂Ω,

where Ω is a bounded smooth domain of RN , N ≥ 5, 1 < q < 2 or 2 < q < 2∗∗,
M : R+ → R+ is a continuous function. Since there is a competition between

the function M and the critical exponent, we need to make a truncation on

the function M . This truncation allows to define an auxiliary problem. We
show that, for λ large, exists one solution and for λ small there are infinitely

many solutions for the auxiliary problem. Here we use arguments due to

Brezis-Niremberg [12] to show the existence result and genus theory due to
Krasnolselskii [29] to show the multiplicity result. Using the size of λ, we

show that each solution of the auxiliary problem is a solution of the original

problem.

1. Introduction

In this work we deal with questions of existence and multiplicity of solutions to
an equation involving a nonlocal term and biharmonic operator. More precisely we
study the equation

∆2u−M
(∫

Ω

|∇u|2 dx
)

∆u = λ|u|q−2u+ |u|2
∗∗−2u in Ω,

u = ∆u = 0 on ∂Ω,
(1.1)

where Ω ⊂ RN is a bounded smooth domain, 1 < q < 2 or 2 < q < 2∗∗ and
M : R+ → R+ is a continuous function that satisfies conditions which will be
stated later. Here 2∗∗ = 2N

N−4 with N ≥ 5 and ∆2 is the biharmonic operator; that
is,

∆2u =
N∑
i=1

∂4

∂x4
i

u+
N∑
i 6=j

∂4

∂x2
ix

2
j

u.

Our study was strongly motivated by extensible beam equation type or of a
stationary Berger plate equation, as can be seen below.
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In 1950, Woinowsky-Krieger [42] studied the equation

∂2u

∂t2
+
EI

ρ

∂4u

∂x4
−
(H
ρ

+
EA

2ρL

∫ L

0

|∂u
∂x
|2 dx

)∂2u

∂x2
= 0, (1.2)

where L is the length of the beam in the rest position, E is the Young modulus of
the material, I is the cross-sectional moment of inertia, ρ is the mass density, H is
the tension in the rest position and A is the cross-sectional area. This model was
proposed to modify the theory of the dynamic Euler-Bernoulli beam, assuming a
nonlinear dependence of the axial strain on the deformation of the gradient. Owing
to its importance in engineering, physics and material mechanics, since such model
was proposed, this class of problems has been studied. These studies are focused on
the properties of its solutions, as can be seen in [5, 6, 18, 33] and references therein.
More recent references with important details about the physical motivation of
(1.2) can be seen in [3, 28, 30, 35].

In 1955, Berger [8] studied the equation

∂2u

∂t2
+ ∆2u+

(
Q+

∫
Ω

|∇u|2dx
)

∆u = f(u, ut, x), (1.3)

which is called the Berger plate model [16], as a simplification of the von Karman
plate equation which describes large deflection of plate, where the parameter Q de-
scribes in-plane forces applied to the plate and the function f represents transverse
loads which may depend on the displacement u and the velocity ut.

Problem (1.1) is a generalization of the stationary problem associated with prob-
lem (1.2) in dimension one or problem (1.3) in dimension two. Before stating our
main results, we need the following hypotheses on the function M : R+ → R+: The
function M is continuous, increasing and there exists 0 < m0 such that

M(t) ≥ m0 = M(0), for all t ∈ R+. (1.4)

A typical example of a function satisfying this condition is

M(t) = m0 + bt

with b ≥ 0 and for all t ≥ 0, which is the one considered for (1.2) by Woinowsky-
Krieger [42] and for (1.3) by Berger in [8]. However, our hypotheses about the
function M include other functions, such as M(t) = m0 + ln(1 + t), M(t) = m0 +
bt+

∑k
i=1 bit

di with bi ≥ 0 and di ∈ (0, 1) for all i ∈ {1, 2, . . . , k} or M(t) = exp t.
The first result is related to the case 1 < q < 2 with a small positive parameter

λ.

Theorem 1.1. If 1 < q < 2 and (1.4) hold, then exists a positive constant λ∗ such
that (1.1) has infinitely many solutions, for all λ ∈ (0, λ∗). Moreover, if uλ is one
of these solutions, then uλ ∈ C4,α(Ω) ∩ C3(Ω) with α ∈ (0, 1) and

lim
λ→0
‖uλ‖ = 0.

The second result is related with the case 2 < q < 2∗∗ with λ large.

Theorem 1.2. If 2 < q < 2∗∗ and (1.4) hold, then exists a positive constant λ∗∗

such that (1.1) has a nontrivial solution uλ, for all λ ∈ (λ∗∗,+∞). Moreover,
uλ ∈ C4,α(Ω) ∩ C3(Ω) with α ∈ (0, 1) and

lim
λ→+∞

‖uλ‖ = 0.
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Problem (1.1) with the function M constant and subcritical growth was exhaus-
tively studied, as can be seen in [1, 11, 13, 25, 27, 37, 44] and references therein. On
the other hand, there are only a few works dedicated to equations modeling station-
ary beam equations or Berger plate equation; that is, problems involving a function
M depending on the gradient of the solution of problem. In this direction, we men-
tion the papers [13, 31, 32, 38, 39, 40, 43]. The difficulty that arises in the study of
this class of problems is the growth of the operator M̂(‖u‖2) = m0‖u‖2 + b

2‖u‖
4,

where M(t) =
∫ t

0
M(s) ds and m0, b > 0. This requires us to impose a 4-superlinear

growth on the nonlinearity f ; that is, f(x, t) = tp with p ∈ (3, 2∗∗ = 2N
N−4 ). But

2∗∗ = 2N
N−4 → 2 as N → +∞. To circumvent this difficulty, it is common to fix

N ≤ 4 because, in this case, 2∗∗ = ∞ or M bounded or make a truncation on
function M . In [31] the author shows some existence results using the Ekeland
variational principle and also discuss a numerical example considering a general
function M and N = 1. In [32] the author gives a necessary and sufficient condi-
tion for the existence of solutions when the nonlinearity is increasing considering
again a general function M and N = 1. In [38] the authors show the existence of
nontrivial solution using the Mountain Pass Theorem considering the function M
bounded and N ≥ 1. In [39] the authors show the existence of nontrivial solution
using an iterative scheme of Mountain Pass ”approximated” solutions considering
the case M(t) = λ(a + bt), N ≥ 1, a, b > 0 and λ > 0 small. The paper [40] is a
version of [39] in RN . In [43] the authors analyze from both the physical and the
analytical viewpoints problem (1.1) with N = 1 and M(t) = γ + t. In this article,
the author consider two cases namely: γ > 0 and γ < 0. In [14] the author consider
a version of problem (1.1) in RN with a general version of M and N ≥ 5.

In this article, we complement the results found in [31, 32, 38, 39] in the following
sense:

(i) Unlike of [31], [32], [38] and [39], we overcome the difficult of competition
between the operator and the critical exponent without consider N ≤ 4
or M bounded or M(t) = a + bt with a, b small. In our work we use a
truncation on function M and we use the size of lambda to show that the
solution of truncated problem is a solution of original problem. Of course,
the estimates on the operator of the truncated problem was adapted from
[38].

(ii) Moreover, we study the asymptotic behavior of solution of problem (1.1)
when λ→∞. This study was not observed in the articles above.

Unfortunately we do not have information on the case 1 < q < 2 and λ large or on
the case 2 < q < 2∗∗ and λ small.

In the proof of theorem 1.1 we use an argument that can be found in [9] and the
proof of Theorem 1.2 we use an argument that can be found in [4], for example.
But, due to the presence of the function M and its truncation, some estimates more
refined are necessary, such as in Lemmas 3.5 and 4.4.

In recent years, problems involving biharmonic or polyharmonic operators have
received a special attention, in particular problems where the nonlinearity has a
critical growth. In this interesting book [20], the reader can find a lot of results
involving this class of operator and an excellent bibliography about this subject. In
addition to this book, we would like to cite the papers [7, 9, 21, 22, 23, 24, 34, 36]
and references therein.
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The plan of this article is as follows. In Section 2, we define the truncated
problem. In section 3, we recall some properties of genus theory, we prove some
technical lemmas on truncated problem and we prove the Theorem 1.1. The proof
of Theorem 1.2 is made in section 4.

2. Auxiliary problem and variational framework

Since intend to work with N ≥ 5, we use a truncation argument. Here we
are assuming, without loss of generality, that M is unbounded. Otherwise, the
truncation of the functionM is not necessary. We make a truncation on the function
M for the case 1 < q < 2 and another truncation on function M for the case
2 < q < 2∗∗ as follows:

From (1.4), there exists t0 > 0 such that m0 < M(t0) < 2∗∗

2 m0 for the case
1 < q < 2 and m0 < M(t0) < q

2m0 for the case 2 < q < 2∗∗. We set

M0(t) :=

{
M(t), if 0 ≤ t ≤ t0,
M(t0) if t ≥ t0.

(2.1)

From (1.4) we obtain

M0(t) ≤ 2∗∗

2
m0 in the case 1 < q < 2, (2.2)

M0(t) ≤ q

2
m0 in the case 2 < q < 2∗∗. (2.3)

The proofs of Theorems 1.1 and 1.2 are based on a careful study of solutions of
the auxiliary problem

∆2u−M0

(∫
Ω

|∇u|2dx
)

∆u = λ|u|q−2u+ |u|2
∗∗−2u in Ω,

u = ∆u = 0 on ∂Ω,
(2.4)

where N and λ are as in the introduction.
We say that u ∈ H := H2(Ω) ∩H1

0 (Ω) is a weak solution of problem (2.4) if u
satisfies ∫

Ω

∆u∆φdx+M0

(∫
Ω

|∇u|2dx
)∫

Ω

∇u∇φdx

= λ

∫
Ω

|u|q−2uφ dx+
∫

Ω

|u|2
∗∗−2uφ dx,

for all φ ∈ H.
Note that H is a Hilbert space with the norm

‖u‖2 =
∫

Ω

|∆u|2 dx+
∫

Ω

|∇u|2dx

and we will look for solutions of (2.4) by finding critical points of the C1-functional
Iλ : H → R given by

Iλ(u) =
1
2

∫
Ω

|∆u|2 dx+
1
2
M̂0

(∫
Ω

|∇u|2dx
)
− λ

q

∫
Ω

|u|q dx− 1
2∗∗

∫
Ω

|u|2
∗∗
dx,

where M̂0(t) =
∫ t

0
M0(s) ds. Note that

I ′λ(u)φ =
∫

Ω

∆u∆φdx+M0

(∫
Ω

|∇u|2dx
)∫

Ω

∇u∇φdx



EJDE-2016/217 MULTIPLICITY OF SOLUTIONS 5

− λ
∫

Ω

|u|q−2uφ dx−
∫

Ω

|u|2
∗∗−2uφ dx,

for all φ ∈ H. Hence critical points of Iλ are weak solutions for (2.4).
To use variational methods, we first derive some results related to the Palais-

Smale compactness condition.
We say that a sequence (un) ⊂ H is a Palais-Smale sequence for the functional

Iλ if
Iλ(un)→ cλ and ‖I ′λ(un)‖ → 0 in H ′. (2.5)

If (2.5) implies the existence of a subsequence (unj ) ⊂ (un) which converges in
H, we say that Iλ satisfies the Palais-Smale condition. If this strongly convergent
subsequence exists only for some cλ values, we say that Iλ satisfies a local Palais-
Smale condition.

3. Case 1 < q < 2

We start by considering some basic notions on the Krasnoselskii genus that we
will use in the proof of Theorem 1.1.

3.1. Genus theory. Let E be a real Banach space. Let us denote by A the class
of all closed subsets A ⊂ E \ {0} that are symmetric with respect to the origin,
that is, u ∈ A implies −u ∈ A.

Definition 3.1. Let A ∈ A. The Krasnoselskii genus γ(A) of A is defined as being
the least positive integer k such that exists an odd mapping φ ∈ C(A,Rk) such that
φ(x) 6= 0 for all x ∈ A. If such a k does not exist we set γ(A) = ∞. Furthermore,
by definition, γ(∅) = 0.

In the sequel we will establish only the properties of the genus that will be used
in this work. More information on this subject may be found in the references
[2, 15, 17, 29].

Theorem 3.2. Let E = RN and let ∂Ω be the boundary of an open, symmetric
and bounded subset Ω ⊂ RN with 0 ∈ Ω. Then γ(∂Ω) = N .

Corollary 3.3. γ(SN−1) = N .

Proposition 3.4. If K ∈ A and γ(K) ≥ 2, then K has infinitely many points.

3.2. Proof of Theorem 1.1. The genus theory requires that the functional Iλ be
bounded below. Since this not occur, it is necessary to make other truncation. The
plan of the proof is to show that the set of critical points of the truncated functional
is compact, symmetric, does not contain the zero and has genus more than 2. Thus,
by Proposition 3.4, this functional has infinitely many critical points. With the size
of lambda, we show that each critical point of the truncated functional is a solution
of the auxiliary problem and solution of the original problem.

Here we adapt arguments from [4]. We make a truncation in the functional Iλ
as follows: From (1.4) and Sobolev’s embedding, we obtain

Iλ(u) ≥ k0

2
‖u‖2 − λ

qS
q/2
q

‖u‖q − 1
2∗∗S2∗∗/2

‖u‖2
∗∗

= g(‖u‖2),

where k0 = min{1,m0},

Sq := inf
{
‖u‖2 : u ∈ H and

∫
Ω

|u|q dx = 1
}
,
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S := inf
{
‖u‖2 : u ∈ H and

∫
Ω

|u|2
∗∗
dx = 1

}
,

and

g(t) =
k0

2
t− λ

qS
q/2
q

tq/2 − 1
2∗∗S2∗∗/2

t2
∗∗/2. (3.1)

Hence, there exists τ1 > 0 such that, if λ ∈ (0, τ1), then g attains its positive
maximum.

Denoting by R0(λ) < R1(λ) the only roots of g. We have the following result.

Lemma 3.5.
R0(λ)→ 0 as λ→ 0. (3.2)

Proof. From g(R0(λ)) = 0 and g′(R0(λ)) > 0, we have

CR0(λ) =
λ

qS
q/2
q

R0(λ)q/2 +
1

2∗∗S2∗∗/2
R0(λ)2∗∗/2, (3.3)

C >
λ

2Sq/2q

R0(λ)q−2/2 +
1

2S2∗∗/2
R0(λ)2∗∗−2/2, (3.4)

for all λ ∈ (0, τ1). From, (3.3) we conclude that R0(λ) is bounded. Suppose that
R0(λ)→ R̃ > 0 as λ→ 0. Then

C =
1

2∗∗S2∗∗/2
R̃2∗∗−2/2, (3.5)

C ≥ 1
2S2∗∗/2

R̃2∗∗−2/2, (3.6)

which is a contradiction, because 2∗∗ > 2. Therefore R0(λ)→ 0 as λ→ 0. �

We consider τ1 such that R0 ≤M(t0) and we make the following truncation on
the functional Iλ:

Take φ ∈ C∞0 ([0,+∞)), 0 ≤ φ(t) ≤ 1, for all t ∈ [0,+∞), such that φ(t) = 1 if
t ∈ [0, R0] and φ(t) = 0 if t ∈ [R1,+∞). Now, we consider the truncated functional

Jλ(u) =
1
2

∫
Ω

|∆u|2 dx+
1
2
M̂0

(∫
Ω

|∇u|2dx
)
−λ
q

∫
Ω

|u|q dx−φ(‖u‖2)
1

2∗∗

∫
Ω

|u|2
∗∗
dx.

Note that Jλ ∈ C1(H,R) and, as in (3.1), Jλ(u) ≥ g(‖u‖2), where

g(t) =
k0

2
t− λ

qS
q/2
q

tq/2 − φ(t)
1

2∗∗S2∗∗/2
t2
∗∗/2.

Note that if ‖u‖2 ≤ R0 then Jλ(u) = Iλ(u) and if ‖u‖2 ≥ R1, then

Jλ(u) =
1
2

∫
Ω

|∆u|2 dx+
1
2
M̂0

(∫
Ω

|∇u|2dx
)
− λ

q

∫
Ω

|u|q dx.

Thus, we conclude that the functional Jλ is coercive and, hence, Jλ is bounded
below.

Now, we show that Jλ satisfies the local Palais-Smale condition. For this, we
need the following technical result, which is an analogous of [9, Lemma 3.3 ]. Here,
λ1 is the first eigenvalue of the problem

∆2u = λu, in Ω
u = ∆u = 0, on ∂Ω.

(3.7)
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Lemma 3.6. Let (un) ⊂ H be a bounded sequence such that

Iλ(un)→ cλ and I ′λ(un)→ 0 as n→∞.
If

cλ <
2
N
SN/4 − λ

2
(2−q)

(1
q
− 1

2∗∗
)
|Ω|

(2−q)
2
[
q
(1
q
− 1

2∗∗
)
|Ω|

(2−q)
2

N

4
λ2

1

] q
(2−q) ,

then we have that, up to a subsequence, (un) is strongly convergent in H.

Proof. Taking a subsequence, we suppose that

|∆un|2 ⇀ |∆u|2 + µ, |∇un|2 ⇀ |∇u|2 + γ,

|un|2
∗∗
⇀ |u|2

∗∗
+ ν (weak∗-sense of measures).

Using the concentration compactness-principle by Lions [26, Lemma 2.1], we
obtain at most countable index set Λ, sequences (xi) ⊂ RN , (µi), (γi), (νi),⊂ [0,∞),
such that

ν =
∑
i∈Λ

νiδxi , µ ≥
∑
i∈Λ

µiδxi , γ ≥
∑
i∈Λ

γiδxi , Sν
2/2∗∗

i ≤ µi, (3.8)

for all i ∈ Λ, where δxi is the Dirac mass at xi ∈ RN .
Now we claim that Λ = ∅. Arguing by contradiction, assume that Λ 6= ∅ and fix

i ∈ Λ. Consider ψ ∈ C∞0 (Ω, [0, 1]) such that ψ ≡ 1 on B1(0), ψ ≡ 0 on Ω \ B2(0)
and |∇ψ|∞ ≤ 2. Defining ψ%(x) := ψ((x−xi)/%) where % > 0, we have that (ψ%un)
is bounded. Thus I ′λ(un)(ψ%un)→ 0; that is,∫

Ω

un∆un∆ψ% dx+
∫

Ω

ψ%|∆un|2 dx+ 2
∫

Ω

∆un∇ψ%∇un dx

+M0

(∫
Ω

|∇un|2 dx
)∫

Ω

un∇un∇ψ% dx+M0

(∫
Ω

|∇un|2 dx
)∫

Ω

ψ%|∇un|2 dx

= λ

∫
Ω

|un|qψ% dx+
∫

Ω

ψ%|un|2
∗∗
dx+ on(1).

Since the support of ψ% is contained in B2%(xi), we obtain∣∣∣ ∫
Ω

un∆un∆ψ% dx
∣∣∣ ≤ ∫

B2ρ(xi)

|∆un||un∆ψ%| dx.

By Hölder inequality and the fact that the sequence (un) is bounded in H we
have ∣∣ ∫

Ω

un∆un∆ψ% dx
∣∣ ≤ C(∫

B2%(xi)

|un∆ψ%|2 dx
)1/2

≤ C
(∫

B2%(xi)

|un|2|∆ψ%|2 dx
)1/2

.

By the Dominated Convergence Theorem
∫
B2%(xi)

|un∆ψ%|2 dx → 0 as n → +∞
and %→ 0. Thus, we obtain

lim
%→0

[
lim
n→∞

∫
Ω

un∆un∆ψ% dx
]

= 0.

Using the same reasoning we obtain

lim
%→0

[
lim
n→∞

∫
Ω

un∇un∇ψ% dx
]

= 0,
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lim
%→0

[
lim
n→∞

∫
Ω

∆un∇ψ%∇un dx
]

= 0,

lim
%→0

lim
n→∞

[ ∫
Ω

ψ%|un|q dx
]

= 0.

Since 0 < m0 ≤M0(t) ≤M(t0), for all t ∈ R, we obtain

lim
%→0

lim
n→∞

[
M0(‖un‖2)

∫
Ω

un∇un∇ψ% dx
]

= 0.

Thus, we have∫
Ω

ψ%dµ ≤
∫

Ω

ψ%dµ+m0

∫
Ω

ψ%dγ ≤
∫

Ω

ψ%dν + o%(1).

Letting % → 0 and using standard theory of Radon measures, we conclude that
µi ≤ νi. It follows from (3.8) that

µi ≥ Sν2/2∗∗

i ≥ Sµ2/2∗∗

i ,

where we conclude that
µi ≥ SN/4. (3.9)

Now we shall prove that the above inequality cannot occur, and therefore the
set Λ is empty. Indeed, arguing by contradiction, let us suppose that µi ≥ SN/4,
for some i ∈ Λ. Thus,

cλ = Iλ(un)− 1
2∗∗

I ′λ(un)un + on(1).

Since M0(t) ≤ 2∗∗

2 m0 for all t ∈ R, we have

cλ ≥
2
N

∫
Ω

|∆un|2 dx− λ(
1
q
− 1

2∗∗
)
∫

Ω

|un|q dx.

Letting n→∞, we obtain

cλ ≥
2
N
µi +

2
N

∫
Ω

|∆u|2 dx− λ(
1
q
− 1

2∗∗
)
∫

Ω

|u|q dx.

Hence,

cλ ≥
2
N
SN/4 +

2
N

1
λ2

1

∫
Ω

|u|2 dx− λ(
1
q
− 1

2∗∗
)
∫

Ω

|u|q dx.

By Hölder’s inequality

cλ ≥
2
N
SN/4 +

2
N

1
λ2

1

∫
Ω

|u|2 dx− λ(
1
q
− 1

2∗∗
)|Ω|

(2−q)
2

(∫
Ω

|u|2 dx
)q/2

.

Note that
f(t) =

2
N

1
λ2

1

t2 − λ(
1
q
− 1

2∗∗
)|Ω|

(2−q)
2 tq

is a continuous function that attains its absolute minimum, for t > 0, at the point

α0 =
[
qλ
(1
q
− 1

2∗∗
)
|Ω|(2−q)/2N

4
λ2

1

] 1
(2−q)

.

Hence,

cλ ≥
2
N
SN/4 +

2
N

1
λ2

1

α2
0 − λ(

1
q
− 1

2∗∗
)|Ω|

(2−q)
2 αq0.
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So

cλ ≥
2
N
SN/4 − λ(

1
q
− 1

2∗∗
)|Ω|

(2−q)
2 αq0.

Thus, we conclude that

cλ ≥
2
N
SN/4 − λ

2
(2−q) (

1
q
− 1

2∗∗
)|Ω|

(2−q)
2

[
q
(1
q
− 1

2∗∗
)
|Ω|

(2−q)
2

N

4
λ2

1

] q
(2−q)

,

which is a contradiction. Thus Λ is empty and it follows that un → u in L2∗∗(Ω).
Thus, up to a subsequence,

lim
n→∞

[ ∫
Ω

|∆un|2 dx+M0

(∫
Ω

|∇un|2 dx
)∫

Ω

|∇un|2 dx
]

= λ

∫
Ω

|u|q dx+
∫

Ω

|u|2
∗∗
dx.

Moreover, since un ⇀ u in H and M0

(∫
Ω
|∇un|2 dx

)
→ β, for some β ≥ 0, we have[ ∫

Ω

|∆u|2 dx+ β

∫
Ω

|∇u|2 dx
]

= λ

∫
Ω

|u|q dx+
∫

Ω

|u|2
∗∗
dx.

We claim that
lim
n→∞

‖un‖2 = ‖u‖2

because, otherwise, we have

lim sup
n→∞

∫
Ω

|∆un|2 dx <
∫

Ω

|∆u|2 dx

or

lim sup
n→∞

∫
Ω

|∇un|2 dx <

∫
Ω

|∇u|2 dx.

The second inequality implies

lim sup
n→∞

M0

(∫
Ω

|∇un|2 dx
)∫

Ω

|∇un|2 dx < β

∫
Ω

|∇u|2 dx.

Thus, in either of these two cases, we have

λ

∫
Ω

|u|q dx+
∫

Ω

|u|2
∗∗
dx

= lim sup
n→∞

[ ∫
Ω

|∆un|2 dx+M0

(∫
Ω

|∇un|2 dx
)∫

Ω

|∇un|2 dx
]

<

∫
Ω

|∆u|2 dx+ β

∫
Ω

|∇u|2 dx

= λ

∫
Ω

|u|q dx+
∫

Ω

|u|2
∗∗
dx,

which is a contradiction. Hence, ‖un − u‖2 = on(1). �

By Lemma 3.6 we conclude that, there exists τ2 > 0 such that, for all λ ∈ (0, τ2)
we obtain

2
N
SN/4 − λ

2
(2−q)

(1
q
− 1

2∗∗
)
|Ω|

(2−q)
2

[
q
(1
q
− 1

2∗∗
)
|Ω|

(2−q)
2

N

4
λ2

1

] q
(2−q)

> 0

and, hence, if (un) is a bounded sequence such that Iλ(un) → c, I ′λ(un) → 0 with
c < 0, then (un) has a subsequence convergent.
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Lemma 3.7. If Jλ(u) < 0, then ‖u‖2 < R0 ≤ M(t0) and Jλ(v) = Iλ(v), for all v
in a small enough neighborhood of u. Moreover, Jλ satisfies a local Palais-Smale
condition for cλ < 0.

Proof. Since λ ∈ (0, τ1) and Jλ(u) < 0, then by definition of g, we obtain g(‖u‖2) ≤
Jλ(u) < 0. Consequently, Jλ(u) = Iλ(u). Hence, we conclude ‖u‖2 < R0 ≤M(t0).
Moreover, since Jλ is a continuous functional, we derive Jλ(v) = Iλ(v), for all v ∈
BR0/2(0). Besides, if (un) is a sequence such that Jλ(un)→ cλ < 0 and J ′λ(un)→ 0,
for n sufficiently large, Iλ(un) = Jλ(un)→ cλ < 0 and I ′λ(un) = J ′λ(un)→ 0. Since
Jλ is coercive, we obtain that (un) is bounded in H. From Lemma 3.6, for all
λ ∈ (0, τ2), we obtain

cλ < 0 <
2
N
SN/4 − λ

2
(2−q)

(1
q
− 1

2∗∗
)
|Ω|

(2−q)
2

[
q
(1
q
− 1

2∗∗
)
|Ω|

(2−q)
2

N

4
λ2

1

] q
(2−q)

and, hence, up to a subsequence, (un) is strongly convergent in H. �

Now, we construct an appropriate mini-max sequence of negative critical values
for the functional Jλ.

Lemma 3.8. Given k ∈ N, there exists ε = ε(k) > 0 such that

γ(J−ελ ) ≥ k,

where J−ελ = {u ∈ H : Jλ(u) ≤ −ε} and γ was given in definition 3.1.

Proof. Fix k ∈ N, let Xk be a k-dimensional subspace of H. Thus, there exists
Ck > 0 such that

−C(k)‖u‖q ≥ −
∫

Ω

|u|q dx,

for all u ∈ Xk. We now use the inequality above and (2.2) to conclude that

Jλ(u) ≤ 2∗∗

4
‖u‖2 − C(k)

q
‖u‖q = ‖u‖q

(k1

2
‖u‖2−q − C(k)

q

)
.

Considering R > 0 sufficiently small, there exists ε = ε(R) > 0 such that

Jλ(u) < −ε < 0,

for all u ∈ SR = {u ∈ Xk; ‖u‖ = R}. Since Xk and Rk are isomorphic and SR and
Sk−1 are homeomorphic, where Sk−1 is the sphere of Rk. Then we conclude from
Corollary 3.3 that γ(SR) = γ(Sk−1) = k. Moreover, since SR ⊂ J−ελ and J−ελ is
symmetric and closed, we have

k = γ(SR) ≤ γ(J−ελ ).

�

Now for each k ∈ N, we define the sets

Γk = {C ⊂ H\{0} : C is closed , C = −C and γ(C) ≥ k},
Kc = {u ∈ H\{0} : J ′λ(u) = 0 and Jλ(u) = c}

and the number
ck = inf

C∈Γk
sup
u∈C

Jλ(u).

Lemma 3.9. For each k ∈ N, the number ck is negative.
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Proof. From Lemma 3.8, for each k ∈ N there exists ε > 0 such that γ(J−ελ ) ≥ k.
Moreover, 0 /∈ J−ελ and J−ελ ∈ Γk. On the other hand

sup
u∈J−ελ

Jλ(u) ≤ −ε.

Hence,
−∞ < ck = inf

C∈Γk
sup
u∈C

Jλ(u) ≤ sup
u∈J−ελ

Jλ(u) ≤ −ε < 0.

�

The next Lemma allows us to prove the existence of critical points of Jλ.

Lemma 3.10. If c = ck = ck+1 = · · · = ck+r for some r ∈ N, then there exists
λ∗ > 0 such that

γ(Kc) ≥ r + 1,
for λ ∈ (0, λ∗).

Proof. Since c = ck = ck+1 = · · · = ck+r < 0, for λ∗ = min{τ1, τ2} and for all
λ ∈ (0, λ∗), from Lemma 3.6 and Lemma 3.9, we obtain that Kc is a compact
set. Moreover, Kc = −Kc. If γ(Kc) ≤ r, there exists a closed and symmetric
neighborhood U of Kc such that γ(U) = γ(Kc) ≤ r. Note that we can choose U ⊂
J0
λ because c < 0. By the deformation lemma [10] we have an odd homeomorphism
η : H → H such that η(Jc+δλ − U) ⊂ Jc−δλ for some δ > 0 with 0 < δ < −c.
Thus, Jc+δλ ⊂ J0

λ and by definition of c = ck+r, there exists A ∈ Γk+r such that
supu∈A < c+ δ, that is, A ⊂ Jc+δλ and

η(A− U) ⊂ η(Jc+δλ − U) ⊂ Jc−δλ . (3.10)

But γ(A− U) ≥ γ(A) − γ(U) ≥ k and γ(η(A− U)) ≥ γ(A− U) ≥ k. Then
η(A− U) ∈ Γk and this contradicts (3.10). Hence, the lemma is proved. �

Remark 3.11. If −∞ < c1 < c2 < · · · < ck < · · · < 0 with ci 6= cj , since each ck
is a critical value of Jλ, then we obtain infinitely many critical points of Jλ and,
hence problem (2.4) has infinitely many solutions.

On the other hand, if there are two constants ck = ck+r, then c = ck = ck+1 =
· · · = ck+r and from Lemma 3.10, there exists λ∗ > 0 such that

γ(Kc) ≥ r + 1 ≥ 2

for all λ ∈ (0, λ∗). From Proposition 3.4, Kc has infinitely many points, that is,
problem (2.4) has infinitely many solutions.

Proof of Theorem 1.1. Let λ∗ be as in Lemma 3.10 and, for λ < λ∗, let uλ be the
nontrivial solution of problem (2.4) found in remark 3.11. Thus Jλ(uλ) = Iλ(uλ) <
0. Hence, ∫

Ω

|∇uλ|2 dx ≤ ‖uλ‖2 ≤ R0 ≤ t0. (3.11)

By the definition of M0 we obtain

M0

(∫
Ω

|∇uλ|2 dx
)

= M
(∫

Ω

|∇uλ|2 dx
)
,

which implies that uλ is a solution of (1.1). Moreover, from (3.11) and (3.2), we
conclude

lim
λ→0
‖uλ‖ = 0.



12 G. M. FIGUEIREDO, R. G. NASCIMENTO EJDE-2016/217

Since for each solution uλ we have that M(‖uλ‖2) ≥ m0 > 0 is a positive number,
then the regularity of these solutions is a consequence of [9, Theorem 2.1]. �

4. Case 2 < q < 2∗∗

In this section, we adapt for our study some ideas from [19]. In the sequel, we
prove that the functional Iλ has the Mountain Pass Geometry. This fact is proved
in the next lemmas:

Lemma 4.1. Assume that condition (1.4) holds. There exist positive numbers ρ
and α such that

Iλ(u) ≥ α > 0, ∀u ∈ H : ‖u‖ = ρ.

Proof. From (1.4), we have

Iλ(u) ≥ k0

2
‖u‖2 − λ

q

∫
Ω

|u|q dx− 1
2∗∗

∫
Ω

|u|2
∗∗
dx,

where k0 = min{1,m0}. So, using Sobolev’s Embedding Theorem, there exists a
positive constant C > 0 such that

Iλ(u) ≥ C‖u‖2 − λC‖u‖q − C‖u‖2
∗
.

Since 2 < q < 2∗∗, the result follows by choosing ρ > 0 small enough. �

Lemma 4.2. For all λ > 0, there exists e ∈ H with Iλ(e) < 0 and ‖e‖ > ρ, where
ρ was given in Lemma 4.1.

Proof. Fix v0 ∈ C∞0 (Ω) \ {0} with v0 ≥ 0 in Ω and ‖v0‖ = 1. Using (2.3) we obtain

Iλ(tv0) ≤ 1
2

max{1, m0q

2
}t2 − t2

∗∗

2∗∗

∫
Ω

|v0|2
∗∗
dx.

Since 2 < q < 2∗∗, the result follows by considering e = tv0 for some t > 0 large
enough. �

Using a version of the Mountain Pass Theorem due to Ambrosetti and Rabi-
nowitz [2], without (PS) condition (see [41, p.12]), there exists a sequence (un) ⊂ H
satisfying

Iλ(un)→ cλ and I ′λ(un)→ 0,

where

cλ = inf
γ∈Γ

max
t∈[0,1]

Iλ(γ(t)) > 0,

Γ := {γ ∈ C([0, 1], H) : γ(0) = 0, Iλ(γ(1)) < 0}.

Next, we shall prove an estimate for cλ.

Lemma 4.3. If condition (1.4) holds, then limλ→∞ cλ = 0.

Proof. Since the functional Iλ has the Mountain Pass geometry, it follows that there
exists tλ > 0 satisfying Iλ(tλv0) = maxt≥0 Iλ(tv0), where v0 is the function given
by Lemma 4.2, that does not depend of λ. Hence, from (2.3) we obtain

t2λ
1
2

max{1, m0q

2
} ≥ λtqλ

∫
Ω

|v0|q dx+ t2
∗∗

λ

∫
Ω

|v0|2
∗∗
dx ≥ t2

∗∗

λ

∫
Ω

|v0|2
∗∗
dx, (4.1)



EJDE-2016/217 MULTIPLICITY OF SOLUTIONS 13

which implies that (tλ) is bounded. Thus, there exists a sequence λn → +∞ and
β0 ≥ 0 such that tλn → β0 as n→ +∞. Consequently, exists D > 0 such that

t2λn
1
2

max{1, m0q

2
} ≤ D ∀n ∈ N,

and so
tqλnλn

∫
Ω

|v0|q dx+ t2
∗∗

λn

∫
Ω

|v0|2
∗∗
≤ D ∀n ∈ N.

If β0 > 0, the above inequality leads to

lim
n→∞

λnt
q
λn

∫
Ω

|v0|q dx+ t2
∗∗

λn

∫
Ω

|v0|2
∗∗

= +∞,

which is a contradiction. Thus, we conclude that β0 = 0. Now, let us consider the
path γ∗(t) = te for t ∈ [0, 1], to get the estimate

0 < cλ ≤ max
t∈[0,1]

I(γ∗(t)) = I(tλv0) ≤ Ct2λ,

for some positive C. In this way, limλ→∞ cλ = 0. �

Lemma 4.4. Let (un) ⊂ H be a sequence such that

Iλ(un)→ cλ and I ′λ(un)→ 0.

Then
‖un‖2 ≤ t0, for all n ∈ N where t0 is given in (2.1).

Proof. Assuming, by contradiction, that, up to a subsequence that ‖un‖2 > t0.
Thus, from (2.3) we obtain

cλ = Iλ(un)− 1
q
I ′λ(un)un + on(1) ≥ 1

2
M̂0(‖un‖2)− 1

q
M(t0)‖un‖2 + on(1).

Thus
cλ ≥

(1
2
m0 −

1
q
M(t0)

)
‖un‖2 + on(1). (4.2)

Since m0 < M(t0) < q
2m0, we obtain

cλ ≥
(1

2
m0 −

1
q
M(t0)

)
t0.

But this last inequality is in contradiction with Lemma 4.3. Hence (un) is bounded
in H by constant

√
t0. �

Proof of Theorem 1.2. From Lemma 4.3 we have limλ→+∞ cλ = 0. Therefore, there
exists λ∗∗ > 0 such that

cλ <
2
N
S
N
4 , (4.3)

for all λ ≥ λ∗∗. Now, fix λ ≥ λ∗∗ and let us to show that (2.4) admits a positive
solution. From Lemmas 4.1 and 4.2, there exists a bounded sequence (un) ⊂ H
satisfying

Iλ(un)→ cλ and I ′λ(un)→ 0.
Arguing as in Lemma 3.6 we conclude that un → uλ in L2∗∗(Ω). This convergence
implies that un → uλ in H. Thus, uλ is a solution of (2.4). Moreover, by Lemma
4.4, uλ is a solution of Problem (1.1) and from (4.2) and Lemma 4.3 we obtain

lim
λ→+∞

‖uλ‖ = 0.
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Since for each solution uλ we have that M(‖uλ‖2) ≥ m0 > 0 is a positive number,
then the regularity of these solutions is a consequence of [9, Theorem 2.1]. �
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